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ABSTRACT
This paper considers the reconstruction problem in acousto-
electrical tomography, i.e. the problem of estimating a spatially vary-
ing conductivity in a bounded domain from measurements of the
internal power densities resulting from different prescribed bound-
ary conditions. Particular emphasis is placed on the limited-angle
scenario, in which the boundary conditions are supported only on
a part of the boundary. The reconstruction problem is formulated
as an optimization problem in a Hilbert space setting and solved
using Landweber iteration. The resulting algorithm is implemented
numerically in two spatial dimensions and tested on simulated data.
The results quantify the intuition that features close to the measure-
ment boundary are stably reconstructed and features further away
are less well reconstructed. Finally, the ill-posedness of the limited-
angle problem is quantified numerically using the singular value
decomposition of the corresponding linearized problem.
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1. Introduction

Electrical impedance tomography is an emerging technology that aims at reconstructing
the spatially varying electrical conductivity distribution in a body from electrostatic mea-
surements of voltages and the corresponding current fluxes on the surface of the body. The
quantitative and structural information acquired about the conductivity of the body can
potentially be valuable for medical and industrial applications. For example, EIT shows
great promise for bed side lung monitoring [1] and for non-destructive testing of concrete
[2,3].

The reconstruction problem in EIT is well-known for being (severely) ill-posed [4].
To overcome the ill-posedness, a novel idea of coupling EIT with a different physical
phenomenon has been promoted in the last decade. EIT used together with magnetic
resonance leads to so-called magnetic resonance EIT [5], whereas EIT modulated by
ultrasound waves leads to acousto-electrical tomography (AET) [6–8] (or equivalently
impedance-acoustic tomography (IAT) [9]). Both modalities give rise to additional inte-
rior information andmay potentially lead to a significant improvement of the conductivity
reconstructions having both high contrast and resolution.
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In this paper, we focus on AET. Denote by σ the spatially varying conductivity in the
bounded and smooth domain� ⊂ RN , N=2,3. The power density is defined as

E(σ ) := σ |∇u(σ )|2 , (1)

where u(σ ) denotes the interior voltage potential given as the solution of the elliptic
equation

div (σ∇u) = 0, in�. (2)

The goal is to reconstructσ fromknowledge ofE, where the dataE can be obtained through
the AET procedure [10] and, moreover, E is connected to the conductivity σ via (1). Most
studies [6,11,12] consider the case of (2) being supplemented with Dirichlet conditions on
the boundary ∂�

u|∂� = f . (3)

In contrast, this paper considers (2) supplemented with Neumann boundary conditions

(σ∇u) · �n|∂� = g. (4)

Note that physically the function g measures the current flux on the boundary in the nor-
mal direction given by the outward unit normal �n to ∂�. Neumann boundary conditions,
which model the current flux along the boundary, are the natural boundary conditions for
EIT, and they also form the basis of more sophisticated models for EIT like the complete
electrode model [13]. Since EIT forms the basis of AET, Neumann boundary conditions
are also natural for AET [6].

The AET procedure makes use of perturbations in the conductivity caused by an
ultrasound wave sent through the body [10]. The wave (given by p(x, t)) perturbs the
conductivity slightly into [14,15]

σε = σ(1+ εp),

where ε is the acousto-electrical coupling constant. The difference in the electric boundary
measurements between the perturbed andunperturbed situation is quantified by the power
difference

〈
fε − f , g

〉 = −ε
∫
�

p(x, t)σ∇u · ∇uε dx,

that can be computed from the measured boundary data g, f , fε . Here uε is a solution
of (2) and (4) with σ replaced by σε , and fε = uε|∂�. Assuming that ε is small allows the
approximation σ∇u · ∇uε ≈ σ |∇u|2, and thus, by solving the equation

〈
fε − f , g

〉 = −ε
∫
�

p(x, t)σ |∇u|2 dx,

the interior power density (1) can be computed. Depending on the waves p(x, t) the actual
computation of E(σ )might be an ill-posed problem. A similar derivation can be done for
(2) supplemented with (3).
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It is well-known that a singlemeasurement of the power density σ |∇u(σ )|2 is in general
not enough to uniquely determine the conductivity σ [16,17]. However, it was shown in
[12] for the two-dimensional case that if measurements

(
σ |∇u1(σ )|2 , σ |∇u2(σ )|2 , σ∇u1(σ ) · ∇u2(σ )

)
, (5)

with

det (∇u1(σ ),∇u2(σ )) ≥ c > 0, (6)

are available, where u1, u2 are two solutions of (2), then σ can be uniquely determined from
thosemeasurements (note that the third quantity in (5) can be obtained from a third power
density measurement by the polarization identity). Similar results were also obtained for
three dimensions in [10] and for arbitrary dimensions in [18], see also [19]. Hence, the
reconstruction of σ profits from multiple power density measurements. See also [20–22]
for more information about the choice of boundary conditions.

