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Abstract
Wepropose an optomechanical setup allowing quantummechanical correlation, entanglement and
steering of two ultrashort optical pulses. The protocol exploits an indirect interaction between the
pulsesmediated optomechanically by letting both interact twice with a highly noisymechanical
system.We prove that significant entanglement can be reached in the bad cavity limit, where the
optical decay rate exceeds all other damping rates of the optomechanical system.Moreover, we
demonstrate that the protocol generates a quantumnon-demolition interaction between the
ultrashort pulses which is the basic gate for further applications.

1. Introduction

According to the rules of quantumtheory, a quantumstate canbe swappedbetweenphysical systemsof the same
dimensionwithout any limitation. Such transductionbetweendifferent physical platformsopens the full operation
space for quantumtechnology [1].Manydifferent systems,however, donot interact directly and transduction canbe
realizedonly throughamediator.Mechanical systemsare very goodcandidates for suchmediators, interconnecting
electromagnetic radiationofdifferent or same frequencies andbuildinguniversal transducers [2–5], as they can couple
to variousquantumsystems including spins, cold atoms,Bose–Einstein condensates andphotonsof awide rangeof
frequencies. The interactionof lightwithmechanical oscillators is the subject of the specialfieldof optomechanics.The
principle of interconnecting radiationfieldswithhelpof amechanicalmediatorhasbeendemonstrated in anumberof
experiments connectingoptical andmicrowavefields [6–10]. Experimentshavebeen reported connectingoptical to
optical [11–13] andmicrowave tomicrowave [14]fields.Theoretical proposals for building transducers connecting
light andmicrowave radiation in the continuous-wave regime [15–21]have alsobeenput forward.

To be fully compatible withmodern hybrid quantumoptics [22–25], pulsed versions of quantum
optomechanics have been initiated in two regimes: exponentiallymodulated pulses with duration significantly
exceeding themechanical period [26] and high-intensity pulses which are very short compared to the
mechanical period [27]. The former has been used to demonstrate Gaussian entanglement betweenmicrowave
field andmechanical oscillator [28], quantum state transfer [29, 30], non-classical photon–phonon correlations
[31, 32], entanglement between distantmechanical oscillators [33], and alsomotivated other theoretical ideas
[34–36]. Likewise, the latter approach, also known as stroboscopic, has stimulated a number of experimental
[37] and theoretical [38, 39]works. Recently, quantum transducers based on geometric phase effect have been
proposed [40] and analysed in the regime of long pulses [41]. There it was shown that by proper optimization an
entangling quantumnon-demolition (QND) interaction [27, 42] can be established between two systems
mediated by amechanical oscillator, without the need to cool the latter close to the ground state. The idea has
been applied to generate entanglement between optical andmicrowave field [28]. Such a scheme requires high-
Q cavity systems, resolved-sideband regime, and intensive two-tone driving to eliminate the destructive free
mechanical evolution and thereby reach nearly ideal performance. It, however, still remains unclear, whether
the geometric phase effect will be sufficient to obtain a robust transducer in the stroboscopic regimewith
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ultrashort pulses without entering the sideband resolved regime, and potentially without cavity. Such a proposal
will stimulate amuch broader class of feasible quantum transducersmediated bymechanical systems.

In this paperwe propose a pulsed stroboscopic quantum transducer based on the geometric phase effect,
which generates aQNDcoupling between optical fields of possibly different frequencies.We show that for state-
of-the-art optomechanical systems the proposed scheme performs verywell under the influence of different
decoherence processes and for an almost arbitrarily noisymechanicalmediator.We also analyse the gradual
build-up of non-classical correlations, entangling power and quantum steering after different numbers of
sequential pulses, demonstrating that even simplified versions of the protocol produce quantum correlations. It
allows for a verification of its performance in themiddle of the transducer protocol. In additionwe prove that
this protocol is also efficient in a systemwhich does not contain an optical cavity.

