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Abstract 

Photosynthetic microalgae can capture solar energy and convert it to bio-energy and bio-chemical products. In 

nature or industrial processes, microalgae live together with bacterial communities and may maintain symbiotic 

relationships. In general interactions, microalgae exude dissolved organic carbon that becomes available to 

bacteria. In return, the bacteria re-mineralize sulfur, nitrogen and phosphorous to support the further growth of 

microalgae. In specific interactions, heterotrophic bacteria supply B vitamins as organic cofactors or produce 

siderophores to bind iron, which could be utilized by microalgae, while the algae supply fixed carbon to the 

bacteria in return. In this review, we focus on mutualistic relationship between microalgae and bacteria, 

summarizing recent studies on the mechanisms involved in microalgae-bacteria symbiosis. Symbiotic bacteria on 

promoting microalgal growth are described and the relevance of microalgae-bacteria interactions for biofuel 

production processes is discussed. Symbiotic microalgae-bacteria consortia could be utilized to improve 

microalgal biomass production and to enrich the biomass with valuable chemical and energy compounds. The 

suitable control of such biological interactions between microalgae and bacteria will help to improve the 

microalgae-based biomass and biofuel production in the future. 

 

Key words: Microalgae, bacteria, symbiosis, growth, biofuel  

 

Introduction 

Society’s reliance on fossil fuels for this energy represents one of the major challenges to global environment 

sustainability and economic stability (Donohue & Cogdell, 2006). Photosynthetic microalgae can capture solar 

energy and convert it to bio-energy and bio-chemical products, without damaging the environment or disrupting 

food supply (Rittmann, 2008). Microalgae are attractive targets for industrial application because of their 
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relatively higher conversion rate of solar energy into biomass than terrestrial plants. In addition, microalgae can 

grow in saline or hypersaline environments, metabolize industrial waste streams such as CO2 flue gases and 

further synthesize a range of diverse bio-chemicals (Barclay et al., 2013). If the metabolism of photosynthetic 

microalgae is directed to generate high-energy chemicals such as alcohols, alkanes and fats, they could serve as 

feedstock for the bio-energy industries (Donohue & Cogdell, 2006).  

 

     In nature or industrial processes, there is evidence of microalgae and bacteria living together in complex 

microbial communities. In many cases, these microbial communities perform concerted activities that would not 

be possible in the absence of partners (Donohue & Cogdell, 2006). For example, many bacteria are known to 

influence the development of algal blooms in nature (Tang et al., 2010); the biodegradable organic matter is 

removed by microalgae-bacteria consortia in wastewater treatment ponds (Subashchandrabose et al., 2011); many 

hazardous pollutants such as polycyclic aromatic hydrocarbons, phenolics, and organic solvents are remediated by 

algal-bacteria interactions (Munoz & Guieysse, 2006). Obviously, interactions between microalgae and bacteria 

exist in natural habitats, and their disruption may be responsible for the failure of microalgae isolation in the 

laboratory (Santos & Reis, 2014). On the other hand, many algal culture collections, intentionally or not, maintain 

the symbiotic relationship between algal isolate and associated bacteria, so that an algal isolate often contains one 

or more species of bacteria (Park et al., 2008; Baggesen et al., 2014). Many of these bacteria, at least those 

described, are of the same genera as those found in natural algal environments (Baggesen et al., 2014). Microalgae 

and bacteria synergistically affect each other’s physiology and metabolism, although bacteria have often been 

considered as contamination in the algae culture. In the past few years, the perception has changed and the 

algae-bacteria interactions are considered promising for biotechnology, as many recent studies have shown a 

positive effect of algae-bacteria symbiosis on algal growth and flocculation processes, which are the essential 
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steps in algal biotechnology (Fuentes et al., 2016). Algae–bacteria interactions cover the whole range of symbiotic 

relationships, which are mainly identified as mutualism, commensalism and parasitism (Ramanan et al., 2015). In 

this review, we focus on the mutualistic relationship between microalgae and bacteria. We review both general 

and specific interactions between microalgae and bacteria, summarizing recent studies on the mechanisms 

involved in microalgae-bacteria symbiosis. Symbiotic bacteria involved in promoting microalgae growth are 

described and the relevance of microalgae-bacteria symbiosis for biofuel production processes is reviewed. The 

vision is that improved knowledge, ultimately facilitating the control of microalgae-bacteria symbioses, will help 

to improve the microalgal-based biomass and biofuel production in the future. 

