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Abstract  17 

Despite recent efforts in determining the determinants of invasion in microbial communities, experimental 18 

observations across different ecosystems are inconclusive. While relationships between resident 19 

community diversity and invasion success are often noted, community diversity says little about community 20 

assembly processes. Community assembly processes may provide a more inclusive framework to explain – 21 

and potentially prevent or facilitate- invasion. Here, we let replicate nitrite-oxidizing bacterial guilds 22 

assemble under different conditions from a natural source community and study their compositional 23 

patterns to infer the relative importance of the assembly processes. Then, an invader strain from that same 24 

guild was introduced at one of three propagule pressures. We found no significant correlation between 25 

community diversity and invasion success. Instead, we observed that the effect of selection on invasion 26 

success was surpassed by the effect of drift, as inferred from the substantial influence of propagule 27 

pressure on invasion success. This dominance of drift can probably be generalized to other invasion cases 28 

with high phylogenetic similarity between invader and resident community members. In these situations, 29 

our results suggest that attempting to modulate the invasibility of a community by altering its diversity is 30 

futile because stochastic processes determine the invasion outcome. Increasing or reducing propagule 31 

pressure is then deemed the most efficient avenue to enhance or limit invasion success. 32 

Introduction 33 

Biological invasions can impact resident communities and ecosystems by facilitating fluctuations in 34 

biodiversity and in this way alter community function and productivity. For macro-organisms many factors 35 

enabling successful invasions have been identified and considerable scientific effort has been devoted to 36 

elucidate the determinants of invasion in microbial communities in order to prevent or promote the 37 

establishment of new community members (Mallon et al., 2015a; Amalfitano et al., 2014; De Schryver and 38 

Vadstein, 2014). 39 
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Competition with resident community members has primarily been suggested to determine invasion 40 

success, and strong competition decreases invasion success (Fargione and Tilman, 2005; Mallon et al., 41 

2015b; Emery and Gross, 2007). The level of competition is usually inferred from resident community 42 

diversity (Elton, 1958) or from the phylogenetic distance between the invader and resident community 43 

members (Darwin, 1859). It is suggested that with small phylogenetic distance between invader and 44 

resident community members, resident community members impose strong competition on the invader 45 

type because phylogenetic similarity implies ecological similarity (Darwin, 1859) , which would reduce 46 

invasion success (Procheş et al., 2008; Jiang et al., 2010; Thuiller et al., 2010; Tan et al., 2015).  In a similar 47 

vein, it has been theoretically (Mallon et al., 2015a) and experimentally (van Elsas et al., 2012; Bonanomi et 48 

al., 2014; Dillon et al., 2005) suggested that biologically diverse communities are more resistant towards 49 

invasion, as originally proposed by Elton (1958). The most commonly cited reason is that more diverse 50 

communities are able to utilize resources more efficiently, thus leaving little resource space for invaders, 51 

and have higher probability of hosting a type capable of out-competing an invader. However, when 52 

community diversity is examined as a single factor determining invasion success without considering the 53 

specific context for interpretation, false conclusions are likely (Shade, 2017), because other community 54 

assembly processes (i.e., selection, drift, dispersal or speciation) contributing to resident community 55 

diversity are often neglected (Kinnunen et al., 2016).  56 

Competition between invader and resident community members is mainly investigated using synthetically 57 

assembled microbial communities (De Roy et al., 2013; van Elsas et al., 2012) with limited similarity to 58 

natural communities. Synthetically assembled microbial communities allow testing invasion success at 59 

different (controlled) diversity levels as well as carefully chosen phylogenetic distances between 60 

community members. However, this approach does not allow testing how all community assembly 61 

processes affect invasion because oftentimes only one or two processes (selection and/or drift) govern 62 

community assembly when establishing synthetic communities with no history of interaction. It is thus 63 
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unclear if resident community diversity and phylogenetic distance between invader and resident 64 

community members can serve as general predictors of invasion success, beyond synthetic communities. 65 

On the other hand, recent studies have suggested that microbial community assembly is more stochastic 66 

