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ABSTRACT 
Tocopherols are non-polar compounds synthesized in the plastids, which function as major 

antioxidants of the plant cells and are essential in the human diet. Both the intermediates and final 

products of the tocopherol biosynthetic pathway must cross plastid membranes to reach their sites of 

action. So far, no protein with tocopherol binding activity has been reported in plants. Here, we 

demonstrated that the tomato SlTBP protein is targeted to chloroplasts and able to bind α-tocopherol. 

SlTBP-knockdown tomato plants exhibited reduced levels of tocopherol in both, leaves and fruits. 

Several tocopherol-deficiency phenotypes were apparent in the transgenic lines, such as alterations in 

photosynthetic parameters, dramatic distortion of thylakoid membranes and significant variations in 

the lipid profile. These results, along with the altered expression of genes related to photosynthesis, 

tetrapyrrole, lipid, isoprenoid, inositol/phosphoinositide and redox metabolisms suggest that SlTBP 

may act conducting tocopherol (or its biosynthetic intermediates) between the plastid compartments 

and/or at the interface between chloroplast-ER membranes, affecting inter-organellar lipid metabolism. 

 

KEYWORDS: lipid metabolism, organelle communication, Solanum lycopersicum, tocopherol 

metabolism, tomato. 
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INTRODUCTION 

 

Tocopherols are non-polar compounds synthesized in the plastids of photosynthetic organisms. They 

are important lipid soluble antioxidants that function as major photosynthetic activity protectants by 

scavenging singlet oxygen (1O2) and lessening the extent of lipid peroxidation (Miret and Munné-

Bosch, 2015). Together with tocotrienols, tocopherols constitute the vitamin E (VTE) group of 

compounds, which are distinguished by the degree of saturation of their prenyl moiety and the 

methylation pattern of their polar head. These compounds are synthesized de novo from a hydrophilic 

chromanol group and a prenyl side chain produced by the shikimate and methylerythritol phosphate 

(MEP) pathways, respectively (Miret and Munné-Bosch, 2015). For tocopherols, phytyl diphosphate 

(PDP) side chain prenylation by homogentisate phytyltransferase (VTE2) converts homogentisate 

(HGA) into 2-methyl-6-phytyl-1,4- benzoquinone (MPBQ). Tocopherol cyclase (VTE1) catalyzes 

chromanol ring synthesis leading to the formation of δ-tocopherol. Alternatively, MPBQ methylation, by 

MPBQ methyltransferase (VTE3), results in 2,3-dimethyl-6-phytyl-1,4-benzoquinone (DMPBQ), whose 

cyclization by VTE1 leads to the formation of γ-tocopherol. The addition of a methyl group to the sixth 

position of the chromanol ring, by γ-tocopherol methyltransferase (VTE4) converts δ-tocopherol and γ-

tocopherol into β-tocopherol and α-tocopherol, respectively. In addition to the pathway of the de novo 

synthesis, the PDP precursor may also originate from the recycling of the phytol moiety released from 

chlorophyll turnover or degradation, by the action of phytol kinase (VTE5) (Valentin, 2006) and phytyl 

phosphate kinase (VTE6) (vom Dorp et al., 2015). Tocotrienols are synthesized from the condensation 

of HGA with geranylgeranyl diphosphate (GGDP) by the action of a specific transferase (HGGT, 

homogentisate geranylgeranyltransferase). The resultant 2-methyl-6-geranylgeranyl benzoquinol 

(MGGBQ) is modified, in a similar manner to tocopherols, by VTE1, VTE3 and VTE4 to further 

produce α-, β-, δ- and γ-tocotrienols. 

Although most of the enzyme activities involved in the biosynthesis of tocochromanols have been 

localized at the inner membrane of the chloroplast envelope (Spicher and Kessler, 2015), the key step 

of cyclization is carried out by VTE1 in plastoglobules (PG) (Vidi et al., 2006). Moreover, HGA 

biosynthesis occurs in the cytosol (Wang et al., 2016). These facts implicates that biosynthetic 

intermediates must traffic between the inner membrane and the PG (Spicher and Kessler, 2015) and 

between the cytoplasm and plastids (Pellaud and Mène Saffrané, 2017). 

The study of tocopherol deficient plants has provided evidence concerning the exchange of chemically 

diverse metabolites between the plastid and extraplastidic environments. Arabidopsis thaliana vte2 

mutants showed altered composition of lipids, mostly of those generated via the endoplasmic 

reticulum (ER) pathway (Maeda et al., 2008). Similar changes in ER fatty acid profile were observed in 

tomato VTE5 deficient plants grown both under normal (Almeida et al., 2016) and high light and 

temperature conditions (Spicher et al., 2017). Genetic evidences suggest that these alterations in 

extra-plastidic lipid metabolism in VTE deficient plants are mediated by ER fatty acid desaturases 

(Maeda et al., 2008; Song et al., 2010). This means that plastid-synthetized tocopherol, and/or its 

related metabolites, should be accessible for the ER, directly or indirectly influencing ER-resident 

enzymes. Two different, yet non-mutually exclusive models have been proposed to explain 
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transorganellar communication: an intermembrane transporter-based model and a model based on 

membrane hemi-fusion between organellar membranes,(Mehrshahi et al., 2014). These models could 

also be applicable to the intraorganellar traffic of tocopherol biosynthetic intermediates between the 

inner membrane and PG described above. Although the membrane hemi-fusion model is supported by 

transorganellar complementation of vte1 Arabidopsis mutant plants (Mehrshahi et al., 2013), neither 

proteins with tocopherol-related compound binding activity, nor contact between the PG and envelope 

have been described in plants (Austin, 2006). This constitutes a current research gaps on 

intraplastidial and chloroplast-ER communication. 

Previous studies using a Solanum pennellii introgression line population identified a major quantitative 

trait loci (QTL) for tomato fruit tocopherol content on chromosome 9 (Almeida et al., 2011; Schauer et 

al., 2006). This QTL co-localised with a locus encoding a SEC14-like protein (Almeida et al., 2011). 

Some members of this protein family have shown to be involved in tocopherol transport in mammalian 

cells and in lipid traffic in yeasts and plants (Saito et al., 2007; Bankaitis et al., 2010). In this work, we 

show that this protein, hereafter named SlTBP (Solanum lycoperisicum tocopherol binding protein), is 

a homolog of the human α-tocopherol transfer protein (HsTTP) (Meier et al., 2003), which has 

intermembrane α-tocopherol transfer activity mediated by phosphatidylinositol phosphates (PIPs) 

(Kono et al., 2013). By functional characterization of SlTBP, we provide insights about this plastidial 

protein involved in intracellular traffic of α-tocopherol in plants. 

  

Page 7 of 37 Plant & Cell Physiology
D

ow
nloaded from

 https://academ
ic.oup.com

/pcp/advance-article-abstract/doi/10.1093/pcp/pcy191/5101312 by Biblioteca do C
onj. das Q

uím
icas-U

SP user on 18 Septem
ber 2018



7 
 

RESULTS 
 

SlTBP encodes a chloroplast targeted protein of the patellin family and is highly expressed in green 

tissues 

 

In order to evaluate the diversity of SEC14-like proteins in plants, the Phytozome v10.2 database was 

surveyed using SlTBP as bait (Solyc09g015080). This sequence was found to belong to the cluster id 

55282292, a gene family that comprises 286 members annotated as “Hypothetical Viridiplantae 

genes” associated to lipid transport and metabolism. Of these genes, 147 sequences encompassing 

24 Angiosperm species were selected to perform a phylogenetic analysis. Additionally, the functionally 

characterized SEC14 protein from Saccharomyces cerevisiae (Tanksley, 2004), ScSEC14, and the 

Homo sapiens proteins TOCOPHEROL TRANSFER PROTEIN, HsTTP (Nava et al., 2006), and 

SUPERNATANT PROTEIN FACTOR, HsSPF (Stocker and Baumann, 2003), were included in the 

analysis and used as queries for retrieving Mus musculus, Drosophila melanogaster, Homo sapiens 

and Bombyx mori homologs (Supplementary Table S1).  

