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Abstract

Grammar-based compression, where one replaces a long string by a small context-free grammar
that generates the string, is a simple and powerful paradigm that captures many popular compression
schemes. Given a grammar, the random access problem is to compactly represent the grammar while
supporting random access, that is, given a position in the original uncompressed string report the
character at that position. In this paper we study the random access problem with the finger search
property, that is, the time for a random access query should depend on the distance between a
specified index f , called the finger, and the query index i. We consider both a static variant, where
we first place a finger and subsequently access indices near the finger efficiently, and a dynamic
variant where also moving the finger such that the time depends on the distance moved is supported.

Let n be the size the grammar, and let N be the size of the string. For the static variant we
give a linear space representation that supports placing the finger in O(logN) time and subsequently
accessing in O(logD) time, where D is the distance between the finger and the accessed index.
For the dynamic variant we give a linear space representation that supports placing the finger in
O(logN) time and accessing and moving the finger in O(logD + log logN) time. Compared to the
best linear space solution to random access, we improve a O(logN) query bound to O(logD) for the
static variant and to O(logD + log logN) for the dynamic variant, while maintaining linear space.
As an application of our results we obtain an improved solution to the longest common extension
problem in grammar compressed strings. To obtain our results, we introduce several new techniques
of independent interest, including a novel van Emde Boas style decomposition of grammars.

1 Introduction

Grammar-based compression, where one replaces a long string by a small context-free grammar that
generates the string, is a simple and powerful paradigm that captures many popular compression schemes
including the Lempel-Ziv family [47,49,50], Sequitur [36], Run-Length Encoding, Re-Pair [33], and many
more [2–4, 20, 26, 30, 31, 41, 48]. All of these are or can be transformed into equivalent grammar-based
compression schemes with little expansion [14,39].

Given a grammar S representing a string S, the random access problem is to compactly represent
S while supporting fast access queries, that is, given an index i in S to report S[i]. The random
access problem is one of the most basic primitives for computation on grammar compressed strings, and
solutions to the problem are a key component in a wide range of algorithms and data structures for
grammar compressed strings [5, 8–10,21–23,28,43,44].

In this paper we study the random access problem with the finger search property, that is, the time
for a random access query should depend on the distance between a specified index f , called the finger,
and the query index i. We consider two variants of the problem. The first variant is static finger search,
where we can place a finger with a setfinger operation and subsequently access positions near the finger
efficiently. The finger can only be moved by a new setfinger operation, and the time for setfinger is
independent of the distance to the previous position of the finger. The second variant is dynamic finger
search, where we also support a movefinger operation that updates the finger such that the update time
depends on the distance the finger is moved.

Our main result is efficient solutions to both finger search problems. To state the bounds, let n be the
size the grammar S, and let N be the size of the string S. For the static finger search problem, we give an
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O(n) space representation that supports setfinger in O(logN) time and access in O(logD) time, where
D is the distance between the finger and the accessed index. For the dynamic finger search problem, we
give an O(n) space representation that supports setfinger in O(logN) time and movefinger and access in
O(logD + log logN) time. The best linear space solution for the random access problem uses O(logN)
time for access. Hence, compared to our result we improve the O(logN) bound to O(logD) for the static
version and to O(logD + log logN) for the dynamic version, while maintaining linear space. These are
the first non-trivial bounds for the finger search problems.

As an application of our results we also give a new solution to the longest common extension problem
on grammar compressed strings [9, 28, 37]. Here, the goal is to compactly represent S while supporting
fast lce queries, that is, given a pair of indices i, j to compute the length of the longest common prefix
of S[i,N ] and S[j,N ]. We give an O(n) space representation that answers queries in O(logN + log2 `),
where ` is the length of the longest common prefix. The best O(n) space solution for this problem uses
O(logN log `) time, and hence our new bound is always at least as good and better whenever ` = o(Nε).

1.1 Related Work

We briefly review the related work on the random access problem and finger search.

Random Access in Grammar Compressed Strings First note that naively we can store S ex-
plicitly using O(N) space and report any character in constant time. Alternatively, we can compute
and store the sizes of the strings derived by each grammar symbol in S and use this to simulate a
top-down search on the grammars derivation tree in constant time per node. This leads to an O(n)
space representation using O(h) time, where h is the height of the grammar [25]. Improved succinct
space representation of this solution are also known [15]. Bille et al. [10] gave a solution using O(n)
and O(logN) time, thus achieving a query time independent of the height of the grammar. Verbin and

Yu [46] gave a near matching lower bound by showing that any solution using O(n logO(1)N) space must
use Ω(log1−εN) time. Hence, we cannot hope to obtain significantly faster query times within O(n)
space. Finally, Belazzougui et al. [5] very recently showed that with superlinear space slightly faster
query times are possible. Specifically, they gave a solution using O(nτ logτ N/n) space and O(logτ N)
time, where τ is a trade-off parameter. For τ = logεN this is O(n logεN) space and O(logN/ log logN)
time. Practical solutions to this problem have been considered in [6, 24,35].

The above solutions all generalize to support decompression of an arbitrary substring of length D
in time O(taccess + D), where taccess is the time for access (and even faster for small alphabets [5]). We
can extend this to a simple solution to finger search (static and dynamic). The key idea is to implement
setfinger as a random access and access and movefinger by decompressing or traversing, respectively, the
part of the grammar in-between the two positions. This leads to a solution that uses O(taccess) time for
setfinger and O(D) time for access and movefinger.

Another closely related problem is the bookmarking problem, where a set of positions, called book-
marks, are given at preprocessing time and the goal is to support fast substring decompression from
any bookmark in constant or near-constant time per decompressed character [16, 21]. In other words,
bookmarking allows us to decompress a substring of length D in time O(D) if the substring crosses
a bookmark. Hence, with bookmarking we can improve the O(taccess + D) time solution for substring
decompression to O(D) whenever we know the positions of the substrings we want to decompress at
preprocessing time. A key component in the current solutions to bookmarking is to trade-off the Ω(D)
time we need to pay to decompress and output the substring. Our goal is to support access without
decompressing in o(D) time and hence this idea does not immediately apply to finger search.