 

Microalgae-bacteria symbiosis mechanism 

In aquatic systems, autotrophic phytoplankton can fix carbon in the form of CO2, through the Calvin cycle, the 

formed organic carbon molecules are used for algal growth. Some of this carbon is eventually leaked into the 

surrounding water as dissolved organic matter (DOM), which includes dissolved organic carbon (DOC), 

dissolved organic nitrogen (DON), and dissolved organic phosphorous (DOP) (Buchan et al., 2014). Fig. 1 shows 

a simplified diagram of general and specific interactions between photosynthetic microalgae and symbiotic 

bacteria. In general interactions, phytoplankton exudes DOM as sources of carbon, sulfur, nitrogen or phosphorus 

for bacteria. In return, bacteria re-mineralize these organic nutrients into inorganic forms and support the further 

growth of microalgae (Cole 1982, Buchan et al. 2014). In specific interactions, the bacteria supply B vitamins as 

organic cofactors to algae, while the algae supply the fixed carbon as DOC to bacteria in return (Croft et al., 2005). 

Siderophores produced by some bacteria could bind iron that in this way become bio-available to microalgae, 

which is another aspect for microalgae-bacteria specific interaction through a “carbon for iron mutualism” (Amin 

et al., 2009).  
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Dissolved organic carbon 

Most algae-bacteria interactions are based on microbial degradation and transformation of organic matter 

produced by phytoplankton (Grossart et al., 2005). One carbon source supplied for bacteria is in the form of 

extracellular polymeric substance (EPS), which is exuded by microalgae and especially from diatoms. EPS are 

metabolic products accumulating on the microbial cell surface to provide protection to the cells (Mishra et al., 

2011). During starvation, EPS could serve as carbon or energy reserves for microalgal cells (Mishra et al., 2011). 

The secretion of EPS from diatoms, usually as polysaccharides of uronic or pyruvic acids, depends on the 

presence of individual bacteria, since the soluble substances produced from bacteria have an impact on diatom 

physiology (Borowitzka & Moheimani, 2013). Another specific source of DOC comes from microalgae is in the 

form of glycolate, released by microalgal cells. Glycolate is a small 2-carbon, water-soluble molecule produced by 

photoautotrophs as a by-product of photorespiration (Amin et al., 2012b). Some bacteria contain a glycolate 

utilization gene, glcD, and therefore incorporate glycolate for cellular growth (Lau & Armbrust 2006). Specific 

bacterial species possessing the glcD gene could therefore benefit from association with glycolate-releasing 

phytoplankton (Lau & Armbrust 2006).  

 

Nitrogen, phosphorus and sulfur  

Symbioses between nitrogen (N2) fixing prokaryotes and photosynthetic eukaryotes are important for nitrogen 

acquisition in nitrogen-limited environments (Thompson et al., 2012). Some bacteria and archaea can fix nitrogen 

into biologically available ammonium for microalgae in the ocean (Canfield et al., 2010). Many diatoms inhabit 

low-nutrient waters of the open ocean and live in close association with autotrophic nitrogen-fixing bacteria 

(cyanobacteria) (Thompson et al., 2012). In the oceans, some of these associations are believed to be mutualistic, 

where nitrogen-fixing cyanobacterial symbionts provide nitrogen for the diatoms; in return, the bacteria benefit 
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from DOM released by the diatoms (Carpenter & Foster 2003, Foster et al., 2011). Nitrogen-fixing cyanobacteria 

have been shown to supply fixed nitrogen to diatoms, likely in the form of ammonia or dissolved organic nitrogen 

(DON) (Foster et al., 2011). The exchange of nitrogen between diatom and cyanobacterial symbionts is likely the 

primary interaction between these cell types, however, it is likely that other benefits such as metabolites, vitamins, 

and trace elements are also exchanged between these partners (Thompson et al., 2012, 2013).  