(Daleo et al., 2009) than recognized in the studies focusing on competition, and that invasion success would 67 

primarily depend on propagule pressure (Acosta et al., 2015; Ketola et al., 2017) (the relative abundance of 68 

the invader to the resident community), as postulated for communities of macro-organisms (Lockwood et 69 

al., 2005; Simberloff, 2009; Von Holle and Simberloff, 2005). While resident community diversity has 70 

predicted invasion in several cases (van Elsas et al., 2012; Ketola et al., 2017; Dillon et al., 2005), a similar 71 

amount of evidence supports propagule pressure as determinant of invasion (Ketola et al., 2017; Acosta et 72 

al., 2015). The lack of consensus across studies may be because the investigations are often limited to only 73 

one determinant of invasion. For example, sometimes communities with different diversities are subject to 74 

invasion at single propagule pressure (Chapelle et al., 2015; Eisenhauer et al., 2013; van Elsas et al., 2012; 75 

Dillon et al., 2005; Jiang et al., 2010), or the phylogenetic distance between resident community members 76 

and invader is so large that it is highly improbable that it accurately represents competition for an 77 

ecological niche (Bonanomi et al., 2014).  78 

Hence, here we subject guilds of nitrite-oxidizing bacteria (NOB) to invasion by a NOB strain and thus 79 

investigate invasion outcome in communities where competition is expected, and where phylogenetic 80 

distance between invader and resident community members is low. We hypothesize that with low 81 

phylogenetic distance to the resident community members, invasion success is influenced by propagule 82 

pressure. Since low phylogenetic distance can confer ecological similarity, neither the resident community 83 

members nor the invader would have a competitive advantage and the effect of drift would govern 84 

invasion success. 85 

Materials and methods 86 

Invader cultivation  87 
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A culture of Nitrotoga HW29 was used as the invader, grown according to its enrichment conditions 88 

(Hüpeden et al., 2016) in 250-mL cell culture flasks over a three-month period. After three months, NOB 89 

mineral medium was replaced with sterilized non-chlorinated tap water for one month to adjust the 90 

invader to the conditions of the resident community. No changes in nitrite removal dynamics were 91 

observed in response to this change in the medium. Before the onset of the invasion, all batch cultures 92 

were combined and the cell density was determined using a Thoma cell-counting chamber. Then, dilutions 93 

of the culture in tap water were spiked with either 0.3 mM or 0.03 mM nitrite to introduce the invader to 94 

resident communities with high and low nitrite loading, respectively.  95 

Invasion in flow-through microcosms 96 

The experimental set-up consisted of 40 parallel flow-through microcosms. Biofilms developed on Filtralite 97 

NC 0.8-1.6 filter material (Saint-Gobain Byggevarer A/S, Oslo) fed with tap water spiked with nitrite at a 98 

constant flow rate of 0.43 L/day under ambient temperatures (23 to 25°C). One set of 20 replicates was fed 99 

with tap water with 0.3 mM NO2
- -N addition while another set of 20 replicates received 10-fold lower 100 

nitrogen concentration, 0.03 mM NO2
- -N. Resident community biofilms were allowed to develop for 60 101 

days, after which 4 random columns were destructively sampled and used as before invasion reference 102 

(called ‘initial’ in results and discussion) and as inocula for batch microcosms (see below) while the 103 

remaining columns were subjected to invasion. Three different propagule pressures were applied; such as 104 

the total invader cells after a 24 hours of continuous invasion were estimated to represent on average 1%, 105 

10% and 100% of resident NOB cells. The absolute abundance of the resident NOB cells before invasion was 106 

estimated from the nitrite removal dynamics and average NOB growth kinetics according to Rittmann and 107 

Mccarty (1980). We observed complete nitrite removal from day 30 onwards, resulting in total of 0.4mg 108 

NO2
-N consumed by the resident bacteria at low nitrite loading, and 4mg NO2

-N at high nitrite loading, 109 

yielding approximately 107 and 108 cells per microcosm at low and high nitrite loading, respectively. Each 110 

propagule pressure treatment consisted of 4 replicates whereas 4 replicates at both nitrogen-loadings were 111 

maintained as controls without invader (referred to as ‘none’). The flow-through columns were operated 112 
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for another 14 days following the invasion after which all material was harvested (‘Final after invasion’ – or 113 