Finger Search Finger search is a classic and well-studied concept in data structures, see e.g., [7,11,13,
17,19,27,32,34,38,40,42] and the survey [12]. In this setting, the goal is to maintain a dynamic dictionary
data structure such that searches have the finger search property. Classic textbook examples of efficient
finger search dictionaries include splay trees, skip lists, and level linked trees. Given a comparison based
dictionary with n elements, we can support optimal searching in O(log n) time and finger searching in
O(log d) time, where d is the rank distance between the finger and the query [12]. Note the similarity to
our compressed results that reduce an O(logN) bound to O(logD).
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1.2 Our results

We now formally state our results. Let S be a string of length N compressed into a grammar S of length
n. Our goal is to support the following operations on S.

access(i): return the character S[i]

setfinger(f): set the finger at position f in S.

movefinger(f): move the finger to position f in S.

The static finger problem is to support access and setfinger, and the dynamic finger search problem is to
support all three operations. We obtain the following bounds for the finger search problems.

Theorem 1 Let S be a grammar of size n representing a string S of length N . Let f be the current
position of the finger, and let D = |f − i| for some i. Using O(n) space we can support either:

(i) setfinger(f) in O(logN) time and access(i) in O(logD) time.

(ii) setfinger(f) in O(logN) time, movefinger(i) and access(i) both in O(logD + log logN) time.

Compared to the previous best linear space solution, we improve the O(logN) bound to O(logD) for
the static variant and to O(logD + log logN) for the dynamic variant, while maintaining linear space.
These are the first non-trivial solutions to the finger search problems. Moreover, the logarithmic bound
in terms of D may be viewed as a natural grammar compressed analogue of the classic uncompressed
finger search solutions. We note that Theorem 1 is straightforward to generalize to multiple fingers.
Each additional finger can be set in O(logN) time, uses O(logN) additional space, and given any finger
f , we can support access(i) in O(logDf ) time, where Df = |f − i|.

1.3 Technical Overview

To obtain Theorem 1 we introduce several new techniques of independent interest. First, we consider
a variant of the random access problem, which we call the fringe access problem. Here, the goal is to
support fast access close to the beginning or end (the fringe) of a substring derived by a grammar symbol.
We present an O(n) space representation that supports fringe access from any grammar symbol v in time
O(logDv + log logN), where Dv is the distance from the fringe in the string S(v) derived by v to the
queried position. The key challenge is designing a data structure for efficient navigation in unbalanced
grammars.

The main component in our solution to this problem is a new recursive decomposition. The decompo-
sition resembles the classic van Emde Boas data structure [45], in the sense that we recursively partition
the grammar into a hierarchy of depth O(log logN) consisting of subgrammars generating strings of
lengths N1/2, N1/4, N1/8, . . .. We then show how to implement fringe access via predecessor queries on
special paths produced by the decomposition. We cannot afford to explicitly store a predecessor data
structure for each special path, however, using a technique due to Bille et al. [10], we can represent
all the special paths compactly in a tree and instead implement the predecessor queries as weighted
ancestor queries on the tree. This leads to an O(n) space solution with O(logDv + (log logN)2) query

time. Whenever Dv ≥ 2(log logN)2 this matches our desired bound of O(logDv + log logN). To handle

the case when Dv ≤ 2(log logN)2 we use an additional decomposition of the grammar and further reduce
the problem to weighted ancestor queries on trees of small weighted height. Finally, we give an efficient
solution to weighted ancestor for this specialized case that leads to our final result for fringe access.

Next, we use our fringe access result to obtain our solution to the static finger search problem. The
key idea is to decompose the grammar into heavy paths as done by Bille et al. [10], which has the
property that any root-to-leaf path in the directed acyclic graph representing the grammar consists of
at most O(logN) heavy paths. We then use this to compactly represent the finger as a sequence of the
heavy paths. To implement access, we binary search the heavy paths in the finger to find an exit point
on the finger, which we then use to find an appropriate node to apply our solution to fringe access on.
Together with a few additional tricks this gives us Theorem 1(i).

Unfortunately, the above approach for the static finger search problem does not extend to the dynamic
setting. The key issue is that even a tiny local change in the position of the finger can change Θ(logN)
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heavy paths in the representation of the finger, hence requiring at least Ω(logN) work to implement
movefinger. To avoid this we give a new compact representation of the finger based on both heavy path
and the special paths obtained from our van Emde Boas decomposition used in our fringe access data
structure. We show how to efficiently maintain this representation during local changes of the finger,
ultimately leading to Theorem 1(ii).

1.4 Longest Common Extensions

As application of Theorem 1, we give an improved solution to longest common extension problem in
grammar compressed strings. The first solution to this problem is due to Bille et al. [9]. They showed
how to extend random access queries to compute Karp-Rabin fingerprints. Combined with an exponential
search this leads to a linear space solution to the longest common extension problem using O(logN log `)
time, where ` is the length of the longest common extension. We note that we can plug in any of the
above mentioned random access solution. More recently, Nishimoto et al. [37] used a completely different
approach to get O(logN + log ` log∗N) query time while using superlinear O(n logN log∗N) space. We
obtain:

Theorem 2 Let S be a grammar of size n representing a string S of length N . We can solve the longest
common extension problem in O(logN + log2 `) time and O(n) space where ` is the length of the longest
common extension.

Note that we need to verify the Karp-Rabin fingerprints during preprocessing in order to obtain a
worst-case query time. Using the result from Bille et al. [10] this gives a randomized expected prepro-
cessing time of O(N logN).