 

Phosphorus is required by all living organisms to make DNA, RNA, ATP (energy molecules) and other 

essential organic compounds (Ruttenberg, 2001). Phosphorus demand is especially high for the growth of 

phytoplankton. In the ocean, the most abundant phosphorus exists in the form of phosphate (PO4
3-

) ions, which 

phytoplankton can utilize for growth. Under high phosphate conditions, a fraction of phosphorus assimilated by 

phytoplankton is released as dissolved organic phosphorus (DOP) to the seawater. Bacteria hydrolyse this organic 

phosphorus back to phosphate, and thus supply P to microalgae for further growth. However, under low phosphate 

conditions, phytoplankton and other marine organisms will utilize DOP by releasing phosphate from organic 

molecules using alkaline phosphatase (Yong et al., 2014). 

 

Some phytoplankton produce large amounts of the organic sulfur compound dimethylsulfoniopropionate 

(DMSP), which can be converted to dimethyl sulfide (DMS) by marine bacteria (Marlin, 2006). DMSP is 

produced in abundance by phytoplankton species such as in prymnesiophytes and dinoflagellates (Marlin, 2006). 

The breakdown of DMSP by marine bacteria is significant since it is a major source of organic sulfur in the 

world’s ocean (Howard et al., 2006). DMSP can be converted to DMS particularly by members of the 

Roseobacter clade, which could use DMSP as a sulfur resource (Geng and Belas, 2010, Azam & Malfatti, 2007). 

The Roseobacter can further synthesize a biological active secondary metabolite, tropodithietic acid (TDA), 
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which has antibacterial properties and prevents algicidal bacterial species from harming the phytoplankton 

(Brinkhoff et al., 2004). Under this condition, the healthy algal host provides DMSP as an attachment surface for 

the Roseobacter, while the bacterial symbiont provides the antibacterial compound to the microalgae, thus 

forming a mutualistic symbioses relationship between the partners (Seyedsayamdost et al., 2011) 

 

Vitamin B and siderophores 

Many culture- and field- based studies showed evidences of impact of available vitamins on phytoplankton 

growth and microbial community composition (Droop, 2007). The majority of eukaryotic phytoplankton is 

vitamin B auxotroph since they require exogenous B vitamins to grow. Many studies have identified algal species 

that require different combinations of three B vitamins: vitamin B12 (cobalamin), vitamin B1 (thiamine) and 

vitamin B7 (biotin) (Croft et al., 2005). Cobalamin is by far the most studied vitamin in relation to algal 

requirements. Vitamin B12 is required in organisms lacking cobalamin-independent methionine synthase, Met E 

(Amin et al., 2012b). Many algae either lack the synthetic pathways to produce cobalamin or utilize alternative 

cobalamin-independent pathways to bypass the need for the vitamin (Cruz-Lopez et al., 2016). Thiamine was the 

first vitamin found to be an algal growth factor and acts as cofactor for a number of enzymes, which are involved 

in primary carbohydrate and branched chain amino acid metabolism (Croft et al., 2005). Biotin is a cofactor for 

several essential carboxylase enzymes, including acetyl coenzyme A carboxylase, which is involved in fatty acid 

synthesis (Croft et al., 2005). Each of these vitamins is synthesized in bacteria and may serve as part of synergistic 

interactions with microalgae. Available genomic sequences indicate the evidence of bacteria, archaea, and marine 

cyanobacteria as potential vitamin producers (Santos & Reis, 2014). In 306 species of microalgae investigated, 

more than half of the algal species was found to require cobalamin, 22% of the species required thiamine and 5% 

of the species required biotin (Croft et al., 2005). About 52% of the surveyed heterokonts were unable to grow in 
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B12-deficient medium, indicating the importance of vitamin B12 for diatoms (Croft et al., 2005). A more recent 

investigation on 332 microalgal species showed that 54% of the algal species required cobalamin, 27% of the 

species required thiamine, and 8% of the species required biotin (Tang et al., 2010). 

 

Iron is an essential element for photosynthesis and respiration in microalgae, whose growth is often limited 

due to the poor solubility and exceedingly low concentration of iron in the ocean (Tortell et al., 1999). To alleviate 

the limitation of this key micro-nutrient, many marine heterotrophic bacteria produce siderophores, the small 

organic molecules that tightly bind to iron and thereby increase its solubility (Vraspir et al., 2009). The 

heterotrophic bacteria can then take up siderophore-bind iron via outer-membrane transporters that are specific for 

different groups of siderophores (Amin et al., 2009). Microalgae were neither found to produce siderophores nor 

to carry genes involved in siderophore biosynthesis in their genomes. They are, however, able to access iron from 

strong chelates complexed by the siderophores in the seawater (Hopkinson & Morel 2009). Rather than direct 

internalization of siderophores and other iron chelates, phytoplankton primarily use uptake pathways involving a 

reduction step to free bound iron, which is closely coupled with iron transport into the cell (Hopkinson & Morel 

2009). Genomic evidences in both diatoms and green algae showed that they could via ferrireductases and 

adjacent Fe(II) transporters to access iron from siderophores or other chelates (Kustka et al., 2007).  

