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The characteristic functionality of ferroelectric materials is due to the symmetry of their 

crystalline structure. As such, ferroelectrics lend themselves to design approaches that 

manipulate this structural symmetry by introducing extrinsic strain. Using in-situ dark-field x-

ray microscopy to map lattice distortions around deeply embedded domain walls and grain 

boundaries in BaTiO3, we reveal that symmetry-breaking strain fields extend up to several 

micrometers from domain walls. As this exceeds the average domain width, no part of the 

material is elastically relaxed, and symmetry is universally broken. Such extrinsic strains are 

pivotal in defining the local properties and self-organization of embedded domain walls, and 

must be accounted for by emerging computational approaches to material design.  

  



Extrinsic strains (defined here as any strain in addition to the spontaneous strain) are ubiquitous in 

ferroelectrics because they are inherent to atomic defects [1], dislocations [2] and internal interfaces 

such as domain walls [3], grain boundaries [4], and regions connecting epitaxial layers [5]. Since the 

extrinsic strain tensor is rarely parallel to the spontaneous strain tensor at any given position in the 

material, their superposition usually reduces local symmetry. This symmetry lowering can be 

significant: even small distortions of the lattice destabilize the structure in such a way as to facilitate 

rotation of the polarization [6] which, in some cases can enhance piezoelectric coefficients by up to 

an order of magnitude [7]. Strain gradients also lead to flexoelectric effects [8] that can give rise to 

nano-scale photoelectricity and electrical conductivity [9]. More often, however, the uncontrolled 

presence of defects and their strain fields degrade macroscopic properties by pinning domain walls 

and suppressing polarisation switching [10]. Whether strain will inhibit or enhance functionality 

hinges on its magnitude, orientation, symmetry and spatial distribution within the bulk material. 

Exploiting local strain fields thus requires the ability to spatially resolve and quantify them at the 

nano-scale within the interior of bulk, macroscopic samples.  

Quantitative strain mapping in bulk ferroelectrics 

There are several techniques for mapping strain with high spatial resolution, but stringent sample 

requirements mean these measurements typically occur under boundary conditions not representative 

of the bulk material. Transmission electron microscopy (TEM) can resolve atomic displacements 

[11], but requires sub-100 nanometer-thick samples in which the probed volume is effectively 

unconstrained in the direction perpendicular to the surface. Similarly, piezoresponse force 

microscopy [12] and electron back-scatter diffraction microscopy [13] are surface sensitive 

characterization techniques that do not penetrate the bulk. Comparing strain measurements obtained 

under different mechanical boundary conditions is inherently problematic because strain fields 

strongly depend on whether the sampling volume is relaxed or constrained – an issue reflected in the 

disparate predictions and measurements of domain wall widths made since the 1950s [14]. The lack 

of bulk sensitive characterization tools is particularly crucial for commercially applicable materials 

where strain-generating defects and interfaces are typically embedded and constrained by 

neighbouring grains, domains or clamping effects from substrates or electrodes [15].  

Directly measuring the spatial distribution of embedded strain fields requires methods that are 

penetrating, non-destructive and able to resolve the relevant length scales (i.e. sub-µm). However, 

existing scanning-beam x-ray microscopy techniques are slow and therefore limited to surfaces [16], 

small sampling volumes [17] or reduced resolution [18]. Here, we use dark-field x-ray microscopy 

[19] - a recent full-field imaging technique for rapidly and quantitatively mapping strain and 



orientation around embedded interfaces. We directly measure the magnitude and distribution of axial 

strain and lattice misorientation around grain boundaries and ferroelastic domain walls within a 

buried grain of barium titanate (BaTiO3) ceramic, and record in situ the evolution of the embedded 

domain structure and its local changes in symmetry under electric fields.  

Identifying symmetry breaking in a BaTiO3 polycrystal 

BaTiO3 is a prototypical ferroelectric and ferroelastic perovskite with well-known structural and 

functional properties. It has tetragonal crystal symmetry at room temperature, electrically polarized 

domains in <001> directions and atomically coherent ferroelastic domain walls along {110} planes 

(i.e. 90° walls). Hence, diffraction measurements of BaTiO3’s {00l} lattice planes should result in a 

reciprocal space map in which the l00, 0l0 and 00l peaks are distinctly separated by the angle 𝛾 =

2tan'((𝑐 𝑎⁄ ) − 90° ≈ 0.5°, defined by the ratio of the tetragonal lattice parameters, a and c. 

