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Extinction of Zika Virus and Usutu Virus by Lethal
Mutagenesis Reveals Different Patterns of Sensitivity
to Three Mutagenic Drugs

Maria Rosaria Bassi,a Raquel Navarro Sempere,a Prashansa Meyn,a Charlotta Polacek,b Armando Ariasa

aTechnical University of Denmark, National Veterinary Institute (DTU Vet), Kemitorvet, Lyngby, Denmark
bStatens Serum Institut, Copenhagen, Denmark

ABSTRACT Flaviviruses constitute an increasing source of public health concern,
with growing numbers of pathogens causing disease and geographic spread to tem-
perate climates. Despite a large body of evidence supporting mutagenesis as a con-
ceivable antiviral strategy, there are currently no data on the sensitivity to increased
mutagenesis for Zika virus (ZIKV) and Usutu virus (USUV), two emerging flaviviral
threats. In this study, we demonstrate that both viruses are sensitive to three ribo-
nucleosides, favipiravir, ribavirin, and 5-fluorouracil, that have shown mutagenic
activity against other RNA viruses while remaining unaffected by a mutagenic deo-
xyribonucleoside. Serial cell culture passages of ZIKV in the presence of these com-
pounds resulted in the rapid extinction of infectivity, suggesting elevated sensitivity
to mutagenesis. USUV extinction was achieved when a 10-fold dilution was applied
between every passage, but not in experiments involving undiluted virus, indicating
an overall lower susceptibility than ZIKV. Although the two viruses are inhibited by
the same three drugs, ZIKV is relatively more susceptive to serial passage in the
presence of purine analogues (favipiravir and ribavirin), while USUV replication is
suppressed more efficiently by 5-fluorouracil. These differences in sensitivity typically
correlate with the increases in the mutation frequencies observed in each nucleoside
treatment. These results are relevant to the development of efficient therapies based
on lethal mutagenesis and support the rational selection of different mutagenic
nucleosides for each pathogen. We will discuss the implications of these results to
the fidelity of flavivirus replication and the design of antiviral therapies based on le-
thal mutagenesis.

KEYWORDS 5-fluorouracil, Usutu virus, Zika virus, error threshold, favipiravir,
flavivirus, lethal mutagenesis, mutation frequency, ribavirin

Human disease caused by flaviviruses represents a growing source of global health
concern, with elevated numbers of deaths and cases of severe disease (1, 2). The

incidence of flavivirus-related disease has increased during recent years. This is possibly
related to multiple environmental and socioeconomic factors, such as long-distance
spread of pathogenic flaviviruses (e.g., introduction to a different continent) and
broader dissemination in temperate climate regions (1, 3, 4). Despite having had limited
relevance to public health prior to 2007 (only 14 cases reported), recent large epidemics
of Zika virus (ZIKV) in Asia and the Americas have had a major socioeconomic impact.
It is estimated that there have been over 1 million cases of infection, leading to several
thousand people suffering from severe disease (2, 5). In addition to severe neurological
conditions, such as Guillain-Barré syndrome and congenital microcephaly, a wide range
of disorders linked to the establishment of persistent infection in different tissues have
been documented (6–10).

Without attracting the same level of attention as ZIKV, other emerging flaviviruses
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are affecting an increasing number of people. In particular, viruses infecting birds, such
as West Nile virus (WNV) and Usutu virus (USUV), have been related to recent cases of
neurologic disease in temperate countries (11–14). Increased incidence of flaviviral
disease seems to be connected to climate change and its impact on the migratory
dynamics of birds and the geographic spread of mosquito vectors (15–18). USUV has
caused recent epidemics in birds across Europe, with elevated mortality in some
species, such as blackbirds, owls, and other wild and captive animals (15, 19). Recent
sporadic cases of human disease geographically connected to these outbreaks are
raising concerns of USUV becoming a potential threat to global health (11, 13, 15, 18,
20–24).

Lethal mutagenesis has long been proposed as a broad-spectrum strategy to control
viral infections, with recent data supporting its feasibility and efficacy in vivo (25, 26).
The rationale for antiviral therapies based on mutagenesis stems from theoretical
studies by Eigen and colleagues (27, 28). These investigations led to the proposal that
the elevated error frequencies during RNA virus replication are in the proximity of a
maximum tolerated value for viability, namely, the error threshold (28–30). Mutation
rates beyond this value would be incompatible with maintaining meaningful genetic
information, and thus virus propagation, leading to the extinction of the population in
a process known as error catastrophe (28–30). The theory was empirically proven using
mutagenic agents that induce increased mutation frequencies in viruses (31–34). A vast
repertoire of molecules that exert broad-spectrum antiviral activities linked to viral
mutagenesis have been identified, including nucleoside and nonnucleoside com-
pounds (25, 32, 35–40). Mutagenic nucleosides can be incorporated into newly syn-
thesized viral RNA genomes after their intracellular conversion into phosphorylated
nucleoside analogues (32, 41–46).

