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Abstract 
Reused wastewater has been suggested as a stable freshwater source that answers the increased demand 

linked to the global population growth. Raw wastewater harbors a diverse population of virus and bacteria, 

including pathogens, of which several can cause disease in humans even at low concentrations. Among these 

the enteric viruses, including norovirus (NoV), are one of the most frequent causes of food and waterborne 

diseases worldwide. Moreover, the transmission of pathogens to human via food or water is often due to the 

reuse of insufficiently cleaned wastewater in food production. To ensure food safety it is therefore important 

to assure that the reclaimed wastewater is free from viral pathogens before it is used during the production of 

ready-to-eat food products.  

Traditionally the microbial water quality has been accessed by use of fecal indicator bacteria. However, a 

number of studies agree in a lack of correlation between levels of fecal indicator bacteria and the presence of 

e.g. human pathogenic enteric viruses. To decrease the risk of foodborne outbreaks due to reused wastewater 

it is thus of great importance to investigate and acknowledge the whole viral content within the water to 

enable the use of proper treatment measures. To address this question, metagenomics sequencing could be a 

promising tool. 

The aim of this PhD thesis was to investigate if viral metagenomics sequencing can been used to assess the 

microbial quality of water. Further goals were to investigate the change in viral community throughout the 

wastewater treatment procedures and if possible determinate the treatment needed before reuse of 

wastewater. 

Initially the effect of different combinations of viral concentration and extraction methods on the detected 

viral metagenome in wastewater samples was investigated. The results showed that the particular selected 

method had a strong effect on the detected viral metagenome (Hellmér I). However, none of the 16 tested 

method combinations appeared to be superior in all tested parameters. Each method and method combination 

showed strengths and weaknesses. Based on the results obtained and two specific criteria, favoring the 

possibility to concentrate viruses from large volumes of water and the detection of genomes from RNA 

viruses, the monolithic adsorption filtration (MAF) combined with the extraction kit Nucleospin RNA XS 

were chosen in subsequent studies.   

Following this an investigation of the usefulness of viral metagenomcis to assess the micobiological water 

quality was performed. In Hellmér II the viral population was investigated before and after different 

treatment steps in one conventional urban wastewater treatment plant (WWTP) and in one highly advanced 

hospital WWTP. In addition, quantitate PCR analysis was applied to investigate the levels of the broadly 

proposed human viral indicators adenovirus (HAdV) and JC polyomavirus (JCPyV) as well as the pathogens, 

NoV, Salmonella, and Campylobacter. Results showed that analysis of the total viral community structure 



could differentiate microbial contaminated water from clean water without looking at specific pathogens. We 

observed a change in the viral community structure in effluent from the membrane bioreactor (MBR) at the 

hospital WWTP. The similarity of the viral composition in the MBR effluent to the community composition 

of sterile molecular grade water indicated a good microbial quality, although NoV and Salmonella were both 

detected in one of nine MBR effluent samples. At the hospital WWTP, the MBR effluent is further treated by 

ozone, granular activated carbon, and UV irradiation before being discharged. No microorganisms were 

detected in these samples. In the raw wastewater at the urban WWTP a seasonal pattern of the levls of NoV 

and HAdV was observed with a decrease in concentration during the summer months. This result contradicts 

previous observations of a stable concentration of HAdV throughout the year in wastewater in other 

countries, and may therefore question the usefulness of HAdV as a fecal indicator in waters.  

During the PhD project we received drinking water suspected to be the cause of a NoV outbreak (Hellmér 

III). The received volume of water enabled a small comparison between viral concentration methods on 

naturally NoV contaminated drinking water. NoV was detected with RT-qPCR and characterized with 

Sanger sequencing in the water sample concentrated with MAF. It was however not possible to further verify 

this finding of NoV using viral metagenomcis, although the bioinformatic analysis did detect the two viral 

process controls initially spiked in the water sample. Failure to detect NoV could be due to method 

dependent biases observed in Hellmér I or that the initial concentration of NoV in the water sample may 

have been below the limit of detection.  

In conclusion this PhD thesis has extended the knowledge of viral metagenomics for microbial water quality 

assessment and outbreak analysis. The effect of laboratory methods to prepare water samples for viral 

metagenomics sequencing has been investigated. This has increased our understanding of method dependent 

biases and stress the importance of carefully choosing the laboratory method best suited for the project in 

question. The PhD study demonstrated for the first time successful application of MAF to detect NoV in 

contaminated water implicated in a disease outbreak. The three studies within this PhD thesis also highlight 

the bioinformatic challenges in analyzing viral metagenomics data. Finally the presented work showed that 

viral metagenomcis could distinguish between the microbial water qualities throughout different stages of 

wastewater treatment. In combination with existing control measures metagenomics could be a powerful tool 

to analyze the effectiveness of the process in a wastewater treatment plant. Future studies are needed to 

validate these results before the method can be used in water management. 

  



Dansk Resumé 
Genbrug af spildevand har været foreslået som en mulig løsning på det vandbehov som den globale 

befolkningsvækst medfører. Råt spildevand indeholder en varieret population af virus og bakterier, også 

patogener, som kan medføre sygdom selv i lave koncentrationer. Blandt disse er enteriske virus, herunder 

norovirus (NoV), som er en af de hyppigste årsager til fødevare- og vandbårne sygdomme verden over. 

Smittevejen for patogener via fødevarer og vand er ofte via genbrug af utilstrækkeligt renset spildevand i 

fødevareproduktionen. For at sikre fødevaresikkerheden er det derfor vigtigt at det genbrugte vand er frit for 

patogene virus før vandet anvendes i produktionen af spiseklare fødevarer.  

Den mikrobiologiske vandkvalitet er traditionelt blevet testet ved analyse for fækale indikatorbakterier. Der 

er imidlertid flere studier der viser, at der ikke er sammenhæng mellem niveauer af fækale indikatorbakterier 

og forekomsten af enteriske virus. For at reducere risiko for fødevarebårne udbrud er det vigtigt at kende det 

totale indhold af virus i vandet, for at kunne identificere og anvende en effektiv vandrensningsmetode. Til 

dette formål virker metagenom sekventering til at være en lovende metode. 

Formålet med denne PhD afhandling var at undersøge om viral metagenomsekventering kan anvendes til at 

vurdere den mikrobiologiske vandkvalitet. Det var desuden et mål at undersøge ændringer i den virale 

population igennem rensningsprocessen af spildevand og om muligt bestemme den nødvendige 

vandrensningsteknik før det rensede spildevand kan genanvendes i fødevareproduktionen. 

Projektet indledtes med at undersøg hvilken effekt forskellige kombinationer af opkoncentrerings og 

oprensnings metoder af virus havde på det påviste virale metagenom i spildevandsprøver. Det viste sig at den 

valgte kombination af metode havde en betydelig effekt på det påviste virale metagenom (Hellmér I). Det 

viste sig tillige at ingen af de 16 anvendte metodekombinationer var optimal på alle parametre. Hver metode 

havde sine styrker og svagheder. Baseret på resultater af to specifikke parametre, hvor muligheden for at 

koncentrere virus fra store vand voluminer samt muligheden for påvisning af genomer fra RNA virus blev 

prioriteret, udvalgtes den bedste metodekombination til anvendelse i de efterfølgende studier. Den udvalgte 

kombination bestod af koncentrering ved monolithisk adsorbtionsfiltrering (MAF) og oprensning med 

Nucleospin RNA XS. 

Efterfølgende, blev anvendeligheden af metagenomanalyse til test af vandkvalitet undersøgt. I Hellmér II 

blev den virale population analyseret efter forskellige procestrin i et konventionelt spildevandsanlæg, samt i 

et avanceret hospitals-spildevandsanlæg. Udover anvendelsen af metagenomanalyser, blev der ved 

kvantitativ PCR analyse analyseret for de ofte foreslåede human virale indikatore, adenovirus (HAdV) og JC 

polymyxavirus (JCPyV) samt for patogenerne NoV, Salmonella, og Campylobacter. 

Resultaterne viste at metagenomanalyse af den totale virale populationsstruktur, uden at fokusere på 

specifikke patogener, var i stand til at skelne imellem mikrobiologisk forurenet og rent vand. På hospitals-



spildevandsanlægget blev der observeret en ændring i den virale population efter behandling i en membran 

bioreaktor (MBR). Den virale sammensætning af MBR behandlet spildevand matchede overordnede sterilt 

vand, hvilket tydede på en god vandkvalitet, trods at der i en enkelt ud af ni MBR behandlede vandprøver 

kunne påvises både NoV og Salmonella. I spildevandsanlægget bliver det MBR behandlede vand 

efterfølgende udsat for ozon, filtreret gennem aktivt kul og UV bestrålet før det udledes. I disse prøver 

fandtes ingen mikroorganismer. I det rå spildevand fra det konventionelle spildevandsanlæg påvistes en 

sæsonvariation i niveauet af NoV og HAdV, med lavere koncentrationer observeret i sommermånederne. 

Dette i modsætning til tidligere observationer i udlandet, hvor der året rundt er påvist en stabil koncentration 

af HAdP i spildevand. En mulig sæsonvariation kan sætte spørgsmål ved anvendeligheden af HAdV som 

fækal indikator. 

