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Abstract: Hydrologic models are conventionally constrained and evaluated using point
measurements of streamflow, which represent an aggregated catchment measure. As a consequence
of this single objective focus, model parametrization and model parameter sensitivity typically do
not reflect other aspects of catchment behavior. Specifically for distributed models, the spatial
pattern aspect is often overlooked. Our paper examines the utility of multiple performance
measures in a spatial sensitivity analysis framework to determine the key parameters governing the
spatial variability of predicted actual evapotranspiration (AET). The Latin hypercube one-at-a-time
(LHS-OAT) sampling strategy with multiple initial parameter sets was applied using the mesoscale
hydrologic model (mHM) and a total of 17 model parameters were identified as sensitive. The results
indicate different parameter sensitivities for different performance measures focusing on temporal
hydrograph dynamics and spatial variability of actual evapotranspiration. While spatial patterns were
found to be sensitive to vegetation parameters, streamflow dynamics were sensitive to pedo-transfer
function (PTF) parameters. Above all, our results show that behavioral model definitions based only
on streamflow metrics in the generalized likelihood uncertainty estimation (GLUE) type methods
require reformulation by incorporating spatial patterns into the definition of threshold values to
reveal robust hydrologic behavior in the analysis.

Keywords: mHM; remote sensing; spatial pattern; sensitivity analysis; GLUE; actual
evapotranspiration

1. Introduction

Computer models are indispensable to perform costly experiments in an office environment,
e.g., distributed modelling of water fluxes across the hydrosphere. Physically based distributed
hydrologic models have become increasingly complex due to the large number of incorporated
parameters to represent a variety of spatially distributed processes. These models are typically
calibrated against stream gauge observations, i.e., a lumped variable of all hydrological processes
at catchment scale. This can cause equifinality problems [1] and poor performance of the simulated
spatial pattern of the model since optimizing the water balance and streamflow dynamics are the only
concern [2,3]. To solve this issue, the community needs models with flexible spatial parametrization
and calibration frameworks that incorporate spatially distributed observations, e.g., remote sensing
estimates of evapotranspiration (ET).

The basic idea behind any sensitivity analysis (SA) method is to relate the response of the model
output to variations in the parameter values [4]. The SA methods can, therefore, enhance our control
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on spatiotemporal model behavior [5]. There are local (LSA) and global sensitivity analysis (GSA)
methods that evaluate distinct and joint effects between different model parameters, respectively [6–8].

While LSA methods evaluate point sensitivity in parameter space [9], the GSA covers the entire
parameter space and parameter interactions too [10,11]. This is because GSA perturbs all parameters
simultaneously to assess the inter-relations [12]. The most well-known GSA methods are Sobol’s
method [13] and the Fourier amplitude sensitivity test (FAST) [14]. The main effects (e.g., first-order
sensitivity) and elementary effects, originally described by Morris [15], can be evaluated using both
methods. The Morris method has been widely applied in hydrologic modelling. Herman et al. [16]
were able to classify parameters of a spatially distributed watershed model as sensitive and not
sensitive based on the Morris method with 300 times fewer model evaluations than Sobol’s approach.
The GSA methods are usually thought to be more appropriate to use in hydrologic applications than
LSA methods since hydrological processes are nonlinear and the interactions between the parameters
have a substantial effect on the results. However, the computational cost is crucial in applying the GSA
methods in distributed hydrologic modelling [17,18]. The LSA methods gives fast results by assessing
only one parameter at a time without interactions between parameters [19]. The local derivatives are,
however, based on a certain initial set in the parameter space.

The foremost objective of our study is to assess the major driving parameters for the spatial
patterns of actual evapotranspiration (AET) simulated by a catchment model. Furthermore, we address
how the selected initial set of parameters can affect the LSA results and how many initial sets
are required for a robust sensitivity analysis. We evaluate parameter sensitivities using an LSA
method with random and behavioral initial parameter sets (each containing 100 initial parameter
sets). We focus on both spatial patterns of AET over the basin and temporal hydrograph dynamics
using multiple performance metrics to evaluate different aspects of the simulated maps and the
hydrograph. Streamflow performance of a model has typically been the main concern in conventional
model calibrations, whereas improving the simulated spatial pattern during calibration has rarely
been targeted [20–26]. A unique feature of our study is evaluating the model’s sensitivity based on
a set of 10 spatial metrics that, unlike traditional cell-to-cell metrics, provide true pattern information.
We include an innovative metric which utilizes empirical orthogonal function analysis [23] as well
as the fractional skill score [27], among others, to evaluate the simulated spatial patterns. The added
value of each metric is assessed based on a redundancy test. This is done to identify the most robust
metric(s) with unique information content to apply in a subsequent spatial calibration study.

Höllering et al. [28] used hydrologic fingerprint-based sensitivity analysis using temporally
independent and temporal dynamics of only streamflow data. They could identify two major driving
parameters for evapotranspiration and soil moisture dynamics in different mesoscale catchments
in Germany and reveal their relation to different streamflow characteristics. Westerhoff [29] used
remotely sensed ET data as an interpolator between point data and used a simplified sensitivity
analysis only focusing on interpolation between ground-based estimates based on simple (linear)
relationships. In our study, we took it up another notch by using the spatial pattern, including
sensitivity analyses, using multiple methods, for improved hydrological model calibration. We tested
a large range of methods and spatial metrics. Also, we applied the mesoscale hydrologic model
(mHM) [30] which can simulate distributed variables using pedo-transfer functions (PTF) and related
parameters. Additionally, a recently introduced dynamic ET scaling function (DSF) was used to
increase the physical control on simulated spatial patterns of AET [2]. Ultimately, the identified
important parameters for simulating both stream discharge and spatial patterns of AET were used
in a very recent model calibration study [2]. The novelty of the current study lies in using sensitivity
maps showing the difference between the initial run and perturbation of a parameter and various
spatial metrics to complement conventional SA with spatial pattern evaluation.
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2. Materials