Some of these compounds are currently used at the clinical level; e.g., ribavirin has
been extensively used for the treatment of hepatitis C virus (HCV) infection, and
favipiravir (also known as T-705 and commercialized as Avigan), has been trialed
against influenza virus and Ebola virus disease (45, 47–49). Several recent studies have
indicated an association between mutagenesis and antiviral activity in vivo. We have
demonstrated that the ribonucleoside favipiravir can cure persistent murine norovirus
infection in the mouse intestine. This antiviral activity is accompanied by increased
mutation frequency and decreased specific infectivity, both signatures of error catas-
trophe, in samples isolated preceding complete viral clearance (25). Additional evi-
dence of antiviral mutagenesis in vivo has been obtained from the analysis of HCV-
infected patients treated with ribavirin (50). Larger mutation frequencies accompanied
by decreased specific infectivity were also observed in Hantaan virus recovered from
infected mice treated with ribavirin (26). Several other studies have provided additional
indirect proof of antiviral mutagenesis in vivo, further stimulating the development of
therapies based on this strategy (51–58).

Several nucleoside analogues have demonstrated antiviral activities against a broad
number of flaviviruses, which include ZIKV and WNV (59–65). In particular, ribavirin and
favipiravir efficiently inhibit ZIKV infection in different cell culture systems, including
human neuronal progenitor cells (59). A correlation between the antiviral activity
elicited by these molecules and larger mutation frequencies has been observed for
some flaviviruses (62, 63, 65, 66). However, the possible mutagenic activity of these
molecules on ZIKV and USUV has not been yet investigated. It also remains unclear
whether two different although related pathogens can have different responses to the
treatment with the same mutagenic compounds or whether they show distinct sensi-
tivity to them. This information could be relevant in the design of broad-spectrum
antiviral therapies against the flaviviruses based on lethal mutagenesis.

Here, we examine the antiviral activities displayed by three nucleoside analogues, all
licensed for human use, in cell culture infection with ZIKV and USUV. We observe that
ribavirin, favipiravir, and 5-fluorouracil are all inhibitors of both ZIKV and USUV, and that
consecutive passage of virus in the presence of these drugs can lead to the complete
extinction of infectivity. Notably, the efficacies of these drugs vary depending on the
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virus. The molecules exhibiting better antiviral efficacies are typically associated with
higher mutagenicity of the corresponding virus. However, the relative increases in
mutation frequency observed for each drug treatment differ in USUV and ZIKV. We
observed the highest mutation frequencies in ZIKV when treated with ribavirin and
favipiravir, and in USUV when treated with 5-fluorouracil. The relevance of these results
to a better understanding of flavivirus replication, genetic diversity, and the develop-
ment of prospective antiviral therapies will be discussed.

RESULTS
Zika virus replication is suppressed by different ribonucleoside analogues. To

investigate whether ZIKV replication could be affected by increased mutagenesis, we
tested four different compounds known to be mutagenic for diverse viruses,
5-fluorouracil, ribavirin, favipiravir, and decitabine (25, 32, 35, 37–39). Decitabine is an
inhibitor of human immunodeficiency virus (39, 67). Its antiviral activity has been
associated with lethal mutagenesis, and it is possibly related to the incorporation of the
phosphorylated deoxyribonucleoside derivative into viral cDNA during reverse tran-
scription (39, 67). We have included this analogue as a negative control for antiviral
mutagenesis in our RNA viral targets, as it is not predicted to be a substrate of RNA
polymerases. We first investigated the toxicities of these compounds on Vero cells (Fig.
1). Only prolonged treatments with 5-fluorouracil (48 h) led to cell death rates above
20%. The remaining drugs only showed modest or no effect on cellular viability even
after prolonged exposures to the highest concentration tested (800 �M).

Treatment of infected cells with all the ribonucleosides, i.e., favipiravir, ribavirin, and
5-fluorouracil, led to significant inhibition of ZIKV replication (Fig. 2). These molecules

FIG 1 Cell toxicity after treatment with nucleoside drug analogues. The toxicities of decitabine,
5-fluorouracil, favipiravir, and ribavirin upon Vero cells were scored using trypan blue under the
microscope. Different concentrations of each drug (200 �M, 400 �M, and 800 �M) were applied to
individual cell monolayers. Cell viability values for untreated cell cultures are included in the analysis
(represented as 0 �M drug concentration). Cell viability was quantified by determining the proportion of
live cells (white) relative to the total (white and blue) in each well. The percentages of live cells after 24
h (A) and 48 h (B) of exposure to each drug at the concentrations indicated are represented. Statistical
significant differences in viability rates found in treated cells relative to untreated cell cultures are
indicated (*, P � 0.05; ***, P � 0.001; 2-way ANOVA).

Lethal Mutagenesis of Flaviviruses Antimicrobial Agents and Chemotherapy

September 2018 Volume 62 Issue 9 e00380-18 aac.asm.org 3

 on S
eptem

ber 11, 2018 by guest
http://aac.asm

.org/
D

ow
nloaded from

 

http://aac.asm.org
http://aac.asm.org/


exhibited similar antiviral activities when using an epidemic strain isolated in the
Americas (Asian lineage; Fig. 2A) and an African isolate (Fig. 2B). As predicted, decit-
abine showed no effect on ZIKV replication, further supporting the idea that the
antiviral activity elicited by the ribonucleosides is directly related to their incorporation
by the viral RNA polymerase (Fig. 2C). Further analysis of ZIKV replication kinetics in the
presence of different concentrations of each drug suggests that these molecules exhibit
a similar inhibitory capacity. However, favipiravir seems to elicit a stronger inhibitory
activity than ribavirin and 5-fluorouracil when higher concentrations are used (Fig. 2D
to F).