Under the assumptions (5), (6), the inverse problem is well-posed and one can expect
to reconstruct the conductivity stably with high contrast and resolution; see [6,11,12,23]
for some numerical implementations of the problem.

Tomodel the scenario when only a part of the boundary is accessible to the electrostatic
measurements we introduce the proper subset �1 ⊂ ∂� and assume that the induced cur-
rent field has supp(g) ⊂ �1. This assumption tacitly enforces a no flux condition on the
inaccessible boundary �0 = ∂� \ �1. The main purpose of this paper is to study the influ-
ence of the size of �1 on the quality of the reconstructions. This is related to [24], in which
the authors derive an analytic formula for reconstructing the conductivity in a specific
limited-angle setting and give a simple numerical example. However, the derived formula
depends on the exact limited-angle setting and, as the authors themselves mention, does
not work for general conductivity distributions.

For EIT the problemof limited-angle data (in that context known as partial data) is fairly
well understood [25–28]; and the instability is known to be severe [29]. We expect that a
similar instability appears here and we want to see how the ill-posedness of the problem is
affected by the accessibility of the measurement boundary.

In this paper, we take a computational approach to the problem by formulating the
inverse problem as a nonlinear operator equation

F(σ ) = E. (7)

We provide the Fréchet derivative and its adjoint of the operator F and approximate the
solution using Landweber iteration. Numerical examples are presented focusing especially
on the limited-angle problem. Furthermore, a numerical ill-posedness quantification is
performed, quantifying the expected reconstruction quality in various areas of the domain
� in this case by considering the singular value decomposition of the linearized problem.

The paper is organized as follows: in Section 2 we recall the basic notation and impor-
tant results from PDE theory for the problem (2), (4). In Section 3 we discuss the inverse
problem (7), showing that the operator F is Fréchet differentiable. Furthermore, we derive
the Fréchet derivative and the adjoint thereof. The results are generalized to multiple
measurements of the power density. The regularization approach, which we apply for
approximating the solution of the inverse problem (7), is briefly outlined in Section 4. The
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idea on ill-posedness quantification of the problem is given in Section 5. In Sections 7 and 8
we describe the setting of our numerical example problem and present various reconstruc-
tion results for different boundary settings, especially focusing on the limited-angle case.
Moreover, we present results of the ill-posedness quantification.

2. Mathematical preliminaries

In this section, we recall the basic notations and results for the Neumann problem (2), (4).
In addition, we consider the Fréchet differentiability of the solution u with respect to σ .
We start by stating the main assumptions taken throughout:

Assumption 2.1: Let � denote a non-empty, bounded, open and connected set in RN ,
N = 2, 3, with boundary ∂� ∈ C1,1. Furthermore, assume that g ∈ L2(∂�) is given such
that ∫

∂�

g dS = 0. (8)

Finally, we assume that a priori a lower bound σ > 0 is given such that

σ ∈M(σ ) := {
σ ∈ L∞(�)|σ ≥ σ > 0

}
. (9)

It is well-known from standard theory for elliptic PDEs [30] that under Assumption 2.1
the Neumann problem (2), (4) has a unique weak solution

u(σ ) ∈ H1
	(�) :=

{
u ∈ H1(�)

∣∣∣∣
∫
�

u dx = 0
}
.

We occasionally drop σ in the notation and write u = u(σ ). Moreover, there is a constant
C>0 such that

‖u‖H1(�) ≤ C
∥∥g∥∥L2(∂�) .

If in addition σ ∈ C0,1(�) and g ∈ H1/2(∂�) then u ∈ H2(�) with

‖u‖H2(�) ≤ C
∥∥g∥∥H1/2(∂�)

.