The phylogenetic reconstruction revealed three clearly defined plant clades, which were named 

according to their Arabidopsis thaliana homologs (Peterman, 2004; Peterman et al., 2006). ScSEC14 

remained as an out group, while the Animalia sequences were divided into two clades, HsTTP-like 

and HsSPF-like, indicating an ancestral duplication within this kingdom. The clades containing 

AtPATL4-like and AtPATL6, with the later including SlTBP, split before the divergence of Eudicots and 

Monocots. Yet a duplication following the divergence of the basal order Ranunculales, which includes 

Aquilegia coerulea, increased diversity in Eudicots species originating two distinct clades, AtPATL1/2 

and AtPATL3/5 (Figure 1a). 

The proteins from the plant and the Hs-SPF-like clades exhibit three known and conserved domains in 

all sequences: (i) a CRAL-TRIO domain (IPR001251, CELLULAR RETINALDEHYDE BINDING 

PROTEIN and the TRIO guanine exchange factor), which binds small lipophilic molecules such as 

retinaldehyde and α-tocopherol (Panagabko et al., 2003), (ii) the CRAL-TRIO N-terminal (IPR011074), 

an alpha-helix rich region with unknown function found at the N-terminal region of CRAL-TRIO 

domains; and (iii) the GOLD domain (IPR009038, GOLGI DYNAMICS) that is predicted to mediate 

interaction with other proteins (Anantharaman and Aravind, 2002) (Figure 1a).  

In order to gain information concerning the subcellular localization of SEC14 proteins, the presence of 

putative plastidial signal peptides was in silico investigated. Of the 147 plant sequences, 22 were 

predicted to be plastid-targeted (Supplementary Table S1). Interestingly, 19 of them are members of 

the AtPATL6 SlTBP clade (Figure 1b), suggesting that this group is characterized by the presence of a 

chloroplast signal peptide. The prediction of SlTBP as a plastidial protein was confirmed by the 

transient expression of a GFP (green fluorescence protein) fusion protein in Nicotiana benthamiana 

leaves, where the confocal visualization of the fluorescence revealed that SlTBP is targeted to the 

chloroplasts (Figure 1c). Regarding the expression of SlTBP, the mRNA corresponding to this gene 

was detected both in leaves and fruits, however its expression levels were considerably higher in 

green tissues, being 250-fold more expressed in sink leaves than in ripe fruits (Figure 1d). 
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SlTBP binds to α-tocopherol 

 

Given that the SlTBP gene was identified to be associated to a tocopherol QTL (Schauer et al., 2005; 

Almeida et al., 2011) and due to its homology to HsTTP (Min et al., 2003), we next explored its α-

tocopherol binding activity. First, we compared the predicted amino acid sequence and the 3D 

structure of tomato and human polypeptides. Despite exhibiting a modest overall identity of 24.8%, 

structural alignment revealed that both proteins are highly similar including the α-tocopherol binding 

pocket (Min et al., 2003) (Supplementary Figure S1). Interestingly, out of the 13 residues that interact 

with the ligand, two are identical and seven are similar (Supplementary Figure S1b), supporting the 

hypothesis of conserved function. 

Based on this observation, the His-tagged tomato protein was expressed in Escherichia coli (BL21AI) 

and the production of a recombinant protein was confirmed by Western blot analysis with anti-His 

antibody (Figure 2a). SlTBP-α-tocopherol binding was tested by affinity chromatography using an α-

tocopherol-biotin conjugate immobilized on a streptavidin column. After loading, the column showed 

retention of SlTBP protein until eluted with α-tocopherol, as shown in Figure 2b, confirming its ability to 

bind α-tocopherol. It is worth mentioning that column loading and elution were performed with PBS-

buffer, which has no protein denaturating effect. The identity of the SlTBP eluted protein (46 KDa 

band) was verified by mass spectrometry sequencing (Supplementary Figure S2). 

Further to improve the chromatography and evaluated the binding specificity, SlTBP was purified and 

binding assays repeated with tocopherol and another isoprenoid-derived lipophilic compound, 

phylloquinone. Results showed that SlTBP binding activity is not limited to tocopherol, raising the 

hypothesis of this protein might be involved in broader lipid trafficking regulation (Figure 2c). 

 

SlTBP-knockdown plants are deficient in tocopherol and carotenoid accumulation 

 
Having demonstrated that SlTBP binds tocopherol, the role of this protein in tomato metabolism was 

evaluated by the characterization of SlTBP-knockdown plants. Four independent RNAi lines, exhibiting 

a reduced expression of over 50 % in both leaves and ripe fruits, were selected for further 

phenotyping, hereafter referred to as L15, L18, L19 and L24 (Supplementary Figure S3). Primary 

metabolism was slightly affected by the silencing of SlTBP (Figure 3 and Supplementary Table S2). 

Most of the changes were observed in source leaves; 18 metabolites showed a distinct pattern of 

accumulation in the leaves, while only seven were affected in ripe fruits. The metabolic classes more 

affected by SlTBP-knockdown were the organic acids in leaves, specifically tricarboxylic acid cycle 

intermediates and those involved in ascorbate metabolism. Additionally, SlTBP deficiency led to an 

increase in several amino acids in both analyzed organs. 

The total tocopherol content was significantly diminished in leaves and ripe fruits of the SlTBP-

knockdown lines, by approximately 30% and 20%, respectively. By contrast, chlorophylls were 

unaffected by SlTBP silencing, however, the major carotenoids, lycopene and β-carotene, also 

exhibited reduced contents in ripe fruits (Table 1). 

Page 9 of 37 Plant & Cell Physiology
D

ow
nloaded from

 https://academ
ic.oup.com

/pcp/advance-article-abstract/doi/10.1093/pcp/pcy191/5101312 by Biblioteca do C
onj. das Q

uím
icas-U

SP user on 18 Septem
ber 2018



9 
 

 
SlTBP plays a role in maintaining chloroplast structure integrity and affects lipid composition 

 

Given that the role of tocopherol in plant growth and development is related to the stabilization of 

photosynthetic membranes, gas exchange and chlorophyll fluorescence parameters were measured in 

source leaves from 8-week-old SlTBP-knockdown plants (Table 2). No differences were found in 

transpiration rate (E), stomatal conductance (gs) or CO2 assimilation rate (A). However, SlTBP 

deficiency resulted in reductions in electron transport rate (ETR), the proportion of open PSII centers 

(qP) and PSII operating efficiency (ΦPSII), while non-photochemical quenching (NPQ) and reduced 

quinone acceptor (1-pQ) were increased in comparison to the wild type genotype. Although there were 

neither penalties on biomass accumulation nor on fruit number or weight (Supplementary Table S3), 

the above-mentioned results implied that SlTBP deficiency alters the energy usage of excited 

chlorophyll. Thus, as a parameter of oxidative stress, lipid peroxidation was estimated. 

Malondialdehyde (MDA) equivalent was more than doubled in the leaves of transgenic plants 

compared to the control genotype (Figure 4a). However, no changes in lipid peroxidation were 

detected in fruits (Supplementary Figure S4). Regarding the plastidial ultrastructure, SlTBP-

knockdown led to a dramatic thylakoid grana disruption of the leaf chloroplasts (Figure 4b) and the 

development of smaller plastids with more and larger PG (Figure 4c). 

Having demonstrated that SlTBP silencing affected the tocopherol levels and, consequently, impacted 

on photosynthetic function, lipid peroxidation and plastidial membrane ultrastructure, we next 

evaluated how tocopherol deficiency affects lipid metabolism. For this purpose, the lipid profile of 

SlTBP-knockdown lines was analyzed (Supplementary Table S4). In source leaves, increased levels 

of total neutral lipids (NL) were observed (Figure 4d), as a consequence of the increases in fatty acid 

phytyl esters (FAPE), triacylglycerols (TAG), free fatty acids (FFA) and diacylglycerols (DAG) 

(Supplementary Table S4). Interesting to note is that all the identified acyl chains (i.e. C16:0, C18:0, 

C18:1, C18:2 and C18:3) of the neutral lipids increased in the transgenic lines. Regarding fatty acid 

saturation level, higher linoleic acid (C18:2) total content (4.3 vs 6.1 µg mg DW-1 comparing the mean 

of control and transgenic lines, respectively) and a decreased C18:3/C18:2 ratio (2.0 vs 1.5 comparing 

the mean of control and transgenic lines, respectively) were observed in the leaves from SlTBP-

knockdown lines. Except for the reduction in monogalactosyldiacyl glycerols (MGDG) (composed 

mainly by C18:2 and C18:3), lipid profiles from ripe fruits were almost indistinguishably between 

transgenic and control plants, not even alterations in fatty acid saturation levels were detected (Figure 

4d). 