The Skjern River has a basin area of ~2500 km2 covered by mostly sandy soils (Figure 1) and
dominated by agriculture (71%) and forest (15%) [21]. The maximum altitude in the basin is 130 m
and annually averaged precipitation is around 1000 mm [31]. The monthly mean temperatures vary
between 2 and 17 degrees Celsius whereas the annual mean streamflow is around 475 mm [32].
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Figure 1. Map of Denmark and Skjern River Basin characteristics.

2.1. Satellite-Based Data

We used different products from the Moderate Resolution Imaging Spectroradiometer (MODIS)
(Table 1) to generate leaf area index (LAI) and AET maps. The data were retrieved from NASA Land
Processes Distributed Active Archive Center (LP-DAAC).

Table 1. Source and resolution details of reference satellite data.

Variable Description Period Spatial Resolution Remark Source

LAI Fully distributed 8-day
time varying LAI dataset 1990–2014 1 km 8 day to daily MODIS and

Mendiguren et al. [33]
AET Actual evapotranspiration 1990–2014 1 km daily MODIS, TSEB

2.1.1. Leaf Area Index (LAI)

The Nadir BRDF Adjusted Reflectance (NBAR) from the MCD43B4 product was used to calculate
the normalized vegetation index (NDVI) [34]. Subsequently, the dataset was smoothed using
a temporal filter available in the TIMESAT code [35,36]. Due to the low data availability of the
MODIS LAI product at the latitudes of the study site during some periods of the year, we derived
a new empirical LAI equation based on the NDVI, (Equation (1)).

Since in situ measurements of LAI are scarce and typically limited to specific crops, the reference
LAI data used for the empirical equation was obtained from the LAI input tables for the Danish
National Water Resources model [37,38]. The most common land use type in Denmark is cropland,
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~80% of the total area. Boegh et al. [39] derived LAI using remote sensing data with an exponential
function. In our case, we used a similar approach in the following equation:

LAI = 0.06335.524 · NDVI (1)

Using different equations for different land cover types is possible. However, imposing a land
cover map on the remote sensing inputs can predispose the maps to show a spatial pattern controlled
by land cover. To minimize this effect, we decided to apply a single equation to derive the LAI, i.e.,
established based on the most abundant land cover type (agricultural) in the study area. The derived
8-day LAI product was later linearly interpolated to obtain daily LAI values for each pixel, which we
found suitable for the study area, because temporal variability is limited at this time scale.

2.1.2. Actual Evapotranspiration (TSEB)

The Two Source Energy Balance (TSEB) model developed by Norman et al. [40] based on
Priestly-Taylor approximation [41] was incorporated in this study to estimate AET based on MODIS
data. The model inputs were solar zenith angle (SZA) and land surface temperature (LST) as well as
height of canopy and albedo levels, all derived from MODIS based observations. Other climate
variables of incoming radiation and air temperature were retrieved from European Centre for
Medium-Range Weather Forecasts reanalysis data interim version (ERA-interim) [42]. One-at-a-time
sensitivity analysis [43] of the TSEB model revealed that LST is the most sensitive parameter for AET
(results not shown here). The TSEB model output was evaluated against field observations of eddy
fluxes over three different land cover types before deriving the final maps of AET. The main purpose of
including the remote-sensing-based AET estimations was to evaluate the spatial pattern performance
of the model data during the growing season. All data were averaged across all years for calibration
and validation periods to six monthly averaged spatial maps from April to September. This was
because uncertainty is inevitable in the individual daily estimates of AET, whereas the monthly maps
show the general monthly patterns, which are more robust. We referred to this AET data as reference
data to evaluate mHM-based simulations of AET. We chose reference instead of observation, as the
data were not purely observed but were an energy balance model output using satellite observations.

2.2. Hydrologic Model

The mesoscale hydrologic model (mHM) has been developed as a distributed model delivering
different outputs and fluxes at different model scales [30]. The direct runoff, slow and fast interflow,
and base flow are calculated for every grid cell. Finally, the runoff is routed through the basin domain
using the Muskingum flood routing method. The model applies pedo-transfer functions to regionalize
soil parameters and is easily set up for different platforms, e.g., Mac, Linux, and Windows. The model
contains 53 parameters for calibration. The nonlinear dynamic ETref scaling function introduced in an
earlier study [2] has flexibility to change the spatial pattern of AET during the sensitivity analysis as
a function of vegetation as compared to the uniform or aspect-driven PET correction factor originally
implemented in mHM (Table 2). The study by Samaniego et al. [30] is the key reference describing
model formulation and parameter description.

Table 2. Setup of newly introduced parameters for dynamic ETref scaling function for sensitivity
analysis: parameter types, initial values, and range.

