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Abstract

Ionization quenching in organic scintillators is usually corrected with methods that require careful assessment
of the response relative to that of an ionization chamber. Here, we present a framework to compute ionization
quenching correction factors (QCFs) from first principles for organic plastic scintillators exposed to ions. The tool
solves the kinetic Blanc equation, of which the Birks model is a simplified solution, based on amorphous track
structures models. As a consequence, ionization quenching correction factors can be calculated relying only on
standard, tabulated scintillator material properties such as the density, light yield, and decay time.

The tool is validated against experimentally obtained QCFs for two different organic plastic scintillators irradiated
with protons with linear energy transfers (LETs) between 5 and 70 MeV cm−1. The QCFs computed from amorphous
track structure models and the BC-400 scintillator properties deviate less than 3 % from the Birks model for LETs
below 45 MeV cm−1 and less than 5 % for higher LETs. The agreement between experiments and the software for the
BCF-12 scintillator is within 2 % for LETs below 45 MeV cm−1 and within 10 % for LETs above, comparable to the
experimental uncertainties. The framework is compiled into the open source software ExcitonQuenching available
for download. ExcitonQuenching enables computations of QCFs in organic plastic scintillators exposed to ions
independently of experimentally based quenching parameters in contrast to the Birks model. ExcitonQuenching
can improve the accuracy of correction factors and understanding of ionization quenching in scintillator dosimetry.

Keywords: Ionization quenching, organic scintillators, proton therapy, quenching kinetics, dosimetry

1 Introduction

Organic plastic scintillators are attractive for particle dosimetry due to the prompt response, small size, and good
water-equivalence (Beddar et al., 1992a,b). Fibre-coupled scintillators are known to exhibit a stem-effect, where light
is emitted outside the primary scintillating mechanism (Archambault et al., 2005; Therriault-Proulx et al., 2011),
as well as a temperature dependence (Buranurak et al., 2013; Wootton and Beddar, 2013). These mechanisms are
however well-understood and the effects can be corrected for. The situation for organic scintillators exposed to
radiation with high linear energy transfer (LET) is more complex, and the reduced scintillator response, due to high
local ionization densities, is termed ionization quenching. The quenching is traditionally explained as a reduction of
the primary scintillation efficiency, where zones with a high ionization density fail to transfer all energy to the excited
states (Birks, 1951). Kallmann and Brucker (1957) showed that most quenching occurs faster than the characteristic
decay time of the scintillator, which may be explained in terms migration of excited states, heat conduction, and ionic
recombination (Birks, 1964; Beddar and Beaulieu, 2016). The quenching is often corrected by comparing the response
of the quenched signal in an organic scintillator to the unquenched signal measured with an ionization chamber. On
the other hand, Alsanea et al. (2018) exploited the quenching differences in four organic scintillators to simultaneously
measure the LET and dose in therapeutic proton beams. Monte Carlo simulations of the LET distribution enable
quenching corrections by applying the semi-empirical formula developed by Birks (1951), henceforth referred to as
the Birks model. Nonetheless, such quenching corrections often give rise to deviations up to 10 % at the Bragg peak
due to the sharp LET-gradient (Beddar and Beaulieu, 2016).

Recently, Boivin et al. (2016) showed how the Birks model breaks down for high-LET photon beams, whereas a
shortcoming for ions has been known for decades; two ions with same LET but different atomic number will in the
Birks model give rise to the same ionization quenching. Such a prediction however contradicts experiments (Newman
and Steigert, 1960; Birks, 1964) as the radial energy deposition by secondary electrons (EDSE) differs in the two
cases. In any case, it motivates new approaches and the application of track structure models to account for the energy
deposition by secondary electrons.

Blanc et al. (1962, 1964) developed a kinetic model where the energy of excited molecules is migrating radially
and lost by fluorescence and quenching. The Blanc depends on—like the Birks model and most EDSE models—the



number of molecules involved in the quenching process. In this work, we focus on computing the ionization quenching
for organic plastic scintillators based on the Blanc model. The Birks model itself takes on the form of a simplified
version of the Blanc model (Birks, 1964, p. 198). As such, the Blanc formalism enables a more exact computation of
the quenching correction factors than the Birks model and, furthermore, is independent of experimentally determined
quenching parameters as the Birks kB factor.