Favipiravir, ribavirin, and 5-fluorouracil cause effective ZIKV extinction after
serial passage in Vero cells. We further analyzed the antiviral efficacies of these drugs
against ZIKV during prolonged treatment by testing their capacity to abolish infectivity
during consecutive viral passages in cell culture. Sequential infections of ZIKV in the
presence of these drugs resulted in a total loss of infectivity when a final concentration
of 800 �M was used (except for decitabine; Fig. 3). The complete extinction of ZIKV
infectivity was replicated in three independent lineages of passages in each drug (Fig.
3D and G). Favipiravir eliminated ZIKV in a faster manner (undetectable viral levels
reported after 4 passages for all the three independent lineages) than ribavirin and
5-fluorouracil (all three lineages were extinct after 5 passages). The extinction of ZIKV
populations in these samples was confirmed by performing an additional blind passage
in cell culture in the absence of mutagens (data not shown). We did not observe any
detectable infectivity or viral RNA in the samples recovered, confirming that these three

FIG 2 Favipiravir, ribavirin, and 5-fluorouracil inhibit ZIKV replication. (A and B) ZIKV titers obtained after infection of confluent Vero cell
monolayers in the absence (drug concentration of 0 in the abscissa) or presence of each drug at the concentrations indicated. Cells were
infected at an MOI of 0.01 and the supernatants collected at 32 h postinfection for titration. (A) ZIKV of Asian lineage (strain PRVABC59);
(B) ZIKV African lineage (strain MR 766). Statistically significant differences are highlighted with asterisks (**, P � 0.01; ***, P � 0.001; 2-way
ANOVA). Every value represents the average of the results from at least three biological replicas (� standard error of the mean [SEM]).
Decitabine (DEC) values are shown as black bars, 5-fluorouracil (FU) as dark gray, ribavirin (RBV) as light gray, and favipiravir (FAV) as white
bars. (C) Replication kinetics of ZIKV (Asian lineage, strain PRVABC59) in the presence of different concentrations of decitabine (DEC). Every
value represents the average from virus titer determinations of at least three independent biological replicas (� SEM). Each symbol
illustrates a different concentration of decitabine used in the assay, as follows: diamond, 200 �M; inverted triangle, 400 �M; black circle,
800 �M. (D to F) Replication kinetics of ZIKV (Asian lineage) in the presence of FU (dark-gray squares), RBV (light-gray triangles), and FAV
(white inverted triangles) are compared to those in untreated infected cultures (white circles, dashed lines). Every value is obtained from
the analysis of at least three biological replicas (� SEM). Each panel depicts viral replication kinetics in the presence of inhibitors at
different concentrations, 200 �M (D), 400 �M (E), or 800 �M (F).
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nucleosides completely eliminate ZIKV infectivity. Serial passage of ZIKV in cells treated
with ribavirin or favipiravir at lower concentrations (100 to 400 �M) also resulted in a
gradual decrease in infectivity, with the two drugs presenting similar efficacies (Fig. 3A
to C, E, and F). Unlike favipiravir and ribavirin, ZIKV exhibited lower susceptibility to
passages in the presence of 5-fluorouracil, suggesting that this molecule is a weaker
inhibitor or mutagen for this virus. As anticipated, decitabine had no effect on infec-
tivity, as the viral titers measured during serial transfers were similar to those found in
passages of virus in the absence of drug (Fig. 3D and G). A typical signature of lethal
mutagenesis is that viral populations isolated in passages preceding extinction show
reduced specific infectivity (30, 68). To investigate whether ZIKV populations treated
with these compounds manifested any alteration in their specific infectivity values, we
determined the proportion of infectious particles relative to the total number of viral
RNA molecules in the sample. We confirmed that viral populations rescued after
treatment with all three drugs exhibited lower specific infectivity than the untreated
viruses, and most significantly those treated with favipiravir (Fig. 4).

USUV shows a different sensitivity pattern to nucleoside analogues from that
with ZIKV. To elucidate whether these drugs are also broadly effective against other
flaviviruses, we analyzed their antiviral activity on Vero cells infected with USUV. All
three nucleosides (favipiravir, ribavirin, and 5-fluorouracil) that inhibited ZIKV replica-
tion also manifested antiviral activity on USUV (Fig. 5). Likewise, treatment with
decitabine exhibited no effect on USUV replication (Fig. 5B and C). In contrast to what
we had observed with ZIKV, 5-fluorouracil was the most effective compound against
USUV (Fig. 5). Single-cycle infection kinetics experiments with drugs at 800 �M revealed
that 5-fluorouracil antiviral activity becomes more prominent at later replication time
points (Fig. 5A). This is also observed when the same drugs are tested against USUV
during multiple cycles of infection (infections at low multiplicity of infection [MOI]). The