2. Protocol

Wepropose a setup allowing to entangle two opticalmodes (possibly of different wavelengths),A andB,
applying sequential interactions with amechanical oscillator.We start by considering amechanicalmode of the
optomechanical cavity (as infigure 1), although the protocol can be extended to a systemwithout the cavity (see
section 8). The optomechanical cavity is typically a system consisting of twomodes, an optical and amechanical
one. In the presence of a strong classical optical pump at the cavity resonance, the inherently nonlinear
optomechanical interaction [43] can be linearized. In the frame rotatingwith the pump frequency the
Hamiltonian of the system including this linearized interaction, reads [44]

  w a q q= + + +( ) ( ) ( )( ) ( )t q p g t X Y q
1

2
cos sin , 1m

2 2

where thefirst summand describes the free evolution of themechanicalmode and the second one describes the
optomechanical coupling of the opticalmodewith quadratures (X,Y) and themechanicalmodewith
dimensionless displacement q andmomentum p, such that = =[ ] [ ]X Y q p i, , . Here g is the single-photon
optomechanical coupling rate,ωm is themechanical frequency and θ is the optical quadrature phase. Themean
intracavity amplitudeα(t) induced by the pump is assumed to have constant value a kt= N4 over the pulse
duration τ, whereκ is the energy decay rate of the cavity. This amplitude is normalized in such away that the
average number of photons in the corresponding pulse isN=α2τκ/16 . If the interaction time is short
compared to themechanical period, as, for instance, in the experiment [37], the free evolution of themechanical
mode can approximately be ignored, so that only the second (coupling) term in theHamiltonian(1) remains.
Numerical estimations prove that the freemechanical evolution during the pulsed interaction does indeed not
influence the entanglement of themodes significantly. This step significantly simplifies the resonant

Figure 1. (a)The block-scheme of the transducer. Opticalmodes of possibly different wavelengthsA andB interact sequentially with
themechanical systemM by fourQND interactions withHamiltonians i. Between these interactions themechanicalmode
undergoes free evolution through one quarter of themechanical periodwhile interactingwith themechanical environment ( ) and
the opticalmodes are subject to optical losses (η). tidenote corresponding interaction endmoments. (b)Apossible experimental
implementation of the protocol. Themirror (dashed) is optional. OpticalmodesA andB interact alternately with themechanical
systemM. DL—delay lines. (c)Path of themechanicalmode of the transducer in phase-space. Themechanical system starts in the first
quadrant. Then themomentumkick by themodeA occurs (red vertical arrow). After that themechanical system evolves freely per one
quarter of themechanical period, ending up in the second quadrant (purple arrow). Subsequently the interactionwith themodeB
occurs. The procedure is repeated until the system reaches the ‘end’ point. In the ideal case the trajectory of themechanicalmode in
the phase space is closed and thismode appears to be effectively decoupled from the optical ones. A and B stand for amplitude and
phase quadratures of systemsA andB, respectively, andχ is the interaction strength.

2
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optomechanical interaction, becausewe can reach two differentQND interactions associatedwith θ=0,π/2
in(1), without any change in the non-demolition variablesX, q andY, q.

Our proposed protocol consists of four sequential pulsedQND interactions (two for each of the optical
modes) separated by a quarter of the period of the freemechanical evolution duringwhich there is no interaction
with any of the opticalmodes (seefigure 1(c)). Between the optomechanical interactions with themechanical
oscillator, each of the opticalmodes is directed to the delay line. TheHamiltonians of the individual pulsed
interactions read (the quadratures ofmodesA andB are labelledwith corresponding subscript)

  kt kt= - = ( )g N Y q g N X q4 , 4 . 2A B1,3 1,3 2,4 2,4

Each of theQND interactions shift themomentumof themechanicalmode and also one of the quadratures of
the corresponding opticalmode. Combinedwith the precisely timed free evolutions of themechanicalmode
that effectively swap themechanical quadratures «q p this ideally allows themechanicalmode to follow a
closed path in phase space (figure 1 (c)). The geometric phase induced by this closed path enables coupling of the
opticalmodes while keeping themechanicalmode decoupled from those.

For theQND interactionwithHamiltonian  kt= - g N Y q4 A1 1 (for the phase θ=0) the quantum
Langevin equations take the following form [3, 45]:

k
k kt

k
k kt

=- + - =

=- + =

˙ ˙

˙ ˙ ( )

X X X g N q q

Y Y Y p g N Y

2
4 , 0,

2
, 4 . 3

A A A

A A A A

in
1

in
1

Here X Y,A A
in in are thequadratures of the inputopticalfluctuationswith commutator d¢ = - ¢[ ( ) ( )] ( )X t Y t t t, iin in .