Here, we use amorphous track structure theory to model the radial energy deposition after an ion has penetrated an
organic plastic scintillator. Amorphous track structure theory often distinguishes between the core and the penumbra.
The core is an extremely narrow zone with an enormous density of energy deposited by the incident ion whereas
the penumbral region, exhibiting a r−2 density decrease, is mainly due to energy deposition by secondary electrons.
The kinetic Blanc model is subsequently applied to evolve the initial radial energy deposition in the temporal and
spatial domains while keeping track of the fluorescence and quenching. The Blanc model as a consequence is able to
distinguish the quenching between two particles, with the same LET but different atomic numbers, in contrast to the
Birks model.

The first part of the present work outlines the concepts of quenching corrections factors and track structure models.
Solutions to the Blanc model are subsequently investigated with its inherent free parameters. The Blanc model consists
of a set of general parameters, which in this work are estimated by fitting the Blanc model to experimentally obtained
quenching correction factors. These parameters are then examined by computing the ionization quenching in a
different scintillator and subsequently comparing the theory to experimental results.

The numerical framework to apply track structure theory and subsequently solve theBlanc equation is compiled into
the open source code ExcitonQuenching available for download1. ExcitonQuenching computes the quenching
correction factors from first principles using merely the density, decay time, and light yield of an organic plastic
scintillator and the energy of the primary particle.

2 Background

2.1 Ionization quenching

The scintillation light yield per unit length dS/dx for an organic scintillator is traditionally written in the form

dS
dx
=

A · LET
QCF

, QCF = 1 + kB · LET + C · LET2 + · · · , (1)

where A is the scintillation efficiency, and the Quenching Correction Factor (QCF) depends on the quenching
parameters kB and C. The Birks model truncates the series at the first-order LET-term, which has been shown to
be successfully applicable for quenching corrections (Beddar and Beaulieu, 2016). The second-order LET term was
suggested by Chou (1952) and is often neglected but has been shown to give a better correction for high-LET (Torrisi,
2000).

2.2 Kinetics of excitation densities

Blanc et al. (1962, 1964) proposed a kinetic model which considers a number of molecules excited to the first singlet
state which are allowed to migrate, fluoresce, and quench. The excited states are henceforth referred to as excitons to
comply with the terminology in Birks (1964). The Blanc model governs the kinetics of the excitation density n(r, t),
where r is the distance from the centre of the ion track and t is the time after the ionization. The model takes on the
form of (Blanc et al., 1962, 1964; Birks, 1964)

∂n
∂t
= D∇2n − (p + k)n − αn2 − βn3, (2)

where D is the exciton diffusion constant, and p, k, αn, and βn2 are defined as the rates of fluorescence emission,
and uni-, bi-, and trimolecular quenching, respectively. Unimolecular quenching is isolated to a single molecule,
whereas the importance of the bi- and tri-molecular quenching terms increases with the local exciton density, i.e. with
increasing LET.

Consider two scintillators with the same density and decay time but different scintillation efficiencies being
penetrated by two identical particles. The scintillator with the higher scintillation efficiency will thus have a larger
local excitation density. As a consequence, the second- and third-order quenching terms will lead to more quenching

1https://github.com/jbrage/ExcitonQuenching
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than in the scintillator with a lower scintillation efficiency. Similarly, two scintillators with the same scintillation
efficiency and density—but different decay times—will require different quenching correction factors: Although the
local exciton densities immediately after the particle passed are equal, the scintillator with the faster decay time is
more efficient in emitting photons before they are quenched than the other. The diffusion term, on the other hand,
causes the excitons to migrate away from the center of the particle track and hence decreases the quenching but not
the rate of fluorescence emission. The Blanc model is an interesting ionization quenching model for several reasons:

1. The Blanc model corresponds to the Birks model if only fluorescence and unimolecular quenching are included
(Birks, 1964, p. 198; Blanc et al., 1962), i.e. truncating eq. (1) at the first-order LET term.
If fluorescence, uni-, and bimolecular quenching terms are included in the Blanc model, it corresponds to the
model proposed by Chou (1952), i.e. with both kB and C as quenching parameters in eq. (1) (Birks, 1964, p.
198).

