

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Mar 29, 2019

Behavior-Driven Development in Product Configuration Systems

Shafiee, Sara; Hvam, Lars; Haug, Anders; Wautelet, Yves

Published in:
Proceedings of the 20th Configuration Workshop

Publication date:
2018

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Shafiee, S., Hvam, L., Haug, A., & Wautelet, Y. (2018). Behavior-Driven Development in Product Configuration
Systems. In A. Felfernig, J. Tiihonen, L. Hotz, & M. Stettinger (Eds.), Proceedings of the 20th Configuration
Workshop (Vol. 2220, pp. 49-52). CEUR-WS. CEUR Workshop Proceedings, Vol.. 2220

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/189888572?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orbit.dtu.dk/en/publications/behaviordriven-development-in-product-configuration-systems(c1aff57b-70df-4147-a680-207b82b90b4a).html

یاھو

Behavior-Driven Development in Product Configuration Systems
Sara Shafiee1 and Lars Hvam and Anders Haug and Yves Wautelet

Abstract.1 Product Configuration Systems (PCS) are increasingly
used by companies to automate the performance of the sales and
engineering processes. Since the benefits from such projects have
huge variations, it is crucial to make the right decisions when
scoping and developing PCSs. The development of PCS is
influenced by both business interests and technical insights.
Developers of PCS face various challenges while working in team,
including different stakeholders such as business owners,
developers, project managers, and product experts. The more
diverse the team is, the more significant are the challenges. This
paper suggests that Behavior-driven Development (BDD) may
provide configuration teams with a specific structure to express
scenarios (and thus constraints) on PCS in natural language. BDD
may yield benefits such as a better expression of PCS constraints,
more efficient communication of requirements and incorporation of
the expressed rules in a software transformation process. In other
words, applying BDD may eliminate unnecessary tasks when
gathering knowledge, developing, and testing PCS projects. In this
paper, we present a novel approach from an ongoing project on
how to relate BDD to the development process of PCS while using
Scrum-based methods.

1 INTRODUCTION
Product Configuration Systems (PCS) are expert systems that can
support and facilitate the sales and engineering processes [1] by
incorporating information about product features, product
structure, production processes, costs and prices [2]. Thereby,
configurators can support decision-making processes in the sales
and engineering phases of a product [3]. Configurators enable
companies to develop product alternatives to facilitate sales and
production processes [4]. However, the companies that have
managed to implement and utilize configurators also face various
challenges [1], [5].

Even though advantages of PCS are evident, there are still some
difficulties associated with high costs [2], [6] and considerable
chances of failure [2], [7] in their implementation projects. This is
because companies must overcome various challenges to
implement and utilize configurators. For example, the development
of a PCS often requires highly complex technical or commercial
knowledge, which domain experts often have a hard time
communicating to configuration experts [8]. Furthermore, the
knowledge base that contains this knowledge has to be adapted
continuously because of the changing components and
configuration constraints [9], [10]. The difficulty of acquiring and
modeling the required technical or commercial knowledge depends
on whether it is available in a clear and formal form [11] which in
turns may be contingent to company size [12], product complexity

1 Mechanical engineering department, Technical University of Denmark,
Denmark, email: sashaf@dtu.dk

[13], degree of customization [14], or other factors such as
knowledge management and scoping process [8]. The challenges to
manage technical and commercial knowledge when implementing
and maintaining a PCS may highly influence PCS costs and
development time, as well as its lasting effectiveness.

The complexity in the development of PCSs comes from that it
involves highly complex technical knowledge from domain
experts, [9], [10]. Hence, Scrum and agile methods attracted
attention in PCS development. The main reasons that can be
mentioned as their ease of use, the constant communication with
the stakeholders and the team and fast development time [10], [15],
[16]. In spite of the potential benefits of Scrum, many
organizations are reluctant to throw their conventional methods
away and jump into agile methods. This to some extent may be
attributed some of the issues experienced with the use of Scrum,
including significant reduction of documentation, insufficient
testing for mission/safety-critical projects, inadequate support for
highly stable projects, only successful with talented individuals
who favor large degrees of freedom, and inappropriate for large-
scale projects [17].