I forbindelse med projektet modtog vi en prøve af drikkevand der var mistænkt som årsag til et udbrud af 

NoV (Hellmér III). Dette tillod et mindre sammenligningsstudie af forskellige metoder til opkoncentrering 

af virus i drikkevand. NoV blev påvist ved RT-qPCR og karakteriseret ved Sanger sekventering i 

vandprøven opkoncentreret med MAF. Det var dog ikke muligt at verificere dette fund af NoV i vandet 

yderligere med viral metagenomanalyse, på trods af de bioinformatiske analyser resulterede i genfindelse af 

de to lignende virale proceskontroller der blev tilsat vandprøverne som positive kontroller. Dette kan skyldes 

metodebias der blev observeret i Hellmér I eller at koncentrationen af den tilsatte NoV har været under 

påvisningsgrænsen. 

Denne PhD afhandling har udvidet kendskabet til brug af viral metagenomics ved vurdering af vandkvalitet 

og udbrudsopsporing. Forskellige laboratoriemetoder til forberedelse af vandprøver forinden 

metagenomanalyse for virus er blevet undersøgt, hvilket har øget vores forståelse af de enkelte metoders 

bias, og understreget vigtigheden af at vælge den bedst egnede metode til det givne formål. PhD projektet 

demonstrerede desuden for første gang succesfuld anvendelse af MAF til påvisning af NoV i forurenet 

drikkevand, der førte til udbrud af Roskildesyge. De tre studier i PhD projektet har også belyst 

udfordringerne ved brugen af bioinformatics ved analyse af virale metagenomdata. Endelig er det vist at viral 

metagenomisc kan skelne mellem den mikrobiologiske vandkvalitet gennem forskellige procestrin i et 

spildevandsrensningsanlæg. Kombineret med klassiske kontrolmetoder kan metagenomics derfor være et 

værdifuldt redskab til vurdering af effektiviteten i et rensningsanlæg. Yderligere studier er dog nødvendige 

for at validere disse resultater før metoden vil kunne tages i anvendelse. 
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1. Introduction 

1.1 Motivation for the study 

The global demand for freshwater for agricultural and industrial use is estimated to increase by 55% within 

the next 30 years (UN-WWAP, 2015), driven mainly by an estimated global population growth from7.5 

billion today to 9.8 billion in 2050 (United Nations Department of Economic and Social Affairs, 2017). A 

growing population will also produce a larger volume of wastewater. In the United Nations world water 

development report from 2015, reused wastewater is suggested as a stable freshwater source (UN-WWAP, 

2015), but before reusing wastewater it needs to be cleaned from harmful chemicals, toxins, and 

microorganisms (WHO, 2006). 

Raw wastewater harbors a diverse viral and bacterial population, including human pathogens (Cantalupo et 

al., 2011). To enable reuse of wastewater, antimicrobial treatment needs to be thorough since many of the 

pathogens can cause disease in humans even at low concentrations (Leclerc, Schwartzbrod and Dei-Cas, 

2002; Koopmans and Duizer, 2004). Pathogens may lose infectivity during heat treatment, e.g. cooking 

(Araud et al., 2016; Ceylan, McMahon and Garren, 2017), but if not sufficiently inactivated or if eaten raw, 

contamination of food products will pose a risk of illness to consumers.  Examples of such products are 

irrigated vegetables and fruits (Ethelberg et al., 2010), shellfish grown in contaminated waters (Rasmussen et 

al., 2016), or berries rinsed and frozen with contaminated water (Bernard et al., 2014).  

The public health promotion of the nutritional value of vegetables and greens (FAO/WHO, 2004) has 

increased the demand for fresh produce in industrialized countries. However, during the last few years a high 

number of outbreaks related to fresh produce have been reported (Callejón et al., 2015). To ensure food 

safety it is important to assure that reclaimed wastewater is free from pathogens before it is used during the 

production of ready-to-eat food products where no microbial inactivation steps are included in the food 

production chain. 

Today there are no regulations within the EU stipulating the reduction of microorganisms during the 

treatment of wastewater (EEC Council, 1991) and no EC Directive regarding irrigation. There is a newly 

published European guideline regarding irrigation water (European Union, 2017), which relies on the use of 

the indicator organism Escherichia coli (E. coli). However, a number of studies show a lack of correlation 

between E. coli levels and presence of human pathogenic viruses and bacteria (Gerba et al., 1979; Wéry et 

al., 2008; Ferguson et al., 2012; Zhou et al., 2015; McMinn, Ashbolt and Korajkic, 2017). To decrease the 

risk of foodborne outbreaks due to reused wastewater it is of great importance to investigate the whole 



microbial content within the water to enable the use of proper treatment measures. Metagenomics sequencing 

is therefore a promising tool to answer these questions (Nieuwenhuijse and Koopmans, 2017).  

1.2 Objectives 

The main aim of this thesis was to assess the risk of using wastewater for food production by determining the 

effect of different treatment steps on the total microbial content of the water. This was done by sequencing 

the total pool of nucleic acids, the metagenome, in water samples collected at different stages during the 

treatment of wastewater. Further goals were to investigate and assess the elimination of selected viruses and 

pathogenic bacteria throughout the wastewater treatment procedures. To achieve the goals four specific 

objectives were identified.  

1. Develop a methodological pipeline that covers all steps, from sampling of water to the detection of 

microbial communities by the use of metagenomics sequencing.  

2. Analyze the viral population after different steps along the treatment process in one conventional 

municipal wastewater treatment plant (WWTP) and one highly advanced hospital WWTP.  

3. Investigate the correlation between the presence of pathogenic viruses and the current indicator 

organisms E. coli with the broadly proposed viral indicators human adenovirus (HAdV) and JC polyoma 

virus (JCPyV). 

4. Validate the developed method pipeline during the investigation of water incriminated in a disease 

outbreak. 

Objective 1 was addressed by a method study in the laboratory in which we compared the efficiency of viral 

concentration and genome extraction methods for studying viral metagenomics from raw wastewater 

(Hellmér I). The results obtained in Hellmér I were used as a guidance in planning the investigation of 

microbial elimination in two Danish WWTPs, one conventional and one pilot highly advance hospital 

WWTP (Hellmér II) to reach objectives 2 and 3.  In addition, the methods developed in Hellmér I and the 

further experience on bioinformatic analysis of metagenomics data gained in Hellmér II were used to 

investigate water that may have caused a viral disease outbreak due to wastewater contamination (Hellmér 

III).    

1.3 Outline 

Chapter 2 provides an overview of the theoretical background related to the research in this PhD study. The 

chapter introduces the waterborne microbial pathogens typically present in the influent raw wastewater and 

how they are affected by the construction of WWTPs. Chapter 2 continues with a discussion on the risks 

associated with the reuse of treated wastewater backed up with an introduction of the current regulations. In 

chapter 3 the methodological processes used for analyzing viruses and bacteria in water are discussed, 

including the methods used in this thesis. In chapter 4 the findings from Hellmér I, II, and III are discussed, 



and chapter 5 presents conclusions, impacts and further perspectives learned from this PhD thesis. Finally 

chapter 6 includes the three original papers and manuscripts produced during the PhD thesis.  



2. Background 

2.1 Waterborne pathogens 

Infectious diseases transmitted through food are a huge public health burden worldwide, resulting in 

considerable morbidity and mortality (Kirk et al., 2015; WHO, 2015). Foodborne infectious agents may 

contaminate foods through a number of possible transmission routes e.g. through contact with contaminated 

hands or surfaces during processing, or from contaminated water.  

Waterborne pathogens are microorganisms that can be transmitted and cause disease through ingestion of 

contaminated water (Leclerc, Schwartzbrod and Dei-Cas, 2002). Most food- and waterborne pathogens are 

spread through the fecal-oral route and will reach the WWTP through excreted feces. High concentrations of 

food- and waterborne pathogens are thus found in raw wastewater as well as throughout the wastewater 

treatment process. Examples of selected viruses and bacteria and their levels present after different treatment 

steps are listed in Table 1. If poorly treated wastewater is directly used or contaminates the water used in 

food production pathogens could be spread to consumers and result in illness, Figure 1.  

Table 1: Viral and bacterial concentrations in, log genome copies / L, throughout wastewater treatment.   

  Raw 

wastewater 

influent 

Primary 

effluent 

Activated 

sludge 

effluent 

MBR 

effluent 

Ozone 

disinfection 

effluent 

Reference 

Norovirus 4.7 4.4 2.1 2.3  Hellmér II 

  3.6 1.9 0.6  Francy et., al 2012 

HAdV 4.7 4.0 1.6   Hellmér II 

 8.0 6.0   6.9 Wang et.. al 2018 

  4.0 1.8 0.5  Francy et., al 2012 

JCPyV 4.1 3.6 1.9   Hellmér II 

Salmonella 3.0 2.3 1.3 1.8  Hellmér II 

Campylobacter 2.7 2.2 0.9   Hellmér II 

 

 

 



 

Figure 1: Transmission route for waterborne pathogens spreading through contaminated foods.  

This section will describe some of the most common viruses and bacteria causing illness through the 

consumption of fresh produce processed with contaminated water. 