We assume the optical decay rateκ to bemuch larger than other characteristic rates of the system—inverse
pulse duration τ−1,mechanical frequencyωm and the enhanced optomechanical coupling strength ktg N4
which is well justified in certain experiments [46, 47]. This corresponds to the adiabatic regimewhere the optical
mode reacts instantaneously to influences. This allows us to set = =˙ ˙X Y 0A A in(3). Thuswith the help of the
input–output relations [48] in the form

k k= - = -( ) ( ) ( ) ( ) ( ) ( ) ( )X t X t X t Y t Y t Y t, 4A A A A A A
out in out in

we canwrite down the solution of(3):

ò

k t

k t

= - =

= = +
t

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

X t X t
g N

q q t q

Y t Y t p t p
g N

Y t t

8
0 , 0 ,

, 0
8

d .

A A

A A A

out in 1

out in 1

0

in

Nowwe introduce newopticalmodeswith quadratures ò=
t

t
( )Q t td1

0
andQND interaction strength

c =
k

g N
1

8 1 , and integrate the equations for Xout and Y out over the duration of thefirst pulsed interaction.We
then obtain the standardQND form [49] of interaction:

 

  

c t

t c

= - =

= = +

( ) ( ) ( )
( ) ( ) ( )
q q q

p p

0 , 0 ,

, 0 , 5

A A

A A A

out in
1

out in
1

in

validwhen k t w-  m
1 . Equations (5) describe the ideal unitary coupling between the new temporalmodes

which are not affected by decoherence during the short period of the pulse.We apply the same approach for the
remaining interactions.

3.Decoherence processes

In this sectionwe describe themodel of the decoherence processes in the system. Themost fundamental
decoherence processes are that ofmechanical decoherence due to the coupling to the thermal environment and
optical losses.

3.1.Mechanical thermal noise
Since the pulsed optomechanical interactions in our scheme are very short compared to themechanical period
(t w-  m

1 ) and the thermal decoherence time (t G-  n1
th), it is safe to neglect the free evolution of the

mechanicalmode for the time of the interaction. Between the interactions, however, themechanicalmediator is
subject to damped harmonic oscillations that last for a quarter ofmechanical period ( *t p w= ( )2 m ). This
evolution is described by the following equations ofmotion

3
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w w x= = - + G - G˙ ˙ ( ) ( )q p p q t p, 2 , 6m m

whereΓ is themechanical damping coefficient, ξ(t) is the thermal noise operator that obeys the autocorrelation
x x dá ¢ ñ = + - ¢( ) ( ) ( ) ( )t t n t tth

1

2
with nth being themean occupation number of themechanical bath.

We can formally solve the equations (6) andfind the transformation of themechanicalmode for a high-Q
mechanical oscillator that satisfiesΓ=ωm:

* * * ** *t t t t= + D = - + Dt t-G -G( ) [ ( ) ( )] ( ) [ ( ) ( )] ( )q p t q p q t pe , e , 72 2

withΔ q,Δ p beingmechanical noise operators defined as:

ò

ò

w x

w x

D = G ¢ - ¢ ¢

D = G ¢ - ¢ ¢

G ¢

G ¢

( ) ( ( )) ( )

( ) ( ( )) ( )

q t t t t t

p t t t t t

2 d e sin ,

2 d e cos .

t
t

m

t
t

m

0

2

0

2

These operators have the following properties:

* *

* *

t t
p
w

t t
w

áD ñ = áD ñ = +
G

áD D ñ = +
G

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( ) ( )

( ) ( )

q p n

q p n

1

2 2
,

1

2
,

m

m

2 2
th

th

which resembles standardMarkovian noise [50].

3.2.Optical losses
The optical losses in the system stem from imperfect coupling to the optomechanical cavity,mismatch ofmodes,
propagating photon losses etc. Importantly, all these processes are linear and this leads to admixture of vacuum.
Therefore the effect of losses on an opticalmodewith quadraturesQ can bemodelled as a beamsplitter with
vacuum in the unused port. The corresponding phase-insensitive transformations of quadraturesQ read

h h + - ( )Q Q Q1 , 8N

withQN being the quadrature of the optical vacuumnoise (á ñ =QN
2 1

2
) and η, the transmittance of the

beamsplitter. For example, when η=1 there are no optical losses in the system.
We introduce the optical loss after thefirstQND interaction for the opticalmodeA and after the second

QND interaction for the opticalmodeB (seefigure 1(a) for reference). The optical losses before thefirst and after
the last interactions are not taken into account since theymay be considered as not being inherent in the
protocol itself andmay be easily added to the final results if needed.