As the discussion above indicates, it is very challenging to
specify a PCS at analysis stage. In Scrum-based development this
is traditionally done using user stories [18]. The latter nevertheless
do present some drawbacks because their narrative alone is not
enough to express the constraints related to PCS. This is precisely
where BDD could offers complementary representation abilities
destined to address user stories limitations. Because of the use of
BDD next to user stories narrative, the PCS can be expressed
without any other requirements representation artifact (traditionally
the Product Variant Master is used for this [3]). Other positive
aspects of the use of BDD to further describe user stories are their
expression in (structured) natural language making them easy to
understand by non-technical stakeholders. They thus present
advantages for communication. Finally their dynamic and process
oriented nature can be used in a systematic transformation process
for the configurator design [19]. All of these elements bring
potential positive contributions with the use of BDD and needs to
be more formally studied. This paper presents a first attempt
towards such a research.

2 LITERATURE STUDY

2.1 Agile and Scrum
Scrum is an agile software development methodology. The

Agile Manifesto outlines the values and principles that should be
supported by the various agile processes applied in software
development. Agile principles emphasize customer satisfaction,
change and collaboration between domain experts and developers

یاھو

[20]. Rubin [21] highlighted that with an agile approach, the team
starts by creating a product backlog, which is a prioritized list of
the features and other capabilities that need to be developed.
Guided by the product backlog, team members address the most
important or highest priority items first; priority is based on various
factors, but delivered business value is most often the first priority.
Scrum is an agile approach for developing innovative products and
services [21].

Scrum facilitates cross-team coordination and collaboration
[22]. Vlietland et al. (2016) determined that Scrum improves
coordination through additional events, such as interteam sprint
planning meetings, interteam daily Scrums, interteam product
refinements and interteam sprint reviews. A Scrum development
life cycle normally consists of short iterations of two to four weeks,
an approach that enables swift feedback from software users and
related stakeholders regarding the developed solution [19], [23].

2.2 Behavior-driven Development
In the movement of agile development, Test-Driven Development
(TDD) has been around for a long time and can be traced back to
eXtreme Programming practices developed in the late 1990s [24].
In particular, TDD employs so-called acceptance tests as the
starting point for the development process to address some of the
challenges related to Scrum. Following [25], these TDD relies on
two simple principles:

· Don’t write any code until you’ve written a failing test that
demonstrates why you need this code.

· Refactor regularly to avoid duplication and keep the code
quality high.

Behavior Driven Development (BDD) has been proposed as a
result of the problems that arose with TDD when applying agile
software practices [26]. It should be noticed that the language used
for describing the tests, i.e. class names and operation names, plays
an important role both for writing test cases and for finding bugs in
case of a failed test. Inspired by [27], for this purpose BDD uses
natural language as a ubiquitous communication mean to describe
the acceptance tests by means of scenarios.

The cornerstone of TDD is the idea of writing a unit test before
writing the corresponding code. However, BDD is much more than
ensuring that every user story has a corresponding set of unit tests;
BDD is also about writing specifications, as opposed to tests. In
BDD, as an agile software development technique, acceptance tests
are written in natural language in order to ensure a common
understanding between all members of the project [28].
Consequently, as the first step, the sentences are mapped to actual
source code [28].

The shift from TDD to BDD is subtle but significant. Instead of
thinking in terms of verification of a unit of code, the focus is on
specifying how that code should behave, i.e., what it should do
[25]. In order to be sure that of building code that matters, there is
a need for specifications that describe what the code should do and
how to relate it directly to the business requirements.

Figure 1 shows an example of the BDD flow as it is employed
in a specific tool [26].

Figure 1. Behavior Driven Development flow

In BDD, as compared to TDD, the task is to write a specification of
system behavior that is precise enough for it to be executed as code
[29]. More specifically, the whole point of BDD is to ensure that
the real business objectives of stakeholders are met by the software
we deliver. If stakeholders are not involved, if discussions are not
taking place, BDD is not going to work. BDD yields benefits
across many important areas such as: (1) Building the right thing,
(2) Reducing the risks, (3) Evolving the design [29].