‘Final’) and DNA extracted. 114 

Invasion in batch microcosms 115 

Batch microcosms were established in 250-mL cell-culture flasks with the same nitrite concentrations as in 116 

the flow-through microcosms. Nitrite-spiked sterile tap water was used as medium and 0.5 g of wet filter 117 

material from the initial community from either high or low nitrite loading flow-through columns was 118 

added as inoculum. The flasks were subject to rigorous shaking to detach the cells from the filter material 119 

and promote growth in suspension. We assumed the absolute abundance of inoculated resident NOB cells 120 

to correspond to the abundance estimated for the flow-through microcosms, but corrected for filter 121 

material used for inoculation (103 cells/ml and 104 cells/ml in low and high nitrite loading batch 122 

microcosms, respectively). We used this to determine the correct propagule pressure with similar ratios as 123 

in the flow-through microcosms: 1%, 10% and 100% of average resident NOB cells. In batch microcosms, 124 

the invader cells were added at the same time as the inoculum filter material. The absolute abundance of 125 

resident NOB cells differed in flow-through and batch microcosms. Therefore, our experiments included 6 126 

different conditions of absolute propagule pressure, and 3 of relative propagule pressure.  127 

The nitrite removal was measured regularly and when depleted, half of the medium was replaced. After 5 128 

transfer events, the cells were recovered by filtering the total microcosm volume and the retentate was 129 

subjected to DNA extraction. 130 

DNA extraction 131 

DNA from was isolated using the FastDNA™ SPIN Kit for Soil and the FastPrep® Instrument (MP Biomedicals, 132 

Santa Ana, CA) according to the manufacturer’s instruction at room temperature. DNA from liquid 133 

microcosms (batch and invader culture) was isolated after filtering (100 mL of invader cell culture and all 134 

250 mL of the batch microcosms) through sterile 0.1 um filters using DNeasy ® PowerWater® kit (QIAGEN, 135 

Hilden, Germany) according to manufacturer’s instructions at room temperature. The concentration and 136 
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purity of extracted DNA were checked using NanoDrop™ 2000 Spectrophotometer (Thermo Fisher 137 

Scientific, Wilmington, DE). DNA was then stored at -20°C for subsequent molecular analyses.  138 

qPCR 139 

Real-time qPCR assays were performed with a Roche LightCycler® 96 Instrument (Basil, Switzerland). 140 

Reaction mixtures (25 μl) contained 12.5 μl SYBR® Green qPCR Mastermix (iQ™ SYBR® Green Supermix; Bio-141 

Rad, Hercules, CA) 1 μl forward and reverse primers (20 μM), 5 μl of template DNA (adjusted to 2 ngDNA  142 

μl-1 ) and 5.5 μl PCR-grade water. Total bacteria were quantified based on 16S rRNA gene copy numbers 143 

using the Eubacterial primer set 1055f-1392r as described in Terada et al., (2010). On average 2.5 copies of 144 

16S rRNA gene was estimated per cell, according to rrnDB (Stoddard et al., 2015), with the assumption that 145 

majority of the community belongs to Gallionellacea and Nitrospiraceae. Nitrospira cells were quantified 146 

using Nitrospira-specific qPCR with primer set NTS232f (Lim et al., 2008) and Nsr1264r (Dionisi et al., 2002) 147 

targeting the 16S rRNA genes. Cell numbers were calculated assuming a single 16S operon per cell (rrnDB).  148 

New primer set Ntoga118F (5’-CTTTCAGCCGGAAAGAAAACGCA) and Ntoga840R (5’-149 

CTAAGGAAGTCTCCTCCC) was developed for this study to target the 16S rRNA gene of Nitrotoga cells. The 150 

primers were designed based on Nitrotoga amplicon sequences retrieved from previous experiment where 151 