We have nowdescribed each of the evolution blocks constitutingfigure 1 in terms of input–output relations
for the quadratures of themodes affected. Sequentially applying this formalism,we can obtain expressions for
the quadratures at a certain instant of time, fromwhichwe can evaluate the required parameters, in particular,
the covariancematrices.

4.Generalized squeezing, conditional squeezing, Gaussian entanglement andGaussian
quantum steering

A zero-meanGaussian state r̂ of a bipartite systemA+Bwith the quadratures forming a vector f=(XA,YA,XB,

YB) can be completely described by the covariancematrix [51, 52]with elements r= +[ ˆ ( )]V f f f fTrij i j j i
1

2
. This

matrix has the block structure

=
⎡
⎣⎢

⎤
⎦⎥V

V C

C V
,

A
T

B

whereVA,VB andC are the 2×2matrices describing individual variances and co-variances correspondingly.
Superscript Tmeans transposition.

Themathematical formalism forGaussian states allows us to investigate different signatures of quantum
mechanical correlations between twomodes [53].Wewill use four suitable Gaussian quantifiers: generalized
squeezing, conditional squeezing, entanglement and steering. They have gradually higher demand on quantity
of quantum correlations betweenA andB.

Generalized squeezing [54] specifies squeezing available in the systemby global passive transformations. It is
also the signature that the covariancematrix corresponds to a non-classical state. This quantity is defined as the
minimal eigenvalue of the covariancematrix.

4
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Conditional squeezing proceduremay be described in the followingway [55]. Let us performhomodyne
detection of the amplitude quadrature ofmodeB. After this procedure the covariancematrix of systemA is
transformed in the followingway:

¢ = - P ( )V V
V

C C
1

, 9A A
B,11

T

with P = ( )diag 1, 0 . The conditional squeezing is possible when the smallest eigenvalue of ¢VA (whichwewill
later refer to as conditional variance andwhich in the simple case of diagonal ¢VA corresponds to the variance of
amplitude or phase quadrature of systemA) is smaller than the shot-noise variance, established by the
Heisenberg’s uncertainty principle. An analogous procedure can be applied to check for the possibility of
obtaining conditional squeezing of systemB. Conditional squeezing justifies that generalized squeezing can be,
at least partially, induced in onemode by ameasurement of the other one.

The state rAB of a bipartite system is called an entangled state if it cannot be presented in the form

r r r= å ÄcAB i i i
A

i
B with ri

A B, being the states of the first and second systems correspondingly and ci being the
probabilities. Ameasure of entanglement is the logarithmic negativity defined forGaussian states as follows [53]:

n= - -[ ] ( )E max 0, ln 2 , 10N

where ν− is the smallest symplectic eigenvalue of the covariancematrix of the partially transposed state. This
eigenvalue can be calculated in the followingway:

n = S - S - S = + -- V V V C
1

2
4 det , det det 2 det .V V V A B

2

ThemodesA andB are entangledwhen >E 0N .
The logarithmic negativity constitutes an upper bound to the distillable entanglement, and is a proper

entanglementmonotone that can be easily evaluated provided a covariancematrix and does not require
complicated optimization. Thereforewe prefer it to other entanglementmeasures, includingDuan’s criterion
[51]. The latter could be used aswell, but it requires a proper optimization of the combination of the quadratures
of the subsystemsA andB.

The state rAB isA→B steerable if after performingmeasurements on subsystemA, it is possible to predict the
measurement results of systemBwith an accuracy better than for a pure separableminimumuncertainty state.
To quantify the steering of bipartite Gaussian systemswe use the steerability [56]:

å n= -
n


< <

⎪ ⎪

⎪ ⎪⎧
⎨
⎩

⎫
⎬
⎭

( )G max 0, ln , 11A B
j

j
B

:0 1j

where n{ }j
B are the orthogonal eigenvalues of thematrix W∣ ∣Mi B with W = -( )antidiag 1, 1 and

= - -M V C V CB
B

T
A

1 . The steerability in opposite direction frompartyB to partyAmay be calculated by
replacingmatricesVA andVB.