 

Symbiotic bacteria in microalgal growth promotion 

Many microalgal cultures are maintained in co-culture with bacteria in the culture collection. In many cases, the 

bacteria living in the algal culture were found to stimulate or promote microalgal growth through different 

symbiosis factors. Table 1 lists a number of symbiotic bacteria associated with microalgal growth promotion. 

Halomonas species isolated from xenic algal culture were found to support the growth of both Amphidinium 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

operculatum and Porphyrdium purpureum, by synthesizing vitamin B12 de novo to the same extent as exogenous 

vitamin B12
 
(Croft et al., 2005). The bacterium Halomonas sp. showed increased production of vitamin B12 when 

the culture was provided with fucidin, a commercial algal extract, suggesting the exchange of vitamin for fixed 

carbon in the bacteria (Croft et al., 2005). Cruz-Lopez (et al., 2016) showed that both vitamin B1 and B12 required 

by a marine dinoflagellate Lingulodinium polyedrum can be provided by its associated bacterial community in the 

same culture. One heterotrophic bacterium Mesorhizobium sp. was found to support the growth of another vitamin 

B12-dependent green alga, Lobomonas rostrata (Kazamia et al., 2012). Chlamydomonas reinhardtii does not 

require vitamin B12 for growth, because it encodes a B12- independent methionine synthase (MetE). Co-culturing 

of C. reinhardtii with Mesorhizobium sp. however results in reduced MetE expression, demonstrating that the 

bacterium can deliver vitamin B12 to B12- independent algae as well (Kazamia et al., 2012).  

 

     Keshtachere-Liebson (et al., 1995) reported for the first time that a halophilic and oligotrophic bacterium, 

Halomonas sp., improves the availability of iron to an alga called Dunaliella bardawil. The Halomonas sp. was 

found to produce siderophores and increase the solubility of Fe, thereby making it more available to algae and 

facilitating their growth under Fe-deficient conditions. Amin (et al., 2009; 2012) reported an algal-associated, 

heterotrophic bacterium belonging to the genus Marinobacter, which could release a siderophore called 

vibrioferrin to chelates Fe(III). Fe(III) was later assimilated by both the siderophores-producing bacterium and its 

algal partner (Amin et al., 2009). A representative dinoflagellate alga, Scrippsiella trchoidea, could utilize iron 

from Fe(III)-vibrioferrin chelates released by Marinobacter sp. in the dark (Amin et al., 2009; 2012a). In 

exchange, the algal cells produced dissolved organic matter to support bacterial growth and ultimately fueled the 

bio-synthesis through a “carbon for iron mutualism”. Baggesen (et al., 2014) isolated three bacterial species, 

Marinobacter sp., Halomonas sp. and Pelagibaca sp. from one xenic culture of Dunaliella salina. These bacteria 
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were found to promote the growth of Dunaliella salina under iron-limited conditions. The physical contact 

between algae and bacteria was found not required for this growth promoting effect. All three bacterial strains 

were able to produce siderophores, which could facilitate iron uptake in Dunaliella salina (Baggesen et al., 2014). 

The presence of a group of bacteria, Alteromonas sp. SY007 and Muricauda sp., enhanced the assimilation of 

ammonium and thereby promote the growth of Dunaliella sp., under nitrogen-limited condition (Chevanton et al., 

2013). These symbiotic bacteria could be considered as helpers for iron or nitrogen assimilation in Dunaliella sp. 

cells.  