Nitrotoga was enriched from tap water spiked with nitrite (Kinnunen et al., 2017). The designed primers 152 

cover 27% of known Nitrotoga in the SILVA rRNA database (including the 16S rRNA of Nitrotoga HW29) and 153 

100% of the tap water enriched Nitrotoga from previous experiment (Kinnunen et al., 2017). These primers 154 

target a 175 bp product that was verified by constructing a clone library of 180 clones, all of which were 155 

determined to belong to Nitrotoga genus. The 35 cycles of amplification at 94°C for 30s; 63°C for 30s; 72°C 156 

for 60s was performed. Followed by the melting curve analysis.  157 

Sequencing and amplicon library 158 

Extracted DNA from all samples was PCR-amplified using primer set PRK341F (5'- CCTAYGGGRBGCASCAG-159 

3') and PRK806R (5'-GGACTACNNGGGTATCTAAT-3') for 35 cycles, to amplify the V3-V4 hypervariable 160 
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regions (Yu et al., 2005). Purified PCR products were sequenced on the Illumina MiSeq platform at the DTU 161 

Multi Assay Core Center (Lyngby, DK). 162 

All raw 16S rRNA gene amplicons were processed following the DADA2 (version 1.0.3) pipeline with default 163 

settings (Callahan et al., 2016). These sequence variants were classified based on the SILVA prokaryotic 164 

reference database version 123.  Invader sequence was determined from the 100% similarity to 16S 165 

sequence of HW29 found in NCBI database by phylogenetic analysis of all Nitrotoga sequence variants 166 

using given reference (Figure S5). All sequences have been submitted to NCBI Sequence Read Archive under 167 

accession number SRP116646.   168 

Statistical analysis 169 

All statistical tests were performed in R. The relative abundance of invader sequence variant of all NOB as 170 

well as the similarity between biological replicates was determined using phyloseq package (McMurdie and 171 

Holmes, 2013). Phylogenetic distances and Bray-Curtis distances were calculated and plotted as NMDS 172 

using phyloseq package. Phylogenetic diversity was calculated using PhyloMeasures package (Tsirogiannis 173 

and Sandel, 2016). The statistical difference of the phylogenetic diversity between treatments was 174 

determined using a Wilcoxon signed-rank test, comparing the non-invaded control groups at different 175 

nitrite loadings. The absolute cell numbers obtained by qPCR were compared using two-way ANOVA test, 176 

with factors corresponding to nitrite loading rate and propagule pressure. Correlations between descriptive 177 

indices and invader relative abundance were determined using linear regression model and the significance 178 

of the difference in correlation between treatments was determined using also a two-way ANOVA test. 179 

Results and discussion 180 

Ecological processes governing resident community assembly 181 

We enriched 40 resident communities from a tap water source community in flow-through microcosms 182 

subjected to two nitrite loading regimes to support the coexistence of competing NOB genera (Kinnunen et 183 

al., 2017). We described the resident community composition after 60 days of operation (further referred 184 
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to as initial community) and 14 days after the invasion event (referred to as final community). The flow-185 

through microcosms are expected to facilitate selection, drift and dispersal. We also inoculated batch 186 

microcosms with the initial community from the flow-through microcosms to establish a set of microcosms 187 

where community assembly processes were simplified by elimination of dispersal. The composition of the 188 

batch microcosms was characterized after the inoculation of the ‘resident’ community together with the 189 

invader, representing the starting community after the inoculation (initial community), and after five 190 

subsequent transfer events (final community). While adding invader simultaneously with the resident 191 

community can be viewed as co-assembly, and not invasion, here, we emphasize that the inoculum 192 

material originating from the flow-through microcosms already had 60-days of co-evolution and therefore 193 

can be considered as resident community, even when introduced at the same time with the invader cells. 194 

Faith’s phylogenetic diversity of the resident NOB guild was significantly lower at high vs low nitrite loading 195 