2.1.1 Viruses 

Viruses are obligate parasites and cannot replicate outside a host. They are consists of a genome enclosed in 

a protein capsid, which can be surrounded by a lipid membrane or envelope, Figure 2. The viral genome 

consists of either RNA or DNA and could be single- or double-stranded (ss/ds). The ss genomes are either 

positive- or negative-sensed. The genome structure is highly variable and can be circular, linear or 

segmented (Acheson, 2007). 

.  

Figure 2. Schematic picture of a virus with a genome, protein capsid and lipid membrane/envelope 
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Naked viruses that do not have a membrane envelope are often more persistent in the environment. xamples 

like poliovirus have been found to survive for up to 140 days on soft surfaces (Yeargin et al., 2016), murine 

norovirus for at least 7 days on spinach leafs (Hirneisen and Kniel, 2013), HAdV for over 70 days in water 

(Prevost et al., 2016), and one study detected survival of HAdV for over 300 days in virus spiked sterile 

water (Rigotto et al., 2011). In addition, the non-enveloped viruses typically show a high resistance to 

disinfection measurements (Prevost et al., 2016) and common treatment procedures at WWTPs (Rodriguez-

Manzano et al., 2012). The inability to replicate outside a host cell makes viruses rare in the environment, 

and their small genome size compared to bacterial or protozoal species (Hodgkin, 2001) means only a small 

fraction of the total nucleic acid within a sample is of viral origin, making them hard to detect in a water 

sample. However, the low infectious dose of particular enteric viruses (Koopmans and Duizer, 2004) makes 

them a health risk even when they are present at low concentrations.  

Viruses can infect a wide range of hosts including humans, animals, plants, bacteria, or even other viruses 

(Acheson, 2007). This thesis will focus on the enteric viruses those which infect via the gastrointestinal tract 

and therefore can infect through food and drinking water. The environment within the human gastrointestinal 

tract is harsh and therefore most of the enteric viruses lack the lipid-containing envelope which otherwise 

would make them susceptible to environmental degradation. The genomic structure and specific symptoms 

from some of the most common foodborne viruses are listed in Table 2.  

  



Table 2: List of important enteric viruses including: genome size (in kilo bases (kb)), sense of reading 

frame(positive/negative (+/-)) and nucleic acid format (ss or ds, RNA or DNA), as well as main symptoms of 

infection and mostly applied detection method used in environmental samples.  

Family Virus Genome 

structure 

Envelope Genome  

Size (kb) 

Symptoms Detection 

method used in 

environmental 

samples 

Caliciviridae Norovirus  + ssRNA no 7-8 Gastroenteritis Molecular 

 Sapovirus  + ssRNA no 7-8 Gastroenteritis Molecular 

Adenoviridae Human Adenovirus 

40 and 41 

 dsDNA no 30-36  Gastroenteritis Culture 

Molecular 

Picornaviridae Hepatitis A virus  + ssRNA no 7-8 Hepatitis Culture 

Molecular 

 Enterovirus  + ssRNA no 7-8 Gastroenteritis 

Meningitis 

Encephalitis 

Common cold 

Conjunctivitis 

Culture 

Molecular 

Reoviridae Rotavirus    dsRNA no 7-8 Gastroenteritis Molecular 

Culture 

Hepeviridae Hepatitis E virus   + ssRNA  7.2 Hepatitis Molecular 

Culture 

Information obtained from (Rodríguez-Lázaro et al., 2012) 

Among the most common foodborne viruses are norovirus (NoV), sapovirus, enterovirus, aichi virus, 

hepatitis A and E viruses (HAV and HEV, respectively), astrovirus, rotavirus, and HAdV. All these viruses 

with the exception of HAdV and rotavirus are ssRNA viruses. HAdV has a dsDNA genome and rotavirus a 

dsRNA genome. The most common symptom upon infection by enteric viruses is gastroenteritis (GE) but 

hepatitis and neurological symptoms are caused by some of the viruses (Rodríguez-Lázaro et al., 2012). 

Below is more detailed presentation of the most common foodborne viruses organized by their disease 

symptoms.  

2.1.1.1 Enteric viruses causing gastroenteritis  

GE is the term for an infection of the gastrointestinal tract, with symptoms including diarrhea, vomiting, and 

abdominal pain. Viral induced GE is often self-limiting in healthy individuals but could cause more severe 

symptoms in risk groups such as elderly, children, or hospitalized persons (Lopman et al., 2004). NoV is the 

leading cause of GE infections in adults and is the largest source of foodborne disease worldwide (WHO, 

2015). During 2016, NoV was the cause of 37 % of the foodborne outbreaks in Denmark (Anonymous, 

2016), and was thus the most common cause of foodborne outbreaks within the country. NoVs belongs to the 

Caliciviridae family and are classified into five genogroups (GI, GII, GIII, GIV, and GV) where GI, GII, and 

GIV infect humans (Patel et al., 2009). The Caliciviridae family also includes human sapoviruses that are 

increasingly being recognized as an etiological agent in foodborne outbreaks (Kobayashi et al., 2012). 



Another virus causing a large number of GE infections and the most common cause of diarrheal disease 

associated death in children (Lanata et al., 2013) is rotavirus, from the Reoviridae family. In industrialized 

countries rotavirus is responsible for 40 % of hospitalizations associated with child diarrhea.  Rotaviruses 

mainly infect children and by the age of five most children have had the infection. Rotavirus consists of eight 

different species (A – H) where humans can be infected by rotavirus A (the most common), B, and C. 

Rotavirus are rarely associated with foodborne outbreaks and when they are it is usually a coinfection with 

another enteric virus such as NoV (Räsanen et al., 2010). Since 2005, a vaccine against rotavirus A has been 

available and as of January 2017 the rotavirus vaccine have been introduced in 92 countries (O’Ryan, 2017). 

HAdV is another common source of childhood GE worldwide (Grimwood et al., 1995; Lee et al., 2012; 

Banerjee et al., 2017). There are several species of HAdV within the family adenoviridae. HAdVs are the 

cause of several diseases, of which GE is mainly caused by HAdV-F serotype 40 and 41, the latter  is the 

most common serotype detected in wastewater (Ogorzaly et al., 2015).  

2.1.1.2 Enteric viruses causing hepatitis 

HAV and HEV spreads through the fecal oral route but when they reach the intestine the virus enters the 

bloodstream through the epithelium. The blood will transfer HAV and HEV to the liver where it infects the 

hepatocytes and Kupffer cells. HAV infection causes acute viral hepatitis in most adult cases, and these 

infections are often self-limiting (Stanaway et al., 2016), although in some cases it can cause acute liver 

failure. Shedding of viruses in feces starts 12-14 days before onset of symptoms both for HEV (WHO, 2017) 

and HAV (Koopmans and Duizer, 2004), and children below five years of age often get asymptomatic HAV 

infections but are still shedding the viruses in high number which could contribute to the possible spread of 

an outbreak. A HAV infection will leave the patient immune for the rest of their life and outbreaks are 

therefore rare in endemic regions where most persons are infected at an early age (Koopmans and Duizer, 

2004). HAV was the second most common cause of viral foodborne outbreaks within the EU in 2014 (EFSA, 

2015). However there is an effective vaccine for HAV which has reduced the incidence rate of HAV 

infection by 90 % in regions that have implemented routine childhood vaccination (Jacobsen and Wiersma, 

2010). HAV belongs to the family picornaviridae and only infects humans in contrast to HEV which belongs 

to the hepeviridae family and is a zoonotic virus. HEV infects a number of mammals including humans, 

pigs, wild boars and deer. Four HEV genotypes can infect humans where genotypes 1 and 2 are exclusive for 

humans and genotypes 3 and 4 are zoonotic. Genotypes 1 and 2 are most common in areas with low 

sanitation, spreading through contaminated drinking water (Guerra et al., 2017). In areas with access to clean 

drinking water, HEV infection is only seen in sporadic cases mostly due to zoonotic spread of HEV genotype 

3 (WHO 2017). In contrast to HAV, a HEV infection more often leads to acute liver failure if infecting 

pregnant women during their second or third trimester, with case fatality rates as high as 20-25 % (WHO, 

2017). In addition, fetal loss is another symptom of HEV infection in pregnant women.  Yearly, HEV causes 



20 million infections where 3.3 million of these are symptomatic, and in 2015 HEV was the cause of 44000 

deaths worldwide (WHO, 2017).  

2.1.1.3 Enterovirus  

Enteroviruses belong as HAV to the picornavirus family and are a special group within the enteric viruses 

causing a wide range of symptoms: from common cold to meningitis. Historically, poliovirus, belonging to 

the species human enterovirus C, has been the most important enterovirus. However, since the introduction 

of the eradication campaign poliovirus is now only endemic in a few countries. Among the enteroviruses, 

coxsackievirus has been associated with GE from consumption of oysters (Iritani et al., 2014). Even though 

enterovirus does not have a big health burden they have been proposed as indicator virus for fecal 

contamination since effective cell culture models exist to assess concentrations.  