 

Some microalgae exhibit close physical and physiological relationships with symbiotic bacteria. The 

Roseobacter clade of marine bacteria is often found associated with dinoflagellates as one of the major producers 

of DMSP (Geng and Belas, 2010). One member of the Roseobacter clade, Silicibacter sp., developed biofilm on 

the surface of the dinoflagellate Pfiesteria piscicida (Alavi et al., 2001). The axenic dinoflagellate fails to grow 

and ultimately dies without the presence of associated bacteria; adding back the bacterium could restore the 

growth of P. piscicida (Alavi et al., 2001). Another study revealed that an algal-produced senescence signal from 

Emiliania huxleyi could elicit the production of roseobacticides by its bacterial symbiont in the Roseobacter clade, 

Phaeobacter gallaeciensis (Seyedsayamdost et al., 2011). The algal host provides the bacteria with a solid surface 

for biofilm formation, in return, the bacteria produce antibiotics to protect the algal host from pathogen invasion, 

which is beneficial to both algal and bacterial growth. The diatom, Phaeodactylum tricomutum, secretes EPS and 

thereby promotes biofilm formation for Alphaproteobbacterium sp. on its surface, in return, both bacterial culture 

or the spent medium could promote growth of this diatom (Bruckner et al., 2011).  
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Microalgal-bacteria symbiosis in biofuel production 

Microalgae are capable of synthesizing a range of biofuels as lipids and carbohydrates represent the major energy 

storage molecules in the microalgae. In contrast, proteins in microalgae are generally not considered as substrates 

for biofuel production, but rather for both food and feed use in human and animal nutrition (Hayes et al. 2017). 

The stored carbohydrates in microalgal cells may produce hydrogen
, 
while re-direction of photosynthate to lipids 

may be converted into diesel fuels (Beer et al., 2009). The residual biomass of microalgae could be further 

fermented to ethanol or biogas by yeasts or anaerobic bacteria (Zhu 2013). Table 2 lists both symbiotic bacteria 

and fermentative bacteria involved in microalgal biofuel production. As illustrated in fig. 2, 

microalgal-bacteria-based growth systems could be explored for microalgal biomass and biofuel production. 

Biohydrogen 

 

Microalgal-based hydrogen production represents a novel combination of fermentative and photolytic 

hydrogen-generating processes. It is well known that hydrogen production by microalgae depends on a 

hydrogenase enzyme activity that is highly sensitive to oxygen (Melis & Happe, 2001). Therefore, strict anaerobic 

conditions are necessary for efficient production of hydrogen by microalgae. The bacterial symbionts, 

Brevundimonas sp., Rhodococcus sp., and Leifsonia sp., were found to enhance the hydrogen production in the 

microalga Chlamydomonas (Lakatos et al., 2014). This is due to oxygen elimination by efficient bacterial 

respiration, which is essential for the activation of a Fe-dependent hydrogenase in Chlamydomonas (Lakatos et 

al., 2014). This phenomenon was not limited to natural associations between microalgae and bacteria, since it can 

also be achieved by artificial algal-bacterial communities. The highest hydrogen yield was obtained when a 

hydrogenase deficient Escherichia coli was utilized as an artificial symbiotic bacterium to Chlamydomonas 

(Lakatos et al., 2014). Hence, with the help of bacteria that consume the oxygen evolved, the algae can capture 
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light energy and produce hydrogen simultaneously without further manipulation of the system. The solar energy 

can also be converted into electricity by synergistic cooperation between photosynthetic microalgae and 

heterotrophic bacteria in the form of microalgal fuel cells (MFC), without external input of exogenous organics or 

nutrients (He et al., 2009).  

 

Biodiesel 

Microalgal produced triacylglycerol (TAG) and other lipids can be transesterified into fatty acid methyl esters 

(FAMEs) and are of substantial interest as biodiesel precursors (Scott et al., 2010). Many studies have screened 

and identified microalgal species for bio-diesel production based on their high lipid contents (Griffiths et al., 

2011). Chlorella vulgaris was identified as of high lipid contents and considered as major species in the scale-up 

of algal biodiesel production (Griffiths et al., 2011, Chisti, 2013). Different species of Pseudomonas were 

associated with C. vulgaris (Sapp et al. 2007; Guo & Tong, 2013). The correlation between Pseudomonas 

populations with C. vulgaris throughout the open pond growth may suggest the symbiotic association (Bell et al., 

2016). Co-culturing of the green microalga, Auxenochlorella protothecoides, with E. coli led to 2–6 fold increase 

in algal growth and a doubling of the neutral lipid content as compared to axenic growth, which may also indicate 

a symbiotic relationship between the partners (Higgins & VanderGheynsta, 2014). A later study revealed that a 

positive effect may be traced to E. coli's provision of thiamine derivatives and degradation products to A. 