(Table 1) in the flow-through microcosms (Wilcoxon test p=0.02) but not in batch microcosms (Wilcoxon 196 

test p=0.15). This low phylogenetic diversity in flow-through microcosms corresponded to resident 197 

communities where Nitrotoga dominated over Nitrospira at high nitrite loading, and was consistent with 198 

known differences in nitrite affinity and specific growth rates of these two genera (Nowka et al., 2015). As 199 

pointed out above, diversity indices without context do not say much regarding the ecological processes 200 

shaping the resident NOB guilds. Therefore, in this study, we elaborated on the relative contribution of the 201 

four processes (i.e. selection, drift, dispersal and speciation) that govern community assembly (Vellend, 202 

2010), and subsequently determine invasion outcome. 203 

In Table 1 we provide an overview of the evaluation of the importance of selection, drift and dispersal in 204 

the resident communities. We can neglect speciation, as it is unlikely in the short timeframe of the 205 

experiment that new types arise and achieve significant abundance. Our interpretation of the strength of 206 

processes acting on the resident communities is based on the dynamics and consistency across replicates of 207 

the composition of the non-invaded control communities (Figure 1, Figure S1 and Figure S2) and a 208 

conceptual synthesis of community ecology (Vellend, 2010). We measure stochastic effects as within-group 209 
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distances of replicate communities, such that large dissimilarities represent strong effect of stochastic 210 

community assembly processes. Similarly, small dissimilarities between replicate communities point 211 

towards strong effect of selection, as suggested in Evans et al. (2017).  212 

Dispersal was relevant only in flow-through microcosms since they were open to the environment, in 213 

contrast to the batch microcosms, which were fed sterile tap water spiked with nitrite. Dispersal can 214 

influence the diversity, composition, as well as functioning of a community and the effect of dispersal 215 

seems to be enhanced in smaller communities (Zha et al., 2016). For NOB guilds newly assembled from tap 216 

water the contribution of dispersal is low, compared to the contribution of selection and drift (Kinnunen et 217 

al., 2017). Hence, we focus on the relative importance of selection and drift from here on. 218 

The similarity between the resident communities independently assembled from the same source 219 

community was highest in resident communities assembled under flow-through conditions (Figure 2), 220 

which indicates that selection was most important. The direction of selection was affected by the nitrite 221 

loading, as seen from the difference in the ratio of Nitrotoga to Nitrospira at different nitrite loadings. At 222 

the time of invasion Nitrospira abundance had not reached steady state (Figure 1) since it increased 223 

significantly during the 14 days after the invasion event as seen by comparing the ‘Initial Resident’ and 224 

‘Final’ community fractions (ANOVA low nitrite p=0.01; high nitrite p=0.05). In low nitrite loading flow-225 

through microcosms, selection pressure was positive towards Nitrospira, as Nitrospira increased in 226 

abundance relative to Nitrotoga. Even though Nitrospira also increased significantly in abundance in high 227 

loading flow-through microcosms, the Nitrotoga-to-Nitrospira ratio was higher than in the low nitrite 228 

loading, indicating strongest selection towards resident Nitrotoga. While one Nitrotoga type has been 229 

found to be one of the key nitrite-oxidizers in wastewater treatment (Lücker et al., 2014), indicating its 230 

adaptability at higher nitrite concentrations, little is known about the nitrite affinity of different Nitrotoga 231 

strains in drinking water communities. Previous studies on competition between Nitrospira and Nitrotoga 232 

in drinking water treatment, however, have also observed the dominance of Nitrospira at low nitrite 233 
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loading conditions that is outcompeted by Nitrotoga at higher nitrite loading conditions (Albers et al., 2018; 234 

Kinnunen et al., 2017).  235 

Interestingly, the selection in the batch microcosms favored Nitrospira under both loading conditions (see 236 

final community on Figure 1 and Figure S2). This can be due to the dynamic nitrite-loading in these 237 

microcosms, causing nitrite concentration changes over time, providing niches for NOB with a range of 238 

affinities for nitrite. In flow-through microcosms, the nitrite concentration attains steady-state (Figure S1), 239 

likely selecting for NOB with a narrower range in substrate affinity. Based on this, we expect the invader 240 