Parameter Unit Description Initial Value ** Lower Bound Upper Bound

ETref-a - Intercept 0.95 0.5 1.2
ETref-b - Base Coefficient 0.2 0 1
ETref-c - Exponent Coefficient −0.7 −2 0

** Recommended initial values for calibration only. Different initial values are tested in our sensitivity
analysis framework.
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Meteorological input at different spatial scales can be handled internally by the model.
This underlines the flexibility of mHM which operates at three spatial scales: morphologic data
scale (L0), model scale (L1), and meteorological data (L2). The model scale, i.e., L1, can have any value
between L0 and L2. In our case, the Skjern model ran at a daily time scale at 1 × 1 km resolution,
whereas the soil inputs had a 250 × 250 m resolution. The meteorological datasets, i.e., P, ETref,
and Tavg, were gridded observational data from the Danish Meteorological Institute resampled from
a native resolution of 10 and 20 km, respectively [2]. Readers are referred to Table 1 in Demirel et al. [2]
for the complete list of model inputs and data sources.

3. Methods

In this study, we applied the Latin hypercube sampling strategy [44] combined with a local
sensitivity analysis approach [19]. Latin hypercube sampling, firstly named after McKay et al. [44], is
an efficient multidimensional sampling similar to Monte Carlo sampling (MCS) but requiring much
fewer runs to avoid the clumpy size of uniform random sampling [45]. It splits the range of each
variable into different intervals of equal probability, where one value is randomly selected from each
interval [46]. This improves the stability of MCS while preserving the tractability of random sampling.

We tested 10 sophisticated performance measures (hereinafter called objective functions) to
identify most important parameters. Three of these metrics, i.e., Nash–Sutcliffe Efficiency (NSE, Nash
and Sutcliffe [47]), Kling–Gupta Efficiency (KGE, Gupta et al., [48]), and percent bias (PB), focus on
simulated streamflow, whereas the remaining objective functions focus on the spatial distribution
of AET (Table 3). Although PB is included in KGE equation, the PB that reflects errors in the water
balance was evaluated separately to consider volume error in addition to the streamflow timing.

Table 3. Overview of the 10 metrics which were used in the sensitivity analysis. The first three metrics
were regarding time series of streamflow, while the latter seven were used to evaluate spatial patterns
of AET.

Description Best Value Abbreviation Group Reference

Nash–Sutcliffe Efficiency 1.0 NSE Streamflow [47]
Kling–Gupta Efficiency 1.0 KGE Streamflow [48]
Percent Bias 0.0 PB Streamflow
Goodman and Kruskal’s Lambda 1.0 λ Spatial pattern [49]
Theil’s Uncertainty coefficient 1.0 U Spatial pattern [50]
Cramér’s V 1.0 V Spatial pattern [51]
Map Curves 1.0 MC Spatial pattern [52]
Empirical Orthogonal Function 0.0 EOF Spatial pattern [23]
Fraction Skill Score 1.0 FSS Spatial pattern [27]
Pearson Correlation Coefficient 1.0 PCC Spatial pattern [53]

3.1. Objective Functions Focusing on Spatial Patterns

The objective functions focusing on streamflow, i.e., NSE, KGE, and PB, are all well known and
therefore not presented in detail. In the following, we focus on introducing the spatial objective
functions. Seven objective functions were used to evaluate the pattern similarity between the reference
AET from TSEB and the simulated AET from mHM. Five of the seven spatial-pattern-oriented metrics
are calculated based on the spatial overlap of categorical maps [54]. In this study, we used three classes
to transform the continuous patterns of AET into categorical maps: (1) below the 15th percentile,
(2) above the 85th percentile, and (3) the remaining grids between highest 15% and lowest 15% values.
The empirical orthogonal functions analysis does not require categorical maps and therefore does
not need to be transformed. The fractional skill score is based on categorical maps but uses more
bins in the classification than the three mentioned above. The applied spatial metrics are all bias
insensitive, which we consider favorable to conduct a meaningful pattern comparison. The overall
water balance error is well represented by streamflow observations and therefore represented in the
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respective objective functions. Moreover, AET is simulated in mm/day, whereas the remote sensing
reference is given in W/m2. The two units are closely related but vary in range; therefore, applying
bias insensitive metrics is inevitable.

3.1.1. Goodman and Kruskal’s Lambda

Goodman and Kruskal’s lambda (λ) is a similarity metric for contingency tables. It has an optimal
value of one indicating perfect match and lowest value of zero indicating no overlap [55]. λ is
calculated as

λ =
∑m

i=1 maxj
(
cij
)
+ ∑m

i=1 maxj
(
cij
)
−maxj

(
c+j
)
−maxi(ci+)

2N −maxj
(
c+j
)
−maxi(ci+)

(2)

where N is the total number of grids; m is the number of classes in the observed maps to be compared;
cij is the grid numbers for the class i in first map (A) and to class j in the second map (B); ci+ is the grid
numbers contained in category i in map A; c+j is the grid numbers contained in category j in map B;
maxi(ci+) is the grid numbers in the modal class of map A, i.e., the class with largest number of grids;
and maxj

(
cij
)

is the number of classes in map B with a given class of map A.

3.1.2. Theil’s Uncertainty Coefficient

Theil’s Uncertainty (U) is a measure of percent reduction in error. It is also known as average
mutual information [55]. It yields the same value when the reference map is A or B, i.e., symmetric;
therefore, a reference does not need to be defined. Unlike λ which accounts for modal class, Theil’s U
considers the whole distribution of the data. It is based on entropy, joint entropy, and average mutual
information [50,54]. The information content (entropy) of map A is calculated as

H(A) = −
m

∑
i=1

ci+
N

log
( ci+

N

)
(3)

The same notation as λ is used for Theil’s U equation below. Similarly for map B:

H(B) = −
m

∑
j=1

c+j

N
log
( c+j

N

)
. (4)

The joint entropy is then calculated as

H(A, B) = −
m

∑
i=1

n

∑
j=1

cij

N
log
( cij

N

)
. (5)