Theorem 2 improves the O(logN log `) solution to O(logN + log2 `). The new bound is always at
least as good and asymptotically better whenever ` = o(N ε) where ε is a constant. The new result follows
by extending Theorem 1 to compute Karp-Rabin fingerprints and use these to perform the exponential
search from [9].

2 Preliminaries

Strings and Trees Let S = S[1, |S|] be a string of length |S|. Denote by S[i] the character in S at
index i and let S[i, j] be the substring of S of length j − i + 1 from index i ≥ 1 to |S| ≥ j ≥ i, both
indices included.

Given a rooted tree T , we denote by T (v) the subtree rooted in a node v and the left and right child
of a node v by left(v) and right(v) if the tree is binary. The nearest common ancestor nca(v, u) of two
nodes v and u is the deepest node that is an ancestor of both v and u. A weighted tree has weights on
its edges. A weighted ancestor query for node v and weight d returns the highest node w such that the
sum of weights on the path from the root to w is at least d.

Grammars and Straight Line Programs Grammar-based compression replaces a long string by a
small context-free grammar (CFG). We assume without loss of generality that the grammars are in fact
straight-line programs (SLPs). The lefthand side of a grammar rule in an SLP has exactly one variable,
and the forighthand side has either exactly two variables or one terminal symbol. In addition, SLPs are
unambigous and acyclic. We view SLPs as a directed acyclic graph (DAG) where each rule correspond
to a node with outgoing ordered edges to its variables. Let S be an SLP. As with trees, we denote the
left and right child of an internal node v by left(v) and right(v). The unique string S(v) of length Nv
is produced by a depth-first left-to-right traversal of v in S and consist of the characters on the leafs in
the order they are visited. The corresponding parse tree for v is denoted T (v). We will use the following
results, that provides efficient random access from any node v in S.

Lemma 1 ([10]) Let S be a string of length N compressed into a SLP S of size n. Given a node v ∈ S,
we can support random access in S(v) in O(logNv) time, and at the same time reporting the sequence
of heavy paths and their entry- and exit points in the corresponding depth-first traversal of S(v). The
number of heavy paths visited is O(logNv).
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Karp-Rabin Fingerprints For a prime p, 2nc+4 < p ≤ 4nc+4 and x ∈ [p] the Karp-Rabin finger-
print [29], denoted φ(S[i, j]), of the substring S[i, j] is defined as φ(S[i, j]) =

∑
i≤k≤j S[k]xk−i mod p.

The key property is that for a random choice of x, two substrings of S match iff their fingerprints
match (whp.), thus allowing us to compare substrings in constant time. We use the following well-known
properties of fingerprints.

Lemma 2 The Karp-Rabin fingerprints have the following properties:

1) Given φ(S[i, j]), the fingerprint φ(S[i, j ± a]) for some integer a, can be computed in O(a) time.

2) Given fingerprints φ(S[1, i]) and φ(S[1, j]), the fingerprint φ(S[i, j]) can be computed in O(1) time.

3) Given fingerprints φ(S1) and φ(S2), the fingerprint φ(S1 · S2) = φ(S1)⊕ φ(S2) can be computed in
O(1) time.

3 Fringe Access

In this section we consider the fringe access problem. Here the goal is to compactly represent the SLP,
such that for any node v, we can efficiently access locations in the string S(v) close to the start or the end
of the substring. The fringe access problem is the key component in our finger search data structures.
A straightforward solution to the fringe access problem is to apply a solution to the random access
problem. For instance if we apply the random access solution from Bille et al. [10] stated in Lemma 1 we
immediately obtain a linear space solution with O(logNv) access time, i.e., the access time is independent
of the distance to the start or the end of the string. This is an immediate consequence of the central
grammar decomposition technique of [10], and does not extend to solve fringe access efficiently. Our
main contribution in this section is a new approach that bypasses this obstacle. We show the following
result.

Lemma 3 Let S be an SLP of size n representing a string of length N . Using O(n) space, we can
support access to position i of any node v, in time O(log(min(i,Nv − i)) + log logN).

The key idea in this result is a van Emde Boas style decomposition of S combined with a predecessor
data structure on selected paths in the decomposition. To achieve linear space we reduce the pre-
decessor queries on these paths to a weighted ancestor query. We first give a data structure with
query time O((log logN)2 + log(min(i,Nv − i))). We then show how to reduce the query time to
O(log logN + log(min(i,Nv − i))) by reducing the query time for small i. To do so we introduce an
additional decomposition and give a new data structure that supports fast weighted ancestor queries on
trees of small weighted height.

For simplicity and without loss of generality we assume that the access point i is closest to the start of
S(v), i.e., the goal is to obtain O(log(i)+log logN) time. By symmetry we can obtain the corresponding
result for access points close to the end of S(v).

3.1 van Emde Boas Decomposition for Grammars

We first define the vEB decomposition on the parse tree T and then extend it to the SLP S. In the
decomposition we use the ART decompostion by Alstrup et al. [1].

ART Decomposition The ART decomposition introduced by Alstrup et al. [1] decomposes a tree
into a single top tree and a number of bottom trees. Each bottom tree is a subtree rooted in a node of
minimal depth such that the subtree contains no more than x leaves and the top tree is all nodes not in
a bottom tree. The decomposition has the following key property.

Lemma 4 ([1]) The ART decomposition with parameter x for a rooted tree T with N leaves produces a
top tree with at most N

x+1 leaves.

We are now ready to define the van Emde Boas (vEB) decomposition.

5
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Figure 1: Example of the ART-decomposition and a leftmost top path. In the top, the nodes forming
the top tree are drawn. In the bottom, triangles representing the bottom trees with a number that is
the size of the bottom tree. v’s leftmost top path is shown as well, and the two trees hanging to the left
of this path l1 and l2.

