Downloaded from orbit.dtu.dk on: Mar 29, 2019

DTU DTU Library

i

Students' Proof Assistant (SPA)

Schlichtkrull, Anders; Villadsen, Jgrgen; From, Andreas Halkjeer

Publication date:
2018

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Schlichtkrull, A., Villadsen, J., & From, A. H. (2018). Students' Proof Assistant (SPA). Paper presented at
International Workshop on Theorem proving components for Educational software , Oxford , United Kingdom.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

e Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
e You may not further distribute the material or use it for any profit-making activity or commercial gain
e You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

http://orbit.dtu.dk/en/publications/students-proof-assistant-spa(5b61b6ae-9b1c-43fd-b921-4cfd725961b5).html

Students’ Proof Assistant (SPA)

Anders Schlichtkrull, Jgrgen Villadsen, and Andreas Halkjeer From

DTU Compute, AlgoLoG, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
andschl@dtu.dk jovi@dtu.dk s144442@student.dtu.dk

Abstract

The Students’ Proof Assistant (SPA) aims to both teach how to use a proof assistant like
Isabelle but also to teach how reliable proof assistants are built. Technically it is a miniature
proof assistant inside the Isabelle proof assistant. In addition we conjecture that a good
way to teach structured proving is with a concrete prover where the connection between
semantics, proof system, and prover is clear. In fact, the proofs in Lamport’s TLAPS proof
assistant have a very similar structure to those in the declarative prover SPA. To illustrate
this we compare a proof of Pelletier’s problem 43 in TLAPS, Isabelle/Isar and SPA.

1 Introduction

The Students’ Proof Assistant (SPA) aims to both teach how to use a proof assistant like
Isabelle [5] and to teach how reliable proof assistants are built. SPA is a miniature proof
assistant running inside Isabelle (https://github.com/logic-tools/spa). It is based on
work by Harrison [1] and the entire development runs in Isabelle’s ML environment as an
interactive application. We have just finished a prototype of SPA based on our publication [2].
In that publication we formalized the kernel of an axiomatic system in Isabelle and exported
it to SML-code. This code served as the kernel of a translation from OCaml to SML of a
proof assistant from Harrison’s chapter on the topic [1]. We chose to let the definitions in
the formalization and translation follow Harrison’s book very strictly. Harrison’s code works
well in a book on the broad topic of practical logic and automated reasoning but is in places
perhaps overly general for teaching material only on the topic of proof assistants. For instance
Harrison’s datatype for formulas is parameterized with the type for atoms: for first-order logic
the parameter is instantiated to a type for first-order predicates, and for propositional logic
the parameter is he instantiated with the strings and ignores the constructors for universal and
existential quantification. Since we will only consider a proof assistant for first-order logic we
do not need to parameterize on a type of atoms — we can put first-order predicates directly into
the definition. We see more opportunities for improving the development for our purpose.
Our previous publication discussed three ways to represent the type of theorems:

1. A datatype wrapping the type of formulas in a constructor.
2. A type exactly characterizing the provable formulas (theorems).
3. A type exactly characterizing the valid formulas.

In the first case the theorems were then further characterized by a predicate. The latter
two cases can be made using Isabelle’s typedef command as well as functionality for lifting
functions that work on formulas to work on the new type. We previously argued for 1 because
of its simplicity, but for SPA we have had a change of hearts and go with solution 2. The
reason is that while lifting and typedef are arguably advanced concepts they make it easier to
inspect the verification as we argued [2] and furthermore the idea behind typedef is after all
quite simple — it can be seen as elevating a set to a type.

https://github.com/logic-tools/spa

Students’ Proof Assistant (SPA) Schlichtkrull, Villadsen, and From

We conjecture that a good way to teach structured proving is with a concrete prover where
the connection between semantics, proof system, and prover is clear. Even for paper proofs
Lamport recommends writing in a structured style [3, 4].

2 Pelletier’s Problem 43

In fact, the proofs in Lamport’s TLAPS proof assistant have a very similar structure to those
in the declarative prover SPA. To illustrate this we compare a proof of Pelletier’s problem 43
[2] in TLAPS (Figure 1), Isabelle/Isar (Figure 2) and SPA (Figure 3).

Pelletier’s problem 43 is:

(Ve y. Q(x,y) «— (V2. P(z,2) «—= P(2,9))) — (Vo y. Qz,y) «— Q(y, z))

The idea is that based on a binary relation P the relation @ is defined to consist of any pair
(z,y) that has the property
Vz. P(z,z) <— P(z,y)

In other words, any x and y are related by @ if they relate equivalently to any z with regards
to P. The problem states that () is symmetric.
We explain the SPA proof informally, using regular notation:

Proof:

We are trying to prove an implication, so we start off by assuming the antecedent, calling it
“A” so we can refer to it later in the proof. Since the statement is universally quantified, we
arbitrarily fix an z and a y to use in the proof. We then show the biimplication by showing
the conjunction of both directions and using the command at once which does pure first-order
reasoning and can easily handle small steps such as this one.

