

WRF sensitivity experiments for the mesoscale NEWA wind atlas production run

Hahmann, Andrea N.; Witha, Björn; Sile, Tija; Dorenkaemper, Martin; Söderberg, Stefan; Navarro, Jorge ; Leroy, Grégoire; Folch, Arnau; Bustamante, Elena Garcia ; Gonzalez-Rouco, Fidel

Publication date: 2018

Document Version Peer reviewed version

Link back to DTU Orbit

Citation (APA):

Hahmann, A. N. (Author), Witha, B. (Author), Sile, T. (Author), Dorenkaemper, M. (Author), Söderberg, S. (Author), Navarro, J. (Author), ... Gonzalez-Rouco, F. (Author). (2018). WRF sensitivity experiments for the mesoscale NEWA wind atlas production run. Sound/Visual production (digital)

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

- · You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

WRF sensitivity experiments for the mesoscale NEWA wind atlas production run

Andrea N. Hahmann (<u>ahah@dtu.dk</u>)¹, Björn Witha², Tija Sile³, Martin Dörenkaemper⁴, Stefan Söderberg⁵, Jorge Navarro⁶, Grégoire Leroy⁷, Arnau Folch⁸, Elena Garcia Bustamante⁹, and Fidel Gonzalez-Rouco⁹

¹DTU, Wind Energy Department, Denmark (ahah@dtu.dk), ²ForWind, Oldenburg University, Germany, ³University of Latvia, Latvia, ⁴Fraunhofer IWES, Germany, ⁵WeatherTech, Sweden, ⁶CIEMAT, Spain, ⁷3E, Belgium, ⁸BSC, Spain, ⁹UCM, Spain

DTU Wind Energy Department of Wind Energy European Geophysical Union annual meeting, Vienna, Austria, 26 April 2018

The New European Wind Atlas (NEWA) project

Objectives:

- Accurate mapping of wind conditions for the estimation of wind resources and loads
- > Development and testing of the "modelchain"
- A series of field atmospheric experiments to validate the models and the final atlas

http://www.neweuropeanwindatlas.eu

Green – NEWA member countries Red – field experiments sites

Mean wind speed at 100 m AGL

DTU

Phase0: Sensitivity experiments

Phase0: NEWA WRF sensitivity experiments

Objectives:

- Homogenize the expertise of the various participating groups
- Investigate model sensitivity and whether it is homogeneous across different European wind climates
- Year-long (2015) simulations for five different regions in Europe
- Two PBL parameterizations and
- Two integration methods

PBL	Method		
MYNN	36 hours simulation, 12 hours spin-up/	MYNN - daily	MYNN - weekly
YSU	8 days simulation, 1 day spin-up, nudging D1	YSU - daily	YSU- weekly

4/26/2018

DTU Wind Energy, Technical University of Denmark

4/26/2018

1

0.9 0.8 0.7 0.6 0.5 0.4

0.3 0.2 0.1 -0.1 -0.2 -0.3 -0.4

-0.5 -0.6 -0.7

-0.8 -0.9 -1

DTU Wind Energy, Technical University of Denmark

DTU Wind Energy, Technical University of Denmark

4/26/2018

0.7

0.65

0.6 0.55 0.5 0.45 0.4 0.35

0.3

0.25

0.2

0.15

0.1

0.05

0

Phase1: Model evaluation

Phase1: Evaluation of sensitivity experiments

Table: Sites used in the wind speed verification

Site	Туре	Heights (m AGL)	
FINO1	Offshore	100, 90, 80, 70, 60,	
		50, 40, 33 m	
FINO2	Offshore	102, 92, 82, 72, 62,	
		52, 42 m	
FINO3	Offshore	106, 100, 90, 80, 70,	
		60, 50, 40, 30 m	
Høvsøre	Coastal	116.5, 100, 80,	
		60, 40, 10 m	
Risø	Land	125, 118, 94, 77, 44 m	
Østerild	Land	244, 210, 178, 140,	
		106, 70, 40, 10 m	
Cabauw	Land	200, 140, 80, 40, 20, 10 m	1
IJmuiden	Offshore	315, 290, 265, 240, 215,	1
		190, 165, 140, 115, 89,	
		58, 27 m	