The van Emde Boas Decomposition We define the van Emde Boas Decomposition of a tree
T as follows. The van Emde Boas (vEB) decomposition of T is obtained by recursively applying an
ART decomposition: Let v = root(T ) and x =

√
N . If N = O(1), stop. Otherwise, construct an

ART decomposition of T (v) with parameter x. For each bottom tree T (u) recursively construct a vEB
decomposition with v = u and x =

√
x.

Define the level of a node v in T as level(v) = blog logN − log logNvc (this corresponds to the depth
of the recursion when v is included in its top tree).

Note that except for the nodes on the lowest level—which are not in any top tree—all nodes belong
to exactly one top tree. For any node v ∈ T not in the last level, let Ttop(v) be the top tree v belongs
to. The leftmost top path of v is the path from v to the leftmost leaf of Ttop(v). See Figure 1.

Intuitively, the vEB decomposition of T defines a nested hierarchy of subtrees that decrease by at
least the square root of the size at each step.

The van Emde Boas Decomposition of Grammars Our definition of the vEB decomposition of
trees can be extended to SLPs as follows. Since the vEB decomposition is based only on the length of
the string Nv generated by each node v, the definition of the vEB decomposition is also well-defined on
SLPs. As in the tree, all nodes belong to at most one top DAG. We can therefore reuse the terminology
from the definition for trees on SLPs as well.

To compute the vEB decomposition first determine the level of each node and then remove all edges
between nodes on different levels. This can be done in O(n) time.

3.2 Data Structure

We first present a data structure that achieves O((log logN)2 + log(i)) time. In the next section we then
show how to improve the running time to the desired O(log log(N) + log(i)) bound.
Our data structure contains the following information for each node v ∈ S. Let l1, l2, . . . , lk be the nodes
hanging to the left of v’s leftmost top path (excluding nodes hanging from the bottom node).

• The length Nv of S(v).

• The sum of the sizes of nodes hanging to the left of v’s leftmost top path sv = |l1|+ |l2|+ . . .+ |lk|.

• A pointer bv to the bottom node on v’s leftmost top path.

• A predecessor data structure over the sequence 1, |l1|+ 1, |l1|+ |l2|+ 1, . . . ,
∑k−1
i=1 |li|+ 1. We will

later show how to represent this data structure.

In addition we also build the data structure from Lemma 1 that given any node v supports random
access to S(v) in O(logNv) time using O(n) space.

6



To perform an access query we proceed as follows. Suppose that we have reached some node v and
we want to compute S(v)[i]. We consider the following five cases (when multiple cases apply take the
first):

1. If Nv = O(1). Decompress S(v) and return the i’th character.

2. If i ≤ sv. Find the predecessor p of i in v’s predecessor structure and let u be the corresponding
node. Recursively find S(u)[i− p].

3. If i ≤ sv +Nleft(bv). Recursively find S(left(bv))[i− sv].

4. If i ≤ sv +Nbv . Recursively find S(right(bv))[i− sv −Nleft(bv)].

5. In all other cases, perform a random access for i in S(v) using Lemma 1.

To see correctness, first note that case (1) and (5) are correct by definition. Case (2) is correct since
when i ≤ sv we know the i’th leaf must be in one of the trees hanging to the left of the leftmost top
path, and the predecessor query ensures we recurse into the correct one of these bottom trees. In case
(3) and (4) we check if the i’th leaf is either in the left or right subtree of bv and if it is, we recurse into
the correct one of these.

Compact Predecessor Data Structures We now describe how to represent the predecessor data
structure. Simply storing a predecessor structure in every single node would use O(n2) space. We can
reduce the space to O(n) using ideas similar to the construction of the ”heavy path suffix forest” in [10].

Let L denote the leftmost top path forest. The nodes of L are the nodes of S. A node u is the
parent of v in L iff u is a child of v in S and u is on v’s leftmost top path. Thus, a leftmost top path
v1, . . . , vk in S is a sequence of ancestors from v1 in L. The weight of an edge (u, v) in L is 0 if u is a
left child of v in S and otherwise Nleft(v). Several leftmost top paths in S can share the same suffix, but
the leftmost top path of a node in S is uniquely defined and thus L is a forest. A leftmost path ends
in a leaf in the top DAG, and therefore L consists of O(n) trees each rooted at a unique leaf of a top

dag. A predecessor query on the sequence 1, |l1|+ 1, |l1|+ |l2|+ 1, . . . ,
∑k−1
i=1 |li|+ 1 now corresponds to

a weighted ancestor query in L. We plug in the weighted ancestor data structure from Farach-Colton
and Muthukrishnan [18], which supports weighted ancestor queries in a forest in O(log log n+ log logU))
time with O(n) preprocessing and space, where U is the maximum weight of a root-to-leaf path and n
the number of leaves. We have U = N and hence the time for queries becomes O(log logN).

Space and Preprocessing Time For each node in S we store a constant number of values, which
takes O(n) space. Both the predecessor data structure and the data structure for supporting random
access from Lemma 1 take O(n) space, so the overall space usage is O(n). The vEB decomposition
can be computed in O(n) time. The leftmost top paths and the information saved in each node can be
computed in linear time. The predecessor data structure uses linear preprocessing time, and thus the
total preprocessing time is O(n).

Query Time Consider each case of the recursion. The time for case (1), (3) and (4) is trivially
O(1). Case (2) is O(log logN) since we perform exactly one predececssor query in the predecessor data
structure.

In case (5) we make a random access query in a node of size Nv. From Lemma 1 we have that
the query time is O(logNv). We know level(v) = level(bv) since they are on the same leftmost top
path. From the definition of the level it follows for any pair of nodes u and w with the same level
that Nu ≥

√
Nw and thus Nbv ≥

√
Nv. From the conditions we have i > sv + Nbv ≥ Nbv ≥

√
Nv.

Since
√
Nv < i ⇔ logNv < 2 log i we have logNv = O(log i) and thus the running time for case (5) is

O(logNv) = O(log i).
Case (1) and (5) terminate the algorithm and can thus not happen more than once. Case (2), (3)

and (4) are repeated at most O(log logN) times since the level of the node we recurse on increments by
at least one in each recursive call, and the level of a node is at most O(log logN). The overall running
time is therefore O((log logN)2 + log i).