The shared information by maps A and B is estimated by average mutual information I(A;B)
based on the entropy of two maps minus the joint entropy:

I(A; B) = H(A) + H(B)− H(A, B). (6)

The uncertainty coefficient is then calculated as

U = 2 · I(A; B)
H(A) + H(B)

. (7)

3.1.3. Cramér’s V

Cramér’s V is a metric based on Pearson’s X2 statistic calculated from the contingency table of
maps A and B [51]. Recently, Speich et al. [54] used this metric to assess the similarity of different
bivariate maps for Switzerland. In their case, the variable pairs snowmelt and runoff as well as
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precipitation and PET were selected to describe the water balance in Swiss catchments. The χ2 statistics
can be calculated by

χ2 =
m

∑
i=1

n

∑
j=1

(cij − ci+c+j/N)2

ci+c+j/N
(8)

using the same notation of cij, ci+, and c+j as for the metrics above. In addition, m and n show the
number of grids in maps A and B, respectively. χ2 always yields non-negative values. Zero values
only appear in the case when cij = ci+c+j/N.The zero value hence indicates no similarity between the
map pairs. There have been different modifications of χ2 [55], but the simplest and most widely used
form was proposed by Cramér [51]. V is a transformation of X2, as shown below:

V =

√
χ2

N · (min(m, n)− 1)
(9)

In an earlier study, Rees [55] used Cramér’s V together with two other categorical association
metrics (U and λ) to assess the similarity of two thematic maps from Landsat images. All three metrics
investigated in that study appeared to work well, as they produced significantly high values for the
maps that were reasonably similar and low values for those maps that obviously differed. Rees [55]
recommended using Cramér’s V for three reasons: (1) this metric is relatively simple to calculate; (2) it
is symmetric, giving the same value when the reference map is A or B; and (3) it performs slightly
better than U and λ in discriminating between two different maps or approving two similar maps.

3.1.4. Mapcurves

Mapcurves (MC) is a measure of goodness-of-fit (GOF), indicating the degree of match between
two categorical maps [54]. It has an optimal value of one, whereas the lowest value is zero. For each
pair of classes (i, j) between the two maps A and B, the algorithm calculates GOF using the following
equation:

GOFij =
cij

ci+

cij

c+j
(10)

In the following equations, the equations are presented for class A (i.e., index i), as the category A
represents observed maps and B indicates simulated maps (i.e., index j). Thus, the calculation for class
B is analogous. The GOF values are added up for each group of the observed map (A):

GA,i =
n

∑
j=1

Gij (11)

where n is the grid numbers in the map (A). Note that the size of the maps should match each other
for this comparison. The GOF values are organized in ascending order to estimate the vector G′A.
The values 0 and 1 are included in the series of G′A to integrate the function later. The length of G′A is
hence m + 2. For each GOF value i ε G′A, the MC is calculated as a segment of classes that have a GOF
more than or equal to i:

fA(i) =
∑m

k=1[GA,k ≥ i]
m

; i ε G′A (12)

The MC value is then calculated by integrating f (x) between zero and one. A trapezoid rule is
applied as follows to calculate the area under the curve. It has a best value of one.

MCA =
n

∑
i=1

(
G′A,i+1 − G′A,i

)
fA(x + 1) +

(G′A,i+1 − G′A,i) ( fA(x + 1)− fA(x))
2

(13)
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3.1.5. Empirical Orthogonal Functions

The empirical orthogonal functions (EOF) analysis is a frequently applied tool to study the
spatiotemporal variability of environmental and meteorological variables [56,57]. The most important
feature of the EOF analysis is that it decomposes the variability of a spatiotemporal dataset into two
crucial components, i.e., time-invariant orthogonal spatial patterns and a set of loadings that are
time variant [2]. Perry et al. [56] gave a brief description of the mathematical background of the EOF
analysis. The EOF-based similarity score (SEOF) at time x is formulated as

Sx
EOF =

n

∑
i=1

wi

∣∣∣(loadsim(x)
i − loadobs(x)

i

)∣∣∣ (14)

where n is the number of EOFs and wi represents the covariation contribution of the ith EOF. In our
study, we focused on the overall AET pattern performance and thus we averaged SEOF from the
individual months of the growing season into a single overall skill score.

3.1.6. Fractions Skill Score

Roberts and Lean [27] introduced the fractions skill score (FSS) to the atmospheric science
community to establish a quantitative measure of how the skill of precipitation products varies
for different spatial scales. Fractions relate to occurrences of values exceeding a certain threshold at
a given window size (scale) and are compared between model and observation at individual grids.
Most commonly, the thresholds represent percentiles which have the purpose of eliminating any
impact of a potential bias. Hence, FSS assesses the spatial performance of a model as a function of
threshold and scale and has been implemented by Gilleland et al. [58], Wolff et al. [59], and others to
spatially validate precipitation forecasts. In summary, the following steps are performed during the
FSS methodology: (1) truncate the observed A and simulated B spatial patterns into binary patterns
for each threshold of interest, (2) compute fractions A(n) and B(n) within a given spatial scale n based
on the number of grids that exceed the threshold and lie within the window of size n by n, and (3)
estimate the mean-squared-error (MSE) and standardize it with a worst-case MSE that returns zero
spatial agreement between A and B (MSEref). The MSE is based on all grids (Nxy) that define the
catchment area with dimension Nx and Ny. For a certain threshold, the FSS at scale n is given by

FSS(n) = 1−
MSE(n)