We now consider the solution mapping u : σ �→ u(σ ) as a mapping M(σ )→ L2(�).
From the weak formulation of the PDE problem the continuity estimate

‖u(σ )− u(σ0)‖H1(�) ≤ cLM ‖σ − σ0‖L∞(�) ‖u(σ0)‖H1(�) , ∀ σ , σ0 ∈M(σ ),

follows. In addition, u is Fréchet differentiable with derivative u′(σ )h at σ ∈M(σ ) in
direction h, given as the unique weak solution to the Neumann problem

div
(
σ∇(u′(σ )h)) = −div (h∇u(σ )) , in�,

(σ∇(u′(σ )h)) · �n|∂� = 0.
(10)

3. Fréchet differentiability of the forward operator

In this section, we consider the forward operator F : σ �→ E(σ ). We first analyse the map-
ping properties in the situation of a single boundary condition and show that F is Fréchet
differentiable. Then we generalize the results to more boundary conditions.
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3.1. The singlemeasurement case

For σ ∈M(σ ), the power density is naturally considered as an element in L1(�), i.e.

F : M(σ )→ L1(�),

σ �→ E(σ ),
(11)

whereM(σ ) and E are defined by (9) and (1), respectively but since L1(�) is not reflexive,
solving (7) in L1(�) is not straightforward. By increasing the regularity of σ we pose the
problem in a better suited Hilbert space. We introduce the set

Ds(F) := Hs(�) ∩M(σ ), (12)

and note that for s > N/2+ 1 by Sobolev embedding Ds(F) ⊂ C0,1(�) ∩M(σ ), and
henceu(σ ) ∈ H2(�) leavingE(σ ) ∈ L2(�) by theHölder inequality. Thuswe can consider

F : Ds(F)→ L2(�), (13)

and the Equation (7) can be considered in the standard framework of nonlinear ill-posed
problems in Hilbert spaces [31].

We eventually address (7) using an iterative approach and hence the Fréchet derivative
is required. In the following proposition, we obtain the derivative. The proof is analogous
to the case of Dirichlet boundary conditions [11].

Proposition 3.1: The operator F : Ds(F)→ L2(�) defined by (13) is Fréchet differentiable
for s > N/2+ 1 with

F′(σ )h = h |∇u(σ )|2 + 2σ∇u(σ ) · ∇(u′(σ )h), (14)

where u′(σ )h is defined by (10).

Proof: This follows immediately from the definition of the operator, (10) and the product
and the chain rule applied to the function x

∣∣∇f (x)∣∣2, in the same way as in [11]. �

In order to calculate the adjoint of the Fréchet derivative of F, we need the following
proposition regarding the adjoint of embedding operators in Sobolev spaces.

Proposition 3.2: Denote by Es : Hs(�)→ L2(�) the embedding operator for s ≥ 0, i.e.
Esv = v for all v ∈ Hs(�). Then for any element w ∈ L2(�) the adjoint E∗s w is given as
the unique solution of the variational problem

〈
E∗s w, v

〉
Hs(�)

= 〈w, v〉L2(�) , ∀ v ∈ Hs(�). (15)

Proof: This follows from the definition of Es and the Lax-Milgram Lemma. �
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We are now prepared to give the adjoint of the Fréchet derivative of F:

Theorem 3.3: Let F : Ds(F)→ L2(�) be defined by (13) with s > N/2+ 1. Then for the
adjoint of the Fréchet derivative of F there holds

F′(σ )∗w = E∗s
(
w |∇u(σ )|2 + 2∇u(σ ) · ∇(Aw)) , (16)

where Aw ∈ V is given as the unique solution of the variational problem
∫
�

σ∇(Aw) · ∇v dx = −
∫
�

σw∇u(σ ) · ∇v dx, ∀ v ∈ V . (17)

Proof: By Proposition 3.1 we have
〈
F′(σ )h,w

〉
L2(�) =

〈
h |∇u(σ )|2 + 2σ∇u(σ ) · ∇(u′(σ )h),w〉

L2(�)

= 〈
h,w |∇u(σ )|2〉L2(�) + 2

∫
�

σw∇u(σ ) · ∇(u′(σ )h) dx.