FIG 3 Favipiravir, ribavirin, and 5-fluorouracil cause efficient extinction of ZIKV during serial passages in cell culture. ZIKV was serially passaged in the absence
(black circles, dashed lines), or in the presence of mutagenic drugs at 100 �M (A), 200 �M (B and E), 400 �M (C and F), or 800 �M (D and G). Three independent
lineages of passages were performed for each drug and concentration tested. Serial passages were carried out with 100 �l of the cell culture supernatant
recovered from the previous infection passage (corresponding to 1/10 of the total volume collected). The different graphs show the virus titers determined by
TCID50 assay (A to D) and the genome copy equivalents obtained by quantitative PCR (qPCR) assays (E to G) that were found along serial passages of ZIKV. A
black diamond represents ZIKV titers found in the supernatants of cultures treated with decitabine (DEC); dark-gray squares illustrate 5-fluorouracil (FU)-treated
series; light gray triangles, ribavirin (RBV); and white inverted triangles, favipiravir (FAV). Every value represents the average of virus titrations or viral genome
copy equivalents (gRNA eq) from at least three biological replicas obtained from independent series of passages (� SEM). In panel D, individual values obtained
from each lineage are represented to better illustrate independent events of virus extinction.
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relative activity of 5-fluorouracil compared to those of ribavirin and favipiravir is
substantially larger at 48 h than at 24 h (Fig. 5B and C). This observation may be in
agreement with a larger accumulation of mutations during larger number of replication
cycles taking place during 48 h.

Serial passage of USUV in the presence of each ribonucleoside drug led to sustained
decreases in virus titers but not to complete viral extinction (Fig. 6A). Virus lineages
treated with ribonucleosides showed significantly lower titers (3 to 4 log10 on average)
than during passages in decitabine or in the absence of drug. The lowest values were
observed in the presence of 5-fluorouracil, further suggesting that this compound is
most effective against USUV during serial passage in cell culture (Fig. 6A).

The apparent lower susceptibility to nucleoside analogues in USUV than in ZIKV
could be related to generally larger virus yields in infections with USUV. Previous
studies on unrelated foot-and-mouth disease virus (FMDV) suggested that the efficacy
of lethal mutagenesis can be affected by the viral load; hence, extinction will be favored
when the infection is initiated with a lower viral dose (33). Thus, we decided to
investigate whether passages at a lower infectious dose may also facilitate USUV
extinction. We found that all three ribonucleoside analogues (800 �M) can reproducibly
drive USUV to extinction in four independent replicas when a 10-fold dilution was
applied before each transfer (Fig. 6B). Viral sample dilution during sequential passages
in the absence of drugs or in the presence of decitabine did not affect infectivity (virus
titers in the range of 106 to 108 50% tissue culture infective dose [TCID50] per ml; Fig.
6B). When drugs were used at a lower concentration (400 �M), the complete elimina-
tion of USUV was only observed in some sporadic cases. Both ribavirin and
5-fluorouracil caused USUV extinction in two out of three lineages, while favipiravir
never led to the complete loss of infectivity in any of three series analyzed (not shown).
Further analysis revealed that treatment with 5-fluorouracil resulted in significantly
larger decreases in virus titers than passages in the presence of other drugs at 400 �M
(Fig. 5C; at passage 3, P � 0.01 for ribavirin versus 5-fluorouracil, and P � 0.001 for
ribavirin versus favipiravir, 2-way analysis of variance [ANOVA]).

Differences in sensitivities to nucleoside analogues in USUV and ZIKV are
associated with alterations in their mutational patterns. To investigate whether
the antiviral activities observed during treatment with favipiravir, ribavirin, and
5-fluorouracil are connected to their predicted mutagenic activity, we analyzed the
mutation frequencies of both ZIKV and USUV rescued after 5 passages in the presence
of these compounds. Since treatment at high concentrations (400 and 800 �M) resulted
in a rapid loss of ZIKV infectivity, we isolated and analyzed viral RNA from the
supernatant of infected cells after 5 consecutive passages during exposure to drugs at
200 �M (Fig. 3 and 7). Both favipiravir- and ribavirin-treated virus populations displayed

FIG 4 ZIKV populations passaged in cell cultures treated with mutagenic compounds exhibit decreased specific infectivity. Specific infectivity values were
calculated as the ratio of infectious virus units (TCID50) to viral genome copies (quantified by qPCR) in every biological sample. (A) Values found in untreated
populations (black bars) or populations treated with FU (dark-gray bars), RBV (light gray), or FAV (white) during three passages in the presence of each drug
at 800 �M. The values are the averages of the results from three independent biological replicas (� SEM). (B to D) The values found during 5 consecutive
passages in untreated populations (black circles) or populations treated with each mutagen at different concentrations (200 �M [light-gray squares] or 400 �M
[white circles]) are represented. Each graph illustrates independent values obtained in three independent lineages for each drug and concentration tested,
5-fluorouracil (B), ribavirin (C), and favipiravir (D). Statistically significant differences are represented (*, P � 0.05; **, P � 0.01; ***, P � 0.001; 2-way ANOVA).
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significantly higher mutation frequencies (P � 0.001; Mann-Whitney test for the distri-
bution of mutations per clone) than those untreated or isolated after treatment with
5-fluorouracil or decitabine. These results are in agreement with the relative antiviral
efficacy of each nucleoside drug (Fig. 3 and 7A). The highest mutation frequencies were
observed in the ribavirin- and favipiravir-treated ZIKV population (7- and 4-fold higher
than in untreated virus, respectively). This positively links antiviral activity with mu-
tagenesis, as the largest decreases in ZIKV titers observed during serial passages in the