2. The Blanc model enables an inclusion of amorphous track structure theory, and—in contrast to the semi-
empirical Birks and Chou models—two ions with same LET and different charges will hence give rise to
different quenching correction factors as experimentally observed.

3. The solution of eq. (2) makes it feasible to examine the temporal structure of the ionization quenching.

The version of the Blanc equation in eq. (2) only models the exciton interactions between the first singlet state and
the ground state. An extension to the equation, including the interactions with the first triplet state, could be added
with a second coupled partial differential equation as suggested by Blanc et al. (1962). The extended model can be
validated against experimentally obtained QCFs for an appropriate scintillator (e.g. BCF-60, Saint-Gobain, France,
as measured by Hoehr et al. (2018)). Nonetheless, such a study is beyond the scope of this work.

2.3 Amorphous track structure models

The radial excitation density distribution in an ion track should vary according to the material and the energy of the
primary particle and this can be achieved through amorphous track structure models. Amorphous track structures
consider the radial energy distribution as the average of many secondaries and tracks, i.e. a continuous function, in
contrast to the microdosimetric approach, where the stochastic nature of energy deposition by single electrons is taken
into account. The initial number of excitations per unit length N0 depends on the scintillation efficiency A, the number
of photons emitted per deposited energy, as

N0 = A · LET. (3)

The ionization quenching is investigated using three different radial energy deposition distributions, namely the
Gaussian (Blanc et al., 1964), Chatterjee-Schaefer (Chatterjee and Schaefer, 1976), and Scholz-Kraft (Scholz and
Kraft, 1996) track structure models. The three track structure models are defined in appendix A and shown in figure 1
for two different energies.

The track structuremodels have been chosen to reflect the cases of (i) an extremely dense core (Chatterjee-Schaefer),
(ii) the continuous transition from core to penumbra (Scholz-Kraft), and (iii) the Gaussian which is independent of
the range of secondary electrons but has been applied historically due to its simplicity. Other track structure models,
such as those by Hansen and Olsen (1984), Kiefer and Straaten (1986) and Katz and Varma (1991), could have been
included as well with similar arguments.

The distribution of exciton densities using amorphous track structure models, and exciton interaction probabilities
in terms of the Blanc model, makes it feasible to investigate ionization quenching at the macroscopic scale.

3 Methods

3.1 Experimentally determined quenching correction factors

Often the LET-varying QCF is estimated by comparing the quenched scintillator measurement to an unquenched
measurement with an ionization chamber. Two such examples are shown in figure 2 where Wang et al. (2012)
irradiated an organic fibre-coupled scintillator (BCF-12, Saint-Gobain, France) and Torrisi (2000) irradiated a thin
organic scintillator (BC-400, Bicron, USA) with protons at different energies.

Wang et al. (2012) and Torrisi (2000) fitted the Birks model to the QCF as a function of LET which in both
cases show an agreement within 5 %. Since the QCFs in both data sets are given for a wide LET range and differ by
more than a factor of 2, they may serve as a reference and are applicable to validate the QCFs calculated with the
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Figure 1: The three track structure models in equations (5), (6), and (8) for protons at 10 MeV and 250 MeV in water.
The range of the secondary electrons depends on the kinetic energy of the primary particle, which is included in the
Scholz-Kraft and Chatterjee-Schaefer track structures, but unaccounted for in the Gaussian model.