protothecoides (Higgins et al. 2016). The marine microalga Tetraselmis striata was selected as a candidate for 

biodiesel production due to its high lipids content and fast growth (Chisti, 2007). Both bacterial strains, 

Pelagibaca bermudensis and Stappia sp., isolated from mass cultivation of T. striata, showed growth promoting 

effects on this microalgae (Park et al., 2017). These microalgae symbionts could be used for industrial biodiesel 

production. 
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Bioethanol & biogas 

The residual biomass of microalgae after collection or extraction of useful products can be further fermented to 

ethanol or converted to biogas. The biochemical composition of microalgae grown under normal conditions, i.e. 

without nutrient limitation, is approximately composed of 30–50% proteins, 20–40% carbohydrates and 8–15% 

lipids (Hu, 2004). Moreover, microalgae can produce up to 40% dry weight of starch granules, which various 

bacteria can utilize to produce ethanol (Ramanan et al. 2015). Saccharification of marine microalgae as proven to 

produce ethanol by utilizing amylase from the marine bacterium Pseudoalterimonas undina (Matsumoto et al., 

2003). Enzymatic hydrolysis and fermentation of the microalga Chlamydomonas reinhardtii could be achieved 

with amylase from the bacterium Bacillus licheniformis followed by fermentation of a brewer’s yeast 

Saccharomyces cerevisiae (Silva et al., 2016). Bio-ethanol production from algal-bacterial co-cultures is however 

a new area yet to be fully explored for biotechnological application. 

 

Biogas can be produced from microalgal residue biomass by a process of anaerobic digestion. The 

biochemical composition of microalgae, including trace elements of iron, cobalt, and zinc, meets the general 

nutrient requirements of anaerobic microbiota (Grobbelaar, 2007). The incubation of microalgae residual biomass 

with anaerobic microbes did also stimulate methanogenesis (Sialve et al., 2009). The amount of biogas produced 

depended on the microalgal species used, since the relative proportion of proteins, carbohydrates, and lipids in the 

cells can influence the activities of anaerobic bacteria and archaea (Illman et al., 2000). Another factor that may 

affect the methanogenic potential of microalgae is the protease resistance of their cell walls, which limits the 

effectiveness of the primary microbial degradation in the anaerobic digesters (Angelidaki et al., 2004). Nine 

bacterial strains with endoglucanase activity were able to degrade the cell walls in the microalgae Botryococcus 

braunii and Nannochloropsis gaditana (Muñoz et al., 2014). Bio-augmentation with a cellulolytic and 
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hydrogenogenic bacterium Clostridium thermocellum improved the degradation of Chlorella vulgaris biomass, 

resulting in higher levels of methane and hydrogen production, thus increasing the overall biogas yield and 

efficiency (Lü et al., 2013, Munoz et al., 2006).  

 

Conclusion and perspective   

Bacteria have long been considered as contaminants in algal cultures, thus efforts have been paid to obtain axenic 

algal mono-cultures for developing biomass and biochemical production processes. It is nowadays realized that 

microalgae-bacteria consortia may be utilized to improve algal biomass production and to enrich the biomass with 

valuable chemical and energy compounds. The chemical complexity of microalgal-bacteria interactions includes 

a wide variety of exchanged metabolites, molecular signals, and transporters, whose functions still needs to be 

further investigated. Most molecular signals, genes, and enzymes involved in microalgal-bacteria symbiosis 

remain to be elucidated. A greater insight at molecular level with respect to the regulation of microalgae-bacterial 

interaction will be useful (Fuentes et al., 2016). Compared to the correct integration of genes and the proper 

expression of enzymes in a single organism within the right regulatory/metabolic network, using mixed microbial 

communication and their ability for “the division of labour” could be an easier way to process optimization 

(Subashchandrabose et al., 2011). We propose the control of such biological interaction as efficient tool to 

increase biomass yield and reduce cultivation costs in microalgae production systems. With the increased demand 

of microalgal biomass for industrial applications, one of the key challenges will be the controlled integration of 

specific bacteria in the specific microalgal production processes. Hence, the recognition of symbiotic 

microalgal-bacteria interaction is likely to have profound implications for future exploitation of microalgae, both 

as an energy source and for biotechnological application. Potential use of bacterial symbiont in microalgal 

cultivation will have commercial and environmental positive impacts in the future.  
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Table 1. Symbiotic bacteria involved in microalgal growth promotion.  