FIG 5 Mutagenic nucleosides inhibit USUV replication in Vero cells. (A) Single-cycle replication kinetics
of USUV treated with FU (dark-gray squares), RBV (light-gray triangles), or FAV (white inverted triangles)
at 800 �M each, compared to that of untreated virus. Vero cells were inoculated at an MOI of 5 TCID50

per cell. Cellular supernatants were collected at different time points after infection. Every value in the
graph is the average of the results from at least three biological replicas (� SEM). (B and C) USUV titers
obtained after multiple rounds of virus replication in Vero cells in the absence (0) or presence of
increasing concentrations of each drug. To ensure that the virus titers are the result of several rounds of
replication, we employed a low MOI to infect the cells (0.1 or 0.01). Statistically significant differences are
represented (**, P � 0.01; ***, P � 0.001; 2-way ANOVA). Each value in the graph is calculated as the
average virus titer obtained from at least three independent biological replicates (� SEM). Virus titers
obtained in infected cells treated with DEC are represented as black bars, titers in FU-treated cells are in
dark gray, RBV cells are in light gray, and FAV cells are in white. (B) Vero cell monolayers were infected
at an MOI of 0.1 and supernatants collected for titration at 24 h postinfection. (C) Supernatants of
infected cells were collected for virus titer analysis at 48 h postinfection. To ensure that virus titers were
obtained during the exponential-growth phase, we used an MOI of 0.01 instead of 0.1.
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presence of each drug (at 200 �M) were observed with ribavirin and favipiravir (Fig. 3B
and E and 7A). In the 5-fluorouracil-treated population, we only found a modest (2-fold)
increase in the mutation frequency (Fig. 7A), reflecting the milder antiviral behavior of
this compound. Treatment with decitabine did not significantly alter the mutation
frequency (Fig. 7A), further suggesting that this compound is not affecting RNA
replication.

Similarly, we found that the largest mutation frequencies in USUV were observed in
populations collected after serial passage in the presence of 5-fluorouracil (Fig. 6. and
7B). Viral populations recovered after 5 passages in the presence of 5-fluorouracil (800
�M) showed 6-fold larger mutation frequencies than USUV passaged in the absence of
drug. Ribavirin and favipiravir led to modest increases in the mutational loads, also in
agreement with their milder antiviral activities against USUV (2 and 3-fold, respectively;
Fig. 6 and 7B).

Further analysis revealed the expected transition biases typically found in viruses
treated with the same drugs (25, 30, 33, 35, 69–72). Thus, we observed slightly higher
rates of G-to-A and C-to-U transitions in viruses treated with favipiravir, while the
opposite changes (A-to-G and U-to-C) were identified in 5-fluorouracil-treated viruses
(Tables 1 and 2). The only exception to these typical transition mutational patterns was
obtained in ZIKV populations treated with ribavirin (Table 1), with higher frequencies in
A-to-G and U-to-C nucleotide substitutions (when the [A-to-G � U-to-C]/[G-to-A �

C-to-U] ratio is 2). In contrast, USUV treated with ribavirin exhibited the expected
mutational bias, with larger numbers of G-to-A and C-to-U transitions (Table 2).

DISCUSSION

Lethal mutagenesis has been posited as an alternative strategy to the current
therapies based on classical antiviral drugs. Several lines of evidence sustain that the
antiviral properties of ribavirin and favipiravir in vivo can be, at least in part, connected
to their mutagenic activity (25, 26, 50). These data encourage further study on the
development of antiviral compounds with reduced toxicity, improved pharmacokinet-
ics, and higher specificity for the viral polymerases (25, 26, 50). In this study, we have
investigated the sensitivity to mutagenesis of two flaviviruses that have recently
emerged as serious threats to public health, ZIKV and USUV. Both pathogens were
highly sensitive to the exposure of three mutagenic nucleosides, i.e., 5-fluorouracil,

FIG 6 Extinction of USUV by nucleoside drugs requires viral sample dilution during serial transfers. (A) Passage of USUV in cells cultured in the
presence of mutagenic drugs at 800 �M. In each passage, 100 �l of neat sample collected from the previous infection was applied to a new
monolayer of cells. The bars are the average of titers obtained from four independent series. The values show the evolution of infectivity in cells
treated with FU (gray), RBV (light gray), FAV (white), and DEC (dark gray), as well as in untreated cells (black). (B) FAV, RBV, and FU can lead USUV
to extinction during serial passage of diluted viral samples. In each passage, 100 �l of a 10-fold diluted sample collected from the previous
passage was applied to the following infection round. Different symbols in the graph show the evolution of infectivity in cells treated with FU
(dark-gray squares), RBV (light-gray triangles), FAV (white inverted triangle), and DEC (black diamond) at a concentration of 800 �M. Virus titers
in untreated USUV cultures are also represented (black circle). Individual values obtained from four independent lineages are represented to
better illustrate independent events of virus extinction (two lineages for DEC). (C) Same as in panel B, but a concentration of 400 �M was used
for each drug treatment on three independent lineages (DEC was not tested at this concentration).
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favipiravir, and ribavirin, although they exhibited different degrees of susceptibility to
them. ZIKV was inhibited more efficiently by ribavirin and favipiravir, while USUV
replication was affected to a greater extent by 5-fluorouracil. These inhibition profiles
correlate with the relative increase in the mutation frequencies observed in populations
rescued after treatment, supporting the idea that their antiviral efficacy is closely
associated with their mutagenic activity.