Together with (17) and (10), there follows
∫
�

σw∇u(σ ) · ∇(u′(σ )h) dx = −
∫
�

σ∇(Aw) · ∇(u′(σ )h) dx

=
∫
�

h∇u(σ ) · ∇(Aw) dx,

which, together with (15) implies
〈
F′(σ )h,w

〉
L2(�) =

〈
h,w |∇u(σ )|2 + 2∇u(σ ) · ∇(Aw)〉L2(�)

= 〈
h,E∗s

(
w |∇u(σ )|2 + 2∇u(σ ) · ∇(Aw))〉Hs(�)

,

which yields the assertion. �

Remark: If s is an integer, we can also consider the following inner product on Hs(�)

〈u, v〉s,β :=
∑
|α|≤s

βα
〈
∂αu, ∂αv

〉
L2(�) ,

where {βα} is a family of positive weights. The resulting inner product generalizes the stan-
dard inner product 〈., .〉Hs(�) and induces an equivalent norm onHs(�). The adjoint of the
operators F : Ds(F)→ L2(�)with respect to these inner products can be computed in the
same way as in Theorem 3.3, with E∗s replaced by E∗s,β , where E

∗
s,βw ∈ Hs(�) is given as the

unique solution of the variational problem
〈
E∗s,βw, v

〉
s,β
= 〈w, v〉L2(�) , ∀ v ∈ Hs(�). (18)

Using this weighted inner product gives us more flexibility in the reconstruction process,
as we can put emphasis on different derivatives of the solution. A similar generalization of
the scalar product is also possible for Hs(�) with s ∈ R.
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3.2. Themultiplemeasurement case

As mentioned in the introduction, having the internal power density for one boundary
condition is in general not sufficient to uniquely reconstruct the conductivity. To consider
multiple data we introduce {gj}Mj=1 of boundary current data such that gj ∈ H1/2(∂�), for
j ∈ {1, . . . ,M} whereM ∈ N is fixed. Furthermore, denote by Ej the power density

Ej(σ ) := σ
∣∣∇uj(σ )∣∣2 ,

where uj(σ ) is the weak solution of the boundary value problem

−div (
σ∇uj

) = 0, in�,

(σ∇uj) · �n|∂� = gj.
(19)

This problem can again be written as a nonlinear inverse problem in standard form, or
rather, as a nonlinear system in standard form, by introducing the nonlinear operator

F : Ds(F)→ L2(�)M , σ �→ {
Ej(σ )

}M
j=1 . (20)

Continuity and Fréchet differentiability readily translate from F (11) in the single mea-
surement case (11) to F defined by (20). For example, for the Fréchet derivative we
have

F′(σ )h :=
{
h

∣∣∇uj(σ )∣∣2 + 2σ∇uj(σ ) · ∇(u′j(σ )h)
}M
j=1

, (21)

with u′j(σ )h being given analogously as in (10), and for the adjoint we have

F′(σ )∗w :=
M∑
j=1

E∗s
(
wj

∣∣∇uj(σ )∣∣2 + 2σ∇uj(σ ) · ∇(Awj)
)
. (22)

4. Iterative regularization approach

Both the single and themultiple measurement problems of the previous section are inverse
problems in the standard form

F(x) = y,

and therefore, need to be regularized in order to enable a stable reconstruction of the
conductivity σ from noisy measurement data Eδ . Besides the well-known Tikhonov reg-
ularization and its variants [31], iterative regularization methods are also very popular,
especially for nonlinear Inverse Problems [32]. Since the focus of this paper lies more on
qualitative and quantitative aspects of the solution and less on numerical efficiency, we
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focus on the following simple yet robust Landweber-type gradient method, given by

xδk+1 = xδk + ωδk
(
xδk

)
sδk

(
xδk

)
,

sδk (x) := F′ (x)∗
(
yδ − F (x)

)
,

(23)

where for the stepsize ωδk we use the steepest-descent stepsize [33]

ωδk(x) :=
∥∥sδk (x)∥∥2∥∥F′(x)sδk(x)∥∥2

. (24)

As a stopping criterion, we employ the well-known Morozov discrepancy principle [34],
i.e. the iteration is stopped after k∗ steps, with k∗ satisfying

∥∥∥yδ − F
(
xδk∗

)∥∥∥ ≤ τδ ≤ ∥∥yδ − F
(
xδk

)∥∥ , 0 ≤ k ≤ k∗, (25)

where τ is an appropriately chosen positive number (τ ∈ [1, 2] being common practice)
and δ is the error level satisfying the error estimate

∥∥y− yδ
∥∥ ≤ δ.

Remark: Note that for proving the convergence of iterative regularization methods one
requires at least a weak form of the so-called nonlinearity or tangential cone condition
(see [32] for details). This condition is to the best of our knowledge not known for this
particular problem.

5. Ill-posedness quantification

In order to get a better understanding of the reconstruction quality in different areas of
the domain, we also consider an ill-posedness quantification of the problem based on the
singular value decomposition (SVD) of the discretization of the Fréchet derivative of F at
the exact solution σ †.