MSE(n)re f
(15)

where

MSE(n) =
1

Nxy

Nx

∑
i=1

Ny

∑
j=1

[
A(n)ij − B(n)ij

]2
(16)

and

MSE(n)re f =
1

Nxy

[
Nx

∑
i=1

Ny

∑
j=1

A2
(n)ij +

Nx

∑
i=1

Ny

∑
j=1

B2
(n)ij

]
(17)

FSS ranges from zero to one, where one indicates a perfect agreement between observed and
simulated patterns and zero reflects the worst possible performance. To our knowledge, Koch et al. [60]
were the first to transfer FSS from the atmospheric to the hydrological community and applied it on
spatial patterns of land-surface variables simulated by a hydrological catchment model. The flexibility
of FSS, in terms of scale and threshold, is very desirable in hydrological modelling applications
where uncertainties in model forcing and parameters as well as scale differences between model and
observation hinder a meaningful validation at native scales. In this study, FSS was implemented in an
automated manner. In order to reduce the computational time, an overall FSS score was computed
based on an average of six selected percentiles with individual thresholds. We decided to tolerate
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placement errors of extreme percentiles (1% and 99% that focus on the bottom and top 1% of AET,
respectively) more than moderate percentiles (20% and 80%) by assessing the first at a larger scale
(25 km) than the latter (5 km). In addition, the 5th and 95th percentiles, which represent the top and
bottom 5% of AET grids, were assessed at a 15-km scale. The average of these six percentiles was used
as the overall FSS score.

3.2. Latin Hypercube Sampling One-Factor-at-a-Time Sensitivity Analysis

We used Latin hypercube (LH) sampling in combination with a local sensitivity analysis method.
This is an integration of a global sampling method with a local SA method changing one factor at
a time (OAT). In other words, one perturbation at a time depends on the local derivatives based on
a certain initial point in the parameter space [19]. A similar design based on random perturbation at
a time following trajectories was firstly proposed by Morris [15]. SA based on Monte Carlo simulation
is robust but requires a larger number of simulations. Alternatively, the LHS is based on a stratified
sampling method that divides the parameter values into N strata with probability of occurrence having
a value of 1/N. This feature leads to a more robust sensitivity analysis with a given number of initial
values [19]. Here, we tested whether behavioral initial parameter sets resulted in different parameter
identification compared to random initial parameter sets. In addition, we used 100 different initial sets
to assess if/when the accumulated relative sensitivities became stable. We could then evaluate how
many initial samples were required to get robust results using LHS-OAT.

4. Results

4.1. Exploration of Spatial Metrics Characteristics

The spatial performance metrics were examined to gain more insight into their reliability and to
understand whether any of them provided redundant information. This is an important step before
including them in the sensitivity analysis and model calibration because the ability to discriminate
between a good and a poor spatial pattern performance is an essential characteristic of a metric.
We compared 12 synthetic land surface temperature (LST) maps of a sub-basin of Skjern (~1000 km2),
i.e., all perturbed differently, with a reference LST map using the spatial metrics applied in this study.
The details about the applied perturbation strategies can be found in Table 1 of Koch et al. [23]. In that
study, Koch et al. [23] conducted an online-based survey with the aim of using the well-trained
human perception to rank the 12 synthetic LST maps in terms of their similarity to the reference
map. The obtained results were subsequently used to benchmark a set of spatial performance metrics.
The same procedure was incorporated in this study to get a better understanding of the metrics selected
for this study. We included the survey results in our study and assessed the coefficient of determination
R2 between the human perception and the spatial metrics. This helped to differentiate between metrics
that contained redundant information and those with unique information content. Figure 2 shows
two distinct examples, i.e., one noisy perturbation and one slightly similar map to the reference map,
to better explain the results presented in Table 4, which summarizes the spatial scores for the 12 maps
sorted based on the survey similarity index (last column).
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Figure 2. Two synthetic land surface temperature (LST) maps for the Ahlergaarde sub-basin of Skjern
to compare the spatial metrics. Map 9 (left) was generated using a noisy perturbation, while map 6
(right) was more similar to the reference map (middle).

Table 4. Comparison of 12 perturbed maps [23] based on spatial metrics. The first seven columns
present the metrics used in this study, while the last column gives the survey similarity reported in
Koch et al. [23]. Map 1 has the highest similarity, which means that it is the most similar map to the
reference, while map 7 is the least similar.

MAP_ID λ U V MC EOF * FSS PCC Survey Similarity

1 0.68 0.59 0.81 0.76 0.02 0.96 0.95 0.86
6 0.49 0.50 0.73 0.72 0.05 0.97 0.86 0.75
8 0.28 0.30 0.57 0.53 0.06 0.96 0.86 0.64
12 0.39 0.37 0.63 0.59 0.06 0.89 0.86 0.61
5 0.50 0.44 0.70 0.65 0.05 0.91 0.87 0.59
2 0.20 0.26 0.52 0.50 0.08 0.89 0.79 0.59
10 1.0 1.0 1.0 1.0 0.0 1.0 1.0 0.57
11 0.00 0.04 0.20 0.32 0.21 0.87 0.37 0.42
4 0.00 0.07 0.26 0.35 0.25 0.77 0.27 0.36
3 0.00 0.17 0.39 0.40 0.15 0.93 0.70 0.29
9 0.20 0.21 0.48 0.47 0.16 0.87 0.48 0.23
7 0.00 0.00 0.04 0.29 0.28 0.73 −0.01 0.10

* Highest EOF value is zero for similar maps.