In summary, we have the following result.

7



Lemma 5 Let S be an SLP of size n representing a string of length N . Using O(n) space, we can
support access to position i of any node v, in time O(log i+ (log logN)2).

3.3 Improving the Query Time for Small Indices

The above algorithm obtains the running time O(log i) for i ≥ 2(log logN)2 . We will now improve the

running time to O(log logN + log i) by improving the running time in the case when i < 2(log logN)2 .
In addition to the data structure from above, we add another copy of the data structure with a few

changes. When answering a query, we first check if i ≥ 2(log logN)2 . If i ≥ 2(log logN)2 we use the original
data structure, otherwise we use the new copy.

The new copy of the data structure is implemented as follows. In the first level of the ART-
decomposition let x = 2(log logN)2 instead of

√
N . For the rest of the levels use

√
x as before. Fur-

thermore, we split the resulting new leftmost top path forest L into two disjoint parts: L1 consisting
of all nodes with level 1 and L≥2 consisting of all nodes with level at least 2. For L1 we use the
weighted ancestor data structure by Farach-Colton and Muthukrishnan [18] as in the previous section
using O(log log n+ log logN) = O(log logN) time. However, if we apply this solution for L≥2 we end up
with a query time of O(log log n + log log x), which does not lead to an improved solution. Instead, we
present a new data structure that supports queries in O(log log x) time.

Lemma 6 Given a tree T with n leaves where the sum of edge weights on any root-to-leaf path is at
most x and the height is at most x, we can support weighted ancestor queries in O(log log x) time using
O(n) space and preprocessing time.

Proof. Create an ART-decomposition of T with parameter x. For each bottom tree in the decomposition
construct the weighted ancestor structure from [18]. For the top tree, construct a predecessor structure
over the accumulated edge weights for each root-to-leaf path.

To perform a weighted ancestor query on a node in a bottom tree, we first perform a weighted ancestor
query using the data structure for the bottom tree. In case we end up in the root of the bottom tree,
we continue with a predecessor search in the top tree from the leaf corresponding to the bottom tree.

The total space for bottom trees is O(n). Since the top tree has O(n/x) leaves and height at most x,
the total space for all predecessor data structures on root-to-leaf paths in the top tree is O(n/x·x) = O(n).
Hence, the total space is O(n).

A predecessor query in the top tree takes O(log log x) time. The number of nodes in each bottom
tree is at most x2 since it has at most x leaves and height x and the maximum weight of a root-to-leaf
path is x giving weighted ancestor queries in O(log log x2 + log log x) = O(log log x) time. Hence, the
total query time is O(log log x). �

We reduce the query time for queries with i < 2(log logN)2 using the new data structure. The level
of any node in the new structure is at most O(1 + log log 2(log logN)2) = O(log log logN). A weighted
ancestor query in L1 takes time O(log logN). For weighted ancestor queries in L≥2, we know any node v

has height at most 2(log logN)2 and on any root-to-leaf path the sum of the weights is at most 2(log logN)2 .
Hence, by Lemma 6 we support queries in O(log log 2(log logN)2) = O(log log logN) time for nodes in
L≥2.

We make at most one weighted ancestor query in L1, the remaining ones are made in L≥2, and thus
the overall running time is O(log logN + (log log logN)2 + log i) = O(log logN + log i).

In summary, this completes the proof of Lemma 3.

4 Static Finger Search

We now show how to apply our solution to the fringe access to a obtain a simple data structure for the
static finger search problem. This solution will be the starting point for solving the dynamic case in the
next section, and we will use it as a key component in our result for longest common extension problem.

Similar to the fringe search problem we assume without loss of generality that the access point i is
to the right of the finger.
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Figure 2: Illustration of the data structure for a finger pointing at f and an access query at location i.
h1, h2, h3 are the heavy paths visited when finding the finger. u corresponds to NCA(vf , vi) in the parse
tree and hs is the heavy path on which u lies, which we use to find u. a is a value calculated during the
access query.

Data Structure We store the random access data structure from [10] used in Lemma 1 and the fringe
search data structures from above. Also from [10] we store the data structure that for any heavy path h
starting in a node v and an index i of a leaf in T (v) gives the exit-node from h when searching for i in
O(log logN) time and uses O(n) space.

To represent a finger the key idea is store a compact data structure for the corresponding root-to-
leaf path in the grammar that allows us to navigate it efficiently. Specifically, let f be the position
of the current finger and let p = v1 . . . vk denote the path in S from the root to vf (v1 = root and
vk = vf ). Decompose p into the O(logN) heavy paths it intersects, and call these hj = v1 . . . vi1 , hj−1 =
vi1+1 . . . vi2 , · · · , h1 = vij−1+1 . . . vk. Let v(hi) be the topmost node on hi (v(hj) = v1, v(hj−1) = vi1 , . . . ).
Let lj be the index of f in S(v(hj)) and rj = Nv(hj) − lj . For the finger we store:

1. The sequence r1, r2, . . . , rj (note r1 ≤ r2 ≤ · · · ≤ rj).

2. The sequence v(h1), v(h2), . . . , v(hj).

3. The string FT = S[f + 1, f + logN ].

Analysis The random access and fringe search data structures both require O(n) space. Each of the 3
bullets above require O(logN) space and thus the finger takes up O(logN) space. The total space usage
is O(n).

Setfinger We implement setfinger(f) as follows. First, we apply Lemma 1 to make random access to
position f . This gives us the sequence of visited heavy paths which exactly corresponds to hj , hj−1, . . . , h1
including the corresponding li values from which we can calculate the ri values. So we update the ri
sequence accordingly. Finally, decompress and save the string FT = S[f + 1, f + logN ].