For linear operators F, the degree of ill-posedness of the inverse problem F(x) = y is
directly connected to the singular value expansion of F [31], a rapid decay of the singular
values corresponding for example to severe ill-posedness of the problem. In the nonlinear
case, the connection between the ill-posedness and the Fréchet derivative F′(x) is not as
strong as one might expect it to be (see e.g. [35,36]). However, in many cases, there is a
connection, as can for example be seen from the assumption

∥∥∥F′(x†)h
∥∥∥
Y
≥ c ‖h‖−a , ∀ h ∈ X, (26)

commonly used for analyzing iterativemethods inHilbert scales [37].Here the parameter a
effectively measures the degree of ill-posedness of the problem. Furthermore, since almost
all methods for solving ill-posed problems rely on the Fréchet derivative of F, informa-
tion about the expectable quality of the reconstruction may be obtained from this Fréchet
derivative.

Given the two finite element bases {φi} and {ψi} of the data and the image space of F
used in the discretization of the inverse problem, the transfer matrix T of the discretization
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of the Fréchet derivative of F is given by

Ti,j :=
〈
F′(σ †)φi,ψj

〉
L2(�)

. (27)

In Section 8, we compute T and its SVD for different boundary condition settings cor-
responding to various parts of the boundary being inaccessible for measurements. The
resulting singular values and singular vectors are then analysed and correlated to the
obtained reconstructions for each considered setting.

6. Numerical algorithm

In Section 4, we outlined a regularization approach for solving the inverse problem (7)
which is based on the Landweber-type iteration (23). In this section, we shortly describe
how this algorithm is implemented for a single measurement. In pseudocode notation it
takes the following form:

Algorithm 1: Reconstruction of the electrical conductivity from a single measure-
ment of the power density.
Data: Power density data Eδ .
Input: Initial guess σ0, parameter τ , noise level δ.
Result: Reconstructed conductivity σk∗(δ,Eδ).
begin

k← 0
σk← σ0
repeat

Find the potential uk as a solution to (2), (4) with σ = σk.
Calculate the power density F(σ ) using (1) with u = uk, σ = σk.
Find Aw as a solution of (17) with u = uk, w = Eδ − F(σ ), σ = σk.
Calculate F′(σ )∗w using (16) with u = uk, Aw, w = Eδ − F(σ ), σ = σk,
and solving (15).

Calculate stepsize ωδk in several steps:
Find u′(σ )h as a solution of (10) with h = F′(σ )∗w, σ = σk.
Calculate F′(σ )h using (14) with u = uk, u′(σ )h, h = F′(σ )∗w, σ = σk.
Calculate ωδk using (24).
Update σk+1 = σk + ωδkF′(σk)∗w.
k← k+ 1

until Residual norm
∥∥Eδ − F(σk)

∥∥ ≤ τδ;
end

The variational problems can be solved by standard finite element approaches, see below
for details. Obviously, the above algorithm can be generalized to themultiplemeasurement
case.
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7. Numerical setting and implementation details

We now describe the precise setting of our numerical example problem. For the domain
�, we choose a unit disk in 2D, i.e. in polar coordinates,

� := {(r, θ) ∈ [0, 1)× [0, 2π]} .

For the accessible boundary �1 we choose the family of subsets �(α) ⊂ ∂� defined by

�(α) := {(r, θ) ∈ {1} × [0,α]} ,

and we set

gj(r, θ) := sin
(
2jπθ
α

)
, ∀ (r, θ) ∈ �(α). (28)

On the remaining part of the boundary, we always assume that gj = 0. The resulting bound-
ary functions gj are continuous on ∂� and satisfy (8). The trigonometric functions (28) are
a natural choice for current density patterns [38]. Being normed, they represent elements
of an orthonormal basis of the space L2(�(α)). Moreover, this choice of boundary func-
tions guarantees a similar magnitude of the computed power densities Ei, which ensures
that every power density contributes evenly to the reconstruction.

Note that for the choice of the accessible boundary �1 we consider single closed inter-
vals. It would also, for example, be possible to choose �1 as consisting of multiple disjoint
intervals, but in any case, the effect of various limited-angle cases can already be observed
in the single interval setting considered here.