Consider first the direction Q(x,y) — Q(y,x). This is an implication so we start again
by assuming the antecedent. We do not have to name it this time, as we only use it in the
proof of the next statement where it can be referenced using so. This assumption matches
the left-hand side of “A” which we appeal to using by and are thus allowed to conclude the
right-hand side: That x and y are equivalent with regards to P. The next line swaps the order
of the biimplication at once, which allows us to then appeal to “A” again, this time in the
opposite direction, and conclude the goal Q(z,y). Note that in the final step, the quantified x
in “A” is instantiated with our fixed y and y with z.

The proof of the direction Q(y,x) — Q(x,y) is exactly symmetric to the one above.

O

We mark the end of a (sub)proof by ged in TLAPS, Isabelle/Isar and SPA.

3 Discussion

The similarities between the proofs in TLAPS, Isabelle/Isar and SPA are evident. This cor-
roborates that the skills the students learn in our miniature proof assistant are transferable to
full-fledged proof assistants.

For Pelletier’s problem 43 the automation in a proof assistant like Isabelle can actually prove
the whole formula without the user supplying a proof. This raises the question: Why bother
teaching students how to prove such lemmas in more detail than a single call to the automation?
Our answer is that when working in a proof assistant for higher-order logic one often works by
breaking down the logical structure of the problem. This often amounts to first-order reasoning.

Students’ Proof Assistant (SPA) Schlichtkrull, Villadsen, and From

Hereafter one takes a look at the involved mathematical objects and tries to come up with a
needed lemma involving these objects. Doing this of course requires knowledge of breaking the
logical structure down to begin with.

We have not found related work where a miniature proof assistant is developed inside an-
other proof assistant. Overall our approach is related to the IsaFoL (https://bitbucket.org/
isafol) project which unites researchers in formalizing logic in Isabelle. Among the formal-
izations in the project are SAT-solving, first-order resolution, a paraconsistent logic, natural
deduction, sequent calculi and more.

4 Conclusion

SPA is an advanced e-learning tool for teaching proof assistants for students in computer science
as well as in mathematics and complements our other e-learning tool, NaDeA (A Natural
Deduction Assistant with a Formalization in Isabelle), which is available online and has been
used by hundreds of BSc and MSc students at DTU in regular courses [6].

We have a number of ideas for improving SPA such as tighter integration between the minia-
ture proof assistant and Isabelle, implementing a resolution prover and formalizing completeness
of SPA’s kernel. Better integration with Isabelle could help with inputting first-order formulas
and giving better error-reporting when students make mistakes in formal proofs in SPA.

Amongst Pelletier’s problems another interesting one is problem 34 which is also known as
Andrews’s Challenge [1]. The truth of the formula is not obvious at first glance since it relies on
the fact that biimplication is both commutative and, perhaps surprisingly, associative. Proving
this formula and similar ones in SPA is future work too.

Acknowledgements

We thank Alexander Birch Jensen for collaboration on the first formalization and we thank
Martin Elsman, Lars Hupel, John Bruntse Larsen and Makarius Wenzel for fruitful discussions.
We are also grateful to John Harrison for encouragement — John once remarked to us that “it
is rather reassuring that I don’t have to worry any longer about bugs in that part of the code”
given our formalization and code generation in Isabelle.

References

[1] J. Harrison. Handbook of Practical Logic and Automated Reasoning. Cambridge University Press,
2009.

[2] A. B. Jensen, J. B. Larsen, A. Schlichtkrull, and J. Villadsen. Programming and verifying a
declarative first-order prover in Isabelle/HOL. AI Communications, 31(3):281-299, 2018.

[3] L. Lamport. How to write a proof. Global Analysis in Modern Mathematics, pages 311-321, 1993.
Also published in American Mathematical Monthly, 102(7):600-608, August-September 1995.

[4] L. Lamport. How to write a 21st century proof. Journal of fized point theory and applications,
11(1):43-63, 2012.

[5] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant for Higher-Order
Logic, volume 2283 of LNCS. Springer, 2002.