Map 9 is ranked as the second least similar map as compared to the reference map. Map 10 that is
perturbed with an overall bias of +2 is ranked as a perfect agreement by all metrics. This confirms that
all of our spatial metrics are bias insensitive. In addition, map 1 is identified as the most similar map
to the reference map by the human perception and all other metrics.

Following the R2 values in Table 5, 72.2% of the variance in the human perception is explained
by the EOF analysis. The Pearson correlation coefficient (PCC), V, and FSS metrics also performed
well in discriminating spatial maps with respect to the human perception as benchmark. However,
the U metric explained the lowest variance (40.9%), which indicates that it should not be included in
the model calibration because we trust the well-trained human perception as a reference. Moreover,
the spatial metrics, i.e., λ, U, V, and MC, are highly correlated (italic fonts in Table 5). All are based
on transforming the data into a three category system, which results in redundancy between the four
given metrics. This shows that not all of them are required for model calibration. However, we will
still evaluate the sensitivity results based on all given spatial metrics in the following sections.
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Table 5. Coefficient of determination (R2) between spatial metrics and survey similarity. Bold values
mark metrics with highest ability to reproduce survey similarity. Italic values highlight spatial metrics
which are highly correlated.

R2 Score λ U V MC EOF FSS PCC Survey Similarity

λ 1 0.97 0.88 0.97 0.71 0.51 0.59 0.46
U 1 0.90 0.99 0.72 0.59 0.63 0.41
V 1 0.93 0.90 0.72 0.85 0.59

MC 1 0.77 0.61 0.67 0.49
EOF 1 0.79 0.96 0.72
FSS 1 0.84 0.52
PCC 1 0.69

Survey Similarity 1

4.2. Latin Hypercube Sampling One-Factor-at-a-Time Sensitivity Analysis

In this study, we applied LHS-OAT sensitivity analysis with 47 parameters using both random
and behavioral sets of initial parameter values. Initially, we selected 100 random initial parameter sets
using the lower and upper limits of the parameters. Subsequently, we generated 10,000 random initial
samples to select 100 behavioral sets among these. For that, we started running each of the 10,000
random sets one at a time and evaluated the simulated discharge. We continued the model runs until
we reached 100 behavioral sets that all resulted in NSE above 0.5. This is because we were interested
in investigating only the plausible region of the parameter space, as we knew the calibration would
never end up outside this region in either way. We also ensured that the selected 100 behavioral sets
were uniformly distributed to the different probability bins since we tested only the first ~2400 random
initial parameter sets to have 100 behavioral sets.

In total, we executed mHM about ~11,800 times in forward mode using the parameter estimation
tool PEST [43]. This is because we ran the model ~4700 times (47 parameters × 100 LHS-OAT) for
random and ~4700 times for behavioral initial sets and performed an additional ~2400 runs for the
selection of a behavioral set as described above. Figure 3 shows the average accumulated relative
parameter sensitivities over the 100 behavioral (NSE > 0.5) initial parameter sets and one-at-a-time
parameter perturbations. The average accumulated relative parameter sensitivities became stable,
i.e., unchanging parameter ranking, after ~20 initial parameter sets were used in LHS-OAT. Relative
sensitivities were normalized values by the highest sensitive parameter. Therefore, the most sensitive
parameter resulted in one. It should be noted that we only show the results of behavioral initial sets as
they are similar to those from the random initial sets. Here, the colored lines show the most important
parameters. Other parameters are presented in gray color only. One of the soil moisture related
parameter (rotfrcoffore) is always the most sensitive parameter for all objective functions except for
KGE, where one parameter of the PTF, i.e., related to sandy soils, is the most sensitive one as compared
to the other 47 parameters of mHM. The rankings of important parameters are converged and similar
for all spatial objective functions, while different parameters are highlighted using streamflow-related
objective functions. The five most sensitive parameters based on spatial objective functions are
soil-moisture-related, PTF, and ET-related parameters. Further, ETref-a parameter seems to be the
second most important parameter affecting streamflow dynamics of the Skjern River model (see PB at
Figures 3 and 4), whereas another PTF parameter is ranked as the second most important parameter
affecting KGE (Table A1).
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Figure 4. Average of 100 sensitivity maps (entire Skjern Basin) based on the difference between
100 behavioral (NSE > 0.5) initial parameter sets and one-at-a-time parameter perturbations
(100 runs per parameter).

Figure 4 shows sensitivities calculated from modeled AET using the average of 100 maps, where
each reflects the impact of a perturbation per parameter based on the 100 behavioral (NSE > 0.5)
parameter sets as initial points. Each of these 100 perturbation maps (sensitivity maps) were calculated
as the absolute difference between the initial run and the perturbation that was further normalized
by the initial run, i.e., NMAD (%) = abs(perturbation-initial)/initial. We then used the average of
100 runs as a final sensitivity map. The maps in Figure 4 are informative in several ways. First,
they show that some of the parameters have a uniform (light green map) or no effect (dark blue
map) on the spatial pattern distribution, whereas other parameters have a high control on spatial
variability (e.g., rotfrcofperv, ptfkssand, and ETref-a). Second, we can recognize different patterns on
the maps such as land cover patterns (see Figure 1) from root fraction maps (especially the one for
pervious areas), LAI patterns from ETref-c map, and soil patterns from pedo-transfer function maps
(e.g., ptfksconst). The geoparam 2, 3, and 4 parameters are also identified as sensitive influencing
streamflow dynamics (see KGE at Figure 3). However, their maps are not shown in Figure 4 as they
are similar to the map for geoparam 1 (uniform effect). Further, the map for the ptflowdb parameter is
completely dark blue, showing that it has no effect on the simulated spatial pattern of AET.
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4.3. Random Parameter Sets Based on the 17 Sensitive Parameters Evaluated against NSE and FSS