For the true conductivity σ † we use the phantom depicted in Figure 1. It has a uniform
background of value 1 as well as three inclusions: two circular inclusions of magnitude 1.3
and 2, respectively, and a crescent shaped inclusion of magnitude 1.7, which are slightly
smoothed towards their edges to conform with the smoothness requirements, since due
to (12), for σ to be in Ds(F) it has to be H2 smooth. In order to implement this, we use
2D bump functions built from piecewise polynomial functions, where the polynomials are
chosen in such a way that the resulting bump function is C2.

Figure 1. Exact value of the electrical conductivity σ †.
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Figure 2. Power densities Ej(σ †)with σ † as in Figure 1 with boundary data gj , j= 1,2,3 defined in: (first
row) (29); (second row) (28)withα = 3π/2; (third row) (28)withα = π . The curves indicate the support
of gj .

The discretization, implementation and computation of the involved variational prob-
lems was done using Python and the library FEniCS [39]. A triangulation with approx-
imately 2000 vertices for discretizing the domain was used. This rather coarse choice of
the discretization is due to time limitations in the computation of the SVD, since com-
puting the matrix (27) already takes approximately 5 hours for this discretization level, see
Section 8. The power density data E(σ †) was created by applying the forward model to σ †

using a finer discretization with approximately 40,000 vertices to avoid an inverse crime.
The resulting power densities are depicted in Figure 2 for the anglesα = 2π ,α = 3π/2 and
α = π , respectively. The circle (segment) in the figures indicate the available, i.e. non-zero,
boundary. Accessibility of the boundary is reflected in the power densities: in Figure 2, the
angle α = 2π , we clearly see the internal structure such as the location of the inclusions,
while for the angles α = 3π/2 and α = π only some of it, but less than before, is visi-
ble. Furthermore, the potentials induced by the boundary functions gj for j=2,3 have a
higher frequency and do not penetrate deep into the domain. Different random noise with
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a relative noise level of 5% is added to the power density to obtain the noisy data Eδ , i.e.
Eδ = E+ δrel ‖E‖ ẽ/ ∥∥ẽ∥∥, where ẽ is a normally distributed random noise vector and δrel is
the relative noise level. Obviously, with this choice, one has an absolute noise in the data of
δ = δrel ‖E‖.

Since the domain � is two-dimensional, i.e. N=2, by the above analysis we should
choose s>2 in the domain of F. However, since numerically there is hardly any difference
between using s=2 and s = 2+ ε for ε small enough, and since s should be kept as small
as possible to avoid unnecessary smoothness requirements for the exact conductivity σ †,
we choose s=2 for ease of implementation in the examples presented below. For obtain-
ing the reconstructions, the steepest-descent Landweber method (23) together with the
discrepancy principle (25) with the canonical choice τ = 1 was used. For the initial guess,
σ0 = 1.5 was used in all tests.

Furthermore, in all cases additional reconstructions are presented where instead of
using Es in the adjoint of the Fréchet derivative the operator Es,β defined by (18) was used
with s=2 and the choice βα = 1, 10−3, 10−6 for |α| = 0, 1, 2, respectively. Moreover, we
also present results in case that E∗s is dropped altogether in the reconstruction process,
which can be seen as a preconditioning or in the light of regularization in Hilbert scales
[37]. We refer to those cases as using the H2

β or the L2 adjoint, while in the standard case
we speak of using the H2 adjoint.

8. Numerical results

In this section, we present various numerical results for different boundary value settings.
Hereby, an emphasis is placed on the limited-angle case, i.e. that g=0 on the inaccessible
boundary part ∂� \ �(α). For ease of writing, we refer to these cases by the percentage
value of the available boundary, e.g. we say that 75% of the boundary is available for
measurements if α = 3π/2. We consider the cases of 25%, 50%, 75% and 100% avail-
able boundary in this section. Moreover, we present an ill-posedness quantification of
the problem based on the singular value decomposition of the Fréchet derivative of F in
Section 5.

8.1. Reconstructions without noise

Before considering the noisy data case of interest to us, we first present two examples where
no noise was added to the data. Since the discrepancy principle is not a suitable stopping
rule in case of no noise, the iteration has to be stopped differently. Due to computational
limitations and since the iterative procedure does not make much progress from this point
onwards, the process was stopped after 1000 iterations in both cases.

