

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Mar 29, 2019

Compressed and efficient algorithms and data structures for strings

Ettienne, Mikko Berggren

Publication date:
2018

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Ettienne, M. B. (2018). Compressed and efficient algorithms and data structures for strings. DTU Compute.
DTU Compute PHD-2018, Vol.. 490

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/189888147?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orbit.dtu.dk/en/publications/compressed-and-efficient-algorithms-and-data-structures-for-strings(e76e625c-9b36-48bf-9e72-623dbccdac7c).html

PHD-2018-490

COMPRESSED AND

EFFICIENT ALGORITHMS

AND DATA STRUCTURES

FOR STRINGS

Mikko Berggren Ettienne

Technical University of Denmark
Department of Applied Mathematics and Computer Science
Richard Petersens Plads, Building 324,
2800 Kongens Lyngby, Denmark
Phone +45 4525 3031
compute@compute.dtu.dk
www.compute.dtu.dk

PHD-2018-490
ISSN: 0909-3192

PREFACE

This dissertation was prepared at the Department of Applied Mathematics and Computer
Science at the Technical University of Denmark in partial fulfillment of the requirements
for acquiring a PhD degree. It is comprised by four joint peer-reviewed publications
and one unpublished paper which is the result of my research as part of the project
Compressed Computation on Highly-Repetitive Data partially funded by the Danish
Research Council (DFF – 4005-00267). The results were obtained under the supervision
of Associate Professor Philip Bille and Associate Professor Inge Li Gørtz from May 2015
to August 2018 including 3 months of paternity leave.

Acknowledgements. First and foremost I want extend my sincere gratitude to my
supervisors Inge and Philip. They have been a great inspiration and have been available
whenever needed for advice, discussions and support during the inevitable academic and
personal ups and downs of my PhD. A big thanks to professor John Iacono from New
York University who was kind enough to invite my to New York City and set aside time
for academic discussion and research. I also want to thank my colleagues and the people
in the community for their inspiring dedication and their warm and welcoming attitude.
Thanks to the people in the AlgoloG group at The Technical University of Denmark
for contributing to the pleasant working environment. In particular, thank you Anders,
Patrick, Steen, Thomas, Nicola, Eva, Frederik, Søren and Hjalte. I have truly enjoyed
the multitude of discussions we have had around everything and nothing at all and I
believe you all qualify as my friends. Last but not least, I thank my friends, family and in
particular Natasja for her love, patience and support.

Mikko Berggren Ettienne
Copenhagen, August 2018

i

ABSTRACT

In this dissertation we study the design of efficient algorithms, data structures, and
protocols for computation on compressed data and manipulation of long sequences. We
consider the following topics:

Time-Space Trade-Offs for Lempel–Ziv Compressed Indexing Given a string S, the
compressed indexing problem is to preprocess S into a compressed representation that
supports fast pattern matching queries. That is, given a string P , report all occurrences
of P in S. The goal is to use little space relative to the compressed size of S while
supporting fast queries. We present a compressed index based on the Lempel–Ziv 1977
compression scheme. We obtain the following time-space trade-offs: For constant-sized
alphabets

(i) O(m+ occ lg lg n) time using O(z lg(n/z) lg lg z) space, or

(ii) O(m(1 + lgε z
lg(n/z)) + occ(lg lg n+ lgε z)) time using O(z lg(n/z)) space,

For integer alphabets polynomially bounded by n

(iii) O(m(1 + lgε z
lg(n/z)) + occ(lg lg n+ lgε z)) time using O(z(lg(n/z) + lg lg z)) space, or

(iv) O(m+ occ(lg lg n+ lgε z)) time using O(z(lg(n/z) + lgε z)) space,

where n and m are the length of the input string and query string respectively, z is the
number of phrases in the LZ77 parse of the input string, occ is the number of occurrences
of the query in the input and ε > 0 is an arbitrarily small constant. In particular,
(i) improves the leading term in the query time of the previous best solution from
O(m lgm) to O(m) at the cost of increasing the space by a factor lg lg z. Alternatively,
(ii) matches the previous best space bound, but has a leading term in the query time of
O(m(1 + lgε z

lg(n/z))). However, for any polynomial compression ratio, i.e., z = O(n1−δ),
for constant δ > 0, this becomes O(m). Our index also supports extraction of any
substring of length ` in O(` + lg(n/z)) time. Technically, our results are obtained by
novel extensions and combinations of existing data structures of independent interest,
including a new batched variant of weak prefix search.