 

Expression profiles of SlTBP-knockdown plants are in accordance with their phenotypic alterations 

 
The effect of SlTBP deficiency was also assessed at the level of global gene expression. In source 

leaves and ripe fruits 11,474 and 11,630 genes displayed detectable expression, respectively. SlTBP 

deficiency resulted in up-regulation of 261 and 419 genes and down-regulation of 139 and 429 genes, 

respectively, in these organs (Supplementary Table S5 and Supplementary Figure S5); only 3 and 7% 
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of the total transcripts analysed. Subsequently, the altered expression of ~70% (50/72) of tested 

genes was validated by means of qPCR assay (Supplementary Table S5 and Supplementary Table 

S6). 

The classification of the genes exhibiting altered patterns of expression revealed that miscellaneous, 

RNA and protein metabolism, as well as signalling were the functional categories most affected by 

SlTBP deficiency (Supplementary Figure S6). However, considering the metabolic perturbation 

induced by SlTBP-knockdown, the genes associated with photosynthesis (functional category 1 PS), 

tetrapyrrole metabolism (functional category 19.99 tetrapyrrole synthesis), lipid metabolism (functional 

category 11 lipid metabolism), isoprenoid metabolism (functional category 16.1 secondary 

metabolism.isoprenoids), inositol/phosphoinositides metabolism (functional categories 30.4 

signalling.phosphoinositides, 3.4 minor CHO metabolism.myo-inositol and 34.2 tranporter.sugars-

inositol) and redox homeostasis (functional category 21 redox) categories were manually curated and 

the subcellular localization of their products predicted. Figure 5 summarizes these results and shows 

all genes presenting altered expression in leaves (Figure 5a) and ripe fruits (Figure 5b) from the 

transgenic lines numbered according to Supplementary Table S5. 

In source leaves, genes belonging to the photosynthesis-related categories (1 PS, 19 tetrapyrrole 

synthesis and 16.1 secondary metabolism.isoprenoids) were mostly up-regulated in the transgenic 

lines. These leaves also showed alterations in the expression of redox balance-related genes, such as 

a GLUTAREDOXIN (15), PEROXIDASES (14) and a PHOSPHOGLUCONOLACTONASE (13). Lipid 

metabolism-related genes showing altered expression in the leaves of the transgenic belong to both 

prokaryotic (plastidial) and eukaryotic (ER) lipid pathways and encode a wide range of biochemical 

functions (6, 9, 5, 8 and 7). Finally, considering that the HsTTP transports tocopherol in a PIP-

mediated manner (Kono et al., 2013), the expression of the inositol/phosphoinositides-related genes 

was carefully inspected showing altered pattern of expression for five distinct loci.  

A high number of genes from the selected categories showed altered expression profiles in ripe fruits 

from the transgenic lines. Regarding isoprenoids category, three genes directly involved in carotenoid 

biosynthetic pathway (61, 64 and 65) and two carotenoid catabolism-associated paralogs (66) showed 

altered levels of their mRNA. Moreover, four other genes (62, 63, 67 and 68) involved in metabolism of 

terpenoids (other than carotenoids) showed changes in their mRNA levels in the transgenics. 

Intriguingly, several genes associated to 13 different protein functions belonging to photosynthesis 

category (1 PS) exhibited altered expression. Additionally, a diverse set of genes (53, 56, 57, 58, 14, 

52, 54 and 55) involved in redox regulation associated functions showed changes in their transcript 

profile; being found in different cellular compartments, such as chloroplasts, plasma membrane, ER 

and cytosol. The functional category exhibiting the highest number of altered genes in ripe fruits from 

SlTBP-knockdown plants was lipid metabolism, including genes involved in biosynthesis (e.g. acyl 

carriers -41 and 42- and acyl transferases -35-) and catabolism (e.g. LIPASE -6-, LIPOXYGENASE -

39-), which were mostly up-regulated. These genes also belong to both prokaryotic (plastidial) and 

eukaryotic (ER) lipid pathways. Similarly, as described for leaves, inositol/phosphoinositides-related 

genes were also altered in the fruits of the transgenic lines. 
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DISCUSSION 
 

In 2011, Almeida et. al., identified three candidate genes within a major QTL mapped on chromosome 

9 for total tocopherol content in tomato fruits. These genes were functionally characterized and 

demonstrated to affect this trait through different regulatory mechanisms: SlVTE3 participates in de 

novo α-tocopherol biosynthesis (Quadrana et al., 2014); SlVTE5 regulates the availability of prenyl 

precursor by chlorophyll-derived phytol recycling (Almeida et al., 2016) and; in this work, we present 

evidences concerning the functionality of SlTBP, which encodes a protein with a novel function in 

plants that affects the accumulation of VTE through its α-tocopherol binding activity. 

Phylogenetic analysis presented here supports that SlTBP is a member of the SEC14 protein family, 

which is distributed from yeast to humans and participates in PIP-mediated lipid transport (Bankaitis et 

al., 2010). SlTBP belongs to the plant PATELLIN gene family, whose members have been poorly 

characterized to date. The A. thaliana PATELLIN 1 and 2 (AtPATL1/2) bind phosphoinositides and 

participate in vesicle trafficking events (Peterman et al., 2004) and membrane regeneration (Suzuki et 

al., 2016), respectively. Given that most of the proteins of the SlTBP-containing clade are 

characterized by the presence of predicted chloroplast target peptides, it is more parsimonious to 

assume that this is an ancestral feature that was independently lost during evolution in a few members 

of this clade, such as the case of the A. thaliana ortholog (AtPATL6). Importantly, the chloroplast 

subcellular localization of the tomato protein was experimentally confirmed here. 

A close inspection to the predicted structure of SlTBP revealed a high conservation with the CRAL-

TRIO N-terminal and CRAL-TRIO domains of the human homolog HsTTP (Meier et al., 2003), even 

with respect to the amino acid residues which interact with α-tocopherol (Min et al., 2003). This 

observation led us to investigate whether SlTBP has tocopherol binding activity, which was confirmed 

by means of affinity chromatography assay with the tomato recombinant protein. However, the ability 

of phylloquinone to also eluate SlTBP from the tocopherol-biotin conjugate, exposed a broader 

spectrum of ligands for this protein that could be expanded to isoprenoid-derived lipophilic compound. 

Having demonstrated that SlTBP is able to bind α-tocopherol, we further investigated the involvement 

of this protein in tomato plant metabolism. Analyses of RNAi-mediated SlTBP-knockdown lines 

revealed significant reductions in the total tocopherol contents (α- and γ- forms), both in source leaves 

and ripe fruits. This result demonstrates that SlTBP participates in the regulation of tocopherol 

metabolism in vivo. However, the impact of tocopherol deficiency on metabolite and transcript profiles 

in these organs was clearly different (discussed below) revealing a metabolic organ-specific 

adjustment, as we have previously reported for SlVTE5-silenced tomato plants (Almeida et al., 2016). 

In general terms, the metabolic effect of SlTBP manipulation was more pronounced in leaves than in 

mature fruits; however, a higher number of genes with altered expression levels were detected in 

mature fruits. This is in line with the major role of transcriptional regulation over the fruit ripening 

process (Giovanonni et al., 2017). 

 

The role of tocopherols in protecting PSII against oxygen singlets (Krieger-Liszkay and Trebst, 2006) 

and in limiting lipid peroxidation (Miret and Munné-Bosch, 2015) is well documented. Consistent with 
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these observations, the reductions in tocopherol observed in leaves from SlTBP-knockdown plants 

coincided with significant alterations in the chlorophyll fluorescence parameters, lipid peroxidation and 

thylakoid membrane stacking. The changes observed in the expression of photosynthesis-related 

genes are in clear agreement with the observed impairments in photosynthetic light reactions, implying 

that the transgenic plants cannot cope with the excited chlorophyll. This hypothesis is supported by 

the up-regulation of the MENAQUINONE METHYLTRANSFERASE encoding gene (21 in Figure 5). 