5. Basic quantum transducer

Tounderstand the process of building quantum correlations and entanglement, wewill analyse the correlations
after output of each step of the protocol. After only twoQND interactions the transducer is capable of building
correlations sufficient for conditional squeezing of at least one opticalmode. The presence of this non-classical
aspects of correlations would be a demonstration of the feasibility of the basic protocol.

We consider a sequence of interactions, wheremodeAfirst interacts with themediatorMwithHamiltonian
1, then themechanical system evolves quarter of amechanical period and after thatmodeB interacts with the
mediator withHamiltonian2 (see figure 1(a)).We start with the simplest case when there is no decoherence in
the system and all individual QND interaction strengths are equal toχ. The opticalmodes are initially in
vacuum, and themechanicalmode in a thermal state with occupation n0.When each of the two opticalmodes
have interactedwith themediator, the transformations of quadratures are as follows:

    

     

c c

c c c

= - = - - =

= = - - = - -

( ) ( )
( ) ( ) ( )

q q q

p p p

0 , 0 , ,

, 0 , 0 , 12

A A B B B

A A A B B A

out in II in out in

out in II in out in 2 in

where q(0) and p(0) are themechanical quadratures before the first optomechanical interaction.
After homodyning an arbitrary quadrature Q + QX Ycos sinB B of systemB, the covariancematrix of

systemA takes the form: c s= + á ñ¢ ( ( ) )V qdiag 0 , ,A A
out 1

2
2 2 II where

5
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

s
c

c

c c

=
+ á ñ Q

+ Q á ñ +

-
+ á ñ +- -

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

( )
( ( ) )

( )
( )

p

p

p

1

2

1 2 0 sin

1 sin 2 0 1

1

2
1

1

1 2 0
. 13

A
II

2 2 2

2 2 2

2 2 4

The diagonal elements of the covariancematrix of aGaussian system (in the diagonal form) showuncertainties
in its quadratures.When one of the elements is below the shot noise level, the system is squeezed. Therefore,
homodyne detection on systemB is capable of squeezing themode of systemA. This is already a nontrivial aspect
of Gaussian quantum correlations build-up achieved using themechanicalmediator. The possibility of
squeezing can be understood from the equations (12). Homodynemeasurement of  B

out effectively reduces its
variance to zero. Since the quadrature  A

in constitutes a part of this quadrature, its variance could aswell be
reduced as a result of thismeasurement, that is it will become squeezed. To achieve significant squeezing,
however, one needs the coupling to be strong enough to secure c á ñ = + ( )p n02 2

0
1

2
, so that the dominant

term in the expression for B
out is provided by fluctuations in A

in and not by the initialmechanicalfluctuations
inp(0). Formally this amounts to the need to decrease the denominator of the fraction in(13). Thismeans that
for realistic values of the couplingχ�10, squeezing can be observed for amechanical occupancy of n0≈100.
Cooling the phonon number to this level is achievable within the sideband unresolved regime using different
techniques such as active feedback cooling [58], hybrid systems [59], optomechanically induced transparency
[46] or dissipative optomechanics [60]. Experimentally, feedback cooling has allowed for an occupancy of
n0=5 of amechanical oscillator [61, 62]which can be improved to yield ground state cooling using a higher
detection efficiency or using squeezed state probing [63]. These experiments on near ground state cooling have
been performed in a 4K cryostat, but with the development of new high-Qmechanical oscillators [64–66],
ground state cooling in a room temperature environment is within reach.

To determine the full dynamics, includingmechanical decoherence and optical losses, we resort to
numerical estimations. The results are presented infigure 2(a). The good correspondence between the lossless
solution and the onewith losses should be noted. This indicates that the approximatemodel captures the system
really well and that the initial occupation is themain source of decoherence.

Our estimations show that in the case of twoQND interactions conditional squeezingσA is identical to the
generalized one sg meaning that the former reaches themaximal possible value of squeezing in this system
(darker and lighter lines coincide infigure 2(a)).

Conditional squeezing ofmodeB is, however, not possible as no information aboutB is written intoA after
only twoQND interactions.

Our analytical and numerical estimates of the logarithmic negativity and the steerability show that there is no
entanglement betweenmodesA andB and that steering is not possible in either direction.