2.1.2 Bacteria 

Traditionally more focus has been on the presence of bacteria in reused water. To better put the results from 

this PhD thesis into perspective the concentration of the bacteria Salmonella and Campylobacter were 

investigated throughout the wastewater treatment in Hellmér II. Salmonella and Campylobacter yearly 

cause many foodborne infections in Denmark (Anonymous, 2016), which therefore makes their presence in 

wastewater likely. Bacteria that transmit through water can in general be classified in two types, the first 

being enteric bacteria adapted for replication in the intestine and the second being aquatic bacteria. Enteric 

bacteria can survive for long periods in water (Moore et al., 2003) but it is often under starving conditions 

and their replication is slow. Aquatic bacteria, like Legionella described elsewhere (Leclerc, Schwartzbrod 

and Dei-Cas, 2002), are outside the scope of this thesis. 

2.1.2.1 Salmonella 

Salmonella is a Gram-negative anaerobe and is a member of the Enterobacteriaceae family. It is further a 

zoonosis with more than 2500 identified serotypes and a wide host range. It can survive for months in water 

(Moore et al., 2003) and is therefore a risk when reusing wastewater. Depending on the clinical 

presentations, Salmonella infections are often classified as typhoidal or non-typhoidal. A Salmonella 

infection often causes mild GE symptoms, but depending on host factors the infections can be more severe 

(WHO, 2018b). Some human-specific serotypes may result in enteric fever, often referred to as typhoid fever 

caused by Salmonella Typhi. Salmonella Typhi can spread through water and was the cause of 70 % of all 

waterborne outbreaks between 1920 and 1940 in the United States (Craun et al., 2006). With increased 

sanitation, the number of infections with Salmonella Typhi has decreased in the developed world but it is 

still a problem in areas with poor sanitation and is the cause of 21 million infections and 200 000 deaths 

yearly (Crump, Luby and Mintz, 2004). Today,  non- typhoidal Salmonella is one of the world’s most 

common causes of GE (WHO, 2018b). The transmission is often through contaminated food. In 2016 non- 



typhoidal Salmonella caused 24 % of the foodborne outbreaks and a total of 1074 human cases of 

salmonellosis in Denmark (Anonymous, 2016).  

2.1.2.2 Campylobacter 

Campylobacter is considered the most common cause of bacterial GE in the world (WHO, 2018a). They are 

Gram-negative and include 4 species that are significant human pathogens of which Campylobacter jejuni is 

the most common. Like most enteric pathogens, Campylobacter spreads through contaminated food or water 

most often resulting in a self-limiting mild GE. Like Salmonella, Campylobacter species are zoonotic and the 

main route of infection is through contaminated poultry (Anonymous, 2016) but transmission through water 

also occurs (Kuhn et al., 2017). During 2016 Campylobacter was the most common cause of foodborne 

disease with 4677 confirmed cases distributed over 6.1 % of the foodborne outbreaks in Denmark 

(Anonymous, 2016). 

2.1.2.3 Escherichia coli  

E. coli is a commensal bacterium that is always present in the human gut. It is often non-pathogenic but some 

strains can cause mild GE and it is a common cause of urinary tract infections (Nielsen et al., 2017). There 

are some strains associated with a higher virulence due to toxin production. E. coli producing vero toxin 

(VTEC) or shiga toxin (STEC) cause haemorrhagic colitis that might progress to hemolytic uremic syndrome 

(Leclerc, Schwartzbrod and Dei-Cas, 2002).  

2.2 Indicator organisms  

Knowledge of the total content of enteric pathogens in a sample would be desirable. However, to monitor all 

possible pathogens in water is costly and time consuming. Instead the microbiological quality of water is 

assessed by monitoring fecal indicator organisms. An ideal fecal indicator should be representative of the 

presence of enteric pathogens in the sample and by monitoring its concentration, the level of fecal 

contamination could be estimated. Traditionally, E. coli and coliform bacteria are used as fecal indicators to 

determine the microbiological quality of water. Coliform bacteria are defined as gram-negative, oxidase-

negative, non-spore forming rods, that ferment lactose (Cabral, 2010). However, a number of studies show a 

lack of correlation between E. coli levels and the presence of human pathogenic viruses and bacteria 

(Ferguson et al., 2012; Zhou et al., 2015; McMinn, Ashbolt and Korajkic, 2017). In a review by McMinn et 

al. (2017) the removal during wastewater treatment of the traditional fecal indicator bacterial (FIB) were in 

average one log higher than the removal of enteric viral pathogens. Treated wastewater tested negative for 

FIB could therefore still contain pathogenic viruses and cause disease if used in food production. Instead 

some abundant viruses and bacteriophages have been proposed as indicators for the presence of enteric 

viruses (Bofill-Mas et al., 2006).   



The two double stranded DNA viruses, HAdV and JCPyV,have due to their stability in the water 

environment been suggested as indicators for human fecal contamination (Bofill-Mas et al., 2006). Both can 

be analyzed with molecular methods, and the infectivity of HAdV can be assessed with culture methods 

(Bofill-Mas et al., 2006). Besides the environmental stability of HAdV in water, Rames et al. (2016) list a 

number of traits which makes HAdV a good candidate to assess the human fecal contamination in water: 

stable and persistent in a wide distribution of water matrixes, stable detection in wastewater all year round, 

high resistance to ultraviolet light, higher abundance than other enteric viruses, propagation in cell cultures, 

and human specific. In Hellmér II the concentrations of HAdV and JCPyV were measured with quantitative 

polymerase chain reaction (qPCR) throughout the wastewater treatment at both the urban and hospital 

WWTP. In the urban WWPTs, HAdV followed the same seasonality pattern as NoV GI and GII with a 

decrease in viral concentration during the summer. The same study showed no significant difference in the 

concentrations of HAdV, JCPyV, and NoV GI and GII at the urban WWTP.  

Bacteriophages are viruses that infect and replicates in bacteria. They exist in high numbers in wastewater 

and their ability to function as fecal indicators to monitor viral removal in WWTP are reviewed by Amarasiri 

et al. (2017) and McMinn et al. (2017). Several authorities recommend the use of MS2, an F-pilli specific 

RNA coliphage infecting E. coli, to validate and monitor water reclamation processes due to its 

morphological and structural resemblance to enteric viruses (Sarkis, 2013; California State Water Resources 

Control Board, 2015). Amarasiri et al. (2017) concludes that MS2 is the best suited indicator bacteriophage 

for enteric viruses based on its correlation to NoVs. However, lots of water cleaning technologies depend on 

charged filters and their effect on viruses relay on the surface charge of the virus. It is therefore almost 

impossible to find an indicator that can represent all viruses. Chaudhry et al. (2015) propose therefore to test 

the effect of wastewater treatment methods on multiple enteric viruses and not only the indicator organisms.  

2.3 Wastewater treatment plants and microbiology 

Within the urban wastewater directive (EEC Council, 1991) there are no regulations regarding the reduction 

of microorganisms during the treatment of wastewater. Thus most conventional treatment processes are 

designed for elimination of solids, organic substances and nutrients, referred to as BOD (biochemical oxygen 

demand). Some more advanced WWTPs have a final disinfection step of the wastewater with the aim to 

eliminate microbes, including viruses. Wastewater treatment methods are divided into different levels 

depending on the removal of BOD from the water. Primary treatment of wastewater refers to the physical or 

chemical processes that reduce BOD5 (the 5 day BOD) of incoming wastewater by at least 20 % and 

suspended solids by at least 50 % before discharge (EEC Council 1991). The secondary treatment is the 

processes that reduces the BOD5 to 25 mg/L O2, chemical oxygen demand (COD) to 125 mg/L O2 and the 

total suspended solids to 35 mg/L (EEC Council 1991). Tertiary treatment refers to additional treatment steps 

after secondary treatment to further improve quality of the effluent prior to its release to the catchment area. 



WWTPs can have one or several tertiary treatments, such as filtration, relaying in lagoons or ponds, removal 

of biological nutrient, nitrogen or phosphorus, and disinfection. Tertiary treatments are costly, especially in 

large urban WWTPs that treat large volumes of wastewater daily (Heinonen-Tanski et al., 2003) and are 

therefore mostly used if the cleaned water is released to a sensitive catchment area. 

In the first chapter of the book Wastewater Treatment: advanced processes and technologies (Rao et al., 

1997) the wastewater treatment methods are divided into four main classes. The first consists of physical 

methods that clean the water without changing the chemical structure of the substances within the 

wastewater, often used during primary treatment. This can include sedimentation, flotation, adsorption or 

physical barriers as filters, bar racks, and membranes. The second includes the chemical methods where 

added chemicals are used to clean the wastewater. The most common ones being chemical precipitation, 

coagulation, and oxidation. The third class combines the physical and chemical methods. For example use of 

a physical filter to remove solid particles formed during chemical precipitation. The fourth class includes the 

biological methods where microorganisms are used to degrade contaminants in the wastewater and thereby 

decrease BOD.   

Even in WWTPs where no specific disinfection process with the aim to reduce microorganisms is used, 

bacteria and viruses are removed from the water throughout the process mainly by removal of solid particles 

which they adhere to. For example during the most common wastewater treatment strategy, activated sludge, 

which is a biological treatment process where added oxygen will produce biological flocs that then are left to 

settle, bacteriophages are reduced by an average 1.9 log units (Amarasiri et al., 2017).  