Nitrotoga strain to be less competitive at low nitrite loading than high nitrite loading, in resident 241 

communities dominated by competition. 242 

Next, we estimated the relative contribution of drift to the assembly of the resident communities. In both 243 

flow-through and batch microcosms, significantly lower guild abundance was observed at low nitrite than 244 

at high nitrite loading, as expected (ANOVA flow-through p<0.0001; batch p=0.04). Communities with low 245 

abundance are theoretically more affected by drift than communities with more members (Nemergut et 246 

al., 2013). The higher dissimilarities between replicate communities after 60 days of low vs high nitrite 247 

loading also support this (Figure 2). The contribution of selection over drift was inferred to be highest in 248 

high nitrite loading flow-through microcosms based on the high similarity in composition of communities 249 

independently assembled from the same source community (Figure 2). In contrast, the contribution of 250 

selection over drift was inferred to be lowest in batch microcosms (Figure 2). In these microcosms, half of 251 

the community was regularly removed, promoting higher turnover in replacement of removed community 252 

members and amplifying the effect of drift compared to the flow-through system. 253 

We can now explain the underlying causes for the differences in the observed phylogenetic diversity  of 254 

resident NOB guilds (Table 1) based on the community assembly processes discussed above: we saw no 255 

significant difference in NOB phylogenetic diversity in batch microcosms, supporting our interpretation that 256 

similar processes dominate the community assembly in batch microcosms irrespective of the nitrite loading 257 
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regime. In flow-through microcosms, however, the influence of selection over drift varied between the two 258 

nitrite loading treatments: in the high nitrite loading microcosms higher selection to drift ratio resulted in 259 

significantly lower phylogenetic diversity (Wilcoxon test p=0.02) and the dominance of few community 260 

members with high relative fitness. 261 

Successful establishment of the invader 262 

In the flow-through microscosms The resident NOB guild was subject to continuous invasion during a 24 263 

hour period by a culture of Nitrotoga HW29 (Hüpeden et al., 2016) while the invader was introduced 264 

simultaneously with the resident community in the batches.  In flow-through microcosms, the invader 265 

strain was subjected to competition with 2 other Nitrotoga and 6 Nitrospira types at low loading conditions 266 

and 3 Nitrotoga and 3 Nitrospira types at high loading conditions (Figure S2). We used three defined 267 

concentrations of invader cells (see invader qPCR data on Figure 1) to achieve low, medium and high 268 

relative propagule pressure conditions (estimated to be equivalent to 1%, 10% and 100% of the total 269 

resident NOB population), with the aim to test the effect of drift on invasion success. Following the 270 

introduction of the invader strain, we allowed another five biomass turnover times (approximately 14 days, 271 

estimated from the resident community cell numbers and nitrite loading rates) before sampling the follow-272 

through microcosms. This time for establishment ensured that, if observed, invader persistence would 273 

indicate an active population rather than residual invader cells. 274 

Figure 1 shows that the invader cell addition did not significantly change the total NOB cell numbers after 5 275 

biomass turnover times, except in the low nitrite loading batch microcosms (Wilcoxon test p=0.02). The 276 

resident community displayed complete nitrite removal during 30 days before the invasion event (Figure 277 

S1), suggesting that the resident community had reached its carrying capacity by the time of the invasion 278 

event. Hence, if established, the invader Nitrotoga displaced some of the resident NOB types or established 279 

at low relative abundance. 280 
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Based on amplicon sequencing, we could monitor the establishment of the invader strain – as its sequence 281 

was not present in the original resident community. The invader Nitrotoga strain was only established in 282 

the flow-through microcosms at high propagule pressure, whereas in batch microcosms, it was established 283 

at almost all propagule pressures, although at different relative abundance (Table 1).  The frequency of 284 

establishment increased in both batch and flow-through microcosms with increasing propagule pressure 285 

(Figure 3). 286 

Descriptive indices of community composition fail to predict invasion success  287 