Compressed Indexing with Signature Grammars The compressed indexing problem
is to preprocess a string S of length n into a compressed representation that supports
pattern matching queries. That is, given a string P of length m report all occurrences of
P in S.

We present a data structure that supports pattern matching queries in O(m +
occ(lg lg n+ lgε z)) time using O(z lg(n/z)) space where z is the size of the LZ77 parse of
S and ε > 0 is an arbitrarily small constant, when the alphabet is small or z = O(n1−δ)
for any constant δ > 0. We also present two data structures for the general case; one

iii

iv COMPRESSED AND EFFICIENT ALGORITHMS AND DATA STRUCTURES FOR STRINGS

where the space is increased by O(z lg lg z), and one where the query time changes
from worst-case to expected. These results improve the previously best known solutions.
Notably, this is the first data structure that decides if P occurs in S in O(m) time using
O(z lg(n/z)) space.

Our results are mainly obtained by a novel combination of a randomized grammar
construction algorithm with well known techniques relating pattern matching to 2D-
range reporting.

Decompressing Lempel-Ziv Compressed Text We consider the problem of decom-
pressing the Lempel–Ziv 77 representation of a string S of length n using a working
space as close as possible to the size z of the input. The folklore solution for the problem
runs in O(n) time but requires random access to the whole decompressed text. A better
solution is to convert LZ77 into a grammar of size O(z lg(n/z)) and then stream S in
linear time. In this paper, we show that O(n) time and O(z) working space can be
achieved for constant-size alphabets. On larger alphabets, we describe (i) a trade-off
achieving O(n lgδ σ) time and O(z lg1−δ σ) space for any 0 ≤ δ ≤ 1 where σ is the size of
the alphabet, and (ii) a solution achieving O(n) time and O(z lg lg n) space. Our solutions
can, more generally, extract any specified subsequence of S with little overheads on top of
the linear running time and working space. As an immediate corollary, we show that our
techniques yield improved results for pattern matching problems on LZ77-compressed
text.

Compressed Communication Complexity of Longest Common Prefixes We con-
sider the communication complexity of fundamental longest common prefix (LCP) prob-
lems. In the simplest version, two parties, Alice and Bob, each hold a string, A and
B, and we want to determine the length of their longest common prefix ` = LCP(A,B)
using as few rounds and bits of communication as possible. We show that if the longest
common prefix of A and B is compressible, then we can significantly reduce the number
of rounds compared to the optimal uncompressed protocol, while achieving the same
(or fewer) bits of communication. Namely, if the longest common prefix has an LZ77
parse of z phrases, only O(lg z) rounds and O(lg `) total communication is necessary.
We extend the result to the natural case when Bob holds a set of strings B1, . . . , Bk,
and the goal is to find the length of the maximal longest prefix shared by A and any
of B1, . . . , Bk. Here, we give a protocol with O(lg z) rounds and O(lg z lg k + lg `) total
communication. We present our result in the public-coin model of computation but by
a standard technique our results generalize to the private-coin model. Furthermore, if
we view the input strings as integers the problems are the greater-than problem and the
predecessor problem.

Fast Dynamic Arrays We present a highly optimized implementation of tiered vectors,
a data structure for maintaining a sequence of n elements supporting access in time
O(1) and insertion and deletion in time O(nε) for ε > 0 while using o(n) extra space.
We consider several different implementation optimizations in C++ and compare their
performance to that of vector and multiset from the standard library on sequences with
up to 108 elements. Our fastest implementation uses much less space than multiset while
providing speedups of 40× for access operations compared to multiset and speedups of
10.000× compared to vector for insertion and deletion operations while being competitive
with both data structures for all other operations.