[6] J. Villadsen, A. H. From, and A. Schlichtkrull. Natural deduction and the Isabelle proof assistant. In
P. Quaresma and W. Neuper, editors, Proceedings 6th International Workshop on Theorem proving
components for Educational Software (ThEdu), volume 267 of EPTCS, pages 140-155, 2017.

https://bitbucket.org/isafol
https://bitbucket.org/isafol

Students’ Proof Assistant (SPA) Schlichtkrull, Villadsen, and From

‘ MODULE p43

THEOREM p43 2=
VS
VP e[S — [S— BOOLEAN || :
V@ €[S — [S — BOOLEAN]| :
(Ve e S:Vye S:(Qz]lyl=(Vz € S: Plz][z] = Plz][y])) =
(Ve e §:VyeS:(Qllyl = Qlyl«]))
(1)1. SUFFICES ASSUME NEW 5,
NEW P € [S — [S — BOOLEAN]],
NEW @ € [S — [S — BOOLEAN |],
Ve € §:VyeS:(Q[z]lyl =(Vz € §: Plz][z] = P[2][y]))
PROVE VYVz € §:Vye S:(Q[z]ly] = Qlz]y])
OBVIOUS
(1)2. SUFFICES ASSUME NEW z € S,
NEW y € S
PROVE Q[z][y] = Q[y][s]
OBVIOUS
1)3. Qlzlly] = Qlyl[=]
(2)1. SUFFICES ASSUME Q[z][y]
PROVE Q[y][z]
OBVIOUS
(2)2.Vz € S: Plz][z] = P[2][y]
BY (2)1, (1)1
(2)3.Vz € S: Plz]ly] = P[#][z]
BY (2)2
(2)4. Qlyllz]
BY (1)1, (2)3
(2)5. QED
BY (2)4
(14 Qlyll=] = Ql«][y]
(2)1. SUFFICES ASSUME Q[y][z]
PROVE Q[z][y]
OBVIOUS
(2)2.Vz € S: Plz]ly] = P|z][z]
BY (1)1, (2)1
(2)3.Vz € S: Plz][z] = Plz][y]
BY (2)2
2)4. Qlz]ly]
BY (1)1, (2)3
(2)5. QED
BY (2)4
(1)6. QED
BY (1)3, (1)4

Figure 1: Proof of Pelletier’s Problem 43 in the TLA+ Proof System (TLAPS)

Students’ Proof Assistant (SPA) Schlichtkrull, Villadsen, and From

theory Pelletier 43 imports Main begin

theorem <(Vx y. Q(x,y) «— (Vz. P(z,X) «— P(z,y))) — (¥x y. Q(x,y) «— Q(y,x))>
proof
assume A: <Vx y. Q(x,y) «— (Vz. P(z,x) «— P(z,y))>
show <¥x y. Q(x,y) «— Q(y,x)>
proof (rule, rule)
fix x y
show <Q(x,y) «— Q(y,x)>
proof -
have <(Q(x,y) — Q(y,x)) A (Q(y,x) — Q(x,y))>
proof
show <Q(x,y) — Q(y,x)»
proof
assume <Q(x,y)»>
then have «Vz. P(z,x) «— P(z,y)> using A by iprover
then have «Vz. P(z,y) «— P(z,x)> by iprover
then show <Q(y,x)> using A by iprover
ged
next
show <Q(y,x) — Q(x,y)>
proof
assume <Q(y,x)>
then have <«Vz. P(z,y) «— P(z,x)> using A by iprover
then have «Vz. P(z,x) «— P(z,y)> by iprover
then show <Q(x,y)> using A by iprover
ged
ged
then show <Q(x,y) «— Q(y,x)> by iprover
gqed
ged
ged

end

Figure 2: Proof of Pelletier’s Problem 43 in Isabelle/Isar

Students’ Proof Assistant (SPA) Schlichtkrull, Villadsen, and From

prove
(<!"(forall x y. Q(x,y) <=> forall z. P(z,x) <=> P(z,y)) ==> forall x y. Q(x,y) <=> Q(y,x)"!>)
[
assume [("A", <!"forall x y. Q(x,y) <=> forall z. P(z,x) <=> P(z,y)"!>)],
conclude (<!"forall x y. Q(x,y) <=> Q(y,x)"!>) proof
[
fix "x", fix "y",
conclude (<!"Q(x,y) <=> Q(y,x)"!>) proof
[
have (<!"(Q(x,y) ==> Q(y,x)) /\\ (Q(y,x) ==> Q(x,y))"!>) proof
[
conclude (<!"Q(x,y) ==> Q(y,x)"!>) proof
[
assume [("", <!"Q(x,y)"!>)],
so have (<!"forall z. P(z,x) <=> P(z,y)"!>) by ["A"],
so have (<!"forall z. P(z,y) <=> P(z,x)"!>) at once,
so conclude (<!"Q(y,x)"!>) by ["A"],
ged
I,
conclude (<!"Q(y,x) ==> Q(x,y)"!>) proof
[
assume [("", <!"Q(y,x)"!>)],
so have (<!"forall z. P(z,y) <=> P(z,x)"!>) by ["A"],
so have (<!"forall z. P(z,x) <=> P(z,y)"!>) at once,
so conclude (<!"Q(x,y)"!'>) by ["A"],
ged
1,
ged
1,
so our thesis at once,
ged
1,
ged
I,
ged

*}

Figure 3: Proof of Pelletier’s Problem 43 in Students’ Proof Assistant (SPA)

	Introduction
	Pelletier's Problem 43
	Discussion
	Conclusion