First, we tested the diversity-invasibility hypothesis in NOB guilds. We determined correlations between the 288 

relative abundance of invader (relative to  total NOB) and the phylogenetic diversity of the resident 289 

community (Figure S6) as well as invader relative abundance and nearest (Figure S7) and mean 290 

phylogenetic distance to the resident community members (Figure S8). We need to emphasize that 291 

comparing the guild diversity and phylogenetic distance between invader and resident community is only 292 

appropriate for replicate microcosms assembled by similar processes, because different assembly 293 

processes contribute differently to community diversity as well as invasion success. In flow-through 294 

microcosms, the communities assembled at high and low nitrite loading were governed by different 295 

processes; hence, combining the replicates from different treatments would encourage false conclusions of 296 

what governs invasion success. Hence, we determined correlations separately for invasion in communities 297 

from high nitrite loading and low nitrite loading flow-through microcosms. Because we inferred no 298 

difference in dominating assembly process in batch microcosms, we combined the replicate communities at 299 

different nitrite loading regimes. We reject the common hypothesis that invader establishment is 300 

negatively correlated with resident community diversity (Figure S6). While we observed a negative trend 301 

between the resident community diversity and the relative abundance of the invader after establishment in 302 

flow-through microcosms, we failed to observe any significant correlation in flow-through microcosms, 303 

contrary to batch microcosms. We observed a significant positive correlation between resident community 304 
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diversity and the relative abundance of the invader in batch microcosms. Clearly, phylogenetic diversity of 305 

the resident community is not a universal predictor for invasion resistance in a functional guild.  306 

Another metric used to predict invasion success – the nearest and/or average phylogenetic distance to the 307 

resident community (Gallien et al., 2014) – is assumed to be positively correlated with invasion. However, 308 

because selection acts similarly on community members that are phylogenetically similar (Darwin, 1859), 309 

we hypothesized here that drift would, therefore, determine invasion success when phylogenetic distance 310 

between invader and the resident community is low. We neither saw significant correlation between the 311 

nearest (Figure S7) nor the average phylogenetic distance and relative abundance of the invader (Figure 312 

S8). Our observations indicate that when the relative importance of selection over drift in communities is 313 

low, mean phylogenetic distance to the resident community correlates negatively with invader relative 314 

abundance. Failing to see consistent correlations between invasion success and resident community 315 

diversity as well as phylogenetic distance between invader and resident community members, we 316 

evaluated, for the different microcosms, the prevailing community assembly processes and related them to 317 

the subsequent invasion outcome. 318 

Stochastic processes determine invasion success in NOB guilds 319 

Resident communities, assembled with different dominating processes, were subject to invasion at 320 

different propagule pressures. We did not see a consistent correlation between the average distance from 321 

the resident community and invader relative abundance, hence our observations indicated that selection 322 

did not govern invasion outcome. Although, when drift dominates invasion, incidence and relative 323 

abundance of the invader would increase with propagule pressure. Based on this, we observed support for 324 

drift as governing process of invasion. 325 

First, in batch microcosms, where the selection to drift ratio was lowest, we observed a clear effect of 326 

propagule pressure on invasion outcome (Table 1). Both frequency of invader establishment, as well as 327 

relative abundance of invader increased in response to higher concentrations of added invader cells, 328 

supporting drift as the process governing invasion in batch microcosms.  329 
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Second, in flow-through microcosms, successful establishment was only observed at high propagule 330 

pressure (Table 1). Failure to establish at lower propagule pressures could be a result of drift supported by 331 

the characteristics of a flow-through microcosm, where the actual propagule pressure in the system is 332 

lower than the theoretical propagule pressure because invader cells could easily flow through the system 333 

without attaching to the biofilm surface. Fewer invader cells are more affected by drift and the probability 334 

of extinction is increased, compared to larger populations. 335 

Interestingly, drift explained invasion success also in resident communities where the relative importance 336 

of selection was high. This is somewhat unexpected, since in communities governed by selection, the 337 

competition caused by the fitness difference between invader and resident community members was 338 

expected to govern invasion success. One explanation could be that the high phylogenetic similarity of 339 

invader and resident community members reduced competition due to absence of large fitness differences. 340 

Our observations were made using natural communities where phylogenetic distances between community 341 

members and the invader are very low compared to many other invasion experiments with synthetic 342 

communities where phylogenetic distances are up to 10-fold higher (Naughton et al., 2015; Tan et al., 343 