DANISH ABSTRACT

I denne afhandling studeres design af effektive algoritmer, datastrukturer og protokoller
til beregninger på komprimeret data og manipulation af lange sekvenser. Vi behandler
følgende emner:

Tidspladsafvejninger for Lempel–Ziv Komprimeret Indeksering Komprimeret in-
deksering er at præprocessere en given streng S til en komprimeret repræsentation, som
understøtter hurtige mønstergenkendelsesforespørgsler. Det vil sige, givet en streng P ,
kaldet mønsteret, rapporter alle forekomster af P i S. Målet er at bruge lidt plads relativt
til den komprimerede størrelse af S og samtidig understøtte hurtige forespørgsler. Vi præ-
senterer et komprimeret indeks baseret på Lempel–Ziv 1977 komprimeringsteknikken.
Vi opnår de følgende tidspladsafvejninger:

For alfabeter af konstant størrelse:

(i) O(m+ occ lg lg n) tid og O(z lg(n/z) lg lg z) plads, eller

(ii) O(m(1 + lgε z
lg(n/z)) + occ(lg lg n+ lgε z)) tid og O(z lg(n/z)) plads,

For heltalsalfabeter polynomielt begrænset af n

(iii) O(m(1 + lgε z
lg(n/z)) + occ(lg lg n+ lgε z)) tid og O(z(lg(n/z) + lg lg z)) plads, eller

(iv) O(m+ occ(lg lg n+ lgε z)) tid og O(z(lg(n/z) + lgε z)) plads,

hvor n er længden af strengen S, m er længden af forespørgslen, z er antallet af fraser i
LZ77-fortolkningen af S, occ er antallet af forekomster af forespørgslen i S og ε > 0 er en
arbitrært lille konstant. I særdeleshed forbedrer (i) den ledende term i forespørgseltiden
af den hidtil bedste løsning fra O(m lgm) til O(m) på bekostning af en faktor lg lg z
forøgelse af pladsforbruget. Alternativt har (ii) et pladsforbrug tilsvarende det hidtil
bedste, men har O(m(1+ lgε z

lg(n/z))) som ledende term i forespørgselstiden. Dette reducerer
imidlertid til O(m) når z = O(n1−δ) hvor δ > 0 er konstant. Vores indeks understøtter
også dekomprimering af enhver delstreng af længde ` i O(`+ lg(n/z)) tid. Vores resultat
er opnået ved originale udvidelser og kombinationer af eksisterende datastrukturer
som kan være relevante i andre sammenhænge, herunder en ny variant af svag præfiks
søgning.

Komprimeret Indeksering med Signaturgrammatikker Komprimeret indeksering er
at præprocessere en given streng S til en komprimeret repræsentation, som understøtter
mønstergenkendelsesforespørgsler. Det vil sige, givet en streng P af længde m, kaldet
mønsteret, rapporter alle forekomster af P i S.

Vi præsenterer en datastruktur, der understøtter mønstergenkendelsesforespørglser i
O(m + occ(lg lg n + lgε z)) tid og bruger O(z lg(n/z)) plads hvor z er antallet af fraser
i LZ77-fortolkningen af S og ε > 0 er en arbitrært lille konstant, når alfabetet er

v

vi COMPRESSED AND EFFICIENT ALGORITHMS AND DATA STRUCTURES FOR STRINGS

lille eller z = O(n1−δ) hvor δ > 0 er konstant. Vi præsenterer også to datastrukturer
for det generelle tilfælde; en hvor pladsforbruget forøges med O(z lg lg z), og en hvor
forespørgselstiden ændres fra at være i værste tilfælde til at være i forventning. Dette
forbedrer de hidtil bedste resultater. Det er desuden bemærkelsesværdigt at dette er den
første datastruktur, som kan afgøre om P forekommer i S i O(m) tid og O(z lg(n/z))
plads.

Vores resultater er primært opnået gennem en original kombination af en randomise-
ret grammatikkonstruktionsalgoritme og velkendte teknikker inden for mønstergenken-
delse og 2D-område rapportering.