This gene product participates in the biosynthesis of phylloquinone, which is a PSI-associated electron 

acceptor. Within this context it is important to note that phylloquinone and tocopherols are produced 

into the plastoglobuli and share biosynthetic precursors (Spicher and Kessler, 2015). 

Beside the aforementioned phenotypes, the leaves of the transgenic plants exhibited increased levels 

of neutral lipids (i.e. FAPE, TAG, FFA and DAG), which could explain the increase in plastoglobuli 

number and size, where these compounds are stored (Nacir and Bréhélin, 2013). In line with these 

structural and biochemical changes are the alterations in the mRNA levels of a LIPASE (6) and a 

PHOSPHOLIPASE (7) encoding genes, enzymes involved in TAG and DAG neutral lipid metabolism 

(Padham et al., 2007; Yang et al., 2017). Furthermore, the impairment of tocopherol 

biosynthesis/accumulation may result in increases in free phytol – a long chain alcohol molecule - 

which exerts detergent-like effects resulting detrimental to membrane function (Sikkema et al., 1995; 

Löbbecke and Cevc, 1995). By contrast, FAPE, which lack detergent-like structure, also increased in 

the leaves of transgenic plants, however, these are not considered toxic and in addition they are 

sequestered in plastoglobules (Lippold et al., 2012). 

In accordance with the photoinhibition phenotype displayed by the transgenic plants, cellular redox 

homeostasis-related genes and metabolites were significantly altered. The most obvious are the cases 

of dehydroascorbate, GLUTAREDOXIN (15) and PEROXIDASES (14) (Foyer and Shigeoka, 2011). 

An interesting example is the change in the transcript level of the PHOSPHOGLUCONOLACTONASE 

(13) gene and its corresponding product, gluconate. This enzyme of the oxidative pentose-phosphate 

pathway is sensitive to the redox cellular homeostasis (Hölscher et al., 2014). 

In ripe fruits of SlTBP-knockdown lines reductions in lycopene and β-carotene contents were 

observed. Two CAROTENOID CLEAVAGE DIOXYGENASES (CCDs) encoding genes, SlCCD1 and 

SlCCD4 (66), were up- and down-regulated respectively in the fruits of these plants. Plant CCDs are 

divided in four groups CCD1, CCD4, CCD7 and CCD8 that exhibit substrate promiscuity (Auldridge et 

al., 2006). CCD4 activity was reported to have a negative effect on β-carotene contents in A. thaliana 

seeds (Gonzalez-Jorge et al., 2013); while SlCCD1 cleaves β-carotene and lycopene (Simkin et al., 

2004). Thus, the altered expression of SlCCDs might, at least partially, explain the reduced levels of 

carotenoids observed in ripe fruits from transgenic plants. The up-regulation of LYCOPENE  β-

CYCLASE (65) and PHYTOENE SYNTHASE (64) and the down-regulation of the LYCOPENE  ε-

CYCLASE (61) encoding genes might represent a compensatory mechanism to ameliorate the 

reduction observed in pigment content. Additionally, the induction of FARNESYL DIPHOSPHATE 

KINASE (63) and  β-OCIMENE SYNTHASE (62) divert the primary isopentenyl diphosphate precursor 

from carotenoid biosynthesis towards the production of other terpenoids, such as sitosterol and β-

ocimene, respectively (Keim et al., 2012; Dudareva et al., 2003) . This shift in carotenogenesis 
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observed in the ripe fruits of the SlTBP-knockdown plants is suggestive of ripening delay, which 

means retardation in the photosynthetic machinery dismantling, explaining the altered expression of a 

high number of photosynthetic-associated genes. It is widely known that carotenoids and tocopherols 

are major components of the antioxidant machinery in response to photooxidative deleterious effect. In 

green tissues, a boost in the xanthophyll cycle is a compensatory mechanism to palliate tocopherol 

deficiency (Havaux et al., 2005; Havaux et al., 2007). However, even when ripening has been 

described as an oxidative phenomenon (Andrews et al., 2004), such compensatory mechanism(s) is 

unknown in fruits. Our transcript profiling data showed that tocopherol and carotenoid deficiency lead 

to a considerable alteration in the expression of redox-associated genes as a response to maintain 

oxidation-reduction balance. 

It has been shown that tocopherol deficiency affects extraplastidial fatty acid metabolism (Maeda et 

al., 2008; Almeida et al., 2016). The transcriptional profile of SlTBP-silenced plants demonstrated that 

alterations in lipid metabolism occurred in those genes involved in both prokaryotic and eukaryotic 

pathways. Knowing that the fatty acids that support galactolipid synthesis for plastidial membranes are 

desaturated in the ER (Li-Beisson et al., 2010), the reduced levels of MGDG and the altered 

expression of the MONOGALACTOSYLDIACYLGLYCEROL SYNTHASE encoding gene (43) 

observed in ripe fruits likely reflect that plastid-ER interorganellar communication is altered in SlTBP-

deficient plants. 

Moreover, not only in fruits but also in leaves, the shift in the expression of PHOSPHOINOSITIDE 

KINASES (18) and PHOSPHATASES (16 and 60) encoding genes suggests that PIPs metabolism is 

altered in transgenic plants (Stevenson et al., 2000). Reinforcing this, higher contents of inositol were 

detected in ripe fruits of SlTBP-knockdown lines. It is worth mentioning that several SEC14-like 

proteins have been reported to bind PIPs (KF de Campos and Schaaf, 2017; Miller et al., 2015; 

Schaaf et al., 2008). In particular, HsTTP promotes the intermembrane release of α-tocopherol in a 

PIP-dependent manner, and the three arginine residues (R59W, R192H and R221W) essential for PIP 

binding activity (Kono et al., 2013) are conserved in SlTBP. The sequence conservation suggests that 

SlTBP could have a similar reaction mechanism as that described for the human homolog. 

 

Evidences presented here concerning the functionality of SlTBP can be summarized as follows: (i) 

SlTBP is structurally similar to HsTTP, targeted to chloroplasts and binds tocopherol, (ii) SlTBP 

silencing results in a tocopherol deficiency phenotype both in leaves and in fruits, (iii) the knockdown 

plants display alterations in chloroplast ultrastructure and chlorophyll fluorescence parameters 

compatible with dysfunctional light reactions, (iv) SlTBP deficiency results in changes in lipid 

metabolism in both leaves and fruits and, (v) all these changes are accompanied by variations in PIP-

related gene expression. Taking all these results together, two possible scenarios for the action of 

SlTBP can be proposed. First, SlTBP could be involved in tocopherol/PIP-mediated chloroplast-ER 

communication and under SlTBP deficiency, lipid metabolism is affected impacting on chloroplast 

ultrastructure, which in turn compromises tocopherol biosynthesis. The resulting reduction in 

antioxidant capacity impacts on the functionality of the photosynthetic light reaction machinery. The 

second possible model implies SlTBP mediates the transport of α-tocopherol (and/or its biosynthetic 
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intermediates/or related lipophilic molecules) between the inner envelope membrane and PG/thylakoid 

membranes. Thereafter, in the face of SlTBP reduction, tocopherol accumulation is compromised, PG 

function is altered leading to an impairment of the plastidial electron transport chain and extra-

plastidial lipid metabolism is affected. The disturbed plastid ultrastructure could either be the 

consequence of the alteration in oxidative stress and/or the shift in lipid metabolism. 