2015). However, when similarly low phylogenetic diversity and low phylogenetic distance between invader 344 

and resident were investigated, a similar conclusion was reached: propagule pressure increased invasion 345 

success and phylogenetic diversity had no effect on invasion success (Ketola et al., 2017).  346 

In conclusion, our results suggest that for functional guilds invaded by a guild member, where phylogenetic 347 

distance between resident and invader is typically low, stochastic processes govern invasion success, even 348 

when the relative importance of selection in the resident community is high. Our results also imply that 349 

predicting invasion of functional guilds by a member of the same guild from compositional information is 350 

nearly impossible, making futile the precise characterization of the composition of resident communities 351 

for this purpose. While regular measurements targeting the relative abundance of possible invader can be 352 

used to estimate the probability of establishment, the stochastic nature of drift does not allow predictions 353 

with high certainty. These observations need to be verified for functional guilds that have opportunities for 354 
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larger ecological differences, to test if we can generalize our findings across any type of invasions in 355 

microbial communities.  356 

 357 

Supplementary information is available at ISME Journal’s website. 358 
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Table and figure headings: 461 
 462 
Table 1 – Effect of community assembly processes and propagule pressure on frequency of invader 463 
establishment 464 

 Flow-through microcosms Batch microcosms 
Low nitrite loading High nitrite 

loading 
Low nitrite loading High nitrite 

loading 
SELECTION 

(direction) 
+ 

(Nitrotoga/Nitrospira) 
+++ 

(Nitrotoga) ++ (Nitrospira) ++ (Nitrospira) 

DRIFT ++ + ++++ +++ 
Selection to 
drift ratio1 ++ ++++ + + 

DISPERSAL ++ + 0 0 
Faith’s 

phylogenetic 
diversity2 

0.38±0.05 0.31±0.006 0.39±0.04 0.34±0.03 

Mean 
phylogenetic 
distance from 

invader3 

0.02±0.002 0.009±0.004 0.07±0.04 0.08±0.04 

Nearest 
phylogenetic 
distance from 

invader4 

0.011 0.011 0.011 0.011 

Relative 
propagule 
pressure 

+ ++ ++++ + ++ +++ + ++ ++++ + ++ +++ 

Invader 
establishment 

frequency5 
0 0 1 0 0 0.5 0.5 0.5 1 0 0.5 0.5 

Rel. 
abundance of 
invader (%)6 

0 0 13.9±7.6 0 0 8.1±3.2 16.4±0 10.1±0 24.5±23.7 0 0.9±0 9.8±0 

1Strength of the processes is rated with 0 for no effect to ++++ for highest effect inferred from the community 465 
composition and the dissimilarity between biological replicates 466 
2Phylogenetic diversity of the NOB guild calculated using the PhyloMeasures package 467 
3phylogenetic Mean Pairwise Distance 468 
4Mean Nearest Taxon Distance 469 
5Invader establishment frequency detected in four replicates 470 
6Relative abundance of the invader sequence variant out of total NOB sequence variants ± standard deviation within 471 
four replicate communities 472 
 473 
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 474 
Figure 1 – Box-and-whisker plot representing the density of NOB in (A) flow-through and (B) batch 475 
microcosms before (initial) and after invasion (final) determined by targeted qPCR. The initial community 476 
composition was measured before invasion for flow-through microcosms and after first transfer for batch 477 
microcosms. Propagule pressure none refers to the non-invaded control microcosms operated in parallel 478 
with invaded microcosms 479 
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 480 
Figure 2 – Similarities between non-invaded resident communities independently assembled from the same 481 
source community in flow-through and batch microcosms under two nitrite loading, based on nonmetric 482 
multidimensional scaling ordinations of Bray-Curtis distances across community structures inferred from 483 
total community 16S rRNA amplicon libraries 484 

 485 
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 486 
Figure 3 – Frequency of invader establishment out of 4 replicate microcosms at different propagule 487 
pressure (ratio of invader to resident NOB) and in different experimental microcosms (circles for batch 488 
microcosms and triangles for flow-through microcosms) 489 