If the water is meant to be reused, sand or membrane filters are often used. Sand filters can remove 10-98 % 

of viruses by separating solids and activated sludge flocs from the liquid (Zhang et al., 2016). Membrane 

filtration works by size exclusion and if the filter size is below 10
-2

 μM the filter is thought to be small 

enough to remove viruses. Depending on pore size these are referred to as microfiltration membranes with a 

pore size ≤ 0.1 μm or ultrafiltration membrane with a pore size between 0.01-0.1 μm. The reduction of MS2 

coliphage was found to be 1.38 and 3.69 log plaque-forming units (PFU) on average for microfiltration and 

ultrafiltration membranes, respectively (Amarasiri et al., 2017).   

The use of membrane bioreactor (MBR) is increasing in WWTPs as an advance treatment to improve the 

water quality. The MBR is a version of the conventional activated sludge treatment but instead of using 

settling to remove the solids the water passes through a micro or ultrafilter membrane. In addition the MBR 

membrane is coated with a cake layer that harbors enzymes that break down the microorganisms. There have 

been reports of up to 5-log removal of viruses by using MBR systems (Simmons, Kuo and Xagoraraki, 

2011). Even though high removal rates have been reported, viruses have still been detected in MBR effluents 

(Zhou et al. 2015, Hellmér II). The effectiveness of an MBR system, and other membrane-based treatments, 



is dependent on the membrane pore size, membrane integrity, solution environment, membrane charge, and 

water pH (Antony, Blackbeard and Leslie, 2012). The different surface properties of the viral capsid 

influence the viral attachment to the added biomass and thereby the level of viral reduction during MBR 

(Chaudhry et al., 2015). Due to the importance of operational conditions, the monitoring protocol developed 

by the WaterVal program assigned a virus log removal of 1.5 for MBR after investigating full scale WWTPs 

(WaterSecure, 2017).  

The removal of microorganisms via disinfection is done just prior to discharge of the effluent. The most 

commonly used methods are either chemical disinfection (chlorination or ozonation) or disinfection by UV 

irradiation. The chemical disinfection will damage the viral protein capsid whereas UV irradiation will 

degrade the nucleic acids. In the EU directive for drinking water (NSF, 2009) a UV dose of 40 mJ /cm
2
 is 

required to ensure a 4-log inactivation of viruses. However, HAdV has been shown to need a UV dose of 93 

mJ / cm
2 
to be inactivated (Prevost et al., 2016). 

2.4 Current regulations for reused wastewater 

The European Union is currently working towards a legislation on water reuse at EU level (Alcalde-Sanz and 

Gawlik, 2017). The proposed EU minimal quality requirements (EU MQR) for water reuse in agricultural 

irrigation and aquifer recharge is based on reclaimed water quality class A – D. All water classes should have 

been treated with secondary treatment, filtration, and disinfection, and measured E. coli should be below 10 

cfu / 100 mL or below the detection limit for class A, below 100 cfu / 100 mL for class B, below 1000 cfu / 

100 mL for class C, and below 10000 cfu / mL for class D (Alcalde-Sanz and Gawlik, 2017). The proposal 

also lists the minimum reclaimed water quality class required for a number of different crop categories listed 

in Table 3.  

Since the publication of the EU MQR, scientific advice from the European Food Safety Authority (EFSA) 

and the Scientific Committee on Health, Environmental and Emerging Risks (SCHEER) were requested. 

Both EFSA (Allende et al., 2017) and SCHEER (Rizzo et al., 2018) answered the request and both reports 

concluded that a more in-depth revision of the subject is needed to provide sufficient protection both to 

environmental and human health. SCHEER proposed that a case-by-case approach should be used to assess 

the effectiveness of each WWTP. Both SCHEER and EFSA also mention the need to use indicator 

organisms other than E. coli, e.g. a viral or protozoa indicator if the risk of these pathogens should be 

addressed.  

 

  



Table 3. Minimum reclaimed water quality class and irrigation method for three food crop categories. Table 

adapted from (Alcalde-Sanz and Gawlik, 2017).  

Crop category Minimum reclaimed 

water quality class 

Irrigation method 

All food crops, including root crops 

consumed raw and food crops where the 

edible portion is in direct contact with 

reclaimed water 

Class A All irrigation methods 

Food crops consumed raw where the edible 

portion is produced above ground and is not 

in direct contact with reclaimed water 

Class B All irrigation methods 

Class C Drip irrigation 

Processed food crops 
Class B All irrigation methods 

Class C Drip irrigation  

 

There are only few regulations or guidelines regarding levels of viruses in reused water. The water reuse 

regulation in California, United States, requires a disinfection combination in tertiary treated water that 

inactivates or remove 4-log plaque forming units of MS2 or poliovirus to use the water for crop irrigation 

(California State Water Resources Control Board, 2015). To use treated wastewater for groundwater 

replenishment the regulation requires a combined water treatment that reduce viruses with a total of 12 log 

(California State Water Resources Control Board, 2015). The hospital WWTP investigated in Hellmér II has 

theoretical reduction of enteric viruses by 5-12 log (NSF, 2009; US-EPA, 2012) and would therefore be 

allowed to use its effluent water for irrigation according to the water reuse regulation in California. 

  



3. Analysis of the microbiome in complex water samples 
Today there is no unified method to analyze a water sample for all pathogenic microorganisms of interest 

(Straub and Chandler, 2003). Instead several techniques have been developed, most of them with the aim to 

identify one or a group of specific bacteria (Wesolowska-Andersen et al., 2014a) or viruses (Calgua et al., 

2008; Albinana-Gimenez et al., 2009; John et al., 2011a; Pei et al., 2012; Bibby and Peccia, 2013b). Even 

though a large number of methods and combination exist, most analyses of viruses and bacteria from water 

follows these main steps: sampling of water, concentration of the target microbe or microbes, extraction of 

the nucleic acid (if a molecular detection method is used), detection of the microbe or microbes and finally 

analysis of data. The general workflow and some of the most common methods are included in the flowchart 

in Figure 4.  

The next generation sequencing (NGS) tools existing today makes it theoretically possible to investigate all 

nucleic acids (NAs) within a sample. In short all the NAs within a sample are fragmented into millions of 

small NA fragments. These millions of NA fragments are then sequenced in parallel on the NGS platform. 

Each sequenced fragment produce a read that can be further process with bioinformatics (Behjati and 

Tarpey, 2013). For a perfect analysis, this demands an unbiased preparation of the given sample. However, 

until the existence of a one-step sequencing system that without errors can sequence and align the reads to 

the right organisms, the biases of each used method needs to be taken into account. It is therefore important 

to know the advantages and disadvantages with each method before the start of a NGS project or when 

comparing the results with previous studies. To increase the knowledge of method dependent biases Hellmér 

I investigated in total 16 combinations of viral concentration and extraction procedures and their impact on 

the detected viral metagenome in raw sewage. This chapter briefly presents each step throughout the 

workflow and discusses its effect on the detected metagenome. Even though this thesis mainly focuses on 

viruses, some methods to analyze bacteria will be presented to illustrate the differences and challenges with 

virus detection from water samples.   

 



 

Figure 4: Flowchart of some of the most commonly applied molecular techniques to analyze 

microorganisms from water samples. 



3.1 Sampling  

Sampling is the first and one of the most important steps in any project. The sampling will directly affect the 

quality of the obtained data and is therefore crucial to the success of the project. It is important that the 

sample represent the whole microbial community in that water source (Council, 2007; Wooley, Godzik and 

Friedberg, 2010; Thomas, Gilbert and Meyer, 2012; Felczykowska et al., 2015). To ensure that the sample is 

representative there are three main factors to consider when sampling water: sampling point, timing, and 

volume. The sampling point should be chosen in a way that answers the hypothesis of the specific project. In 

Hellmér I the aim was to compare the effect of concentration and extraction methods on highly 

contaminated samples and therefore a point where we could sample large volumes of raw sewage was 

chosen. In Hellmér II the aim was to analyze the effect of different sewage treatment procedures and the 

sampling points thus needed to be spread throughout the treatment process. The timing of sample collection 

can affect the detected microbial community composition due to different concentrations of pathogens 

dependent on seasons (Rusinol et al., 2015).  

 

A sample can be collected via grab or composite sampling. Grab sampling is when the entire sample is 

collected at once and is often the most convenient sampling method since it does not require any specific 

instruments, a bucket and a string is often enough. A composite sample consists, on the other hand, of a 

number of small samples taken over a period of time. The composite sample could either be time dependent 

e.g. a fixed volume every five minutes, or flow dependent e.g. a fixed volume for every passing cubic meter 

of water (Hellmér et al., 2014). A composite sample will give a more representative view of the sampling 

period compared to a grab sample that only reflects the time point when the sample is taken. Frequently 

collected samples e.g. monthly (Hellmér II), weekly, or daily would account for changes in the community 

over time even when using grab samples.  

 

To analyze the microbial community, the sampling volume has to be large enough to include even the rare 

species present at low concentrations in the water. Hence the type of water has to be taken into account when 

decide upon a sampling volume, for example a higher volume needs to be sampled from ground or drinking 

water that has an expected low level of contamination (Shi et al., 2013) compared to sewage water with high 

level of contamination. In practice the sampling volume is often limited due to the concentration method in 

hand, the practical lab environment, or the available time. Even though a larger sample volume in theory 

could enable detection of rare and uncommon species, it also has a larger proportion of inhibitors (Schrader 

et al., 2012) that could prevent detection. In Hellmér I a larger sample volume was associated with PCR 

inhibition.  