A possible explanation for the different sensitivities of USUV and ZIKV to mutagenic
drugs is that the molecular determinants that regulate nucleotide recognition and
discrimination in their respective polymerases vary. As for other RNA viruses, flavivirus
genome replication is an error-prone process catalyzed by the viral polymerase con-
tained in the nonstructural protein 5 (NS5) (64, 73–77). Even though further analysis is
needed to confirm this possibility, our data suggest that ZIKV is more prone to
misincorporate purine analogues, such as ribavirin and favipiravir, while USUV shows a
preference for pyrimidine substrates, like 5-fluorouracil. If certain, this information could
be instrumental in the rational screening of nucleoside analogues to effectively control
each flavivirus. Many recent studies have contributed to the better understanding of

FIG 7 Treatment with mutagenic nucleosides leads to an increase in the mutation frequencies of ZIKV
and USUV populations. Mutation frequencies found in ZIKV (A) and USUV (B) populations are represented
as the average number of nucleotide substitutions identified every 10,000 nucleotides analyzed. (A) To
analyze the ZIKV mutation profile, we isolated individual sequences from samples recovered after five
passages in the presence of 200 �M 5-fluorouracil (FU), favipiravir (FPV), or ribavirin (RBV), 800 �M
decitabine (DEC), or in the absence of any drug. Total viral RNA was extracted and RT-PCR amplified, and
the individual cDNA sequences were isolated by cloning in the pCR-Blunt cloning vector following
procedures described in Materials and Methods. A total of 29,818, 23,120, 22,497, 27,476, and 20,558
nucleotides (nt) for populations recovered after passage in the presence of no drug, DEC, FU, FAV, and
RBV, respectively, were sequenced. (B) Mutation frequencies in USUV populations isolated after 5
passages in the presence of each drug at 800 �M. The mutation frequency values are based in the
analysis of a total of 45,337, 33,947, 34,453, 34,218, and 25,897 nucleotides in populations collected after
passage in the presence of no drug, DEC, FU, FAV, and RBV, respectively. Statistically significant increases
compared to untreated populations are indicated (*, P � 0.05; ***, P � 0.001; Mann-Whitney U test).
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the molecular biology of ZIKV replication, including the structural and biochemical
characterization of the viral polymerase NS5 (74–78). However, there is limited knowl-
edge on USUV replication, with no molecular data on its viral polymerase. Future
studies are thus needed to elucidate the molecular determinants responsible for the
different sensitivities of these flaviviruses to mutagenic nucleosides.

Additional evidence hinting at molecular differences in ZIKV and USUV polymerase
fidelity can be inferred from the mutation patterns found in viral populations after
treatment with ribavirin (Tables 1 and 2). We observed the typical dominance of G-to-A
and C-to-U transitions in USUV and an unexpected prevalence of the opposite transi-
tion types in ZIKV (the [G-to-A � C-to-U]/[A-to-G � U-to-C] ratios were 4 and 0.5 for
USUV and ZIKV, respectively). It has been suggested that the larger proportion of G-to-A
and C-to-U transitions in viruses treated with ribavirin (included USUV) is possibly
connected to the additive effect of mutagenesis by incorporation of ribavirin-
triphosphate into viral RNA and depleted intracellular GTP pools as a consequence of
inosine-5=-monophosphate dehydrogenase (IMPDH) inhibition by ribavirin (69, 79, 80).
Although ribavirin-triphosphate is efficiently incorporated during viral RNA synthesis
opposite to U and C, in such a low intracellular GTP concentration scenario, it may be
preferentially incorporated opposite to C, hence leading to those biases (79). The
dominance of A-to-G and U-to-C mutations in ribavirin-treated ZIKV populations sug-
gests that its polymerase may be favoring a different base pairing behavior of ribavirin
than in other viruses with independence on intracellular nucleotide pools. Other
plausible scenarios may include differences in host cell rearrangements that indirectly
affect virus mutability by the same drugs (e.g., alterations in the expression of cellular
proteins associated with nucleotide uptake and its metabolism). Further investigations
are needed to clarify the mechanism underlying these differences.

We deem that this study can stimulate an additional investigation on the therapeu-
tic value of mutagenic drugs against flaviviruses and, in particular, for the treatment of

TABLE 1 Mutation types found in ZIKV populations treated with different drugs

Druga

No. of mutations
in each
population

No. of nucleotides
sequenced in
each population

No. of mutations by typeb Transition frequency (10 � �4)c

A to G U to C G to A C to U Tv A to G U to C G to A C to U

No drug 5 29,818 2 0 1 0 2 2.7 �1.5 1.2 �1.4
DEC 6 23,120 2 1 2 1 0 3.4 1.9 3.1 1.7
FAV 18 27,476 1 5 5 4 4 1.5 8.2 6.6 5.9
RBV 26 20,558 8 6 2 5 5 15.4 13.1 3.5 9.8
FU 9 22,497 4 1 2 1 1 7.0 2.0 3.2 1.8
aZIKV populations were serially passaged five times in the absence of drug (no drug) or in the presence of either decitabine (DEC), favipiravir (FAV), ribavirin (RBV), or
5-fluorouracil (FU) at a concentration of 200 �M.

bDifferent type of mutations found in the analysis. Given are the number of times that each transition type is found in the analysis. Tv indicates the number of
transversions found in the analysis.

cTransition frequencies found in populations treated with mutagenic drugs. These numbers have been normalized to the nucleotide composition in the sequenced
amplicon. Highlighted in bold is the most frequent transition in each sample.