	Cabauw	FINO1	FINO2	HNO3
	250 OBS MYNL61S1 MYNL61W1 YSUL61S1 YSUL61W1 200	250 OBS MYNL6151 MYNL61W1 YSUL61S1 200 YSUL61W1	OBS MYNL61S1 MYNL61W1 YSUL61S1 YSUL61S1 YSUL61W1 YSUL61W1	250 OBS MYNL6151 MYNL61W1 YSUL61S1 200 YSUL61W1
	E 150 tig e	(월 150	E 150	E 150
٦,	50			50
	4 6 8 10 Wind speed (m/s) Hovsore	4 6 8 10 Wind speed (m/s) Jmuiden	4 6 8 10 Wind speed (m/s) Oesterild	4 6 8 10 Wind speed (m/s) Risoe
	OBS OBS MYNL61S1 MYNL61W1 YSUL61S1 YSUL61W1 YSUL61W1	250 OBS MYNL61S1 MYNL61W1 YSUL61S1 200 YSUL61W1	OBS MYNL61S1 MYNL61S1 YSUL61S1 YSUL61S1 YSUL61S1 YSUL61W1	250 OBS MYNL61S1 MYNL61W1 YSUL61S1 YSUL61S1 YSUL61W1
/	(آی 150 بون پر اون پر اون	Ê 150 <u><u><u></u></u> <u><u><u></u></u> <u><u></u></u> <u><u></u></u> <u>100</u></u></u>		(Ê 150 Height 100 ■
/				

PBL	Method			
MYNN	36 hours simulation, 12 hours spin-up/			
YSU	8 days simulation, 1 day spin-up, nudging D1			
MYNN, daily		MYNN, weekly		
MYNLO	MITINLOISI MITINLOIWI			
YSU, daily MYNL61S1		YSU, weekly YSUL61W1		

Phase1: NW WRF sensitivity experiments

Table: NW/MYNL61W1 sir

RUN name	version	note
MYNL61W1	3.6.1	con
MYNL61W1_V381	3.8.1	sam
MYNL61W1_V391	3.9.1	sam
MYNL61W1_2WAY	3.8.1	two
MYNL61W1_ERA_0p25	3.8.1	ERA
MYNL61W1_ERA_1p00	3.8.1	ERA
MYNL61W1_MERRA2	3.8.1	ME

V3.6.1

Cabauw FINO1 FINO2 FINO3 OBS OBS OBS OBS • 250 250 250 250 MYNL61W1 MYNL61W1 MYNL61W1 MYNL61W1 MYNL61W1 2WAY MYNL61W1 2WAY MYNL61W1 2WAY MYNL61W1 2WAY MYNL61W1 ERA5 0p25 MYNL61W1 ERA5 0p25 MYNL61W1_ERA5_0p25 MYNL61W1_ERA5_0p25 e MYNL61W1 ERA5 1p00 MYNL61W1 ERA5 1p00 MYNL61W1 ERA5 1p00 MYNL61W1 ERA5 1p00 200 200 200 200 MYNL61W1 MERRA2 MYNL61W1 MERRA2 MYNL61W1 MERRA2 MYNL61W1 MERRA2 MYNL61W1 V391 — MYNL61W1 V391 MYNL61W1 V391 — MYNL61W1 V391 height (m) 120 height (m) 120 Ê 150 Ê 150 height height 100 100 100 100 Λ 50 50 50 50 10 10 10 10 4 6 4 4 8 Wind speed (m/s) Wind speed (m/s) Wind speed (m/s) Wind speed (m/s) Hovsore IJmuiden Oesterild Risoe OBS OBS OBS OBS 250 250 250 250 MYNL61W1 MYNL61W1 MYNL61W1 MYNL61W1 MYNL61W1 2WAY MYNL61W1 2WAY MYNL61W1 2WAY MYNL61W1 2WAY MYNL61W1 ERA5 0p25 MYNL61W1 ERA5 0p25 MYNL61W1 ERA5 0p25 MYNL61W1 ERA5 0p25 MYNL61W1_ERA5_1p00 MYNL61W1_ERA5_1p00 MYNL61W1_ERA5_1p00 MYNL61W1_ERA5_1p00 200 200 200 200 MYNL61W1 MERRA2 MYNL61W1 MERRA2 MYNL61W1 MERRA2 — MYNL61W1 MERRA2 MYNL61W1 V391 — MYNL61W1 V391 MYNL61W1 V391 MYNL61W1 V391 height (m) 120 height (m) 120 height (m) 120 Ê 150 height • 100 100 100 100 50 50 50 50 . 10 10 10 10 6 8 6 8 4 8 8 4 6 Wind speed (m/s) Wind speed (m/s) Wind speed (m/s) Wind speed (m/s)