6. Advanced quantum transducer

Wenowproceed to consider 3 interactions and investigate differentmeasures of quantum correlations between
the opticalmodes. In the ideal case without decoherencewhen the interaction strengths are equal, the
transformations of quadratures take the following form:

Figure 2.Generalized and conditional squeezing after two (a), three (b) and four(c)QND interactions as a function of the initial
mechanical occupation (note different axis range in (a) and (b), (c)). Corresponding generalized (sg) and conditional variances (sA,B)
after the phase quadrature of the systemB (A)was homodyned as the function of initial occupation of themechanicalmodeM for
different values of theQNDcoupling strength. Darker colours denote conditional squeezing and lighter colours denote generalized
one. Solid lines stand for the case including all the decoherence processes, dotted ones stand for ideal cases without any decoherence
and lines withmarkers are responsible for the optimized values. Conditional squeezing coincides with generalized one for every case
except the case ofχ=1 in (b) and (c). Parameters used are the following: w k= ´ -4 10m

3 , kG = ´ -6 10 10 , g=4×10−7κ,
τ=16/κwhat corresponds to the recent experiment [57].We also assume =n 10th

6 and η=0.9.
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SystemB is not affected by the third interaction, thereby themeasurement performed on it will provide the
same squeezing ofmodeA as after only the two interactions. Aswe see from these equations the initial state of the
mechanical oscillator is completely traced out from systemA, and nowquadrature A

out contains information
about B

in. From this we conclude that by homodyning systemA in this ideal case one can perform squeezing of
systemB and the amount of squeezing does not depend on the initial occupation of themechanical oscillator.
The conditional variance in this case is expressed as s =

c+( )B
III 1

2 1 4 and is defined only by the value of theQND

coupling strength.
When there are optical losses in the system, the conditional variance becomes dependent on the initial

occupation of themechanical system andmay be approximated for small losses by:
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The optimization ofσBwith respect to unequal individualQND interaction strengthsχ1,2,3 allows us to partially
compensate for the influence of optical losses and tomakeσB independent of n0 and equal to s =∣B n 00

. The
presence of themechanical bath defines themaximal achievable amount of squeezing and cannot be
compensated by the optimization. In the case of a highmechanical quality factorQ=ωm /Γ the conditional
variance takes the following form:

s
c

p
w

c
c+

+
G

+


⎡
⎣⎢

⎤
⎦⎥( )

( )n
1

2

1

1 1
. 16B

m

III
4

6

4 2 th

The reasoning above proves that themajor impediment to successful performance is the initial thermal
occupation n0. In the lossless case it is automatically balanced out by the equalQNDgains, andwhen the losses
break the balance, the proper combination of unequal gains can help to alleviate the influence of n0. Numerical
estimations for the full dynamics includingmechanical bath and optical losses are presented in thefigure 2(b).
The upper bound of the range of initial occupation, n0=106, corresponds to the equilibriumoccupation of a
mechanical oscillator with frequencyωm=2π×100 kHz at temperature of 5 K.

Comparison of the conditional squeezingwith the generalized one shows that for the case of lowQND
coupling strengths (χ1) the amount of squeezing produced by conditionalmeasurement does not reach the
maximal possible one (in both cases of the idealized dynamics without any decoherence and in the case of full
model). To attain themaximally available squeezing the valueχ should be increased. See figure 2(b) for details.

We now investigate the entanglement generated in this system. From (14)we conclude that logarithmic
negativity should be sensitive to the initial occupation of themechanicalmode as the term−χ p(0) enters the
expression for  B

out. In the ideal case, the logarithmic negativity is amonotonically increasing function ofχ.
Optical losses break thismonotonicity. This is related to the fact that lossesmodify the trajectory of the
mechanical system in phase space, displacing it away from the optimal final point,most pronounced for higher
QNDgains. Optimizationwith respect toQNDcouplings of individual interactionsχ1,2,3 partially compensates
the optical losses andmakes the logarithmic negativity amonotonic function again. The presence of the
mechanical bath imposes a limit on themaximal achievable amount of entanglement. The optimizationwith
respect to unequalQND strengths partially compensates the influence of themechanical bath and allows higher
values of entanglement to be reached, compared to the non-optimized case. This is represented in the figure 3(a)
togetherwith estimates for non-optimized values.

The steerability properties are very similar to the ones of logarithmic negativity—optical losses break the
monotonicity whereas themechanical bath is responsible for limiting themaximal value of steerability. The
optimization of this quantity with respect toχ1,2,3 partially compensates these two decoherence effects (see
figure 3(b)). There is, however, a threshold value of optomechanical coupling necessary to achieve steering. For

GA B, in absence of the decoherence processes, it is defined by the value of n0. The joint impact of optical losses
andmechanical bathmakes this threshold higher. In contrast, GB A does not demonstrate such a threshold in
the ideal case, and only the presence of decoherence processes causes this limitation.