The first Phase in BDD is to understand the business goals and
defining features [25]. Vision statement templates make it possible
to have a well-defined set of business goals. For a good product
vision statement, Moore at al. [30] propose the following contents
of a template:

· For (Who will benefit from this product?)
· Who (What do they need?)
· The (What sort of thing are you proposing?)
· That (What makes it so cool?)
· Unlike (What are you competing against?)
· Our product (Why customer prefer your solution?)
Secondly, the features have to be illustrated in natural language

to execute the specifications. Consequently, the scenario has the
structure [25]:

· Given [context, initial conditions]
· When [event occurs]
· Then [outcome]

There are several studies investigating how to automate all these
scenarios such as Cucumber or Jbehave [25].

2.3 Requirement artifacts in traditional PCS
projects: the Product Variant Master

Generic product structures can be illustrated using the so-called
“product variant master” (PVM) notation, which in many cases has
functioned as a common language between different product,
process and IT experts [3]. Different definitions of the PVM
notation have been proposed, and among them the definition of the
PVM notation by Haug [11] is one of the most extensive and
formalized. A principal example of the PVM technique used to
model a toy car solution space is shown in Figure 2. On the left
side of a PVM model, part-of-structure is shown, and on the right
side, kind-of structure is shown. Classes (typically components and
assemblies) are represented by circles and may include attributes
and constraints (or rules).

	

Figure	2.	Product	variant	master	(ToyCar	example)	

یاھو

3 PROBLEM STATEMENT
Using Scrum for PCS development introduces both potential

benefits and challenges (as for general IT projects in Table 1). One
of the challenges is the level of knowledge complexity in PCS that
has to be communicated clearly to all Scrum team members in
terms of all attributes, constraints and acceptance criteria. An
additional challenge from Scrum concerns the lack of visualization
(modelling techniques [3]) for product structure. BDD supports
Scrum with vision statements [30] to be able to demonstrate the
product details and even user interface step by step. Another
related challenge is the testing of the PCS as assessing PCSs
implies to assess system features with respect to the many possible
data and system outputs that might occur when a user is interacting
with them. Testing PCSs is an arduous testing activity due to the
wide range of user tasks and the different combinations of testing
data. BDD, as an add-on of user stories, supports the testers with
the detailed defined acceptance criteria.

In short, these concerns bring us three main guidelines for using
Scrum methods in PCS projects:

· Formalize user requirements in such a way to provide
testability in an ever-changing environment;

· Guarantee consistency between user requirements and their
representation in multiple artefacts during development
phase; and

· Lay on a validation approach that could be reused to ensure
such a consistency for the artefacts along the project.

4 RESEARCH METHOD
The aim of this paper is to test the application of BDD in PCS
projects in real case projects and gather the data regarding the BDD
application. Firstly, we review the literature of BDD to gain deeper
understanding of its definition and steps. Secondly, we would
apply the findings from literature regarding BDD to the Scrum
management in PCS. The authors’ ultimate goal is to outline what
the contribution of BDD to PCS can be and discuss its importance
in promoting the collaboration and communication of knowledge
within the organization.

Based on the mentioned challenges in PCS projects, BDD can
be an effective solution to improve the definitions of different
features and testing the codes in PCS projects next to the user
stories. Hence, we posit the following three propositions:

Proposition 1: (expressiveness) BDD allows expressing all of
the necessary constraints required for documenting a
Configurator using Scenarios.
Proposition 2: (performance) BDD represents an effective
approach for communicating the product specifications when
implementing PCS as a replacement for PVM.
Proposition 3: (acceptance) BDD represents an effective and
practical approach (requirements artifacts comparison) for unit
testing of the implemented features in development and testing
phases of PCS projects.
We use a qualitative exploratory design based on multiple data

sources: requirements artifacts, workshops, interviews and
participant observation [31], [32]. The study is ongoing in one case
company using Scrum method for developing PCS for more than 4
years. Workshops are conducted to train the team for BDD to be
implemented as part of the Scrum. Finally, feedback meetings are
held as semi-structured interviews to collect knowledge about the

team’s satisfaction with BDD. Table 1 summarizes some of the
details of the case projects.