Example 8.1: As the first test we look at the reconstruction of the conductivity for a fully
available Neumann boundary and three power density measurements. Contrary to all the
other tests, here we have a different set of boundary functions, namely

g1 = sin(θ), g2 = cos(θ), g3 = (sin(θ)+ cos(θ))/
√
2. (29)

After 1000 iterations we obtain the reconstructions for the L2, H2
β and H2 adjoint case

depicted in Figure 3. The resulting reconstructions look rather similar, which is due to
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Figure 3. Reconstruction of conductivity σ †, Figure 1, with boundary data gj , j= 1,2,3 defined in (29).
The curves indicate the support of gj . From left to right: the L2, H2β and H

2 adjoint is used.

Figure 4. Reconstruction of conductivity σ †, Figure 1, with boundary data gj , j= 1,2,3 defined in (28)
from various limited angles. The curves indicate the support of gj . The H2β adjoint is used.

the fact that without noise, the residual F(x)− y is already smooth and hence, the various
smoothing properties of the different adjoints do not havemuch additional effect.However,
they differ in the noisy case, where the H2

β adjoint performs somewhat better than the
others (see Section 8.2).

Example 8.2: Following Example 8.1 we present reconstructions for 75%, 50%, 25%
boundary available for measurements with boundary data gj, j=1,2,3 defined in (28) and
H2
β adjoint, which are depicted in Figure 4.

8.2. Reconstructions with noise

After we saw in the previous section that reasonable reconstructions can be obtained in
the case of noise-free data, in this section we focus on noisy data Eδ with a noise level of
δ = 5%. Again the focus is on different limited-angle cases.

Example 8.3: We consider 100% boundary available for measurements with boundary
data gj, j=1,2,3 defined in (29). The iteration terminated after 3, 3 and 74 iterations for
the L2, H2

β and H2 adjoint case, respectively, and yielded the reconstructions depicted in
Figure 5. Even though the noise level is high, the conductivity σ † is nicely reconstructed
both in shape and quantity. The L2 adjoint does not give enough smoothness on the solu-
tion, which is visible in the non-sharp edges of the inclusions. Due to the high noise level,
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Figure 5. Reconstruction of conductivity σ †, Figure 1, from limited-angle boundary conditions gj ,
j= 1,2,3. The curves indicate the support of gj . First column uses the L2 adjoint; second column, the
H2β adjoint; and third column, the H2 adjoint.

the discrepancy principle stops the iteration very early, which affects the contrast of the
reconstructions.
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Example 8.4: Next we consider 75% boundary available formeasurements with boundary
data gj, j=1,2,3 defined in (28). In this case, the iteration stops after 16, 10 and 177 steps
for the L2, H2

β and H2 adjoints, respectively, which leads to the reconstructions depicted
in Figure 5. As we can see, the missing data in the right bottom part of the power density
in the Figures 2 (second row) transfers to the reconstructed conductivity through arte-
facts near the ∂� \ �(α) boundary, where the background value and inclusions are not
well reconstructed. Similarly to the previous example, the solution lacks smoothness with
the L2 adjoint, but captures more of the internal structure compared to the H2 adjoint,
which hardly detects the small circular inclusion. Meanwhile, the H2

β adjoint exhibits a
good trade-off result between the other two.

Example 8.5: For 50% available boundary and three measurements we obtain the recon-
structions depicted in Figure 5. The discrepancy principle was satisfied after 44, 38 and 602
iterations for the L2, H2

β and H2 adjoints, respectively. In this test, we see what happens
when only half of the boundary is accessible and hence, half of the internal conductivity
can be reconstructed, see Figure 2 (third row). The reconstructions are worse than in the
previous examples, although we are able to obtain some information about the inclusions.
The conductivity value of the big circular inclusion comes closer to the expected value and
its shape remains almost proper, while the crescent is only partly visible. The small circular
inclusion cannot be reconstructed due to the lack of information in this area.

Example 8.6: As the last test, we consider an available boundary of only 25% with three
measurements. We obtain the reconstructions depicted in Figure 5 after 1000 iterations
(the iteration was terminated even though the discrepancy principle was not reached due
to time limitations).We can recover the big circular inclusion located close to the accessible
boundary with some artefacts visible around it for the cases of the L2 and H2

β adjoints.
The H2 adjoint has a strong smoothing effect, which reduces the artefacts in the solution.
Interestingly, even though only the large circle inclusion is recovered, this has a higher
contrast than in the previous examples with noise.

8.3. Results of the ill-posedness quantification

In this section, we present some results from the ill-posedness quantification introduced
in Section 5 and show that the varying reconstruction results obtained for the differ-
ent limited-angle cases nicely correspond to certain pairs of singular values and vectors
obtained from the SVD of T defined by (27).