However, our preliminary reciprocal space measurement (i.e. not spatially resolved) of an embedded 

grain within a BaTiO3 ceramic shows this is not strictly the case (Figure 1). In addition to the three 

primary peaks (marked i), the reciprocal space map shows additional complexity, including: ii) 

additional peaks separated by g, iii) additional peaks not separated by g, and iv) diffuse intensity 

between these peaks. While ii) is evidence of multiple twinning [20], iii) and iv) indicate local 

deviations of g that break the nominal tetragonal symmetry. These indicators of broken symmetry 

have been observed in x-ray reciprocal space maps of ferroelectric films [21] and single crystals [22], 

where they were attributed to domain walls. Similarly, grain boundaries also locally break symmetry 

and contribute to the x-ray intensity distribution. However, neither Figure 1 nor previous results 

provide the spatial distribution of these strain and misorientation fields. 

 

Figure 1. Conventional x-ray diffraction measurement of a single embedded crystallite of 

BaTiO3. In the diffraction geometry (A), the angles α, β and 2θ correspond to the grain tilt around 



the scattering vector, Q002 (which for small angles is approximately equal to the misorientation) and 

scattering angle (see Methods for further details). X-ray integrated intensity maps for the α-β and α-

2θ planes (B) of the 3D intensity distribution (shown in Supplementary Figure 1). Unstrained 90° 

walls with the nominal tetragonal symmetry should produce distinct Bragg peaks separated in α and 

β by the angle g, marked here by i (primary peaks) and ii (secondary peaks from multiple twinning). 

The additional peaks and diffuse intensity, marked by iii and iv, respectively cannot be accounted for 

by a consistent tetragonal symmetry. 

Mapping strain and structure with dark-field x-ray microscopy 

To establish the topological origin of the symmetry breaking, we recorded a magnified real-space 

image of the same embedded BaTiO3 grain (Figure 2A) by placing an x-ray objective lens in the 

Bragg-diffracted beam between the sample and detector. This technique – dark-field x-ray 

microscopy [19] – is analogous to dark-field transmission electron microscopy, but with the ability 

to penetrate millimeter-sized samples. When the sample is illuminated with a one-dimensionally 

focused planar beam, full-field images correspond to a two dimensional “slice” through the embedded 

grain. In addition to creating the magnified image, passing the diffracted x-rays through the x-ray 

objective lens also avoids the blurring from strain observed in conventional x-ray section topography 

and excludes stray diffraction signals from other grains in the sample. Scanning the sample tilt (a,b) 

and scattering (2q) angles, we were able to reconstruct maps of the local {002} lattice spacing (e33 

strain component) (Figure 2B) and orientation (Figure 2C) with a spatial, orientation and strain 

resolution of 100-200 nanometers, 1 milliradian and 10-5, respectively [23]. While only the axial 

strain is measured directly, the assumption of a coherent lattice implies that the two components of 

lattice inclination (i.e. a,b) correspond to in-plane gradients of additional strain components. 



 

Figure 2. Cross-sectional dark-field x-ray microscopy maps of the embedded BaTiO3 grain. 

Individual domains are visible in the integrated intensity image (A), while the reconstructed strain 

(B) and lattice orientation (C) maps reveal the structural relationship between domain clusters. Local 

orientation (α,β) is read from the colour key (D), where the integrated diffraction intensity distribution 

is superimposed as a contour map. Boundaries (black lines) in (A), (B) and (C) are defined by local 

orientation gradients exceeding 0.5˚/µm.  

Correlating strain and topology 

The 93 micrometer-wide grain has faceted boundaries surrounded by a strained region approximately 

5 micrometres thick. As such, the peripheral region is subject to heterogeneous stress from the grain 

boundary, whereas the stress in the interior region is widely considered homogeneous [24]. This 

interior region has a complex domain structure qualitatively consistent with simulations of sheared 

[25] and isolated volumes [26], and surface measurements of large grains and single crystals [17]. 

This complex domain structure is also classically hierarchical: Individual micrometer-sized domains 

are organized in 5-10 micrometer clusters, which in turn have a lamellar arrangement within the grain 

(Figure 2A). The strain distribution (Figure 2B) is correlated with the domain structure, with larger 

strain magnitudes associated with <110>-oriented domain walls than <010>-oriented domain walls. 

Neighbouring lamellae separated by <110> or <010> -oriented domain walls differ in orientation by 



~g (0.3-0.5°) (Figure 2C, with colour key in Figure 2D), and are therefore both 90° domain walls. 