 

The collection of evidence as a whole, rather than any single individual data, allow to propose that 

SlTBP plays a novel function in plants mediating the role of tocopherol in inter/intraorganellar 

communication. This not only brings new insights on the intracellular traffic of nonpolar compounds, 

but also adds another dimension on the regulation of tocopherol metabolism which should be 

considered for crop nutritional improvement strategies. 
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EXPERIMENTAL PROCEDURES 
 

Phylogenetic analysis 

 

The protein sequence of all members of the SEC14 gene family in plants was obtained from the 

Phytozome v10.2 gene family dataset using the sequence of SlTBP as query. Sequences with less 

than half of the length mode (i.e. 213 amino acids) were removed from the analysis. Sequences of 

Mus musculus, Drosophila melanogaster, Homo sapiens and Bombyx mori were obtained from a 

BLASTp against the NCBI (https://www.ncbi.nlm.nih.gov) protein database using the functionally 

characterized ScSEC14, HsTTP and HsSPF as queries. Only BLAST hits with score of at least 100 

were included in the analysis. Sequences were aligned by the ClustalW program in MEGA 6.0.5 

software (Tamura et al., 2013), which was also used for the determination of the best substitution 

model for phylogenetic analysis. This reconstruction was made using the Maximum Likelihood 

principle with PhyML 3.0 software (Guindon et al., 2010) within the Phylogeny.fr server 

(http://phylogeny.lirmm.fr/phylo_cgi/index.cgi (Dereeper et al., 2008)), the statistical test for branch 

support was a parametric χ2 based test with the substitution model pointed out by the former analysis. 

The obtained tree was visualized and edited in MEGA 6.0.5 software. 

For sequence annotation, domains were predicted by InterProScan 5 (Jones et al., 2014) and 

ScanProsite (de Castro et al., 2006), presence of a chloroplast signal peptide was evaluated using 

ChloroP (Emanuelsson et al., 1999). The protein representation was created with Prosite MyDomains 

– Image Creator (http://prosite.expasy.org/mydomains/). 

 

Expression of SlTBP in Escherichia coli 

 
The full-length coding region of SlTBP was amplified with the primers indicated in Supplementary 

Table S9 and cloned into the pDEST17 destination vector according to the manufacturer’s instructions 

(Gateway® Technology, Invitrogen, Carlsbad, CA, USA) using LR clonase (Invitrogen). The 

pDEST17-SlTBP expression clone was transferred to E. coli strain BL21AI by the heat shock method 

as described by the supplier (Invitrogen, Carlsbad, CA, USA) and the recombinant expression vectors 

were confirmed by PCR and digestion. Protein expression were performed as described by the 

supplier. Briefly, a clone was grown overnight in LB medium containing 100 mg/ml ampicillin at 37 ˚C 

and shaken at 180 rpm. Subsequently, cultures were diluted 1:20 in fresh LB that contained 100 

mg/ml ampicillin and cultivated at 37 ˚C until the OD600 of the media reached 0.4. Recombinant 

fusion protein expression was then induced by the addition of 0.2% L-arabinose and cells were grown 

for 4 hours. Induced cultures were centrifuged at full speed after which the supernatant was aspirated 

and conserved as soluble fraction and frozen at -80 ˚C for subsequent Western blot or binding assays. 

The recombinant protein was confirmed by Western blot with anti-His antibody (GE Healthcare # 27-

4710-01). As negative control an untransformed E. coli (BL21AI) clone was used. For the SlTBP 

purification, expression was performed via autoinduction in ZYM 5052 medium (1 L Medium in a 2.5L 

Flask) supplemented with 50µg/ml kanamycin. The medium was inoculated with 20mL overnight 
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culture (BL21 DE3, pET-28a Vector), incubated 4 h at 37 °C and 280 RPM, and then cooled down to 

22 °C overnight. The expression was stopped approximately 18 h after inoculation (no significant 

change for OD600 detectable) and the cells were harvested at 6500 RPM for 30 min at 4°C. Pellets 

were collected and stored at -18°C until lysis and purification. 

 

SlTBP purification 

 

About 40g of the frozen pellet was resuspended in 400 mL lysis buffer (2xPBS, 20mM Imidazole, pH 

7.5) via stirring at 4°C overnight. Resuspended cells were lysed by physical disruption with the 

following method: a scoop tip of DNase to the cell suspension was added, applied about 1600 bar and 

let the suspension flow into ambient pressure. In doing so, the rapid pressure release, led to cell lysis. 

This was repeated twice with the cell suspension and then 2 % (w/v) Triton X-100 was added. Lysed 

cell suspension was stirred for 1 h at 4 °C and then centrifuged at 9000 g for 30 min at 4 °C. The 

supernatant was collected and applied on a His60 Ni Superflow resin. After all suspension volume 

went through, the column was washed with wash buffer (2x PBS, 40 mM Imidazole, pH 7.5) until the 

Absorption at 280 nm stayed stable, which indicates that everything unspecific is washed from the 

column. In the last step, the protein was eluted from the Ni column with elution buffer (2x PBS, 300 

mM Imidazole, pH 7.5), supplemented with 20 u Thrombin (digestion of the His-tag), and dialysed in 4 

L 1x PBS (pH 7.5) overnight at 4 °C to get rid of the Imidazole and provide optimal reaction conditions 

for the thrombin cleavage. 

 

Synthesis of biotinylated tocopherol 

 

To synthesize (R)-2,5,7,8-tetramethyl-2-((4R,8R)-4,8,12-trimethyltridecyl)chroman-6-yl 5-

((3aS,4S,6aR)-2-oxohexahydro-1H-thieno[3,4-d]imidazol-4-yl)pentanoate, 1.5 mL anhydrous DMF and 

1.0 mL anhydrous dichloromethane were added to a solution of biotin (55.8 mg, 228 µmol) under inert 

atmosphere. Triethylamine (45 µL, 325 µmol) was added and the solution was cooled to 0 ˚C under 

stirring. Isobutyl chloroformate (45 µL, 344 µmol) was added dropwise and the mixture was stirred for 

45 min at 0 ˚C. (+) α-tocopherol (21.4 mg, 49.7 µmol) and 4-(dimethylamino)-pyridine (2.0 mg, 16.4 

µmol) were dissolved in 1.4 mL anhydrous dichloromethane and added to the solution. The resulting 

mixture was stirred at 21 ˚C for 2 days. The solution was partially concentrated in vacuum, then diluted 

with ethyl acetate (50 mL) and washed with water. The aqueous layer was then extracted with ethyl 

acetate (3 x 50 mL). The organic phase was dried over sodium sulfate, filtered, and concentrated in 

vacuum. The residue was purified by flash chromatography (heptane/AcOEt, 7,3 v/v) to afford the 

tocopherol-biotin conjugate as a colorless solid (7.7 mg, 11.7 µmol, 24%). The resulting conjugate was 

confirmed by MS and NMR (Supplementary Figure S7). 

 

Affinity chromatography 
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Protein extract and α-tocopherol: 1 mL column volume (CV) of HiTrap™ Streptavidin HP column (GE 

Healthcare Bioscience AB) was flushed with 1× PBS buffer (10 CV, 1 mL/min). The tocopherol-biotin 

conjugate (31 mg, 47.1 µmol) was dissolved in 22 CV DMF/PBS buffer (1/10) and applied on the 

column (10 CV, 0.1 mL/min). Subsequently, the column was washed with PBS buffer (6 CV), which 

has no protein denaturating effects. Total protein extract of the BL21AI bacteria overexpressing SlTBP 

(0.75 mL, ~0.75 mg) was applied on the column and the breakthrough collected. The column was 

incubated for 10 min at 21˚C and then washed three times with 3 CV 1× PBS buffer (collected as 

washing step 1-3). The protein was eluted with 2 CV α-tocopherol (21 mg in 10 mL PBS, 4.9 mM), 

followed by a washing step (3 CV, collected as washing step 4). The fractions were analysed by SDS-

Page (7.5%, Bio-Rad precast gel). 15 µL of each fraction were treated with 5 µL loading buffer (4×) 

and 1 µL DDT (100 mM), heated for 5 min at 95 ˚C and 10 µL was loaded on the gel. SDS-Page was 

stained with Coomassie blue. The identity of the eluted protein was confirmed by MALDI Mass 

Spectrometry peptide mapping and sequencing (MALDI-MS/MS) according to AlphalyseTM 

(www.alphalyse.com). 