0 10 20 30 40 50 60 70

1.00

1.25

1.50

1.75

2.00

2.25

2.50

Q
ue

nc
hi

ng
Co

rr
ec

tio
n

Fa
ct

or Birks, kB = 20.7 mg MeV−1 cm−2

Torrisi (2000)

Birks, kB = 9.4 mg MeV−1 cm−2

Wang et al. (2012)

0 10 20 30 40 50 60 70
LET [MeV cm2 g−1]

0.95

1.00

1.05

Bi
rk

s/D
at

a

Figure 2: The quenching correction factor as a function of LET for two different organic scintillators irradiated with
protons where the Birks model is fitted to the data in both cases. The ratios of the QCF obtained from the Birks model
to the experimentally obtained values in the figure below indicate a good agreement for both measurements.
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Blanc model. The parameters relevant for the Blanc model are listed in table 1 for the BC-400 and BCF-12 plastic
scintillators.

Table 1: The scintillator parameters required to model the exciton densities and fluorescence emission are tabulated
for most scintillators. The relevant parameters for the two scintillators in the present work are given below. Data from
Saint-Gobain (2018).

Scintillation efficiency, Decay time τ Density ρ
Scintillator A [photons/MeV] [ns] [g cm−3]

BCF-12 8,000 3.2 1.05
BC-400 11,300 2.4 1.03

3.2 Numerical scheme

The itinerary to quenching correction factors
The Blanc model is used to compute the QCF for a particle with energy E as outlined in figure 3. The scintillator
efficiency A defines, along with the LET, the total number of excitons N0 involved in the quenching process as given
by eq. (3). The N0 excitons are distributed radially according to an amorphous track structure model, where the
penumbra and core radii are computed from the particle energy E and the density ρ of the scintillating material as
given in appendix A. The chosen track structure model governs in any case the radial exciton distribution at time
t = 0.

(a) Input
parameters (c) Output

(d)

Scintillator:
Decay time, τ
density, ρ

Light yield, A

Particle:
Energy E
⇒ LET

1) N0 = A · LET
2) Calculate rmax, rmin
from E, ρ

3) Distribute N0 for
the chosen track struc-
ture model

Distribute
excitons:

A: Excluding
quenching:

Solve eq. (2)
with α = β = 0

B: Including
quenching:

Solve eq. (2)
with α , 0, β , 0

(b) Track structure and the Blanc model

QCF =
Signal A
Signal B

The Birks model:

(1) Repeat (a)-(c) for
different E
(2) Fit Birks model to
extract kB

Figure 3: The workflow to a quenching correction factor. (a) The input parameters are responsible for the number
of excitons involved in the quenching process. (b) The initial exciton distribution is modelled by the selected track
structure model. The Blanc model in eq. (2) is subsequently used to calculate the emission of fluorescence in two
cases: With and without ionization quenching. (c) The QCF is as a result computed as the ratio of the unquenched
to the quenched signal. (d) The Birks model parameter kB can be calculated from a fit to a series of the QCFs as a
function of LET.

The excitons are subsequently evolved in the temporal and spatial domain as governed by the Blanc model in
eq. (2). The total emission of fluorescence photons, the signal, is computed by integrating over the fluorescence term
pn in eq. (2) from time t = 0 to t = ∞. The numerical scheme used to solve the partial differential equation (2) is
included in appendix B.

The QCF is computed by solving eq. (2) twice as outlined in figure 3 part (b); with and without the ionization
quenching parameters. Setting the parameters α = β = 0 in eq. (2) leads to a solution of the form n(t) ∝ exp(−t/τ),
i.e. the fluorescence signal follows an exponential decay with time constant τ without ionization quenching. The
solution to eq. (2) with α , 0, β , 0, and thus including ionization quenching, reduces in any case the total signal.
The QCF is accordingly computed as the ratio of the two signals. The steps (a)–(c) may be repeated for several particle
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energies to plot the QCF as a function of LET. The Birks quenching parameter kB can consequently be extracted
theoretically by fitting the Birks model to these computed data.