Table 1. Scrum practice and defined roles and activities in Cases 3 and 4

5 OUTLOOK
It is yet an open question, how much BDD can contribute in the
development phase of PCS projects. As PCS projects own their
specific challenges, there is a need for further studies to test BDD
influence specifically for PCS projects. The results from case
studies and interviews will serve to verify or falsify the mentioned
hypothesis when the study is accomplished. The structure of a user
story presented to the case projects is demonstrated bellow:

Figure 3. BDD structure of a user story presented for PCS projects in the
workshops (Car example from Figure 1)

Concerning the adoption next to user stories narrative as a
replacement for PVM and the vocabulary proposed in the ontology,
an advantage is that requirements and tests in user stories are kept
in a natural and high-level language. Based on Figure 3, the team
should be able to demonstrate the prototype for user interface. The

Projects Case 1 Case 2 Case 3
Time frame (months) 11 8 9
Number of iterations
during the project 10 9 9

Roles

· Product owner: the stakeholders’ manager
· Project manager
· Scrum master
· Development team, including: 1 application

manager, 1 project manager, 2 configuration
engineers, 2 developers, 1 tester

· End users

Activities

· Backlog grooming
· Sprint planning
· Sprint backlog
· Daily Scrum
· Sprint review

Artefacts (main
specifications)

· Product goals and product backlog item (story)
· Product backlog and stakeholders’ requirements

(list of user stories)
· Testing (acceptance criteria in user stories)

Planning approach

· Daily Scrum
· Sprint planning
· Sprint review
· Feedback meetings

Specific roles of
meeting participants

· Same as the project roles, plus:
· Product owner: 1
· Scrum master: 1
· Tester: 1

یاھو

evaluation criteria of using BDD approach in the team can be
considered as:
1. To support enterprise modeling within agile (user centric)

methods
2. To estimate different scenarios, architecture and integration
3. Correct evaluation of available attributes and constraints for the

product
4. To support the analysis of requirements communication
5. To analyze the compatibility with business modelling
6. To prototype the desired user interface

REFERENCES
[1] A. Felfernig, L. Hotz, C. Bagley, and J. Tiihonen, Knowledge-

Based Configuration From Research to Business Cases. Newnes:
Morgan Kaufman, 2014.

[2] C. Forza and F. Salvador, Product information management for
mass customization: connecting customer, front-office and back-
office for fast and efficient customization. New York: Palgrave
Macmillan, 2007.

[3] L. Hvam, N. H. Mortensen, and J. Riis, Product customization.
Berlin Heidelberg: Springer, 2008.

[4] A. Felfernig, S. Reiterer, F. Reinfrank, G. Ninaus, and M. Jeran,
“Conflict Detection and Diagnosis in Configuration,” in
Knowledge-Based Configuration: From Research to Business
Cases, A. Felfernig, L. Hotz, C. Bagley, and J. Tiihonen, Eds.
Morgan Kaufman, 2014, pp. 73–87.

[5] L. L. Zhang, “Product configuration: a review of the state-of-the-
art and future research,” International Journal of Production
Research, vol. 52, no. 21, pp. 6381–6398, Aug. 2014.

[6] A. Haug, L. Hvam, and N. H. Mortensen, “Definition and
evaluation of product configurator development strategies,”
Computers in Industry, vol. 63, no. 5, pp. 471–481, Jun. 2012.

[7] S. Shafiee, K. Kristjansdottir, and L. Hvam, “Business cases for
product configuration systems,” in 7th international conference
on mass customization and personalization in Central Europe,
2016.

[8] S. Shafiee, K. Kristjansdottir, L. Hvam, and C. Forza, “How to
scope configuration projects and manage the knowledge they
require,” Journal of Knowledge Management, vol. 22, no. 5, pp.
982–1014, 2018.

[9] A. Felfernig, G. E. Friedrich, and D. Jannach, “UML as domain
specific language for the construction of knowledge-based
configuration systems,” International Journal of Software
Engineering and Knowledge Engineering, vol. 10, no. 4, pp. 449–
469, 2000.

[10] S. Shafiee, L. Hvam, A. Haug, M. Dam, and K. Kristjansdottir,
“The documentation of product configuration systems: A
framework and an IT solution,” Advanced Engineering
Informatics, vol. 32, pp. 163–175, 2017.