Purified SlTBP and α-tocopherol: 1 mL column volume (CV) of HiTrap™ Streptavidin HP column (GE 

Healthcare Bioscience AB) was flushed with 1× PBS buffer (10 CV, 1 mL/min). The tocopherol-biotin 

conjugate (31 mg, 47.1 µmol) was dissolved 500 µL DMF and applied on the column. Subsequently, 

the column was washed with PBS buffer (6 CV). Purified SlTBP (1 mL, 200 µg/mL) was applied in the 

column and the breakthrough collected. The column was incubated for 30 min at 21˚C and then 

washed five times with 5 CV 1× PBS buffer (collected as washing step 1-5). The column was then 

eluted with 1 mL blank (PBS with 1% Tween20). Subsequently, the protein was eluted with 2 CV α-

tocopherol (21 mg in 10 mL PBS with 1% Tween20, 4.9 mM), collected as tocopherol elution, followed 

by a washing step (3 CV, collected as washing step 6). The fractions were analysed by SDS-Page 

(7.5%, Bio-Rad stain-free precast gel). 15 µL of each fraction was treated with 5 µL loading buffer (4×) 

and 1 µL DDT (100 mM), heated for 5 min at 80 ˚C and 10 µL was loaded on the gel. SDS-Page was 

visualized with Gel Doc™ EZ System.  

Purified SlTBP and phylloquinone: 1 mL column volume (CV) of HiTrap™ Streptavidin HP column (GE 

Healthcare Bioscience AB) was flushed with 1× PBS buffer (10 CV, 1 mL/min). The tocopherol-biotin 

conjugate (31 mg, 47.1 µmol) was dissolved 500 µL DMF and applied on the column. Subsequently, 

the column was washed with PBS buffer (6 CV).  

Purified Sec14 (1 mL, 200 µg/mL) was applied on the column and the breakthrough collected. The 

column was incubated for 30 min at 21˚C and then washed five times with 5 CV 1× PBS buffer 

(collected as washing step 1-5). The column was then eluted with 1 mL blank (PBS with 1% Tween20 

and 1% DMF). Subsequently, the protein was eluted with 2 CV phylloquinone (22 mg in 10 mL PBS 

with 1% Tween20 and 1% DMF, 4.9 mM), collected as phylloquinone elutions 1 and 2, followed by a 

washing step (2 CV, collected as washing step 6). Then the remaining protein was eluted with α-

tocopherol (21 mg in 10 mL PBS with 1% Tween20, 4.9 mM), collected as tocopherol elution. The 

fractions were analysed by SDS-Page (7.5%, Bio-Rad stain-free precast gel). 15 µL of each fraction 

was treated with 5 µL loading buffer (4×) and 1 µL DDT (100 mM), heated for 5 min at 80 ˚C and 10 µL 

was loaded on the gel. SDS-Page was visualized with Gel Doc™ EZ System.  
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Plant material 

 

Tomato, Solanum lycopersicum L. (cv Moneymaker), and Nicotiana benthamiana seeds were 

obtained from Meyer Beck (Berlin). S. lycopersicum (inbred variety M82, Acc LA3475) used for SlTBP 

expression analysis was kindly provided by CM Rick, Tomato Genetics Resource Center (TGRC). 

Plants were grown under greenhouse conditions: 16/8 h photoperiod, 24 ± 3°C, 60% humidity and 140 

± 40 µmol m–2 s–1 incident photo-irradiance in 20 and 1 L pots for tomato and N. benthamiana, 

respectively.  

Because the T0 regenerated plants produced unviable seeds (Supplementary Table S7), transgenic 

plants, and the corresponding controls, were phenotypically characterized in the first-cutting 

propagation obtained from T0 plants. The tocopherol deficiency phenotype was confirmed in 

subsequent cutting experiments (Supplementary Table S8). All assays were performed with 4-8 

biological replicates per genotype. Tomato source and sink leaves were sampled from the second and 

third leaflets of the third totally expanded leaf and of 50 % expanded leaves of 4-week-old plants, 

respectively. Ripe fruits were collected at 52 days after anthesis. Samples were immediately frozen 

into liquid N2, and stored at -80 ºC until further processing. 

Six-month-old plants were harvested and fresh aerial biomass was measured for harvest index 

determination according to the following formula: harvest index = (fruit fresh mass x 100) / total aerial 

biomass. 

 

Quantitative PCR (qPCR) 

 

RNA extraction, cDNA synthesis and qPCR assays were performed as previously described (Almeida 

et al., 2016). Primer sequences are listed in Supplementary Table S9. Expression values were 

normalized against the geometric mean of two reference genes, CAC and EXPRESSED for fruits and 

ELONGATION FACTOR 1- α (EF1-α) for leaves (Quadrana et al., 2013). A permutation test lacking 

sample distribution assumptions (Pfaffl et al., 2002) was applied to detect statistical differences (P < 

0.05) in expression ratios using the algorithms in the fgStatistics software package 

(http://sites.google.com/site/fgStatistics/.) 

 

Cloning procedures 

 

For SlTBP subcellular localization experiments, a fragment of 1,272 spanning the 424 amino acids of 

the protein was amplified and cloned into pK7FWG2 binary vector (Karimi et al., 2002) using the 

primers indicated in Supplementary Table S9, resulting in a C-terminal GFP fusion protein (pK7FWG2-

SlTBP) (de Godoy et al., 2013). For RNAi silencing, a 224 bp fragment of SlTBP gene was used to 

generate a hairpin construct. To avoid off-target effects the construct was designed to have minimal 

complementarity with other genes and then, the sense/antisense fragment was used as query for a 

BLAST search against the Sol Genomics Network database. Six genes matched, only one with more 
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than 20 nucleotides and none with, at least, 20 consecutive nucleotides. Thus, it is unlikely off-target 

effects. The fragment was amplified with the primers listed in Supplementary Table S9 and cloned into 

pK7GWIWG2(I) binary vector (Karimi et al., 2002) to generate a hairpin construct (pK7GWIWG2(I)-

SlTBP) (de Godoy et al., 2013). Binary vectors were introduced in Agrobacterium tumefaciens strains 

GV3101 and GV2260 for subcellular localization and plant stable transformation, respectively. 

 

N. benthamiana transient transformation and confocal microscopy 

 
The Agrobacterium strain containing pK7FWG2-SlTBP was grown and infiltrated into leaves of six-

week-old Nicotiana benthamiana plants (de Godoy et al., 2013). After 48 h, the infiltrated tissues were 

observed with a confocal laser microscope Zeiss LSM 400 under a 63X water objective. Chlorophyll 

images were captured over 590 nm after excitation at 543 nm, while the ones for SlTBP::GFP fusion 

were captured over 505 to 550 nm range after excitation at 488 nm with an argon laser beam. 

 

Plant transformation 

 
Seedling cotyledons of S. lycopersicum (cv. Moneymaker) were used as explants to generate 

transgenic tomato plants with the hairpin construct pK7GWIWG2(I)-SlTBP by Agrobacterium-mediated 

transformation (Nunes-Nesi et al., 2005). The presence of the transgene was confirmed by PCR with 

35S promoter and specific reverse primers (Supplementary Table S9).  

 

Tocopherol and pigment quantification 

 

Tocopherols were extracted and quantified by HPLC (High Performance Liquid Chromatography) 

(Almeida et al., 2011). Carotenoids and chlorophyll extraction and quantification for leaves were 

performed according to protocols previously described (Lichtenthaler, 1987). In ripe fruits, β-carotene 

and lycopene quantification was performed by HPLC (Heredia et al., 2009). 

 

Photosynthetic parameters 

 
Gas exchange and chlorophyll fluorescence parameters were measured in the third fully expanded 

leaf of 8-week-old plants using a portable open gas-exchange system incorporating infra-red CO2 and 

water vapor analyzers (LI-6400XT system; LI-COR) equipped with an integrated modulated 

chlorophyll fluorometer (LI-6400-40; LI-COR) (de Godoy et al., 2013). 

 

Transmission electron microscopy 

 
Source leaves from three biological replicates of SlTBP-knockdown transgenic lines L15 and L24 were 

fixed, embedded in Spurr resin and ultrathin sections analyzed with a Zeiss EM 900 transmission 

electron microscope (Lira et al., 2017). For chloroplast and PG counting, and area determination 
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ImageJ software was used (http://rsb.info.nih.gov/ij/). Pictures of 24 chloroplasts along the tissue were 

took, 12 close to cuticle and the same number of chloroplasts from fifth cell’s layer. All PG inside each 

chloroplast were counted and measured. 