The random access to position f takes O(logN) time. In addition to this we perform a constant
number of operations for each heavy path hi, which in total takes O(logN) time. Decompressing a string
of logN characters can be done in O(logN) time (using [10]). In total, we use O(logN) time.

Access To perform access(i) (i > f), there are two cases. If D = i − f ≤ logN we simply return the
stored character FT [D] in constant time. Otherwise, we compute the node u = nca(vf , vi) in the parse
tree T as follows. First find the index s of the successor to D in the ri sequence using binary search. Now
we know that u is on the heavy path hs. Find the exit-nodes from hs when searching for respectively i
and f using the data structure from [10] - the topmost of these two is u. See Fig. 2. Finally, we compute
a as the index of f in T (left(u)) from the right and use the data structure for fringe search from Lemma 3
to compute S(right(u))[i− f − a].

For D ≤ logN , the operation takes constant time. For D > logN , the binary search over a sequence
of O(logN) elements takes O(log logN) time, finding the exit-nodes takes O(log logN) time, and the
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fringe search takes O(log(i− f − a)) = O(logD) time. Hence, in total O(log logN + logD) = O(logD)
time.

This completes the proof of Theorem 1(i).

5 Dynamic Finger Search

In this section we show how to extend the solution from Section 4 to handle dynamic finger search. The
target is to support the movefinger operation that will move the current finger, where the time it takes is
dependent on how far the finger is moved. Obviously, it should be faster than simply using the setfinger
operation. The key difference from the static finger is a new decomposition of a root-to-leaf path into
paths. The new decomposition is based on a combination of heavy paths and leftmost top paths, which
we will show first. Then we show how to change the data structure to use this decomposition, and how
to modify the operations accordingly. Finally, we consider how to generalize the solution to work when
movefinger/access might both be to the left and right of the current finger, which for this solution is not
trivially just by symmetry.

Before we start, let us see why the data structure for the static finger cannot directly be used for
dynamic finger. Suppose we have a finger pointing at f described by Θ(logN) heavy paths. It might be
the case that after a movefinger(f + 1) operation, it is Θ(logN) completely different heavy paths that
describes the finger. In this case we must do Θ(logN) work to keep our finger data structure updated.
This can for instance happen when the current finger is pointing at the right-most leaf in the left subtree
of the root.

Furthermore, in the solution to the static problem, we store the substring S[f + 1, f + logN ] decom-
pressed in our data structure. If we perform a movefinger(f + logN) operation nothing of this substring
can be reused. To decompress logN characters takes Ω(logN) time, thus we cannot do this in the
movefinger operation and still get something faster than Θ(logN).

5.1 Left Heavy Path Decomposition of a Path

Let p = v1 . . . vk be a root-to-leaf path in S. A subpath pi = va . . . vb of p is a maximal heavy subpath if
va . . . vb is part of a heavy path and vb+1 is not on the same heavy path. Similarly, a subpath pi = va . . . vb
of p is a maximal leftmost top subpath if va . . . vb is part of a leftmost top path and level(vb) 6= level(vb+1).

A left heavy path decomposition is a decomposition of a root-to-leaf path p into an arbitrary sequence
p1 . . . pj of maximal heavy subpaths, maximal leftmost top subpaths and (non-maximal) leftmost top
subpaths immediately followed by maximal heavy subpaths.

Define v(pi) as the topmost node on the subpath pi. Let lj be the index of the finger f in S(v(pj))
and rj = Nv(pj) − lj . Let t(pi) be the type of pi; either heavy subpath (HP ) or leftmost top subpath
(LTP ).

A left heavy path decomposition of a root-to-leaf path p is not unique. The heavy path decomposition
of p is always a valid left heavy path decomposition as well. The visited heavy paths and leftmost top
paths during fringe search are always maximal and thus is always a valid left heavy path decomposition.

Lemma 7 The number of paths in a left heavy path decomposition is O(logN).

Proof. There are at most O(logN) heavy paths that intersects with a root-to-leaf path (Lemma 1).
Each of these can at most be used once because of the maximality. So there can at most be O(logN)
maximal heavy paths. Each time there is a maximal leftmost top path, the level of the following node
on p increases. This can happen at most O(log logN) times. Each non-maximal leftmost top path is
followed by a maximal heavy path, and since there are only O(logN) of these, this can happen at most
O(logN) times. Therefore the sequence of paths has length O(logN + log logN + logN) = O(logN).

5.2 Data Structure

We use the data structures from [10] as in the static variant and the fringe access data structure with
an extension. In the fringe access data structure there is a predecessor data structure for all the nodes
hanging to the left of a leftmost top path. To support access and movefinger we need to find a node
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hanging to the left or right of a leftmost top path. We can do this by storing an identical predecessor
structure for the accumulated sizes of the nodes hanging to the right of each leftmost top path. Again,
the space usage for this predecessor structure can be reduced to O(n) by turning it into a weighted
ancestor problem.

To represent a finger the idea is again to have a compact data structure representing the root-to-leaf
path corresponding to the finger. This time we will base it on a left heavy path decomposition instead
of a heavy path decomposition. Let f be the current position of the finger. For the root-to-leaf path to
vf we maintain a left heavy path decomposition, and store the following for a finger:

1. The sequence r1, r2, . . . , rj (r1 ≤ r2 ≤ · · · ≤ rj) on a stack with the last element on top.

2. The sequence v(p1), v(p2), . . . , v(pj) on a stack with the last element on top.

3. The sequence t(p1), t(p2), . . . , t(pj) on a stack with the last element on top.

Analysis The fringe access data structure takes up O(n) space. For each path in the left heavy path
decomposition we use constant space. Using Lemma 7 we have the space usage of this is O(logN) = O(n).

Setfinger Use fringe access (Lemma 3) to access position f . This gives us a sequence of leftmost top
paths and heavy paths visited during the fringe access which is a valid left heavy path decomposition.
Calculate ri for each of these and store the three sequences of ri, v(pi) and t(pi) on stacks.