Dekomprimering af Lempel–Ziv-Komprimeret Tekst Vi undersøger hvorledes Lempel–
Ziv 77 repræsentationen af en streng S af længde n kan dekomprimeres ved brug af
arbejdshukommelse så tæt som muligt på z, som er størrelsen på input. Den velkendte
teknik tager O(n) tid men kræver løbende adgang til den dekomprimerede tekst. En
alternativ og bedre løsning er at omdanne LZ77 repræsentationen til en grammatik af
størrelse O(z lg(n/z)) og derefter streame S i lineær tid. I denne artikel viser vi at O(n)
tid og O(z) arbejdshukommelse kan opnås for alfabeter af konstant størrelse. For større
alfabeter beskriver vi to afvejninger mellem tid og plads. Det første kræver O(n lgδ σ)
tid og O(z lg1−δ σ) plads hvor 0 ≤ δ ≤ 1 er konstant og σ er størrelsen på alfabetet. Det
andet kræver O(n) tid og O(z lg lg n) plads. Vores løsninger kan også dekomprimere
et vilkårlig specificeret sæt af delstrenge af S med små forøgelser i køretid og arbejds-
hukommelse. Vi viser desuden at vores teknikker forbedrer eksisterende resultater for
mønstergenkendelse på LZ77-komprimeret tekst som en naturlig følge.

Komprimeret Kommunkationskompleksitet af Længste Fælles Præfiks Vi betragter
kommunikationskompleksiteten af fundamentale længste fælles præfiks (LCP) proble-
mer. I den simpleste version har Alice og Bob hver en streng, A og B og vi ønsker at
bestemme længden af strengenes længste fælles præfiks ` = LCP(A,B) med minimal
kommunikation målt i antallet af bits kommunikeret og antallet af runder. Vi viser at
hvis det længste fælles præfiks af A og B kan komprimeres, så kan vi reducere antallet
af runder signifikant og fastholde (eller reducere) antallet af bits sammenlignet med
den optimale protokol for ikke-komprimerede strenge. Helt præcist er O(lg z) runder og
O(lg `) total kommunikation tilstrækkeligt, hvis LZ77-fortolkningen af det længste fælles
præfiks har z fraser.

Vi udvider resultatet to til den generelle version hvor Bob har et sæt af strenge
B1, . . . , Bk, og målet er at finde længden af det maksimale af de længste præfikser
mellem A og en enhver af B1, . . . , Bk. For dette problem giver vi en protokol med O(lg z)
runder og O(lg z lg k + lg `) total kommunikation.

Vi præsenterer vores resultater i public-coin modellen, men de kan ved brug af
standardteknikker generaliseres til private-coin modellen. Vi bemærker at de nævnte
problemer er ækvivalente med større-end problemet og prædecessor problemet, hvis
man betragter strengene som heltal.

Hurtige Dynamiske Tabeller Vi præsenterer en højt optimeret implementering a lag-
delte vektorer, en datastruktur som vedligeholder en sekvens af n elementer og under-
støtter tilgang i O(1) tid og indsættelse og sletning i O(nε) tid, for ε > 0, og bruger
o(n) ekstra plads. Vi undersøger flere forskellige implementeringsoptimeringer i C++ og
sammenligner ydeevnen med vector og multiset fra standard biblioteket på sekvenser
med op til 108 elementer. Vores hurtigste implementering bruger væsentligt mindre plads
end multiset og forøger hastigheden af tilgangsoperationer med en faktor 40 sammen-
lignet med multiset og forøger hastigheden af indsættelse og sletning med en faktor
10.000 sammenlignet med vector, imens hastigheden for de resterende operationer ikke
forværres nævneværdigt.

CONTENTS

Preface i

Abstract iii

Danish Abstract v

Contents vii

CHAPTER 1 Introduction 1
1.1 Overview . 2
1.2 Preliminaries . 2

1.2.1 Model of Computation . 2
1.2.2 LZ77 . 3
1.2.3 Grammar Compression . 4

1.3 Compression, Compact Representations and Succinct Data Structures . . 7
1.4 Chapters 2 & 3: Compressed Indexing 8
1.5 Chapter 4: Fast Lempel–Ziv Decompression in Linear Space 10
1.6 Chapter 5: Compressed Communication Complexity of Longest Common