Microalgae  Symbiotic bacteria Symbiosis factor References 

Amphidinium operculatum Halomonas sp. Vitamin B12 Croft et al., 2005 

Porphyridium purpureum Halomonas sp. Vitamin B12 Croft, et al., 2005 

Chlamydomonas nivalis Mesorhizobium sp. Vitamin B12 Kazamia et al., 2012 

Lobomonas rostrata  Mesorhizobium Vitamin B12 Kazamia et al., 2012 

Dunaliella salina  Marinobacter sp., Halomonas 

sp., Pelagibaca sp. 

Siderophore  Baggesen et al., 2014 

Dunaliella bardawil Halomonas sp. Siderophore Keshatacher et al., 1995 

Scippsiella trochoidea Marinobacter sp. Siderophore  Amin et al., 2009, 2012 

Hemiaulus membranaceus   Richelia intracellularis  Nitrogen Foster et al., 2011 

Rhizosolenia clevei   Richelia intracellularis  Nitrogen Foster et al., 2011 

Chaetoceros  spp.  Calothrix rhizosoleniae  Nitrogen Foster et al., 2011 

Dunaliella salina  Alteromonas sp., Muricauda sp. Nitrogen Chevanton et al., 2013 

Pfiesteria piscicida Roseobacter sp. Dimethylsulfoniop

ropionate 

Alavi  et al., 2001 

Alexandrium fundyense Roseobacter sp. Dimethylsulfoniop

ropionate 

 Ferrier et al., 2002 

Emiliania huxleyi Phaeobacter gallaeciensis Roseobacticides  Seyedsayamdost et al., 2

011 
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Table 2. Symbiotic and fermentative bacteria involved in microalgal biofuel production.  

Microalgae Bacteria Biofuel References 

Chlamydomonas CC124 Brevundimonas sp., 

Rhodococcus sp., Leifsonia sp. 

Hydrogen Lakatos et al.,2014 

Chlorella vulgaris Pseudomonas sp. Triglyceride Bell et al., 2016; 

Guo & Tong, 2013 

Tetraselmis striata  Pelagibaca bermudensis Triglyceride Park et al., 2017 

Auxenochlorella 

protothecoides  

Escherichia coli Triglyceride Higgins et al., 2014, 2016 

Green microalgae NKG 120701 Pseudoalteromonas undina Ethanol  Mastumoto et al., 2003 

Chlamydomonas reinhardtii Bacillus licheniformis Ethanol  Silva et al., 2016 

 Chlorella vulgaris  Clostridium thermocellum Hydrogen, 

methane  

Lü et al., 2013 

Botryococcus braunii Aeromonas sp., Raoultella sp.  Methane Munoz et al., 2014 

Nannochloropsis gaditana Raoultella ornithinolytica  Methane Munoz et al., 2014 
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Figure legends 

Figure 1. A simplified diagram of general and specific interactions between microalgae and symbiotic bacteria. In 

general interactions, microalgae exude dissolved organic matter (DOM), which becomes available for bacteria. In 

return, the bacteria re-mineralize sulfur (S), nitrogen (N), and phosphorus (P) to support further growth of the 

microalgae. In specific interactions, the bacteria supply B vitamins as organic cofactors or produce siderophores 

to bind iron, which becomes bio-available for microalgae, while the microalgae supply dissolved organic carbon 

(DOC) in return for the bacteria.  

 

Figure 2. Microalgae-bacteria-based growth system for biomass and biofuel production. Symbiotic bacterial 

interaction with microalgae are through exchanged metabolites or elements such as dissolved organic matter 

(DOM), vitamin (Vit), iron (Fe), sulfur (S), nitrogen (N), and phosphorus (P). The stored carbohydrates in 

microalgal cells may produce hydrogen while re-direction of photosynthate to triglyceride may be converted into 

diesel fuels. The residual biomass of microalgae can be further fermented to ethanol or biogas by yeast or 

anaerobic bacteria. Most molecular signals, genes and enzymes involved in microalgal-bacteria symbiosis remain 

to be elucidated.  
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