7. Full quantum transducer

In this sectionwefinally consider the complete scheme of four sequential QND interactions (figure 1(a)). As
above, we study different signatures of quantum correlations. In the idealized symmetric adiabatic case without
decoherence the transformation of quadratures takes the following form:
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describing theQND interaction between themodesA andBwith theHamiltonian:

  t c= - .B Aint
1 2 in in

As can be seen from(17) themechanicalmediator isfinally traced out from the opticalmodes. This is a
manifestation of the geometric phase effect.

We start by estimating the amount of conditional squeezing. SystemA is not involved in the fourth
interaction, thereforemeasuringA yields the same conditional variance sB

III as after only three interactions, as
analysed in section 6. SystemB does not contain any influence of themechanicalmomentum and in the ideal
case, the conditional variance s =

c+( )A
IV 1

2 1 4 is a function of only theQNDcoupling strength. The optical losses

modify the trajectory of themechanical system in phase-space andmake it non-closed. As a consequence, sA
IV

becomes dependent on n0 and for small losses, it takes the following form:

s c
h

c h
» +

+

+ -

-⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

( )

( )
( )

n

1

2
1

1

1 1
. 18A

IV 4

1

2
2

1

2
2

0
2

1

Optimizationwith respect to individualQND couplingsχi allows to bring this phase-space trajectory as close to
the ideal one (figure 1(c)) as possible. The optimized value ofσA becomes equal to s =( )n 0A 0 . Themechanical
bath defines themaximal achievable value of conditional squeezing and its influence cannot be compensated in
this case. The corresponding conditional variance for highmechanical quality factorQ approximately reads:
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It is clear that the influence of n0 is themajor encumbrance for good protocol performance. In the absence of
optical losses in the system, n0 is automatically traced out from the equations by proper combination ofQND
gains. Once losses are introduced, they break this balance. This can be compensated by the optimization of
unequalQNDgains, which is presented in thefigure 2(c).

Analogous to the case of threeQND interactions, conditional squeezing coincide with the generalized one
for large enough values ofχ. For experimentally attainable valuesχ<1 the amount of conditional squeezing is
lower thanmaximally possible one (see figure 2(c)).

We now study the entanglement and steerability. In the ideal case the logarithmic negativity and steerability
are defined only by the value of theQNDcouplingχ. Optical lossesmodify them in away that they become
dependent on n0. In the region of weakQNDcouplings and for small optical losses the eigenvalues defining the
quantities (10), (11) can be approximately expressed by:

Figure 3.Entanglement and steerability after three interactions. (a) Logarithmic negativity as a function of the initial occupation of the
mechanicalmode n0 for different values of themechanical bath occupation number nth and forχ=1. Inset: logarithmic negativity as
a function of theQNDcoupling strengthχ for different values of themechanical bath occupation number nth, n0=0 and pulse
photon numbers 0�N�1013. (b) Steering GA B and GB A as a function of theQNDcouplingχ for different values of the
mechanical initial occupation n0 andΓ/κ=3×10−10. Dashed red lines represent the ideal casewithout any decoherence, whereas
the solid lines represent the casewith all decoherence processes included. Lines withmarkers indicate optimized parameter values.
Parameters which are notmentioned separately are the same as infigure 2.
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demonstrating that the optical losses are responsible for the appearance of the summand proportional to n0. The
influence of themechanical bath is expressed by the additional term independent from n0 and defining the
maximal achievable entanglement and steerability. In the region of weakQNDcouplings and for high
mechanical quality factor the eigenvalues are expressed as:
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It follows from the analysis above that n0 is themain obstacle for the entanglement and steerability
generation. The influence of optical losses andmechanical bathmay be partially compensated by the
optimization of individual unequalQNDgainsχ1,2,3,4. For the case of a coldmechanical bath andweakQND
gains, the optimized values of logarithmic negativity and steerability tend to =( )E n 0N 0 and

=  ( )G n 0A B B A, 0 correspondingly. It is worthwhile to note that decoherence effects are responsible for the
appearance of a threshold value of theQNDcouplingχ required to reach non-zero steerability. The numerical
estimations for the full dynamics are presented in the figure 4.