 

Lipid peroxidation assay 

 

Fresh vegetable material (500 mg for leaves and 1 g for fruits) was homogenized with 5 mL of cold 

Tris HCl 20 mM pH 4, containing 10 µl of BHT (butylated hydroxytoluene butilado) 0.5 M. TCA was 

added to 20% final concentration for protein precipitation. After centrifugation for 4 min at 12,000 g, 

the thiobarbituric acid (TBA) assay was performed in the supernatants as previously described (Heath 

and Packer, 1968). The malondialdehyde (MDA) equivalent was calculated according to the Lambert 

and Beer formula: A = εεεε x l x c; where A is the absorbance at 535 nm, εεεε is the molar extinction 

coefficient (1,56 x 105 M cm-1), l is the path length of the cuvette (1 cm) and c is the accurate MDA 

concentration to be determined. 

 

Lipid profiles 

 

Lipids were extracted from c.a. 50 mg of lyophilized leaf or pericarp, according to (Folch, 1987). 

Briefly, samples were incubated at 65 °C during 20 min in 2 mL isopropanol. Two mL chloroform and 1 

mL H2O were then added and mix. The organic phase was collected and washed with 1 mL of 1 M 

KCl. Then, the organic phase was evaporated and lipids were resolubilized with CHCl3:MeOH (2:1, 

v:v). Lipids were then deposed by Linomat 5 (Camag) onto silica plates separated by thin layer 

chromatography (TLC) in parallel with lipid standards, using Vitiello-Zanetta solvent mixture (Deranieh 

et al., 2013) or Juguelin one (Juguelin et al., 1986) for polar or neutral lipids respectively. Lipids were 

revealed by exposition under UV illumination after incubation of the plates in a solution of 0.001% 

(w/v) primuline. The areas on the silica plates corresponding to the different lipid classes were 

scrapped separately and incubated with 1 mL of MeOH, 2.5% H2SO4 (v/v) and C17:0 at 5 µg/mL as 

internal standard in hermetically closed tubes for 1 h at 80 °C. Fatty acid methyl esters (FAMEs) were 

then extracted in 400 µL hexane and analyzed by Gas Chromatography performed using an Agilent 

7890 gas chromatograph equipped with a Carbowax column (15 m x 0.53 mm, 1.2 µm; Alltech 

Associates, Deerfield, IL, USA) and flame ionization detection. The temperature gradient was 160 °C 

for 1 min, increased to 190 °C at 20 °C/min, increased to 210 °C at 5 °C/min and then remained at 210 

°C for 5 min. FAMES were identified by comparing their retention times with commercial fatty acid 

standards (Sigma-Aldrich) and quantified using ChemStation (Agilent) to calculate the peak surfaces, 

and then comparing them with the C17:0 response. 

 

Microarray hybridization 

 

Gene expression was profiled by microarray from three biological replicates of L15, L18 L24 and 

control plants for leaves and ripe fruits organs. Each replicate was composed by a pool of samples 
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collected from two plants. RNA pools (1 µg of each genotype) were amplified and aminoallyl labeled 

using the MessageAmp II aRNA kit (Ambion) and 5-(3-aminoallyl)-2'-deoxyuridine-5'-triphosphate 

following the manufacturer's instructions.). Ten µg of aminoallyl-labeled amplified RNA was used to 

label with Cy5 (Reactive Dye Pack; Amersham). An equal quantity of control RNA pool was labeled 

with Cy3. Equal mixtures of labeled RNA were hybridized to tomato long-mer oligoarray (70 bp) slides 

(Microarrays Inc.) representing 12,160 genes. Hybridizations were carried out in 100 µL of 

hybridization solution (5 x SSC, 0.1% SDS, 40% formamide) containing 100 ρmol of Cy3- and Cy5-

labelled samples and incubated at 42 ºC on a thermal bath for 16 h. Then the slides were washed with 

2 x SSC 0.1% SDS 4 times for 10 min. Six additional washes (three with 0.1 x SSC 0.1% SDS and 

three with 0.1 x SSC, for 10 min each) at room temperature were performed before drying the glass 

slides with a brief centrifugation. Slides were scanned at 532 and 635 nm with a ScanArray Gx 

scanner at 10 µm resolution, 90% laser power and different photomultiplicator values to adjust the 

ratio intensity to 1.0. Raw signal intensity values were computed from the scanned array images using 

the image analysis software ScanArray Express (Pelkin Elmer). File data were analysed by the Robin 

software package (Lohse et al., 2010) using default settings for two-color microarray analysis. Briefly, 

intensity raw data were collected background-subtracted, normalized within each array by the print tip-

wise normalization method (Yang et al., 2002), and subsequently scaled across all arrays to have the 

same median absolute deviation (Yang et al., 2002; Smyth and Speed, 2003). To detect differentially 

expressed genes, a linear model-based approach (Smyth, 2004) was applied to compare the mean 

normalized values for a gene between experimental groups (transgenic and control). Mean values of 

differential genes were calculated from each sample as log2 values. A gene was considered 

differentially expressed (DEG) when its mRNA accumulation was different than control genotype in the 

same direction (up- or down-regulated) in at least two transgenic lines either by P value (P < 0.05) or 

Log fold change (>1.0 or < -1.0). Distribution of DEG within the three analysed SlTBP-knockdown lines 

is shown in Supplementary Figure S5. Functional categorization of DEG was performed using the 

MapMan software (Thimm et al., 2004). 

 

Starch quantification 

 

Starch content was spectrophotometrically determined in T0 generation transgenic lines (Dominguez 

et al., 2013). 

 

Polar metabolite profiles 

 

Extraction, derivatization, standard addition, and sample injection for GC-MS were performed as 

previously described (Lisec et al., 2006),(Osorio et al., 2012). Identification and quantification of the 

compounds were performed with TagFinder 4.0 software and the mass spectra were cross-referenced 

with those in the Golm Metabolome Database (Schauer et al., 2005; Kopka et al., 2005). Three to six 

biological replicates were used for this analysis. 
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Data analyses 

 
Differences in parameters were analysed using Infostat software version 2011 

(http://www.infostat.com.ar). When the data set showed homoscedasticity, ANOVA – Tukey test (P < 

0.05) was performed to compare transgenic lines against the control genotype. In the absence of 

homoscedasticity, a non-parametric comparison was performed by applying the Kruskal Wallis test (P 

< 0.05). All values represent the mean of at least three biological replicates. A parameter was 

considered to be affected by SlTBP silencing if at least 50% of the tested SlTBP-knockdown lines 

differed significantly from the wild type genotype in the same direction. 
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Table 1. Pigment and tocopherol contents in SlTBP-knockdown lines. 
Source leaves 

  WT L15  L18  L19  L24  
Chlorophyll a † 111.59 ± 4.86 116.55 ± 10.81 114.95 ± 7.58 115.26 ± 9.39 99.09 ± 6.01 
Chlorophyll b † 31.30 ± 1.97 34.97 ± 3.58 33.37 ± 2.10 34.06 ± 2.73 27.08 ± 1.97 

Total carotenoids † 31.69 ± 1.32 35.22 ± 2.95 33.76 ± 2.11 26.95 ± 4.18 29.71 ± 1.85 
α-tocopherol ‡ 50.57 ± 2.03 28.18 ± 9.08 41.02 ± 8.54 47.2 ± 0.48 38.67 ± 5.37 
ɣ-tocopherol ‡ 3.35 ± 1.58 1.00 ± 0.26 2.75 ± 0.91 1.44 ± 0.12 1.32 ± 0.40 

Total-tocopherol ‡ 55.64 ± 4.67 29.85 ± 10.24 44.44 ± 9.74 48.67 ± 0.42 40.11 ± 5.30 
Ripe fruits 
  WT L15  L18  L19  L24  

β-carotene § 0.30 ± 0.06 0.12 ± 0.01 0.08 ± 0.01 0.07 ± 0.01 0.07 ± 0.02 
Lycopene § 20.82 ± 3.57 11.28 ± 1.39 8.54 ± 0.47 6.84 ± 1.84 8.89 ± 0.18 