TABLE 2 Mutation types found in USUV populations treated with different drugs

Druga

No. of mutations
in each
population

No. of nucleotides
sequenced in
each population

No. of mutations by typeb Transition frequency (10 � �4)c

A to G U to C G to A C to U Tv A to G U to C G to A C to U

No drug 8 45,337 2 1 2 0 3 1.8 1.0 1.6 �0.9
DEC 8 33,947 1 2 0 2 3 1.2 2.6 �1.1 2.4
FAV 20 34,218 3 5 5 6 1 3.5 6.4 5.2 7.2
RBV 11 25,897 0 2 4 4 1 �1.5 3.4 5.5 6.4
FU 37 34,453 10 15 1 3 8 11.5 19.2 1.0 3.6
aUSUV populations were serially passaged five times in the absence of drug (no drug) or in the presence of either decitabine (DEC), favipiravir (FAV), ribavirin (RBV), or
5-fluorouracil (FU) at a concentration of 800 �M.

bDifferent type of mutations found in the analysis. Given are the number of times that each transition type is found in the analysis. Tv indicates the number of
transversions found in the analysis.

cTransition frequencies found in populations treated with mutagenic drugs. These numbers have been normalized to the nucleotide composition in the sequenced
amplicon. Highlighted in bold is the most frequent transition in each sample.
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persistent flaviviral disease (8, 81–83). Mutagenic drugs seem to be especially effective
against persistent infections, with major evidences of lethal mutagenesis obtained
during treatment of chronically infected hosts, i.e., HCV-infected patients treated with
ribavirin, and mice persistently infected with norovirus and treated with favipiravir (25,
50). A tentative explanation for the better efficacy of mutagenic drugs in this context
may be linked to potentially larger accumulation of mutations during longer periods of
exposure to drugs (68, 84). A vast range of flavivirus-associated disorders have been
connected with persistent infection, including ZIKV (8, 81–83, 85). ZIKV infects a broad
range of cell types and tissues, including the reproductive tract and the central nervous
system (8, 82, 85). Persistent replication in these tissues has been connected to diverse
severe conditions, such as end-organ disease, platelet-related illness, and potentially
blinding uveitis (8). Persistent ZIKV in the reproductive tissue is possibly responsible for
a growing number of cases of sexually transmitted disease, with some studies predict-
ing that this may become a major route of infection in the future (10, 86–92). Vaginal
mucosa infection has also been related to fetal infection, further highlighting the
impact of ZIKV persistence in the genital tract (9, 93). It is therefore tempting to
investigate the potential therapeutic value of lethal mutagenesis in the treatment of
persistent infection in the reproductive tract mucosa.

It remains unclear whether ribavirin and favipiravir will elicit efficient antiviral
mutagenesis in the central nervous system (CNS), with recent data showing different
efficacies of these drugs in neuron-derived cell culture systems. While some studies
demonstrate that ZIKV replication remains unaffected by these drugs in stem cell-
derived neurons, other investigations have proven their inhibitory activity during the
treatment of neural progenitor cell lines (59, 60). The different efficacies of these
molecules could be linked to possible divergences in the cellular uptake or metabolism
of nucleoside drugs in these cell lines. Thus, for the control of neurotropic disease, it
would be desirable to identify mutagenic compounds with improved pharmacological
properties in the CNS. Alternatively, a combination of mutagenic drugs that are
effective in controlling the infection outside the CNS (favipiravir, ribavirin, and
5-fluorouracil), together with effective inhibitors in the neuronal tissue (60, 94–96),
could lead to improved approaches to control ZIKV hidden in different body compart-
ments.

Our study also encourages the investigation of 5-fluorouracil as a therapeutic drug
for the control of USUV infection in an eventual epidemic spillover to humans. Al-
though severe disease in humans is rare, there is growing evidence that cases of
neurologic disorders associated with USUV have been historically misdiagnosed as
WNV (22, 97). The diagnosis of disease caused by USUV is further complicated by the
resemblance of pathology to WNV cases and the serological cross-reactivity in diag-
nostic tests (11, 13, 18, 22–24, 97, 98). A mouse model for USUV infection has been
recently established, and it represents a valuable tool to test the in vivo antiviral effect
of 5-fluorouracil or novel antivirals (98, 99). These studies can be extended to the
potential treatment of severe disease caused by closely related flaviviruses, such as
WNV and Japanese encephalitis virus, for which antiviral therapies are not available.

MATERIALS AND METHODS
Cells, viruses, and protocols for infections. We used two different ZIKV strains purchased from the

American Type Cell Culture (ATCC). The majority of the experiments described in this paper were
performed with an isolate from the Asian lineage, collected during the recent epidemics in the Americas
(strain PRVABC59, Puerto Rico, 2015, ATCC reference number VR-1843). In addition, for some experiments
indicated here, we used the first ZIKV strain ever isolated as our reference African lineage virus (Uganda,
1947, strain MR 766, ATCC reference number VR-1838). The USUV strain (939/01) used in this study was
initially isolated from infected birds in Austria in 2001 and was kindly provided by Giovanni Savini, Istituto
G. Caporale, Italy (100).