Quenching parameters in the Blanc model
The data by Wang et al. (2012) in figure 2 comprises the QCFs for protons penetrating the BCF-12 scintillator over a
wide range of LETs, which can be used to determine the general (D, α, β) parameters in the Blanc model, eq. (2). The
QCF for a particular plastic scintillator and particle in the Blanc formulation merely depends on the input parameters
listed in figure 3(a). The scintillator decay time τ = (p + k)−1 is tabulated for most plastic scintillators, where the
probability rates for the fluorescence emission p and unimolecular quenching k are weighted equally. Any weight
cancels out as the QCF, figure 3(c), is computed as the ratio between the signals.

Let a proton with a given LET penetrate a thin BCF-12 layer where the excited states are radially distributed as in
the, say, Scholz-Kraft model. The modified Blanc model in eq. (2) will then for one set of (D, α, β) parameters give
rise to some QCF using the workflow outlined in figure 3. This calculation is repeated for all LET values present in
the data set by Wang et al. (2012). The quality of the particular set of (D, α, β) parameters is evaluated through the
sum of squares

χ2 =
∑
i

(
QCFBlanc,i − QCFexp,i

)2

QCFexp,i
, ∀i ∈ [LET values in figure 2] (4)

where QCFBlanc,i is the QCF computed with the Blanc model for the i’th LET-value in the Wang et al. (2012) data,
and QCFexp,i is the corresponding QCF obtained experimentally. The best set of (D, α, β) parameters is found by
minimizing χ2.

The exciton diffusivity has been experimentally estimated to be of the order of D ' 5 × 10−4 cm2 s−1 (Kallmann
and Brucker, 1957). The bimolecular quenching parameter is computed to be α ' 3.2 × 10−9 cm3 s−1 (Birks, 1964,
p. 199), whereas the order of the trimolecular quenching parameter is to be determined. The uncertainties on the
experimentally obtained values of D and α are unknown and they merely serve as means to compare to the computed
χ2 minima.

After the unique (D, α, β) parameters in the Blanc model have been established, the same parameters are used
to compute the QCFs for protons interaction with the BC-400 scintillator and assessed against the corresponding
experimental data by Torrisi (2000).

4 Results

4.1 Quenching parameters

The second-order Blanc equation
The roles of the diffusion constant D and the bimolecular quenching parameter α in the Blanc model are investigated
by truncating eq. (2) after the second-order term, i.e. setting β = 0. χ2 is in figure 4 mapped for various (α, D)
pairs for the three track structure models in question. The (α, D) pairs are sampled uniformly over the given ranges
2000 times, and the χ2 minimum is found by cubic interpolation. The experimentally determined D and calculated
α values, listed in table 2, are marked with a cross in each χ2 map for comparison.
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Figure 4: Maps over χ2 from eq. (4) for various values of (α, D) for the three track structure models. Each dot
represents a pair of (α, D) drawn from a uniform distribution. Only a fraction of the samples are shown. The literature
value is marked with a cross in each case, whereas the (α, D) sets providing the best match to the experimental QCFs
are marked with a closed circle and listed in table 2.

Table 2: The general parameters in the Blanc model providing the best fit to the experimental
data: (i) when eq. (2) was truncated at the second-order term (β = 0) and (ii) including the
third-order term (β , 0). The D value obtained from the χ2 mapping in the second-order case
(figure 4) was used in the third-order case (figure 5) as well.

2nd order 3rd order

Method D [cm2 s−1] α [cm3 s−1] α [cm3 s−1] β [cm6 s−1]

Literature 5 × 10−4† 3.2 × 10−9* — —
Gaussian 4.3 × 10−4 2.3 × 10−9 1.3 × 10−9 9.1 × 10−27

Scholz-Kraft 4.2 × 10−4 5.7 × 10−9 4.5 × 10−9 2.7 × 10−27

Chatterjee-Schaefer 5.9 × 10−4 1.0 × 10−9 6.1 × 10−10 4.2 × 10−28

† From Kallmann and Brucker (1957).
* Calculated from Birks (1964), Kinetics of Quenching, p. 199.