[11] A. Haug, “The illusion of tacit knowledge as the great problem in
the development of product configurators,” Artificial Intelligence
for Engineering Design, Analysis and Manufacturing, vol. 26, no.
1, pp. 25–37, Dec. 2010.

[12] C. Forza and F. Salvador, “Product configuration and inter-firm
coordination: An innovative solution from a small manufacturing
enterprise,” Computers in Industry, vol. 49, no. 1, pp. 37–46, Sep.
2002.

[13] A. Myrodia, K. Kristjansdottir, S. Shafiee, and L. Hvam,
“Product configuration system and its impact on product’s life
cycle complexity,” in 2016 IEEE International Conference on
Industrial Engineering and Engineering Management (IEEM),
2016, pp. 670–674.

[14] E. Sandrin, “An empirical study of the external environmental
factors influencing the degree of product customization An

Empirical Study of the External Environmental Factors
Influencing the Degree of Product Customization,” no. December
2016, 2017.

[15] B. Selic, “Agile Documentation, Anyone?,” IEEE software, vol.
26, no. 6, 2009.

[16] S. Ambler, Agile modeling: effective practices for extreme
programming and the unified process. John Wiley & Sons, 2002.

[17] J. Cho, “A Hybrid Software Development Method for Large-
Scale Projects: Rational Unified Process with Scrum,” Issues in
Information Systems, vol. 10, no. 2, pp. 340–348, 2009.

[18] Y. Wautelet, S. Heng, M. Kolp, and I. Mirbel, “Unifying and
extending user story models,” in International Conference on
Advanced Information Systems Engineering, 2014, pp. 211–225.

[19] Y. Wautelet, S. Heng, S. Kiv, and M. Kolp, “User-story driven
development of multi-agent systems: A process fragment for
agile methods,” Computer Languages, Systems and Structures,
vol. 50, pp. 159–176, 2017.

[20] F. Paetsch, A. Eberlein, and F. Maurer, “Requirements
engineering and agile software development,” Proceedings.
Twelfth IEEE International Workshops on Enabling
Technologies: Infrastructure for Collaborative Enterprises,
2003., pp. 308–313, 2003.

[21] K. S. Rubin, Essential Scrum: A practical guide to the most
popular Agile process. Addison-Wesley, 2012.

[22] K. Vlaanderen, S. Jansen, S. Brinkkemper, and E. Jaspers, “The
agile requirements refinery: Applying SCRUM principles to
software product management,” Information and Software
Technology, vol. 53, no. 1, pp. 58–70, 2011.

[23] J. Vlietland, R. Van Solingen, and H. Van Vliet, “Aligning
codependent Scrum teams to enable fast business value delivery:
A governance framework and set of intervention actions,”
Journal of Systems and Software, vol. 113, pp. 418–429, 2016.

[24] K. Beck, Test-driven development: by example. Addison-Wesley
Professional, 2003.

[25] S. J. Ferguson, BDD in Action: Behavior-driven development for
the whole software lifecycle. Manning, 2015.

[26] D. North, “Behavior Modification: The evolution of behavior-
driven development,” Better Software, vol. 8, no. 3, 2006.

[27] E. Evans, Domain-Driven Design: Tackling Complexity in the
Heart of Software. Addison-Wesley Professional, 2003.

[28] M. Soeken, R. Wille, and R. Drechsler, “Assisted behavior driven
development using natural language processing,” in International
Conference on Modelling Techniques and Tools for Computer
Performance Evaluation, 2012.

[29] S. Nelson-Smith, Test-Driven Infrastructure with Chef: Bring
Behavior-Driven Development to Infrastructure as Code.
O’Reilly Media, Inc., 2013.

[30] G. A. Moore and R. McKenna, Crossing the Chasm: Marketing
and Selling High-Tech Products to Mainstream Customers.
HarperBusiness, 2014.

[31] A. H. Van de Ven, “Nothing is quite so practical as a good
theory,” Academy of Management Review, vol. 14, no. 4, pp.
486–489, 1989.

[32] D. M. McCutcheon and J. R. Meredith, “Conducting case study
research in operations management,” Journal of Operations
Management, vol. 11, no. 3, pp. 239–256, Sep. 1993.