3.2 Concentration  

The next step after sampling is to concentrate the viruses and bacteria. Most protocols are developed for the 

concentration of either virus or bacteria but work is being conducted to evaluate the possibility for 

simultaneous concentration of these two classes of microbes (Abd-Elmaksoud et al., 2014; Gonzales-

Gustavson et al., 2017). As an example, from raw wastewater sample with high levels of contamination, 

pelleting down bacteria by centrifugation could be sufficient (Nordahl Petersen et al., 2015). The viral 

particles can only be pelleted by high speed (90,000×g) ultracentrifugation (Hellmér I) and would stay in the 

supernatant after regular centrifugation. Alternatively, bacteria can be concentrated from water by filtration 

through a 20-45 µM membrane (Kisand et al., 2012; Chao et al., 2015; Krustok et al., 2015; Newton et al., 

2015; Satinsky et al., 2015). The bacteria will thus stick to the membrane and subsequently be eluted. The 

small size of viruses and the fact that viral particles often are present in low abundance within a sample 

requires the use of viral concentration methods prior to nucleic acid extraction (Daly et al., 2011). Even in 

samples with a high concentration of viruses their genomes are small in comparison to bacteria and therefore 

only represent a small fraction of the total nucleic acids within the sample, hence additional viral purification 

is often needed to detect them (Ng et al., 2012). A wide array of methods and steps to concentrate viruses 

from water samples has been developed. Figure 4 illustrates some of the most common.  Most concentration 

methods rely on the same principles that are used to eliminate viruses throughout the wastewater treatment, 

described in chapter 2, the two main ones being filtration or precipitation.  

 

Filtration can be further divided into size-dependent filtration, as hollow fiber filtration (ultrafiltration), or 

charge-dependent filtration that relies on the viral isoelectric point, as glass wool filtration (Albinana-

Gimenez et al., 2009) or monolithic adsorption filtration (MAF) (Pei et al., 2012). In charge-dependent 

filtration, the charged filter will bind viruses of the opposite charge, e.g. a positively charged filter will bind 

negatively charged viruses. The charge of the virus dependents on its isoelectric point depending on its 

surface structure which can be changed by changing the pH of the water. Viruses in the sample attach to the 

filter and are then eluted from the filter using an elution buffer. The elution buffer can either change the 

charge of the virus which makes it detach from the filter, or by changing the direction of the flow push the 

viruses out of the filter. Filtering allows for processing of large volumes of clean water, e.g. ground and 

drinking water (Kunze et al., 2015). A filtering system can, if combined with composite sampling, perform 

real time concentration of water. Due to the small pore sizes, more turbid water samples like raw wastewater 

and some environmental waters could clog the filters thereby limiting the analyzed volume.  

  

Concentration of viruses using precipitation relies on the addition of large charged particles or proteins to the 

water samples, such as polyethylene glycol (Bibby and Peccia, 2013a), FeCl3 (John et al., 2011b), or 

skimmed milk proteins (Calgua et al., 2008). Viruses binds to the particles and after a period of mixing the 



particles are left to precipitate, Figure 5. The supernatant is removed and the particles are pelleted through 

centrifugation. The pellet is suspended and saved for nucleic acid extraction (Calgua et al., 2008). Secondary 

concentration of viruses from the precipitate could be done by adding a buffer to make the viruses release 

from the particles, remove particles by centrifugation and then concentrate viruses from the supernatant by 

high speed ultracentrifugation (Hellmér et al. 2014, Hellmér I). Precipitation-based concentration methods 

are cheap and do not require any expensive equipment. For practical reasons, these methods have a 

maximum volume of approximately 10 L and are thus not the best choice for metagenomics analysis of water 

samples with a low level of contamination, such as ground and drinking water.    

 

 

 

Figure 5: Schematic picture of the precipitation principle.  

Charge or organic material is added to the water container. The added material is mixed and then left to 

precipitate. Excess water is removed.  

 

Previously, the influence of concentration method on viral recovery has been evaluated on sea water 

(Hurwitz et al., 2013), spiked tap water (Albinana-Gimenez et al., 2009; Kunze et al., 2015) and raw 

wastewater (Calgua et al., 2013). All studies warn of method-associated biases. To further investigate the 

effect of concentration method on the detected viral metagenome, four viral concentration methods were 

compared in Hellmér I: two filtration-based methods, glass wool filtration and MAF, and two precipitation 

methods, PEG and skimmed milk flocculation. Sample volume and applied secondary viral concentration for 

each method were performed based on the published procedures. Glass wool filtrate was secondary 

concentrated with PEG, MAF concentrate was secondary concentrated by ultrafiltration, and skimmed milk 

flocculation was secondary concentrated with ultracentrifugation. PEG precipitation did not have a 

secondary concentration step. Instead, the sample was pre-processed by passing it through a 0.45 μm filter. 

The choice of concentration method affected the composition of the detected viral community and the 

methods had different advantages and disadvantages summarized in Table 4.   

 

  



Table 4: List of advantages and disadvantages for the different concentration methods tested in 

Hellmér I 

Method Advantages Disadvantage 

PEG High proportion of viral reads Low sampling volume 

Labor intensive 

Skimmed Milk Good detection of RNA viruses 

 

Inhibition in qPCR analysis 

Maximum volume of 10L 

Labor intensive 

MAF Good detection of DNA viruses 

Possibility to filter large volumes of clean 

water 

Clogging of filter in dirty samples 

Glass wool High viral richness 

Possibility to filter large volumes of clean 

water 

Clogging of filter in dirty samples 

 

MAF was chosen for viral concentration in Hellmér II based on the results of Hellmér I where MAF 

showed low inhibition during qPCR detection and fair detection of ssRNA viruses in combination with the 

ability to filter large volumes of water in a short time period enabling easier sampling. MAF was also the 

only method able to concentrate NoV from a natural contaminated sample in Hellmér III.   

 

3.3 Extraction  

After concentrating the microbes from the water sample their NAs have to be extracted to allow further 

processing. There are a number of commercial kits developed for specific extraction of viruses or bacteria. 

All processes start with lysis of the bacterial cell or the viral capsid. The next step is to purify the NAs and 

wash away proteins, cell debris, and polysaccharides. The NAs is purified by either binding to a spin column 

or magnetic beads (Berensmeier, 2006), or by phase separation followed by precipitation. NA is then eluted 

with either RNase free water or kit-specific elution buffer. The structural and genomic differences between 

bacteria and viruses have led to a development of specific kits for either bacteria or viral NA extraction. In 

addition, the diverse viral genome structure consisting of either DNA or RNA genomes puts extra pressure 

on the extraction kit. Most kits can extract both DNA and RNA. But the ratio between the extracted DNA 

and RNA differ as shown in Hellmér I. There are some kits that favor the extraction of RNA. Steps to 

increase the extracted RNA includes treating the extracted NAs with DNase which degrades loose DNA, 

adding extra denaturation agents to the lysis buffer to destroy RNases, or adding poly-A carrier RNA to 

facilitate extraction of RNA and reduce degradation by RNase. The chosen nucleic acid extraction method 

will have a great impact on the detected microbial community. There are a number of studies investigating 



biases caused by nucleic acid extraction kits in both bacteria (Kennedy et al., 2014; Wesolowska-Andersen 

et al., 2014b) and viruses (Petrich et al., 2006; Iker et al., 2013, Hellmér I). In addition, contaminants have 

been found in some extraction kits (Salter et al., 2014) and laboratory reagents (Newsome et al., 2004). This 

could give rise to false positive results if a negative extraction control is not sequenced together with the 

tested samples (Naccache et al., 2013; Rosseel et al., 2014).  

These biases are important to take into account when comparing observed metagenomes and to decide which 

methods to be used in a study. If the aim is to compare the metagenome with previous studies, then the use of 

the same extraction kit is of essence. If it, on the other hand, is to look at a specific community within the 

sample, then an extraction kit that favors the extraction of e.g. RNA for enteric viruses could be the right 

one.   

3.4 Detection  

The ideal detection method should be reliable, accurate, rapid, simple, sensitive, selective and cost effective 

(Zhao et al., 2014). Detection of microorganisms in water samples has traditionally been through culturing 

bacteria in liquid or solid growth media, and viruses have been detected through cell culture and titration. 

With the development of nucleic acid-based methods, previously non-cultivable viruses such as NoV, which 

are not possible to detect in cell culture, could be detected. Sequencing further improved the possibility to 

type the detected virus. The development of NGS made it possible to detect all nucleic acids, the 

metagenome, and thereby microorganisms within a sample. Below I will go through the three main detection 

methods: culturing, PCR, and sequencing and discuss their advantages and disadvantages.  