The fringe access takes O(log f + log logN) time. The number of subpaths visited during the fringe
access cannot be more than O(log f + log logN) and we only perform constant extra work for each of
these.

Access To implement access(i) for i > f we have to find u = nca(vi, vf ) in the T . Find the index s of
the successor to D = i− f in r1, r2, . . . , rj using binary search. We know nca(vi, vf ) lies on ps, and vi is
in a subtree that hangs of ps. The exit-nodes from ps to vf and vi are now found - the topmost of these
two is nca(vi, vf ). If t(ps) = HP then we can use the same data structure as in the static case, otherwise
we perform the predecessor query on the extra predecessor data structure for the nodes hanging of the
leftmost top path. Finally, we compute a as the index of f in S(left(u)) from the right and use the data
structure for fringe access from Lemma 3 to compute S(right(u))[i− f − a].

The binary search on r1, r2, . . . , rj takes O(log logN) time. Finding the exit-nodes from ps takes
O(log logN) in either case. Finally the fringe access takes O(log(i − f − a) + log logN) = O(logD +
log logN). Overall it takes O(logD + log logN).

Note the extra O(log logN) time usage because we have not decompressed the first logN characters
following the finger.

Movefinger To move the finger we combine the access and setfinger operations. Find the index s of
the successor to D = i − f in r1, r2, . . . , rj using binary search. Now we know u = nca(vi, vf ) must lie
on ps. Find u in the same way as when performing access. From all of the stacks pop all elements above
index s. Compute a as the index of f in S(left(u)) from the right. The finger should be moved to index
i− f − a in right(u). First look at the heavy path right(u) lies on and find the proper exit-node w using
the data structure from [10]. Then continue with fringe searh from the proper child of w. This gives a
heavy path followed by a sequence of maximal leftmost top paths and heavy paths needed to reach vi
from right(u), push the rj , v(pj), and t(pj) values for these on top of the respective stacks.

We now verify the sequence of paths we maintain is still a valid left heavy path decomposition. Since
fringe search gives a sequence of paths that is a valid left heavy path decomposition, the only problem
might be ps is no longer maximal. If ps is a heavy path it will still be maximal, but if ps is a leftmost
top path then level(u) and level(right(u)) might be equal. But this possibly non-maximal leftmost top
path is always followed by a heavy path. Thus the overall sequence of paths remains a left heavy path
decomposition.

The successor query in r1, r2, . . . , rj takes O(log logN) time. Finding u on pi takes O(log logN) time,
and so does finding the exit-node on the following heavy path. Popping a number of elements from the
top of the stacks can be done in O(1) time. Finally the fringe access takes O(log(i−f −a)+log logN) =
O(logD + log log n) including pushing the right elements on the stacks. Overall the running time is
therefore O(logD + log log n).
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5.3 Moving/Access to the Left of the Finger

In the above we have assumed i > f , we will now show how this assumption can be removed. It is
easy to see we can mirror all data structures and we will have a solution that works for i < f instead.
Unfortunately, we cannot just use a copy of each independently, since one of them only supports moving
the finger to the left and the other only supports moving to the right. We would like to support moving
the finger left and right arbitrarily. This was not a problem with the static finger since we could just
make setfinger in both the mirrored and non-mirrored data structures in O(logN) time.

Instead we extend our finger data structure. First we extend the left heavy path decomposition to
a left right heavy path decomposition by adding another type of paths to it, namely rightmost top paths
(the mirrorred version of leftmost top paths). Thus a left right heavy path decomposition is a decompo-
sition of a root-to-leaf path p into an arbitrary sequence p1 . . . pj of maximal heavy subpaths, maximal
leftmost/rightmost top subpaths and (non-maximal) leftmost/rightmost top subpaths immediately fol-
lowed by maximal heavy subpaths. Now t(pi) = HP |LTP |RTP . Furthermore, we save the sequence
l1, l2, . . . , lj (lj being the left index of f in T (v(pi))) on a stack like the r1, r2, . . . , rj values, etc.

When we do access and movefinger where i < f , the subpath ps where nca(vf , vi) lies can be found
by binary search on the lj values instead of the rj values. Note the lj values are sorted on the stack, just
like the rj values. The following heavy path lookup/fringe access should now be performed on left(u)
instead of right(u). The remaining operations can just be performed in the same way as before.

6 Finger Search with Fingerprints and Longest Common Ex-
tensions

We show how to extend our finger search data structure from Theorem 1(i) to support computing
fingerprints and then apply the result to compute longest common extensions. First, we will show how
to return a fingerprint for S(v)[1, i] when performing access on the fringe of v.

6.1 Fast Fingerprints on the Fringe

To do this, we need to store some additional data for each node v ∈ S. We store the fingerprint φ(S(v))
and the concatenation of the fingerprints of the nodes hanging to the left of the leftmost top path
pv = φ(S(l1))⊕ φ(S(l2))⊕ . . .⊕ φ(S(lk)). We also need the following lemma:

Lemma 8 ([9]) Let S be a string of length N compressed into a SLP S of size n. Given a node v ∈ S,
we can find the fingerprint φ(S(v)[1, i]) where 1 ≤ i ≤ Nv in O(logNv) time.

Suppose we are in a node v and we want to calculate the fingerprint φ(S(v)[1, i]). We perform an
access query as before, but also maintain a fingerprint p, initially p = φ(ε), computed thus far. We follow
the same five cases as before, but add the following to update p:

1. From the decompressed S(v), calculate the fingerprint for S(v)[1, i], now update p = p⊕φ(S(v)[1, i]).

2. p = p⊕ (φ(pv)	s φ(pu)).

3. p = p⊕ φ(pv).

4. p = p⊕ φ(pv)⊕ φ(S(left(bv))).