These strain fields overlap and result in a highly inhomogeneous distribution of strain and strain 

gradients across the full width of the grain.  

The maps contain three types of structural interface, exemplified in Figure 3: in-plane 90° (where 

both polarization vectors lie in the observation plane), <110>-oriented ferroelastic domain walls 

characterized by a sharp interface and high-magnitude strain fields extending the full width of the 

domain (~5 µm) (Figure 3A); out-of-plane 90° (where at least one polarization vector has a 

component normal to the observation plane), <010>-oriented ferroelastic domain walls characterized 

by a diffuse interface and lower magnitude strain fields extending a similar distance (Figure 3B); and 

grain boundaries, which typically have longer-range strain and orientation gradients up to 5-10 µm 

from the boundary (Figure 3C). Significantly, the domain walls also contain kinks and bends, which 

are correlated with these strain and orientation gradients. 

 

Figure 3. Local lattice distortions around embedded structural interfaces. Quantitative maps of 

local axial strain, axial strain gradient, flexoelectric polarization, orientation and reciprocal space 

maps corresponding to 90° (in-plane) domain walls (A), 90° (out-of-plane) domain walls (B) and 

grain boundaries (C). These three types of interfaces have characteristic diffraction intensity 

distributions closely resembling the additional peaks observed in the Figure 1B-C.  

Correlating strain, symmetry and functional response  



The widespread correlation between long-range gradients in strain and orientation implies that the 

local symmetry in the grain is predominantly triclinic – the lowest possible symmetry. Continuous 

orientation gradients signify a bending strain and an out-of-plane strain gradient. When this overlaps 

with the observed in-plane strain gradient, the strain state is triaxial. Simulations of complex 

nanodomain topologies predict that the non-local interaction of triaxial strain fields will result in long-

range strain fields with 1/r3 decays that extend approximately ten times further than the intrinsic strain 

fields of the domain walls [25]. Similarly, the strain fields created at the tips of needle domains are 

also long-ranging and independent of the intrinsic properties of the domain walls [27,28]. However, 

these predictions are commonly limited to specific topologies and/or sub-micrometer simulation 

volumes; our measurements suggest that embedded strain fields in bulk materials extend orders of 

magnitude further, and into the macroscopic regime.  

But how do such long-range strain fields influence the piezoelectric and ferroelectric response?  

Strain gradients can locally rotate the spontaneous polarization through flexoelectricity [8]. In PbTiO3 

thin films, flexoelectrically-induced rotations of the spontaneous polarization of up to several degrees 

have been measured within a few nanometers of domain walls [21]. In highly-strained BiFeO3 films, 

flexoelectricity and symmetry lowering were associated with an enhanced piezoresponse around 

strained nano-sized regions of monoclinic phase in the rhombohedral matrix [29]. In contrast, the 

gradients observed in Figure 3 have a much smaller magnitude (and thus smaller rotation), but extend 

an order of magnitude further from domain walls. This does not preclude much larger rotations at 

length scales below our spatial resolution (such as in [21]). However, the large spatial extent of the 

strain gradients observed here mean that non-uniform polarization rotations occur statically 

throughout the entire grain. 

Strain also influences local ferroelectric and piezoelectric properties by changing the stability of the 

ferroelectric phase [6]. When the extrinsic strain is oblique to the spontaneous strain, the symmetry 

is lowered and the stability of the ferroelectric structure is reduced. Often viewed as a flattening of 

the free-energy profile, such destabilization is known to permit field-induced rotations of the 

spontaneous polarization [6]. Thermodynamic calculations predict enhancement of d33 and 

permittivity by more than an order of magnitude for large electric fields [6], while a ten-fold 

enhancement of d33 along nonpolar directions has been observed in relaxor ferroelectrics at small 

electric fields where the structural distortion (presumed to be due to the destabilization of the 

rhombohedral and tetragonal structures) and ensuing polarization rotations are relatively small [30].  



Extrinsic strains parallel to the spontaneous strain have the converse affect; stabilizing the 

ferroelectric structure and reducing piezo- and ferroelectric properties [6]. Therefore, a 

polycrystalline ceramic containing complex domain patterns will invariably have regions in which 

properties are enhanced and inhibited. The final macroscopic properties will reflect the ensemble 

average of these regions. These local properties and phenomena are therefore expected to broadly 

deviate from ideal behaviour over length scales on the order of the strain fields (1-5 µm).  