Figure 5 illustrates the simulated spatial AET performance as a function of streamflow model
performance based on 1700 randomly generated parameter sets only constrained by the parameter
bounds and evaluated against observed streamflow and spatial patterns of AET. Only the results of
329 parameter sets from 1700 total random sample resulting a minimum NSE of 0.0 are shown in these
two plots, i.e., the left plot shows NSE vs. FSS and right plot shows NSE vs. EOF. In the generalized
likelihood uncertainty estimation (GLUE)-based uncertainty analysis framework, numerous random
parameter sets are sampled and, from those, only the parameter sets that deliver a performance level
that is above a predefined minimum threshold are retained and classified as behavioral models [61].
As a rule of thumb, 10% of the random parameter sets should be behavioral. Demirel et al. [62]
generated 120,000 parameter sets for a conceptual hydrologic model and around 10,000 (~9%)
parameter sets were selected using a threshold, i.e., NSE above 0.4. This performance measure has
been widely used in rainfall-runoff model optimizations and subsequent GLUE studies. Additional
performance measures can constrain the solution space and decrease the number of behavioral models.
Wambura et al. [26] showed that while 100 out of 1000 random parameter sets satisfied the hydrograph
performance evaluation based on NSE above 0.65 threshold, only 80 behavioral models could be
identified with two performance measures, i.e., NSE and index of volumetric fit. Similarly, in this
study, the behavioral models from a discharge criterion (NSE above 0.5) exhibited very different spatial
AET performances, varying from ~0.1 to ~0.8 for both FSS and EOF (Figure 5). Using a simple 10%
(~35 parameter sets) cutoff provided a subjective threshold value of above 0.5 for FSS and below 0.15
for EOF. Together with NSE above 0.5, these two thresholds enabled the identification of a more robust
selection of behavioral model regions, shown with a green box shown in Figure 5. It should be noted
that the number of runs that satisfy both spatial metrics and NSE is 20, which is considerably less
than using only one spatial metric. Both spatial metrics clearly indicate that the set of behavioral
models is narrowed considerably by adding spatial patterns to the definition of combined behavioral
threshold. Therefore, inclusion of MODIS AET to the sensitivity analysis only improves the quality
and robustness of the behavioral model selection. Moreover, the results from Figure 5 illustrate the
potential of spatial pattern evaluation to discriminate between behavioral parameter sets from more
than a pure NSE perspective and how it can minimize equifinality issues.
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Figure 5. Scatter plot of 329 (NSE > 0.0) model runs from a total of 1700 random parameter sets as a
function of spatial fit (a) FSS (b) EOF between remote sensing actual evapotranspiration and simulated
actual evapotranspiration from mHM. Green box in both figures shows the new behavioral regions
when spatial and temporal thresholds are applied together.
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5. Discussion

In this study, we identified important parameters for streamflow dynamics and spatial patterns of
AET by incorporating different spatial and temporal performance metrics in an LHS-OAT sensitivity
analysis combined with spatial sensitivity maps. We first analyzed the suitability of spatial performance
metrics for sensitivity analysis. The results suggest that a good combination of performance metrics
that are complementary should be included in a sensitivity analysis. Most importantly, the metrics
should be able to separate similar and dissimilar spatial patterns. We concluded this by benchmarking
a set of performance metrics against human perception, which is a reliable and well-trained reference
for comparing spatial patterns. Furthermore, redundant metrics need to be identified and excluded
from the analysis.

Another important point is that the modeler has to select or design a model parametrization
scheme that allows the simulated spatial patterns to change while minimizing the number of model
parameters. Otherwise, the efforts towards a spatial model calibration will be inadequate. Here,
the mHM model was selected due to its flexibility through the pedo-transfer functions.

Once the appropriate spatial performance metrics and model are selected, model evaluation
against relevant spatial observations can be conducted. We are aware that the use of another model
could lead to different sensitivities and thus different conclusions. Such modelling schemes can be
easily incorporated with any parameter sensitivity analysis. In our study, the identified parameters
that were sensitive to either streamflow or spatial patterns were used in a subsequent calibration
framework. With this study, we ensured that we selected the best combination of objective functions
for model calibration and simultaneously reduced the computational costs of model calibration by
reducing the number of model parameters.

Utility of the Multicriteria Spatial Sensitivity Analysis

To compensate the weakness of one-at-a-time perturbation, we incorporated different random and
behavioral initial sets in our study. This made the combined approach simple and robust when used
with appropriate multiple metrics. It should be noted that LHS-OAT has been validated in different
study areas [5,19]. Although the parameter interactions are not evaluated explicitly, the identified
parameters seem to be the most important and relevant parameters for calibration. This might stem
from the fact that parameters in mHM are not highly interacting with each other, as already shown in
Cuntz et al. [18]. The resultant maps in Figure 4 are instrumental in deciding which parameter has
a spatial effect on the results. The saturation after 20 initial sets (Figure 3) corresponds to 940 model
simulations (20 × 47), including 47 mHM parameters evaluated in LHS-OAT. These are much fewer
numbers of runs as compared to first and second order sensitivity analysis based on Sobol’s approach,
which requires a minimum of 104–105 model simulations [63,64]. The gain in computational costs is
mostly due to the fact that we are not mainly interested in quantitative sensitivity indexes but rather
the importance ranking of the model parameters. Here, we showed that the LHS-OAT method can
reduce the computational burden of the GSA methods such as Sobol’s.