3.4.1 Culture 

Routine analysis and detection of bacteria in water samples is conducted using traditional microbiological 

culturing methods, the most common of which is multiple tube fermentation in which a series of tubes 

containing broth are inoculated with a dilution series of the water sample (Rompré et al., 2002; Deshmukh et 

al., 2016). A positive sample shows production of acid and gas within 48 hours at 35°C. The results are 

interpreted in terms of most probable number (MPN) which provides an estimate of the mean coliforms 

present in the sample (Rompré et al., 2002; Deshmukh et al., 2016). Since viruses do not grow outside a host 

cell, cell culture systems are a requirement to grow viruses in laboratory settings. With the discovery of 

human cell cultures in the early 1900s, viruses could for the first time be grown outside embryonated eggs 

and laboratory animals (Leland and Ginocchio, 2007). But it was not until the early 1970s, and the 

availability of commercial cell lines, that viral diagnostic became more wide-spread (Hsiung, 1984). Since 

then, cell culture systems have been the gold standard for viral diagnosis. Cell cultures are also used for viral 

discovery (Pan et al., 2017) and infectivity analysis (Li et al., 2011). The ability to grow and propagate 

viruses is of great importance to further understand the viral mechanisms and to produce material to use for 

spiking during method development and as process controls during investigations. Cell cultures are also an 



important tool in vaccine development. To maintain a cell culture system is time consuming and requires 

technical expertise, in addition, the diagnosis procedure takes at least 24 hours and all viruses cannot be 

detected in cell culture systems (Leland and Ginocchio, 2007). With the introduction of molecular methods 

the use of cell cultures for viral diagnostics has decreased.  

3.4.2 PCR and quantitative PCR (qPCR)  

The invention of PCR amplification of DNA fragments (Saiki et al., 1985) opened new possibilities to detect 

microorganisms. With specific primers, unique stretches can be amplified and a successful amplification is 

identified by agarose gel electrophoresis of the PCR product. To enable amplification and thereby detection 

of RNA, e.g. RNA viruses, the genome fragment needs to be transcribed to complementary DNA (cDNA) by 

the use of reverse transcription (RT) prior to PCR amplification (Gibson, Heid and Williams, 1996). PCR 

detection is a fast and specific method but it is unable to quantify the detected microbe. By adding 

fluorophores that either bind all dsDNA molecules, such as SYBR green, or to a specific sequence, such as 

TaqMan probes, the amount of PCR-generated DNA can be measured. With this, the initial concentration of 

genomic material can be estimated and qPCR is now one of the most used methods to detect and analyze 

enteric viruses. By using TaqMan probes with different fluorophores it is possible to detect multiple 

organisms in one qPCR well (Hellmér et al., 2014; Irshad et al., 2016). By combining RT and qPCR it is 

possible to detect and quantify the genomes extracted from the present RNA viruses in a sample (Gibson, 

Heid and Williams, 1996).  

PCR reactions are sensitive to inhibitory substances that decrease the sensitivity of the PCR assay and 

underestimate the initial concentration or give false negative results. Inhibitory substances could originate 

from the sample or the sample processing and could be of both organic or inorganic origin (Schrader et al., 

2012). The concentration and extraction methods used can affect the level of inhibition within a sample 

(Borgmästars et al. 2017, Hellmér I) as can the initial sample volume (Schrader et al. 2012, Hellmér I). Pre-

PCR processing of the sample has been shown to increase the viral recovery in highly inhibited samples 

(Borgmästars et al., 2017).  

Today it is not possible to differentiate between infectious and non-infectious virus particles or bacterial cells 

(Cangelosi and Meschke, 2014). This problem could lead to overestimating the microbial threat within a 

sample and give false positive results. There is ongoing work to make a molecular method that only detects 

nucleic acids from whole and unbroken viral capsids. One method uses pre-PCR treatment with intercalating 

dyes, e.g. propidium monoazide, that binds to free nucleic acid and prevents it from amplifying (Prevost et 

al., 2016; Quijada et al., 2016). These methods are based on two assumptions: the first that a virus with a 

broken capsid is noninfectious and the second that the intercalating dyes will bind to and block amplification 

of free nucleic acids.  



3.4.3 Sequencing 

The development of sequencing technologies has made it possible to read the genome of individual 

organisms. The first generation of sequencing technologies, called Sanger sequencing, is based on chain-

terminating inhibition in which  every new PCR cycle adds a single base to the read sequence (Sanger, 

Nicklen and Coulson, 1977). Sequencing has made it possible to in-depth characterize a detected organism 

and to link patients from foodborne outbreaks with the source (Müller et al., 2015). However, sequencing 

large genomes is time-consuming when using Sanger-based sequencing methods. To increase the sequencing 

data output the second generation of sequencing technologies was developed. These new technologies are 

referred to as NGS. NGS allows massive parallel sequencing of PCR amplicons or environmental DNA. The 

NGS technology has three major improvements compared to the Sanger sequencing (van Dijk et al., 2014). 

First, they rely on a cell free library preparation of the DNA fragments. Second, all sequencing actions are 

run in parallel. Third, the output from the NGS platforms are detected directly as reads. The first NGS 

platform was the 454 pyrosequencing (Margulies et al., 2005) from Roche (Life Sciences), followed by the 

NGS platform developed by Illumina (Solexa) (Turcatti et al., 2008). The Illumina platform generates a 

larger number of reads compared to 454 but the produced reads are shorter (van Dijk et al., 2014). The new 

sequencing technologies made it possible to sequence all nucleic acids, the metagenome, within a sample. In 

contrast to other molecular detection methods no prior knowledge of the target organisms is needed since in 

theory all nucleic acid within the sample will be sequenced. But just as for PCR-based detection 

mechanisms, inhibition can be an issue since most library kits include a PCR step. Today NGS is mostly 

used for research purposes (Bibby and Peccia, 2013a; Fernandez-Cassi et al., 2017). However, NGS 

approaches have been proposed as routine analysis of foodborne bacterial pathogens (Deng, den Bakker and 

Hendriksen, 2016) and as a tool for biopreparedness in outbreak scenarios (Karlsson et al., 2013) 

In Hellmér I, II and III the Illumina MiSeq sequencing platform was used to sequence the metagenomes 

from water samples. This platform was chosen due to a combination of its large data output and relative low 

cost per base pair. Another reason for choosing the Illumina MiSeq was that it is one of the most commonly 

used platforms for environmental metagenomics and therefore has a lot of already made bioinformatics 

pipelines.  

3.5 Bioinformatics  

To transform the sequencing data to a list of microbes a number of bioinformatic steps are required.  The 

data output from a sequencing platform is in the form of raw reads 70-1000 base pair (bp) long, depending 

on sequencing platform used (van Dijk et al., 2014). The first step is to ensure the quality of the data by so-

called preprocessing. First each read is assigned to the respective sample based on the read ID-tag or barcode 

that was added during the library preparation. The next step is to analyze the quality of the data to get an 

overview of the dataset, this can be done with e.g. FastQC (Andrews S, 2018) that will summarize the per 

base sequence quality, GC content, sequence length distribution, overrepresented sequences and kmer 



content. Overrepresented sequences are often the sequence adaptors and are removed by trimming so as not 

to course false alignment. There are a number of programs that can be used to trim sequences, in this thesis 

the program Cutadapt was used (Martin, 2011). Paired end reads can be merged to extend the read length 

prior to de novo assembly and thereby decrease the error rate (Magoč and Salzberg, 2011).  

When looking for a specific virus within the dataset the reads can be mapped to a reference genome, this can 

be of use in an outbreak setting were a specific agent is of interest (Hellmér III). Data from metagenomics 

sequencing consists of reads from a number of unknown organisms so it is not possible to align the reads to 

one reference genome. Instead the individual reads can be directly mapped to a reference database or the 

reads can be de novo assembled into contigs. Contigs are produced by finding overlaps between reads and 

connect them to longer fragments. The produced contigs can then be mapped against the chosen database. 

Direct mapping of the trimmed reads is the fastest method to detect the present viruses especially when using 

large datasets (Petersen et al., 2017). The National Center for Biotechnology Information (NCBI) hosts the 

most applied tool for direct mapping of sequencing reads, Basic Local Alignment Search Tool (BLAST) 

(Altschul et al., 1990). The BLAST algorithm is time consuming and as the output from sequencing 

platforms has increased, the need for faster algorithms has resulted in a number of new methods. In Hellmér 

I and II the open metagenomics pipeline MGmapper (Petersen et al., 2017) which uses direct mapping of 

reads to chosen databases was used to map the sequencing reads. A drawback of direct mapping of the short 

reads is an increased possibility of false assignment to a genome if it contains conserved regions, which is 

common in large DNA viruses from families as Herpesviridae and Poxviridae (Rosseel et al., 2014). The 

alternative to direct mapping is to first assemble the reads contigs. This step is time consuming and requires 

high computer power. In Hellmér III the assembler SPAdes (SPAdes v. 3.11.1) was used to assemble the 

reads into contigs with the aim to see if the de novo assembly increased the likelihood of detecting human 

enteric viruses.  

It is important to remember that the read count abundance is biased since more reads are sequenced from 

larger genomes compared to small. This can be adjusted for during the bioinformatic analysis. In MGmapper 

this is adjusted for by a normalization of reference sequence size and read count abundance (Petersen et al., 

2017).  