Figures 2 and 3 show clear evidence of pervasive symmetry breaking. A reason this has not been 

observed previously is that most conventional techniques are not sensitive to local symmetry in bulk 

samples. For example, powder diffraction measurements of BaTiO3 typically identify the average 

crystal symmetry at room temperature as tetragonal, not triclinic [31]. However, grain-scale 

mechanical interactions may locally break the crystal symmetry inferred from the powder-averaged 

aggregate [32]. Figures 2 and 3 show the topological origin of this anomaly; strain gradients in many 

directions that, when averaged over many grains within the aggregate, result in isotropic peak 

broadening and diffuse scattering that obscures the true local symmetry. 

Long-range symmetry breaking during electrical poling 

The universal strain inhomogeneity we observe may also affect the bulk switching processes that 

underlie many ferroelectric applications. Structural distortions at homo-interfaces such as domain 

walls and grain boundaries can alter domain wall mobility [33] and, in extreme cases, induce 

correlated switching across clusters of grains [34]. Furthermore, electron microscopy experiments 

[35] and first principles simulations [36] suggest that point defects preferentially migrate towards 

strained regions where they potentially become domain wall pinning centres. Orientation maps of the 

same grain were therefore measured in situ while the electric field was incremented through four 

critical points of the electric-field-induced ferroelectric response (Figure 4). Importantly, the 

measurement of a 93 micrometre-wide grain means that the reconfiguration of domains is expected 

to be observable both inside and outside the heterogeneously stressed region of the grain boundaries. 



  

Figure 4. Changes to the domain topology and orientation distribution in the embedded BaTiO3 

grain during the in situ application of a unipolar electric field cycle along the <100> direction. 

Orientation maps (top) and diffraction intensity distributions (bottom) are shown for four points on a 

characteristic polarization (P) vs. applied electric field (E) hysteresis curve: the initial zero-field state 

(1); at the coercive field (2) where most domain switching occurs; at twice the coercive field (3) 

where the induced polarization is saturated; and in the remanent state after the removal of the electric 

field altogether (4). Videos of the domain evolution as a function of field are available in the 

Supplementary Materials. 

The electric field causes a transformation from a complex domain structure to a classical stripe pattern 

with a strong preference for <001>-oriented domain variants (coloured pink). As expected, wall 

density decreases, the number of distinct orientations decreases, and domain walls appear mobile (i.e. 

unpinned) during this poling process. When applying an electric field along a symmetry axis, one 

would not expect additional symmetry lowering. We observe, however, that the orientation 

relationships between domains become progressively less consistent with the nominal tetragonal 

symmetry. Both the orientation intensity distributions and the deviation of the domain wall 

orientations from their ideal <110> and <010> directions are consistent with local deviation of the 

domain wall angle g, and that the grain-scale average symmetry is lowered.  

The poling process favours non-ideal domain orientations despite the increase in strain energy that 

presumably accompanies them. Since the external field was approximately parallel to the <001> 

lattice direction of the grain, the unexpected domain pattern must be a consequence of changing grain-

scale electromechanical boundary conditions during and after poling. The growth of large domains 

and their piezoelectric and ferroelastic distortions cause increased stresses and depolarization fields 



at grain boundaries. Since these fields are heterogeneous, they induce abnormal domain 

configurations and widespread symmetry lowering within neighbouring grains. Grain-resolved x-ray 

diffraction experiments [32] and multi-scale simulations [37] show clear and significant variation in 

the electromechanical responses of individual grains. Our domain-resolved measurements indicate 

this variation is due to extrinsic constraints from domains, domain walls and grain boundaries.  

Conclusions and outlook 

A clear picture now emerges of how local extrinsic strains affect the ferroelectric topology and 

response of embedded grains and volumes. We have shown that strained neighbourhoods surrounding 

embedded grain boundaries and domain walls extend up to several micrometres - approximately an 

order of magnitude further than many simulations of nano-scale complex domain topologies have 

predicted [25,27]. These micrometer-range strain fields drastically alter the symmetry of entire grains 

and, presumably, their ensuing local electromechanical response to applied electric fields. This 

implies macroscopic behaviour is not strictly defined by the nominal symmetry, but fundamentally 

affected by local heterogeneities deep within the bulk material. These include widespread networks 

of strain gradients, which may give rise to local flexoelectric effects. Proposals to utilize domain 

walls to induce polarization rotation [21] may then be realized using much lower domain wall 

densities than currently thought. 

These results are particularly relevant to multiscale material simulation and design approaches [38]. 