α-tocopherol ‡ 17.72 ± 3.75 18.1 ± 0.33 14.66 ± 5.09 13.69 ± 2.05 11.89 ± 1.82 
β-tocopherol ‡ 0.21 ± 0.01 0.27 ± 0.02 0.22 ± 0.02 0.19 ± 0.04 0.20 ± 0.01 
ɣ-tocopherol ‡ 4.35 ± 0.75 4.14 ± 1.47 2.94 ± 0.73 2.31 ± 0.10 3.05 ± 0.17 
δ-tocopherol ‡ 0.13 ± 0.02 0.29 ± 0.13 0.09 ± 0.01 0.08 ± 0.06 0.16 ± 0.03 

Total-tocopherol ‡ 22.05 ± 4.49 23.52 ± 2.48 17.45 ± 6.22 16.28 ± 2.05 15.3 ± 1.95 

Values are represented as means ± SD of at least three biological replicates. Values in bold denote significant differences 
between the wild-type (WT) and SlTBP-knockdown genotypes (P < 0.05). †µg/cm2; ‡µg/g fresh weight; 

§
mg/100 g fresh weight. 
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Table 2. Gas-exchange and chlorophyll fluorescence parameters in SlTBP-knockdown lines. 

  WT L15 L18 L19 L24 
qP 0.58 ± 0.01 0.52 ± 0.02 0.50 ± 0.02 0.52 ± 0.03 0.53 ± 0.03 

NPQ 1.42 ± 0.09 1.64 ± 0.11 1.57 ± 0.10 1.58 ± 0.12 1.56 ± 0.10 
ETR 148.70 ± 6.42 131.10 ± 9.23 126.50 ± 7.17 144.10 ± 6.14 133.70 ± 8.15 
1-pQ 0.43 ± 0.01 0.49 ± 0.03 0.50 ± 0.02 0.44 ± 0.02 0.47 ± 0.03 
ΦPSII 0.29 ± 0.01 0.25 ± 0.02 0.23 ± 0.02 0.25 ± 0.02 0.24 ± 0.02 

A 10.42 ± 1.79 7.94 ± 2.32 9.19 ± 1.89 10.51 ± 1.89 8.55 ± 1.89 
gs 0.07 ± 0.02 0.06 ± 0.01 0.09 ± 0.02 0.14 ± 0.02 0.08 ± 0.03 
E 1.63 ± 0.45 1.80 ± 0.21 2.19 ± 0.3 3.09 ± 0.31 1.77 ± 0.47 

qP=[(Fm’-Fs)/(Fm’-F0’)], photochemical quenching; NPQ=[(Fm -Fm')/Fm'], non photochemical quenching; ETR=[(Fm’–
Fs)/Fm’]xfIαleaf, electron transport rate; 1-pQ=[(Fs-F0’)/(Fm’-F0’)], reduced plastoquinones; ΦPSII=[(Fm’-Fs)/Fm’], PSII 
operating efficiency; A (µmol CO2 m-2 s-1), CO2 assimilation rate; gs (mmol H2O.m-2.s-1), leaf stomatal conductance; E (mmol 
H2O.m-2.s-1), transpiration rate. Data correspond to measurements in the third fully expanded leaf of 8-week-old plants and 
represent the means ± SD of six biological replicates. Values in bold denote significant differences between the wild-type (WT) 
and SlTBP-knockdown genotypes (P < 0.05). 
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FIGURE LEGENDS 
 
Fig. 1 Characterization of SEC14-like proteins.  

A Phylogenetic reconstruction of SEC14-like proteins. Sequences were identified in Phytozome and 

NCBI database (Supplementary Table S1). Representative protein structures for each clade are 

outlined on the right showing the domains: CRAL-TRIO N terminal (IPR011074), CRAL-TRIO domain 

(IPR001251), and GOLD domain (IPR009038). Chloroplast signal peptide was identified by ChloroP 

software prediction (Emanuelsson et al., 1999) . SlTBP containing clade is highlighted in green.  

B Detail of the AtPATL6/SlTBP-like clade. Sequences highlighted with circles are predicted to be 

targeted to plastids.  

C Transient expression of SlTBP::GFP fusion protein in mesophyll cells of Nicotiana benthamiana 

leaves indicates chloroplast targeting under confocal microscopy examination. Chlorophyll 

autofluorescence, GFP fluorescece and merged signals are indicated above the panels.  

D SlTBP gene transcript profile in leaves and fruits. Data indicates relative expression normalized 

against ripe stage. Data represent mean ± SE from at least three biological replicates. Letters indicate 

statistically different values (P < 0.05). SiL, sink leaf; SoL, source leaf; G, green fruit stage; MG, 

mature green fruit stage; Br, breaker fruit stage; R, ripe fruit stage.  

 

Fig. 2 Heterologous expression of SlTBP protein and binding assays.  

A Western blot (WB) and Ponceau staining (PS) of SlTBP-His protein expressed in Escherichia coli 

(BL21AI strain). Western Blot was performed using an anti-His antibody. Lanes 1 and 3: total protein 

extract from two independent E. coli clones expressing the SlTBP; Lane 2: negative control; total 

protein extract from an untransformed E. coli clone. Arrow indicates SlTBP protein. 

B Coomasie blue stained gel from affinity chromatography assay showing SlTBP binding to α-

tocopherol from E. coli extract. B: breakthrough; W: washing steps as detailed in material and method 

section; E: elution with ⍺-tocopherol. Arrow indicates SlTBP protein as confirmed by MALDI Mass 

Spectrometry (Supplementary Figure S2).  

C Coomasie blue stained gel from affinity chromatography assays showing purified SlTBP binding to 

α-tocopherol (above) and phylloquinone (below). B: breakthrough; W: washing steps as detailed in 

Material and Method section; T: elution with ⍺-tocopherol; K: elution with phylloquinone. Arrow 

indicates SlTBP protein. 

 

Fig. 3 Primary metabolic profile of SlTBP-knockdown lines. SoL, source leaves; R, ripe fruits. Data 

were normalized to fresh weight and presented as the Log2 ratio between SlTBP-knockdown plants 

and WT. All the ratio values are shown in Supplementary Table S2. Only statistically significant values 

compared to the wild type genotype are shown in the colour gradient (P < 0.05). Gray colour indicates 

non-detected. 

 

Fig. 4 Lipid peroxidation, chloroplast structure and lipid profile of SlTBP-knockdown lines.  
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A Lipid peroxidation assay in leaves. Values represent means ± SE of at least three biological 

replicates. Asterisks denote statistically significant values compared to the wild type (WT) genotype (P 

< 0.05).  

B Chloroplast structure of wild type (WT) and SlTBP-knockdown leaves. G, grana; S, starch granule; 

LD, lipid droplet; PG, plastoglobule. 

C Chloroplast and plastoglobuli (PG) size, ratio and area. Values represent means ± SE of at least 

three biological replicates. Asterisks denote statistically significant values compared to the wild type 

(WT) genotype (P < 0.05). 

D Content of the main lipid classes. MGDG: monogalactosyldiacyl glycerols; DGDG: digalactosyldiacyl 

glycerols; NL: total neutral lipids (fatty acid phytyl esters, triacylglycerides, free fatty acids and 

diacylglycerols); PL: total phospholipids (phosphatidyl glycerols, phosphatidyl ethanolamines, 

phosphatidic acids, phosphatidyl inositols, phosphatidyl cholines). Values represent means ± SE of at 

least three biological replicates. Asterisks denote statistically significant values compared to the wild 

type (WT) genotype (P < 0.05). 

 

Fig. 5 Differentially expressed genes in leaves (A) and ripe fruits (B) from SlTBP-knockdown lines. 

The numbers refer to differentially expressed genes (Supplementary Table S5) within the following 

selected categories: photosynthesis, tetrapyrrole synthesis, lipid metabolism, isoprenoid metabolism, 

inositol/phosphoinositides metabolism, redox homeostasis. Ch: chloroplast, Chr: chromoplast, ER: 

endoplasmic reticulum, Vac: vacuole, Cyt: cytosol, PM: plasma membrane. Red and blue squares 

represent up and down-regulated genes, respectively. 
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