The third-order Blanc equation
The inclusion of the third-order β term in eq. (2) provides information about the local excitation density as trimolecular
quenching requires a high-LET to occur. Adding higher-order terms in the Blanc model corresponds to extending the
eq. (1) with additional terms, e.g. extending the Birks model to the Chou model and so on. The diffusion constant
D is now fixed at the value obtained from minimizing χ2 in figure 4, see table 2, to compare the magnitudes of the
bi- and trimolecular quenching terms to each other for protons. The χ2 maps for the Gaussian, Scholz-Kraft, and
Chatterjee-Schaefer track structures are given in figure 5. The pair of (α, β) providing the best fit to the experimental
data is given in table 2 and marked with a filled circle in figure 5. Henceforth, the three parameters D, α, and β as
given in table 2 are used to compute the QCF for a given plastic scintillator.

4.2 Quenching correction factors

Themeasurements byWang et al. (2012) of the quenched signal from the BCF-12 scintillator during proton irradiations
are shown in figure 6, where the Birks model has been fitted to the data. The quenched response for the BCF-12
calculated with the Blanc model and the parameters in table 2 are shown alongside for each track structure model.
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lines. The ratio of the response from each model to the experimental values are shown below for both scintillators.
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The quenching signal from the BC-400 scintillator irradiated with protons at different energies is for comparison
plotted in the same figure. The Birks model is again fitted to the experimental data, whereas the quenched signal is
computed independently of the data using the Blanc model and its parameters in table 2 and the BC-400 properties in
table 1.

5 Discussion

5.1 Quenching in the Blanc model

Second-order Blanc equation,β = 0. The χ2 maps for the three track structuremodels in figure 4 indicate a distinct
correlation between α and D, which also is evident from Birks (1964, p. 199), where α after several approximations
is shown to be proportional to D. The mutual dependency indicates the primary role of the exciton diffusion constant:
Due to the cylindrical symmetry of track structure models, the diffusion term D∇2n effectively gives rise to exciton
migration away from the center of the track. This in turns diminishes the bimolecular quenching rapidly as it is
proportional to the square of the exciton density. Consequently, the quenching parameter α needs to increase if D
increases to give rise to the same amount of quenching.

Third-order Blanc equation, β , 0. The χ2 maps in figure 5 show the density dependence of the bi- and
trimolecular quenching parameters α and β. As β → 0, the α value providing the best match to the data converges
towards the α value from figure 4 marked with a dashed line. The β value equivalently seems to converge for α → 0,
as anticipated, although such a value is not of interest.

Nonetheless, all three χ2 maps contain a ridge, where both the α and β terms contribute to the ionization
quenching, which indicates that an extra term—as in the Chou model relative to the Birks model—may be relevant for
high-LET situations. The pair of (α, β) providing the best fit to the experimentally determined QCFs, the minimum
χ2 value, is for the Gaussian and Scholz-Kraft track structure found around the χ2 ridge. The χ2 minima are overall
in the proximity to β → 0 indicating that the β term is close to be negligible for proton relevant LETs.

The β term is only relevant for high-LET cases and these are often associated with large uncertainties for protons,
as in the present case, which makes an unambiguous conclusion on its importance for protons difficult. As such,
the small effect of an extra quenching parameter is in line with the literature: Birks (1964, p. 194) investigated the
extra parameter in the Chou model relative to the Birks model and concluded it redundant for the case of anthracene
exposed to protons and α-particles. Torrisi (2000), on the other hand, concluded that the Chou model provides a
better fit to the data for the BC-400 scintillator during proton irradiations than the Birks model does. The β term,
or even additional terms of higher order, may be subject to a later investigation for particles with substantially higher
LET than protons.

5.2 Ionization quenching correction factors

The QCF measurements by Wang et al. (2012) comprise several points between 5 MeV cm−1 and 70 MeV cm−1.
However, more than half the measurements are below 25 MeV cm−1 and most measurements above 40 MeV cm−1 are
associated with large uncertainties. In that light, it is not surprising that the three computed fluorescence signals in
figure 6, including ionization quenching, arewithin fewpercent of themeasurements for LETvalues up to 50 MeV cm−1

but deviate up to ±10 % for higher LET values.
The BC-400 has a light yield around 40 % larger than the BCF-12 scintillator, as is shown in table 1, and is thus in

the Blanc model expected to give rise to a larger degree of quenching due to its larger initial exciton density. However,
the ∼ 35 % lower scintillator decay time for the BC-400 in turn causes a faster fluorescence emission which reduces
the quenching. Hence, the fluorescence emission in the BC-400 scintillator differs greatly from that of the BCF-12
scintillator and therefore serves as a means of testing the Blanc model.