Instead of systematizing features of the average structure, these approaches should account for the 

heterogeneous variation of symmetry – and therefore fundamental behaviour – throughout the bulk 

material. For ferroelastic ceramics, models should simultaneously incorporate nanoscale domain 

walls, their microscale strain fields, and the effects of their long-ranging symmetry breaking on the 

macroscopic electromechanical response. This is a major challenge, as the bottom-up approaches 

needed to accurately model nanoscale phenomena are not feasible at the macroscale. Multiscale 

modelling approaches [37,38] may be able to reproduce the long-range strain fields we observe, and 

should be considered in future theoretical work. However, the formulation and validation of such 

models requires multiscale experimental data, particularly during in-situ and dynamic conditions. The 

ability to measure quantitative maps of orientation and strain in 3D using dark field x-ray microscopy 

is a significant advance in this regard, and major improvements in resolution and speed are expected 

with the unprecedented increase in brilliance and coherence from upcoming fourth generation 

synchrotron sources [39]. Such multiscale data could be used to directly fit physical parameters for 

materials models, creating an opportunity to accurately simulate - and ultimately harness - the 

complex multiscale topologies arising from deeply embedded domains, twins and grain boundaries. 



Methods 

Methods, including statements of data availability and any associated accession codes and references, 

are available at XXX. 
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Methods 

Sample preparation. BaTiO3 ceramic pellets were prepared by sintering BaTiO3 powder (99.5 %, > 

2 µm particle size, Sigma Aldrich) at 1300 °C for 20 hours. The density was 99% of theoretical and 

the average grain size was 100 µm. Rectangular plates were cut from these pellets and mechanically 

polished to final dimensions of 10 ´ 4 ´ 0.16 mm3. After polishing, they were annealed at 400 °C and 

air-cooled to ambient temperature. Electrodes of silver paste (RS Components) were painted on both 

10 ́  4 mm2 surfaces. The sample was then glued to the sample stage and copper electrical connections 

using the same silver paste. 

X-ray diffraction measurements. All measurements were carried out at the hard x-ray microscope 

at ID06 of the European Synchrotron Radiation Facility (ESRF). An x-ray energy of 17 keV was 

used, with a bandwidth of 10-5 (rms) selected by a Si 111 double monochromator. A Be transfocator 

[40] 20 m from the undulator pre-focused the x-rays into a Si compound refractive lens [41] located 

38 m downstream. The Si lens focused in the vertical direction only with a focal length of 22 cm. The 

beam profile at the focal point was approximately Gaussian, with dimensions of 200 µm (horizontal) 

´ 200 nm (vertical), confirmed by knife scanning. The sample and its environment were positioned 

at this focal point such that the beam entered the sample at the approximate centre of the 10 ´ 4 mm2 

face connected to the positive electrical terminal. At this position, a grain was located with a {200} 

scattering vector approximately perpendicular (within 5°) to both the electric field and the horizontal 

plane. CCD detectors were then positioned to image the {200} Bragg peak at a distance of 5.5 m 

from the sample. The sample geometry is identical to the diffraction geometry given in Figure 1A of 

the main text, albeit with the x-ray objective lens placed in the diffracted beam path, approximately 

25 cm from the sample. A detailed schematic of this geometry is also given in Simons et al. [19]. 

Reciprocal space maps. The reciprocal space maps used a Basler CCD camera and the optics 

necessary to produce a circular 50 mm field of view with 54 µm pixels. This field of view sampled 

approximately 2.22° in b and 0.55° in 2q in each image. Exposures of 1 second were recorded while 

incrementally tilting the a angle through 0.6° in 500 steps. These image series were then digitally 

interpolated into linear a-b-2q space. 

Dark-field x-ray microscopy. The dark-field x-ray microscopy measurements required inserting an x-

ray objective lens and a higher-resolution CCD camera into the diffracted beam path. The x-ray 

objective comprised a Be compound refractive lens with a focal length of 25 cm, which gave an x-

ray magnification of 15.9´ at a numerical aperture of 5´10-4. The FReLoN CCD camera used a LAG 

scintillator and a 10´ microscope objective yielding an effective pixel size of 1.4µm. Combined, the 



dark-field microscope had a spatial resolution of approximately 100 nm (horizontal) ´ 200 nm 

(vertical) ´ 200 nm (depth). Image acquisition consisted of recording a 3 second exposure as the 

sample was progressively tilted through α and β, and the objective and detector tilted through 2q in 

20 steps over 1° per direction.  