In this study, we could exemplify the impact of selecting thresholds of 0.5 for FSS and 0.15 for
EOF on the selection of behavioral models, although it is recognized that these thresholds are case
specific and rather arbitrary. While the use of NSE for streamflow evaluation over the past five
decades has built familiarity with this metric and generated a consensus on thresholds for behavioral
models regarding streamflow, these thresholds are also arbitrary and differ slightly from one study to
another. It is anticipated that once the spatial metrics are used more often in hydrologic modelling
practices, expertise in identifying suitable performance metrics and threshold values for satisfying
spatial performances will grow. Particularly for the GLUE type uncertainty analysis methods and
other model calibration frameworks, a new spatiotemporal perspective for behavioral model definition
is indispensable. The framework described in this study does not aim at replacing discharge as a
hydrologic model evaluation target, however, it strongly encourages that spatial data on, e.g., AET,
are used in conjunction with point discharge data when evaluating distributed models. By gradually
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making spatial pattern evaluation an integral part of standard distributed model evaluation and
performance reporting, it is anticipated that the hydrologic community will build a similar familiarity
with spatial performance metrics as has been built with discharge metrics.

6. Conclusions

The effect of hydrologic model parameters on the spatial distribution of AET has been evaluated
with LHS-OAT method and maps. This was done to identify the most sensitive parameters to both
streamflow dynamics and monthly spatial patterns of AET. To increase the model’s ability to change
simulated spatial patterns during calibration, we introduced a new dynamic scaling function using
actual vegetation information to update reference evapotranspiration at the model scale. Moreover,
the uncertainties arising from random and behavioral Latin hypercube sampling were addressed.
The following conclusions can be drawn from our results:

• Based on the detailed analysis of spatial metrics, the EOF, FSS, and Cramér’s V are found to
be relevant (nonredundant) pairs for spatial comparison of categorical maps. Further, the PCC
metric can provide an easy understanding of map association, although it can be very sensitive to
extreme values.

• Based on the results from sensitivity analysis, vegetation and soil parametrization mainly control
the spatial pattern of the actual evapotranspiration in the mHM model for this study area.

• Besides, the interception, recharge, and geological parameters are also important for changing
streamflow dynamics. Their effect on spatial actual evapotranspiration pattern is substantial but
uniform over the basin. For interception, the lacking effect on the spatial pattern of AET is due to
the exclusion of rainy days in the spatial pattern evaluation.

• More than half of the 47 parameters included in this study have either little or no effect
on simulated spatial patterns, i.e., noninformative parameters, in the Skjern Basin with the
chosen setup. In total, only 17 of 47 mHM parameters were selected for a subsequent spatial
calibration study.

• The sensitivity maps are consistent with parameter types, as they reflect land cover, LAI, and soil
maps of the Skjern Basin.

• Combining NSE with a spatial metric strengthens the physical meaningfulness and robustness of
selecting behavioral models.

Our results are in line with the study by Cornelissen et al. [24] showing that spatial
parameterization directly affects the monthly AET patterns simulated by the hydrologic model.
Further, Berezowski et al. [5] used a similar sort of Latin hypercube one-factor-at-a-time algorithm
for sensitivity analysis of model parameters affecting simulated snow distribution patterns over the
Biebrza River catchment in Poland. However, to our knowledge, this is the first study incorporating
sensitivity maps with a wide range of spatial performance metrics. The LHS-OAT method is easy to
apply and informative when used with bias-insensitive spatial metrics. The framework is transferrable
to other catchments in the world. Even other metrics can be added to the spatial metric group if not
redundant with the current ones.
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Appendix A

Table A1. Comparison of sensitive parameters using different methods.

ID Parameter Description

Normalized Sensitivity

LHS-OAT
Random

LHS-OAT
Behavioral

KGE FSS KGE FSS

1 ptfhigconst Constant in pedo-transfer function (ptf) for soils with sand
content higher than 66.5% 0.394 0.207 0.367 0.19

2 ptfhigdb Coefficient for bulk density in pedo-transfer function for
soils with sand content higher than 66.5% 0.261 0.17 0.243 0.151

3 ptfksconst Constant in pedo-transfer function for hydraulic
conductivity of soils with sand content higher than 66.5% 0.366 0.003 0.765 0.005

4 ptfkssand Coefficient for sand content in pedo-transfer function for
hydraulic conductivity 0.469 0.005 1 0.006

5 ptfkscurvslp Exponent in pedo-transfer function for hydraulic
conductivity to adjust slope of curve 0.005 0.002 0.007 0.004

6 rotfrcoffore Root fraction for forested areas 1 1 0.746 1
7 rotfrcofperv Root fraction for pervious areas 0.03 0.008 0.024 0.01
8 infshapef Infiltration (inf) shape factor 0.051 0.008 0.06 0.011
9 ETref-a Intercept 0.383 0.052 0.388 0.056

10 ETref-b Base coefficient 0.165 0.021 0.176 0.022
11 ETref-c Exponent coefficient 0.046 0.008 0.047 0.011
12 slwintreceks Slow (slw) interception 0.113 0 0.236 0
13 rechargcoef Recharge coefficient (coef) 0.14 0 0.309 0
14 geoparam1 Parameter for first geological formation 0.13 0 0.081 0
15 geoparam2 Parameter for second geological formation 0.045 0 0.032 0
16 geoparam3 Parameter for third geological formation 0.175 0 0.105 0
17 geoparam4 Parameter for fourth geological formation 0.038 0 0.025 0
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