8. Transducerwithout a cavity

The so-called bad cavity regime (κ?ωm) is advantageous for our transducer, because a cavitywith higher decay
rate does not distort the shape of pulses significantly, which allows us to consider the system in the adiabatic
regime. Therefore a natural next step is to consider the transducer without the optical cavity, where the
mechanicalmode is coupled directly to the propagating lightfields. The transducer without the cavity does not
face the problemofmodematching between the propagating light and cavity so it does not need delicate cavity
operationwhich is beneficial for the experiment. In this sectionwe estimate the achievable amounts of
entanglement and quantum steering for such a transducer.

The optomechanical systemwithout a cavitymay bepresented byfigure 1(b)without themirror in a dashed
box.We still consider four sequentialQND interactionswith themechanicalmediator as depicted in the
figure 1(a). The transformations of thequadratures in the ideal casewithout any decoherence effects included take
the same formas(17)with replacement c c p l ¢ = x N4i i0 [37]where  w=x m2 m0 is the amplitude of
zero-pointfluctuationswithmbeing themass of themechanical oscillator andλ—the opticalwavelength.

The dynamics of the systemwithout the cavity is completely equivalent to the onewith the cavity, and the
numerical estimation results replicate offigure 4 after the replacement c c ¢. Parameters used are the same
with additionλ=1064 nm,m=10−12 kg and 0�N�1016. The systemwithout the cavity does not have the

Figure 4.Entanglement and steerability after four interactions. (a): Logarithmic negativity as a function ofQNDcouplingχ for
different values of themechanical bath occupation number nth. Inset: logarithmic negativity as a function of the initial occupation of
themechanicalmode for different values ofmechanical bath occupation number nth andχ=1. (b) Steerability GA B and GB A as a
function of the initial occupation forχ=1. Inset: steerability as a function ofQND interaction strength for n0=10. Red dashed line
shows the ideal case without any decoherence included, while the solid lines show the full dynamics. Lines withmarkers represent the
case of optimized parameters.Mean photon number is varied in the region 0�N�1015. Other parameters are the same as in the
figure 2.
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advantage of resonant enhancement of the circulating power. Therefore, to achieve the same performance as in
the systemwith the cavity, one has to supply the input power approximately  times higher, where  is the
finesse of the cavity.

9. Conclusion

In this paper we explored the pulsed optomechanical transducer operating beyond the sideband resolved
regime. This transducer allows to interconnect two opticalmodesA andB via a sequence of interactions with the
same noisymechanicalmediator, which can be an element of an optomechanical cavity or just be coupled to
freely propagating pulses. An advantage of the proposed scheme is that it is suitable for, in principle, arbitrary
wavelengths of radiation, therefore it is capable of creating quantum correlations of pulses at different
frequencies that would not interact otherwise.

We studied non-classical correlations after any number of sequential QND interactions in the adiabatic
regime.We have shown that twoQND interactions are enough to create conditional squeezing at least in one
direction. Three sequential interactions allow conditional squeezing in both directions, entanglement between
opticalmodes and quantum steering in both directions, provided that themechanicalmode is cooled close to its
ground state. Finally, the full transducer with four sequential QND interactions is capable of producing
sufficient values of conditional squeezing of both opticalmodes, entanglement and steerability in both
directions at almost an arbitrary initial occupation of themechanicalmode.

The three negative effects that can degrade the performance of the transducer are the initial thermal
occupation of themechanicalmode, its thermal environment and the losses in themodes of radiation.We have
shown that the initial occupation is themost significant impediment to quantum correlations, until it is traced
out from the opticalmodes by a proper combination ofQNDgains. The presence of optical losses breaks this
balance andmakes quantum correlations sensitive to the initial occupation again, whereas the interactionwith
themechanical bath defines themaximally achievable amount of quantum correlations. Remarkably, the
optimization of unequal gains of individualQND interactions allows to substantially compensate these two
unwanted effects.

Thus, we have shown that the geometric phase effect allows for realizing an optomechanical transducer in
the stroboscopic regime outside the sideband resolved limit for the systemswith low-Q cavity, potentially
without cavity.We have also demonstrated that it is feasible in the context of state-of-the-art optomechanical
experiments. This investigationmay stimulate further researches in the area of quantum transducers based on
mechanicalmediators.
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