In-situ electrical poling. Constant-magnitude electric fields were applied in-situ during the diffraction 

and microscopy measurements using a DC power source. First, x-ray reciprocal space maps and dark-

field x-ray microscopy maps (both orientation and strain) were recorded without an applied field (i.e. 

while the sample was in its as-processed state, c.f. Map #1 in Figure 4A). Next, the electric field 

magnitude was increased from 0 to 472 V/mm (72V) over ~12 minutes. To capture the topological 

reconfiguration during this increase, dark-field x-ray microscopy images were recorded along with 

the instantaneous current and voltage (see Supplementary Video S1). After leaving the sample at this 

electric field for an hour to allow the domain structure to equilibrate, x-ray reciprocal space maps and 

dark-field x-ray microscopy maps of orientation and strain were then measured (c.f. Map #2 in Figure 

4A). The applied electric field was then increased again from 472 to 944 V/mm (144 V) over ~12 

minutes while simultaneously recording the topological reconfiguration (see Supplementary Video 

S2). The sample was again allowed to equilibrate at this electric field magnitude before measuring x-

ray reciprocal space maps and dark-field x-ray microscopy maps of orientation and strain (c.f. Map 

#3 in Figure 4A). Finally, the applied electric field was reduced from 944 to 0 V/mm while 

continuously recording images (see Supplementary Video S3). After equilibration, final x-ray 

reciprocal space maps and dark-field x-ray microscopy maps of orientation and strain (c.f. Map #4 in 

Figure 4A) were measured. 

Data reconstruction. All images were pre-processed using a rotational noise-reducing filter. The 

reciprocal space position (α,β,2q) of each (x,y) pixel in the image series was then determined by 

finding the 3D centroid of the intensity distribution. Domain and grain boundaries were identified 

based on local lattice orientation gradients, and the local lattice strain was calculated relative to the 

centroid position of the spatially- and orientation-integrated 2q-intensity distribution. We note here 

that our use of the word “orientation” in this work is appropriate only when the tilt angles α and β are 

small. These angles in fact represent the direction of the scattering vector relative to a nominal 

direction, and only when these angles are small do they approximately correspond to the real 

misorientation of the lattice. Furthermore, we note that true lattice orientation requires three 

orientation angles to describe uniquely. Here, we quantify only two of these (α and β), while the third 

angle (around the scattering vector, normal to the diffracting planes) remains unresolved. 



For a complete description of dark-field x-ray microscopy and the associated reconstruction 

techniques, we refer the reader to Simons et al. [19] and Poulsen et al. [42]. 

Calculation of flexoelectric effect. The flexoelectric effect describes the linear coupling between 

electrical polarization and strain gradient according to equation 1: 

𝑃6 = 𝜇89:6
;<=>
;?@

 (1) 

Where Pl is the flexoelectric contribution to the polarization, µijkl is the flexoelectric tensor, eij is the 

strain tensor and xk gives the direction of the strain gradient. 

The dark-field x-ray microscopy measurements provide direct maps of e33 (i.e. out-of-plane strain) 

from which the strain gradients ;<AA
;?B

 and ;<AA
;?C

 can be calculated. Maps of these strain gradient 

components, as well as the strain gradient magnitude (𝑥̅ 	= 	G𝑥(H + 𝑥(H) for the as-processed (i.e. no 

applied electric field) state are shown in Supplementary Figure S2 A-C. A histogram of the strain 

gradient magnitude then reveals the statistical distribution of strain gradients throughout the measured 

volume (Supplementary Figure S2 D).  

The mean and median strain gradients are 1.2 mm-1 and 0.8 mm-1, respectively, while the theoretically 

derived value (i.e. using DFT) of the flexoelectric coefficient is µ12 = -5.463 nC/m [43]. We then use 

Equation S1 to estimate the mean flexoelectric polarization contribution as being Pflexo = 5.463 nC/m 

´ 1.2 mm-1 = 6.56 µC/m2. The spontaneous (i.e. intrinsic) polarization for BaTiO3, Ps, is ~0.26 C/m2. 

Since the measured strain is out-of-plane, the calculated strain gradients and the ensuing flexoelectric 

polarization contribution will be in-plane. If such an in-plane polarization contributes to an out-of-

plane spontaneous polarization, then the mean polarization rotation angle due to in-plane 

flexoelectricity can be approximated by jP = arctan(6.56E-6/0.26) = 0.0014°. The same approach is 

used to calculate the maximum effect in more highly strained regions e.g. near grain boundaries and 

domain walls. 

 

Data availability. All data, in addition to that shown in the Supplementary Information, are available 

from the authors by request. 
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