5. Use Lemma 8 to find the fingerprint for S(v)[1, i] and then update with p = p⊕ φ(S(v)[1, i]).

These extra operations do not change the running time of the algorithm, so we can now find the
fingerprint φ(S(v)[1, i]) in time O(log logN + log(min(i,Nv − i))).
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6.2 Finger Search with Fingerprints

Next we show how to do finger search while computing fingerprints between the finger f and the access
point i.

When we perform setfinger(f) we use the algorithm from [9] to compute fingerprints during the search
of S from the root to f . This allows us to subsequently compute for any heavy path hj on the root to
position f the fingerprint p(hj) of the concatenation of the strings generated by the subtrees hanging
to the left of hj . In addition, we explicitly compute and store the fingerprints φ(S[1, f + 1]), φ(S[1, f +
2]), . . . , φ(S[1, f + logN + 1]). In total, this takes O(logN) time.

Suppose that we have now performed a setfinger(f) operation. To implement access(i), i > f , there
are two cases. If D = i− f ≤ logN we return the appropriate precomputed fingerprint. Otherwise, we
compute the node u = nca(vf , vi) in the parse tree T as before. Let h be the heavy path containing u.
Using the data structure from [9] we compute the fingerprint pl of the nodes hanging to the left of h above
u in constant time. The fingerprint is now obtained as φ(S[1, i]) = phj

⊕pl⊕φ(S(right(u))[1, (i−f)−a]),
where the latter is found using fringe access with fingerprints in right(u). None of these additions change
the asymptotic complexities of Theorem 1(i). Note that with the fingerprint construction in [9] we can
guarantee that all fingerprints are collision-free.

6.3 Longest Common Extensions

Using the fingerprints it is now straightforward to implement lce queries as in [9]. Given a lce(i, j)
query, first set fingers at positions i and j. This allows us to get fingerprints of the form φ(S[i, i + a])
or φ(S[j, j + a]) efficiently. Then, we find the largest value ` such that φ(S[i, i + `]) = φ(S[j, j + `])
using a standard exponential search. Setting the two finger uses O(logN) time and by Theorem 1(i) the
at most O(log `) searches in the exponential search take at most O(log `) time. Hence, in total we use
O(logN + log2 `) time, as desired. This completes the proof of Theorem 2.

References

[1] S. Alstrup, T. Husfeldt, and T. Rauhe. Marked ancestor problems. In Proc. 39th FOCS, pages
534–543, 1998.

[2] A. Apostolico and S. Lonardi. Some theory and practice of greedy off-line textual substitution. In
Proc. DCC, pages 119–128, 1998.

[3] A. Apostolico and S. Lonardi. Compression of biological sequences by greedy off-line textual sub-
stitution. In Proc. DCC, pages 143–152, 2000.

[4] A. Apostolico and S. Lonardi. Off-line compression by greedy textual substitution. Proceedings of
the IEEE, 88(11):1733–1744, 2000.

[5] D. Belazzougui, P. H. Cording, S. J. Puglisi, and Y. Tabei. Access, rank, and select in grammar-
compressed strings. In Proc. 23rd ESA, 2015.

[6] D. Belazzougui, T. Gagie, P. Gawrychowski, J. Karkkainen, A. Ordonez, S. Puglisi, and Y. Tabei.
Queries on lz-bounded encodings. In Proc. DCC, pages 83–92, April 2015.

[7] J. L. Bentley and A. C.-C. Yao. An almost optimal algorithm for unbounded searching. Inform.
Process. Lett., 5(3):82 – 87, 1976.

[8] P. Bille, P. H. Cording, and I. L. Gørtz. Compressed subsequence matching and packed tree coloring.
Algorithmica, pages 1–13, 2015.

[9] P. Bille, P. H. Cording, I. L. Gørtz, B. Sach, H. W. Vildhøj, and S. Vind. Fingerprints in compressed
strings. In Proc. 13th SWAT, 2013.

[10] P. Bille, G. M. Landau, R. Raman, K. Sadakane, S. R. Satti, and O. Weimann. Random access
to grammar-compressed strings and trees. SIAM J. Comput, 44(3):513–539, 2014. Announced at
SODA 2011.

13



[11] G. E. Blelloch, B. M. Maggs, and S. L. M. Woo. Space-efficient finger search on degree-balanced
search trees. In Proc. 14th SODA, pages 374–383, 2003.

[12] G. S. Brodal. Finger search trees. In Handbook of Data Structures and Applications. Chapman and
Hall/CRC, 2004.

[13] G. S. Brodal, G. Lagogiannis, C. Makris, A. K. Tsakalidis, and K. Tsichlas. Optimal finger search
trees in the pointer machine. J. Comput. Syst. Sci., 67(2):381–418, 2003.

[14] M. Charikar, E. Lehman, D. Liu, R. Panigrahy, M. Prabhakaran, A. Sahai, and A. Shelat. The
smallest grammar problem. IEEE Trans. Inf. Theory, 51(7):2554–2576, 2005. Announced at STOC
2002 and SODA 2002.

[15] F. Claude and G. Navarro. Self-indexed grammar-based compression. Fund. Inform., 111(3):313–
337, 2011.

[16] P. H. Cording, P. Gawrychowski, and O. Weimann. Bookmarks in grammar-compressed strings. In
Proc. 23rd SPIRE, pages x–y, 2016.

[17] P. F. Dietz and R. Raman. A constant update time finger search tree. Inf. Process. Lett., 52(3):147–
154, 1994.

[18] M. Farach and S. Muthukrishnan. Perfect hashing for strings: Formalization and algorithms. In
Proc. 7th CPM, pages 130–140. Springer, 1996.

[19] R. Fleischer. A simple balanced search tree with O(1) worst-case update time. Int. J. Found.
Comput. Sci., 7(2):137–150, 1996.

[20] P. Gage. A new algorithm for data compression. The C Users J., 12(2):23 – 38, 1994.
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