The Blanc model with its fitted parameters is assessed against the BC-400 data by Torrisi (2000) in figure 6. The
Scholz-Kraft and Chatterjee-Schaefer track structure models both predict the quenching signal within ±5 % of the
measurements. The model-predicted signal divided by the measured signal in the lower part of the figure seems to
contain the same structure in all four cases. On the other hand, the lack of a particle energy-dependent penumbral
radius causes the Gaussian model to overestimate the ionization quenching for low-LET and vice versa for high-LET.
The fact that the modified Blanc model follows the same structure as the Birks model in figure 6 was anticipated, as
the Birks model is contained within and a simplified solution to the Blanc model as stated above. The agreement
between ExcitonQuenching and the experimental data at high-LET in figure 6 is better for the BC-400 scintillator
than for the BCF-12 scintillator. This might be explained by the fact, that Torrisi (2000) used thin scintillator pieces
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which gave an excellent LET-resolution whereas the high-LET measurements by Wang et al. (2012) contain large
uncertainties. Similarly for ExcitonQuenching, the uncertainties associated with the input parameters give rise to
an uncertainty of the QCF. A ±2 % variation in the scintillator light yield for the BCF-12 scintillator changes the
computed QCF about ±2 % for a proton with 50 MeV cm−1. The similar variation of the light yield in the BC-400
scintillator exposed to the same proton energy however gives a variation about 4 % of the QCF due to its larger light
yield.

Nonetheless, the excellent agreement within few percent between the Birks and Blanc models for especially
the Chatterjee-Schaefer track structure validates the application of the Blanc model, as the results are calculated
completely independently: The Birks model by fitting to the experimental data, whereas the Blanc model response is
computed numerically by solving the partial differential equation with initial conditions given by the specific particle
and plastic scintillator.

The Blanc model furthermore explains why the fluorescence emission in a PMMA-based optical fibre during
proton irradiations is reported to be quenching-free (Jang et al., 2012; Christensen et al., 2018); The low light yield
A in PMMA, relative to a traditional scintillator, gives rise to such a low initial linear exciton density (n ∝ A) that
αn2 ≈ βn3 ≈ 0 in eq. (2) even for high-LET. Consequently, QCF ' 1 in the workflow in figure 3(c) corresponding to
negligible quenching.

6 Conclusion

The open source software ExcitonQuenching combines amorphous track structure theory and the Blanc model to
compute theoretical quenching correction factors for organic scintillators exposed to ions. Hence, it provides a new
method—and more general than that due to Birks—to correct the ionization quenching from first principles which
otherwise is a cumbersome experimental procedure.

The local exciton densities for proton relevant LETs are sufficient for bimolecular quenching to occur cf. figure 4
whereas the trimolecular quenching is almost vanishing for protons in the investigated water-equivalent materials.
As a consequence, trimolecular quenching is not included in the online version of ExcitonQuenching but may be
relevant for particles with higher LET in a later study.

The theoretically computed QCFs are compared to experimentally obtained QCFs for two plastic scintillators
which differ greatly in their emission properties and thus quenching. The theoretical QCFs for the Scholz-Kraft and
Chatterjee-Schaefer track structure models are within 3 % of the Birks model for low-LET and 5 % for high-LET
for the BC-400 scintillator. The agreement between ExcitonQuenching and experimental data for the BCF-12
scintillator is within 2 % for LET-values below 45 MeV cm−1, where the experimental uncertainties were small. The
discrepancy however increases up to 10 % for the largest LET-values where the experimental measurements contain
relative uncertainties of 8 %.
ExcitonQuenching depends on the density, decay time, and light yield of the scintillator, and thus constitutes a

new method to compute QCFs for organic plastic scintillator exposed to ions without prior knowledge of the quenched
scintillator response from experimental data.
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A Amorphous track structure models

Any track structure must satisfy 2π
∫ ∞

0 n(r) rdr = N0. The three track structure models are compared for protons in
water in figure 1 for two energies.