First, we look at the condition numbers of T for different limited angles and numbers of
power density measurements, which are given in Table 1. The transfer matrix T becomes
more and more ill-conditioned with decreasing angle and number of measurements, and
therefore, we should not expect good reconstructions, especially further away from the
accessible boundary. Additionally, we can see that using two measurements instead of one
reduces the condition number of T drastically, which should be compared with the identi-
fiability results discussed in Section 3.2. However, the third measurement does not reduce
the condition number, but it remains of the same order, and therefore obtaining reasonable
reconstructions with twomeasurements promises good reconstruction results as well, and
with a shorter computational time.
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Table 1. Condition numbers of the matrix T.

Limited-angle, %

Number of measurements Boundary functions 100 75 50 25

3 g1, g2, g3 1.45× 101 3.77× 102 3.59×103 8.81×104
2 g1, g2 1.42× 101 3.70× 102 3.41× 103 8.09× 104

2 g2, g3 2.55× 101 9.55× 102 9.52× 103 2.14× 105

2 g1, g3 2.63× 101 3.76× 102 3.53× 103 8.44× 104

1 g1 4.63× 103 6.43× 103 1.81× 105 4.52× 106

1 g2 2.15× 104 3.37× 105 5.31× 105 5.29× 105

1 g3 3.99× 103 5.98× 104 8.76× 104 7.20× 106

Note: Different combinations of boundary functions.

Figure 6. Singular values for 100%, 75%, 50% and 25% available boundary with three measurements.

In Figure 6, the singular values for the different limited-angle cases are plotted in
descending order. One can see a decrease of the smallest singular values with the available
angle, and as expected the problem becomes more ill-posed with less data.

Note that the last singular values seem to decay more rapidly. We believe that this is an
effect of the numerical discretization and does not resemble the continuous problem. In
light of this observation one could have truncated the singular values before computing the
condition number, however, the overall conclusion from Table 1 would remain the same.

Moreover, in Figure 7 we observe a similar decrease of the singular values depending on
the number of measurements, thus confirming our conclusions about condition numbers.

A selection of the resulting singular vectors for the Examples 8.4–8.6 is depicted in Fig-
ures 8–10, respectively. The ordering of the singular values and singular vectors, denoted
by vi, is done in the usual way, i.e. the singular values are arranged in descending order,
from the largest to the smallest, and the singular vector v1 belongs to the largest singular
value.

We see that different singular vectors carry information about the true conductivity σ †

in different areas of the domain. Unfortunately for the reconstruction, the singular vec-
tors containing information about the area close to the inaccessible boundary correspond
to small singular values. Since regularization methods have to rely on the singular vectors
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Figure 7. Singular values for 75% available boundary depending on the number of measurements.

Figure 8. Singular vectors of the matrix T from boundary conditions gj , j= 1,2,3 defined in (28) with
α = 2π/3. From left to right: v100, v1000, v2060.

Figure 9. Singular vectors of the matrix T from boundary conditions gj , j= 1,2,3 defined in (28) with
α = π . From left to right: v100, v1000, v2060.

Figure 10. Singular vectors of the matrix T from boundary conditions gj , j= 1,2,3 defined in (28) with
α = π/2. From left to right: v100, v1000, v2060.
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corresponding to larger singular values for a stable reconstruction, this adds to the expla-
nation of the fact that close to the inaccessible boundary, the conductivity σ † cannot be
reconstructed.

9. Conclusions

We formulated the hybrid imaging problemof estimating a spatially varying conductivityσ
from measurements of power densities resulting from different prescribed boundary cur-
rents in an infinite dimensional setting and presented various numerical results, focusing
especially on the limited-angle case. In particular, we saw that reconstructing the con-
ductivity is difficult far away from the accessible part of the boundary, due to the lack
of information in this area. Through a numerical ill-posedness quantification, we were
able to establish a close connection between the reconstruction quality and the SVD of the
Fréchet derivative of F. As the size of the accessible boundary becomes smaller, the recon-
struction quality deteriorates, which is confirmed by a rapid decay of the corresponding
singular values. The degree of ill-posedness of the linearized problem decreases with the
size of the accessible boundary and if more than one measurement is used. The obtained
results shed some light on the influence of limited-angle data in hybrid tomography, clearly
illustrating the possibilities and limitations in numerical practise. Other measures of ill-
posedness quantification than condition numbers can be suggested, such as the decay rate
of the singular values.
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