Main differences come

from WRF V3.8.1 vs

New simulations

Fixes to WRF V3.8.1, bl_mynn_mixlength=0, COARE OPT=3.0 (sfc layer)

DTU

Validation of regional simulations: Temporal Variability

Phase2: Optimal domain size

Phase2: NEWA-Light experiments What is the optimal size of the domains?

Difference from SM long simulations Annual mean wind speed (m/s), Height: 100 m

Annual mean wind speed bias, $(\overline{U}_{WRF} - \overline{U}_{OBS})/\overline{U}_{OBS}$

6°E

site	height	worst	bias	best	bias
	(m)	sim	(%)	sim	(%)
FINO1	100	MD-D1	8.8	SM-L1	7.1
FINO2	102	LG-L1	13.5	SM-L1	9.3
FINO3	100	LG-L1	6.4	SM-L1	2.7
Høvsøre	100	LG-D1	3.2	SM-L1	0.7
Risø	94	LG-L1	10.1	SM-L1	6.8
Østerild	106	LG-L1	16.4	SM-L1	13.0

Smaller domains give better results

but

Is the location of the inflow conditions that is important?

Phase3: Beta production run

With this in mind...

- Common effort to start simulations waiting for the PRACE application response
- Ten domain NEWA light configuration
 - All domains share the same outer domain, so that the inner grids are coincidental
 - Each European country is contained solely within one domain, except for Sweden, Norway and Finland.
- 13 months (June 2016-June 2017) simulation for BA, FR, GR, IB, IT, SA, and TR at DTU
- 8 years for CE, 8 years for GB at Oldenburg
- 3 years for SB at DTU
- 1 year for IB at CIEMAT

Phase4: Planning for production run Table 2: Table showing the mesoscale fields and quantities to be served by NEWA.

• 56,700,000 CPU hours granted for the next year at BSC MareNostrum4

Field	Quantity	Time interval means	Heights [m]
Power	(long-term mean)	Static (all sector	(10,50,75,100,150,200,250, 500
density		sum)	
	Sectorwise frequency	Static	10,50,75,100,150,200,250, 500
	distribution		
Horizontal	Long-term mean wind	Static	10,50,75,100,150,200,250, 500
winds	speed		
	Sectorwise wind speed	Static	10,50,75,100,150,200,250, 500
	frequency distribution		
	Sector frequency	Static	10,50,75,100,150,200,250, 500
	distribution (wind rose)		
	Wind speed time series	30-min & 1-monthly	10,50,75,100,150,200,250, 500
	Wind direction time series	30-min & 1-monthly	10,50,75,100,150,200,250, 500
Roughness	Long-term mean value		Surface
length			
Surface	Long-term mean value		Surface
elevation			
Friction	Time series	30-min & 1-monthly	
velocity			
Air	Long-term mean	Static	2,50,75,100,150,200,250, 500
temperatur	Time series	30-min & 1-monthly	2,50,75,100,150,200,250, 500
e			
Air	Long-term mean	Static	Surface
pressure	Time series	30-min & 1-monthly	Surface
Air density	Long-term mean	Static	Surface
	Time series	30-min & 1-monthly	Surface
sTurbulenc	Long-term mean	Static	50,75,100,150,200,250, 500
e intensity	Time series	30-min & 1-monthly	50,75,100,150,200,250, 500
(TKE as			
proxy)			
Specific	Long-term mean	Static	
humidity	Time series	30-min & 1-monthly	Surface layer
Inverse M-	Long-term mean	Static	
0 length	Time series	30-min & 1-monthly	Surface layer
Boundary	Long-term mean	Static	-
layer height	Time series	30-min & 1-monthly	-