Gaussian: The Gaussian distribution is of the form

nGaussian(r, 0) =
N0

πb2 exp
(
− r2

b2

)
, (5)

where b = 2r0/
√
π (Blanc et al., 1962). Birks (1964) sets r0 = 0.5 × 10−6 cm, as obtained by Kallmann and Brucker

(1957) for heavily ionizing particles. The main drawback of the Gaussian track structure is, that the energy-dependent
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range of the secondary electrons is unaccounted for. Blanc et al. (1964) applied a Gaussian distribution to solve eq. (2)
with β = 0 analytically using several approximations.

Scholz-Kraft: The Scholz-Kraft track structure models the energy deposition as a dense core of radius rmin =
0.01 µm which falls off proportionally to r−2 until the maximum range of the secondary electrons

rmax = 0.05 µm MeV−1.7 × E1.7

has been reached:

nSK(r) =




N0

r2
min

(
π

[
1 + 2 ln

rmax
rmin

])−1
for r < rmin

N0

r2

(
π

[
1 + 2 ln

rmax
rmin

])−1
for rmin ≤ r ≤ rmax

0 for r > rmax

(6)

Chatterjee-Schaefer: The Chatterjee-Schaefer model has a denser core than the Scholz-Kraft model with radius

rmin = rcore βion, (7)

where rcore = 11.6 nm and βion = v/c is the ratio of the speed v to the speed of light c. The outer border of the
penumbra has a radius of

rmax = 0.768 µm MeV−1 × E − 1.925 µm MeV−0.5 ×
√

E + 1.257 µm

and will consequently give rise to a relatively large amount of ionization quenching in the core:

nCS(r) =




N0

2πr2
min
+

N0

4πr2
min

(
ln

(√
e

rmax
rmin

))−1
for r < rmin

N0

4πr2

(
ln

(√
e

rmax
rmin

))−1
for rmin ≤ r ≤ rmax

0 for r > rmax

(8)

with more than half the excitations inside the core. The Scholz-Kraft and Chatterjee-Schaefer models are developed
for water and thus the core and penumbra radii are scaled with the density of the water-equivalent plastic scintillator
in question.

B Numerical scheme

The cylindrical symmetry of the track structure models reduces the problem to be one dimensional; the LET of the
ion along its path is constant on the microscopical scale, which in turns causes the second derivative of the excitation
density in eq. (2) to vanish along the trajectory, and only the radial diffusion is left.

The one dimensional mesh of length L = 2rmax, where the ion trajectory is centred, defines the solution domain.
The distance between two neighbouring voxels ∆x is limited by ∆x < rmin/l, where l > 1 is chosen to satisfy
the natural requirement, that a numerical integration over the excitation densities in the mesh grid must equal the
analytical integration. For the Scholz-Kraft and Chatterjee-Schaefer track structures, l > 20 turned out fulfil the said
requirement, whereas ∆x < r0/5 was sufficient for the Gaussian case.

The explicit Lax-Wendroff scheme (Lax and Wendroff, 1960) is applied to solve the partial differential equation.
The derivatives of the exciton density nm

i for voxel i ∈ [1, 2, . . . , L/∆x − 1] at time step m are

∂n
∂t

����
m

i
' nm+1

i − nm
i

∆t
and

∂2n
∂x2

����
m

i
' nm

i+1 − 2nm
i + nm

i−1
(∆x)2 .
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The time step ∆t is subject to the von Neumann stability conditions (Press et al., 1988; Dehghan, 2004). The open-
source code library libamtrack (Toftegaard et al., 2014) is used to calculate the LET and βion in eq. (7) depending
on the particle energy.
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