We used African green monkey kidney epithelial cells (kindly provided by Sylvie Lecollinet, ANSES,
France), namely, Vero cells, for ZIKV and USUV propagation, titration, and viral infections in the presence
or absence of mutagenic compounds. Viral infections were performed as follows: on the day preceding
virus inoculation, we seeded 24-well plates with 4 � 105 cells per well in the presence of 1 ml of complete
medium containing 5% (vol/vol) fetal bovine serum (FBS; Sigma), 100 units/ml penicillin-streptomycin
(Thermo Fisher), and 1 mM HEPES in high-glucose Dulbecco’s modified Eagle medium (DMEM; Thermo
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Fisher). Cells were incubated overnight at 37°C with a 5% CO2 concentration. On the following day, the
supernatant was removed from each plate and replaced with 250 �l of fresh medium containing 1% FBS.
Then, 100 �l of virus sample (ZIKV or USUV) was applied to the cell monolayer at the multiplicity of
infection (MOI) indicated, and virus adsorption was allowed for 1 h at 37°C with 5% CO2. The inoculum
was removed and the cells washed with complete medium to eliminate unattached virus. Cells were then
covered in 1 ml of medium containing 1% FBS, and supernatants from infected cultures collected at
different time points.

Virus titration. Virus samples were titrated by 50% tissue culture infectious dose (TCID50) assays. To
this aim, 104 Vero cells in 100 �l were seeded in 96-well plates in the presence of medium containing
1% FBS. On the following day, 100 �l of 10-fold serial dilutions of each sample was applied to each well,
reaching a final volume of 200 �l. The virus titers were determined by scoring the number of infected
wells showing apparent cytopathic effect at 4 to 5 days postinfection, and using the Spearman & Kärber
algorithm (101).

Cell culture infections in the presence of antiviral compounds. For infections in the presence of
drugs, cell culture supernatants were removed, and 250 �l of 1% FBS complete medium containing 100
to 800 �M decitabine (5-aza-2=-deoxycytidine; Selleckchem), 5-fluorouracil (2,4-dihydroxy-5-fluoropyrimi-
dine; Sigma-Aldrich), ribavirin [1-(�-D-ribofuranosyl)-1H-1,2,4-triazole-3-carboxamide; Sigma-Aldrich], or
favipiravir (6-fluoro-3-hydroxy-2-pyrazinecarboxamide; Atomax) was added to each well. Cells were then
inoculated with 100 �l of virus at the MOI indicated for each experiment in the corresponding section
and incubated for 1 h at 37°C and 5% CO2. Supernatants were removed, cells were washed to eliminate
unattached virus, and 1 ml of fresh medium (1% FBS) containing each drug at the desired concentration
was added. Cell culture supernatants were collected at 24 to 48 h postinfection for subsequent analyses.

For experiments involving serial passage of viruses in the presence of nucleoside analogues, the first
infection with ZIKV or USUV was carried out at an MOI of 0.1 TCID50/cell. In sequential passages, 100 �l
of neat virus from the supernatant of the previous passage (which represents 1/10 of the total volume
collected) was applied to a new monolayer of cells. For experiments involving transfers of diluted USUV,
we used in each transfer 100 �l of a preparation containing a 10-fold dilution of the viral sample
collected in the previous passage, as described in previous work (25).

Viral RNA extraction, reverse transcription-PCR amplification, and mutation frequency analy-
sis. Viral RNA was extracted from 100 �l of viral sample supernatants using the GeneJET RNA purification
kit (Thermo Fisher). For the calculation of mutation frequency values, we followed previously described
protocols (25, 102, 103). Briefly, 4 �l of purified RNA was reverse transcribed in 20 �l final volume using
SuperScript III (Roche), as indicated by the manufacturer. Three microliters of cDNA was then PCR
amplified using high-fidelity KOD polymerase (Toyobo). To this aim, we used primers spanning genomic
positions 2976 to 3009 and 5052 to 5074 in USUV and 6465 to 6486 and 7646 to 7677 in ZIKV. PCR
products were gel purified using the PureLink Quick gel extraction kit (Invitrogen) and then ligated into
plasmid PCR Blunt using the Zero Blunt PCR cloning kit (Thermo Fisher). Positive E. coli colonies were
identified by PCR screening with primers flanking the vector-cloning site and DreamTaq DNA polymerase
(Thermo Fisher). The resulting PCR products, corresponding to individual ZIKV or USUV cDNA clones,
were Sanger sequenced and the mutation frequency in each population calculated.

Quantitative PCR analysis of virus populations. The number of ZIKV genomic RNA molecules in
different biological samples was quantified using primers and a FAM-TAMRA (6-carboxyfluorescein– 6-
carboxytetramethylrhodamine) probe targeting the ZIKV E gene (positions 1214 to 1244), following
protocols previously described (93). For the amplification protocol, we used TaqMan Fast Virus 1-step
master mix (Thermo Fisher) and one-step reaction reverse transcription-PCR (RT-PCR) amplification
conditions, with a reverse transcription step (30 min at 48°C), followed by 1 min of incubation at 95°C
and 40 amplification cycles of 15s at 95°C and 1 min at 60°C. For the quantification of USUV RNA, we used
a FAM-TAMRA probe targeting the NS5 gene (positions 9297 to 9318) and primers previously described
(104). The same RT-PCR cycle amplification protocol described above for the detection of ZIKV was used
for USUV.

Statistical analysis. Statistical significance was assessed using GraphPad Prism 7, as specified in the
figure legends. For the statistical analysis of mutation frequencies, we employed a Mann-Whitney test
that compares the ranked scores of the number of mutations found in individual clones grouped by
population, as previously described (105).
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