  



4. Discussion 

The elimination of enteric viruses from wastewater prior to reuse in food production is of great public health 

interest. Enteric viruses have in several studies shown higher resistance to wastewater treatment procedures 

compared to FIB (Rodriguez-Manzano et al., 2012; Rusinol et al., 2015). To rely on the detection of FIB 

when evaluating the microbial water quality is therefore insufficient. In this PhD thesis I have looked at the 

possibility to use viral metagenomics to assess the microbial water quality of reused wastewater. This has 

been done by analyzing the removal of viruses along the wastewater treatment process and their final 

presence in the wastewater effluents.  

The first objective of this PhD thesis was to develop a methodological pipeline covering all steps from 

sampling of water to detection of viral communities by use of metagenomics sequencing. Sixteen different 

combinations of concentration and extraction methods were therefore evaluated in Hellmér I. The choice of 

concentration and extraction method was shown to affect the detected viral richness, specificity, pathogen 

detection, and community composition. However, none of the tested method combinations appeared to be 

superior in all tested parameters. Each method and method combination showed strengths and weaknesses as 

summarized in table 4. To choose which methodological pipeline to use for Hellmér II two main criteria 

was evaluated: the ability of processing of large water volumes and the efficiency to detect RNA viruses. 

The initial main focus was to investigate the enteric viruses which are the cause of most water-related 

outbreaks (Koopmans and Duizer, 2004). Samples extracted with the RNA-specific extraction kit Nucleospin 

RNA XS were shown to give a higher proportion of reads mapped to the enteric RNA viruses compared to 

the other tested extraction kits (Hellmér I). This kit has been successfully used for detection of RNA viruses 

by metagenomics (Leeuwen et al., 2010). The investigation of wastewater effluent, which was hypothesized 

to contain low levels of contamination, needed a viral concentration method suitable for large volumes of 

water. The two tested precipitation methods PEG and skimmed milk flocculation were therefore excluded. 

At this time we received drinking water suspected to be the cause of a NoV outbreak (Hellmér III). The 

received volume of water was sufficiently large to enable a small comparison between the filtering methods. 

MAF was the only of the tested methods that could concentrate NoV from the naturally contaminated water. 

Based on the results from Hellmér I and III, MAF concentration followed by Nucleospin RNA XS 

extraction was used in Hellmér II. 

The second objective was to analyze the viral population before and after different treatment steps in one 

conventional urban and one highly advanced hospital WWTP. This study (Hellmér II) highlighted the 

challenges when using metagenomics sequencing to evaluate the presence of specific viral species within a 

water sample. Even though HAdV and NoV GI and GII were found by qPCR in concentrations up to 10
5
 gc / 

L they were not always detected by using the open metagenomics pipeline MGmapper. Detecting NoV by 

metagenomics sequencing has proven hard (Bibby and Peccia, 2013; Mee et al., 2016; Yang et al., 2017; 



Hellmér II), which could be a result of NoV’s capsid or genome structure (Ding et al., 2014). The diversity 

within viral species also affects the efficacy of pre-metagenomics processing (Li et al., 2015). Previous 

studies have demonstrated that increased sequencing depths could increase the viral detection (Wylie et al. 

2012). In the studies presented in this thesis the sequencing depth has ranged from one to six million raw 

reads per sample. The sequencing depth can be increased by sequencing fewer samples per Illumina MiSeq 

run or by using another sequencing platform, e.g. the Illumina NextSeq 500 that has a higher data output. 

Increased sequencing depth may increase the chances of detecting specific pathogens but it will also increase 

the analysis cost of each sample. Targeted pre-processing by the use of poly(A)-capture (Fonager et al., 

2017) or amplification with NoV genotyping primers (Kundu et al., 2013; Cotten et al., 2014; Park et al., 

2015) have shown to enhance the number of NoV reads. This approach requires previous knowledge of the 

suspected contaminant. By favoring the sequencing of a particular virus one of the biggest advantages of 

using metagenomics sequencing, the fact that no prior knowledge of the viral content is needed, is lost. 

However, in an outbreak setting as described in Hellmér III this approach could increase the ability to detect 

the causative agent by NGS. Another approach to enhance the detection of NoV is to use targeted mapping 

tools (Yang et al., 2017). As with pre-processing, this requires prior knowledge of the contaminant, and 

larger bioinformatic knowledge is needed to test and troubleshoot extensive analysis of the data. However, 

targeted mapping will not affect the output sequencing data, thus additional information can still be obtained.  

In addition, results from Hellmér II showed that analysis of the viral community structure could differentiate 

clean water from contaminated water without looking at specific pathogens. However, the results from 

Hellmér I demonstrated that the detected community structure were dependent on the concentration method 

used. To use the community structure to assess the microbial quality of water could therefore be influenced 

by the laboratory methods used. This should not replace existing control measures but could be an aid in the 

evaluation of a water source.  

In the proposed European Union minimal quality requirements for water reuse in agricultural irrigation and 

aquifer recharge (Alcalde-Sanz and Gawlik, 2017) a E. coli concentration below 10 cfu / 100 mL in 

wastewater effluents is accepted for irrigation water for all purposes. By this regulation the MBR effluent 

from the hospital WWTP would be allowed to be use for irrigation of ready to eat crops. These proposed 

water safety classes were questioned for being too weak and only rely on FIB for the assessment of microbial 

water quality  (Allende et al., 2017; Rizzo et al., 2018). Instead an individual approach was suggested were 

the effect of a multiple barrier approach is taken into account.  At the hospital WWTP the MBR effluent is 

subjected to ozone, granular activated carbon, and UV irradiation before discharge of the effluent. As these 

treatments account for a combined of 5-12 log reduction of viruses (NSF, 2009; US-EPA, 2012). The 

hospital effluent would thereby be regarded as microbial class A. 



The third objective was to investigate the usefulness of the broadly proposed viral indicators HAdV and 

JCPyV. In Hellmér II HAdV showed a seasonal pattern similar to NoV GI and GII such that the HAdV 

concentration decreased during the summer months by about 2-log. One of the reasons why HAdV has been 

proposed as a fecal indicator is its stable detection in wastewater all year long (Rusinol et al., 2015; Rames et 

al., 2016). The results from Hellmér II are the first study that shows seasonality of HAdV concentrations in 

wastewater. Further studies are needed to evaluate if this observed seasonality is specific for Denmark or if 

the investigated season August 2016 to August 2017 was atypical.  

The last objective was to validate the developed pipeline during the investigation of contaminated water 

incriminated in a disease outbreak (Hellmér III). NoV could be detected in the tested water both with RT-

qPCR and Sanger sequencing but not with NGS. However, the applied metagenomics methods allowed two 

positive viral process controls to be detected with NGS. One of them was detected by the open 

metagenomics pipeline MGmapper, while the other was only detected when using a viral targeting approach. 

An enhanced approach to detect NoV was also tested by developing three specific NoV databases and 

linking them to the MGmapper tool. The significance of NoV as a waterborne pathogen stresses the 

importance of more stable tools to detect it.  

Despite that the main focus and time have been invested on laboratory sample processing the three studies 

within this PhD thesis also highlight the challenges with detecting specific enteric viruses in the 

metagenomics dataset. Another major disadvantage is the problem estimate the initial viral concentration of 

the water sample. Until these obstacles are solved analysis of enteric viruses by metagenomics will not be 

implemented in routine assessments of water quality. However, viral metagenomics have a great potential 

and the presented work showed that viral metagenomics could differentiate microbial clean water from 

contaminated water without looking at specific pathogens. In combination with existing control measures 

this could be a powerful tool to analyze the effectiveness of the process in a wastewater treatment plant.  

 

 

  



5. Conclusion and further perspectives 

In conclusion this PhD thesis has extended the knowledge of viral metagenomics for microbial water quality 

assessment and outbreak analysis. The extensive evaluation of the effect of sample processing of water for 

viral metagenomics has increased our understanding of method dependent biases. The influence of viral 

concentration and extraction methods on the observed viral richness, specificity, pathogen detection, and 

community structure stress the importance of the chosen laboratory methods. This knowledge is essential 

when interpreting published results and conducting meta-studies. A metagenomics dataset without attached 

metadata describing the used laboratory methods is therefore not of great use for future comparison and 

analysis.   

With the results of this work I propose to further investigate the viral community structure in different water 

sources. With the goal to create a viral community profiles for different stages of contaminated and microbial 

clean water. Today there is no general agreement on when wastewater is safe to reuse for production of ready 

to eat foods. New methods to assess the microbial quality of water are needed and the usefulness of these 

viral community profiles should therefore be further investigated.  

The investigation of the urban and hospital WWTP demonstrated that the effluent from the hospital WWTP 

were cleaned from microbes and could be reused. However, most WWTPs, including the urban WWTP, do 

not have advanced disinfection treatments to reduce microorganisms sufficiently to avoid pathogens. To 

enable reuse of a larger quantity of wastewater extensive investments are therefore needed to update the 

current WWTPs.   

Finally the rapid development within the sequencing field, with portable sequencing devices and user 

friendly open bioinformatics pipelines, will make sequencing more accessible for a wider group of users. The 

application of such methods to identify microbe reductions in WWTPs may enable development of better 

treatment procedures and thus, turning wastewater into a stable freshwater resource.  
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