Prefixes . 10
1.7 Chapter 6: Fast Dynamic Arrays . 11
1.8 Future Work . 13

CHAPTER 2 Time-Space Trade-Offs for Lempel–Ziv Compressed Indexing 15
2.1 Introduction . 15

2.1.1 Our Results . 16
2.2 Preliminaries . 17

2.2.1 Compact Tries . 17
2.2.2 Karp–Rabin Fingerprints . 17
2.2.3 Range Reporting . 18
2.2.4 LZ77 . 18

2.3 Prefix Search . 18
2.3.1 Data Structure . 19
2.3.2 Finding an x-range Vertex . 20
2.3.3 From x-range to Exit Vertex . 20
2.3.4 Multiple Substrings . 22

2.4 Distinguishing Occurrences . 22
2.5 Long Primary Occurrences . 22

2.5.1 Data Structure . 22
2.5.2 Searching . 23
2.5.3 Prefix Search Verification . 24

2.6 Short Primary Occurrences . 26

vii

viii COMPRESSED AND EFFICIENT ALGORITHMS AND DATA STRUCTURES FOR STRINGS

2.7 The Secondary Index . 26
2.8 The Compressed Index . 27

2.8.1 Trade-offs . 28
2.8.2 Preprocessing . 28

CHAPTER 3 Compressed Indexing with Signature Grammars 31
3.1 Introduction . 31

3.1.1 Our Results . 32
3.1.2 Technical Overview . 33

3.2 Preliminaries . 33
3.3 Signature Grammars . 34

3.3.1 Signature Grammar Construction 35
3.3.2 Properties of the Signature Grammar 35

3.4 Long Patterns . 37
3.4.1 Data Structure . 37
3.4.2 Searching . 37
3.4.3 Correctness . 38
3.4.4 Complexity . 39

3.5 Short Patterns . 39
3.6 Semi-Short Patterns . 39

3.6.1 Data Structure . 40
3.6.2 Searching . 40
3.6.3 Analysis . 41

3.7 Randomized Solution . 41

CHAPTER 4 Fast Lempel-Ziv Decompression in Linear Space 43
4.1 Introduction . 43

4.1.1 Our contributions . 44
4.1.2 Related work . 45

4.2 Preliminaries . 45
4.2.1 Lempel-Ziv 77 Algorithm . 46
4.2.2 Mergeable Dictionary . 46

4.3 LZ77 Induced Context . 47
4.3.1 LZ77 Compressed Context . 50
4.3.2 SLP and Word Compressed Context 51

4.4 LZ77 Decompression . 52
4.5 Applications in Pattern Matching . 53
4.6 Conclusions . 54

CHAPTER 5 Compressed Communication Complexity of Longest Common Pre-
fixes 55

5.1 Introduction . 55
5.2 Definition and Preliminaries . 58
5.3 Noisy Search . 59
5.4 Communication Protocol for LCP . 60

5.4.1 The LCPk case . 62
5.5 Self-referencing LZ77 . 63

5.5.1 LCPk in the self-referential case. 64
5.6 Obtaining a Trade-Off via D-ary Search. 64

CHAPTER 6 Fast Dynamic Arrays 67
6.1 Introduction . 67
6.2 Preliminaries . 68
6.3 Tiered Vectors . 68

CONTENTS ix

6.4 Improved Tiered Vectors . 71
6.4.1 Implicit Tiered Vectors . 71
6.4.2 Lazy Tiered Vectors . 71

6.5 Implementation . 71
6.5.1 C++ Templates . 72

6.6 Experiments . 73
6.6.1 Comparison to C++ STL Data Structures 74
6.6.2 Tiered Vector Variants . 75
6.6.3 Width Experiments . 76
6.6.4 Height Experiments . 77
6.6.5 Configuration Experiments . 77

6.7 Conclusion . 78

A Appendix 79
A.1 Mergable Dictionaries . 79

Bibliography 83

CHAPTER 1

INTRODUCTION

The amount of data being produced and consumed has been growing with an accelerating
pace throughout the last couple of decades and there are no obvious signs of a slowdown
of this trend.

As a consequence, vast amounts of data needs to be stored, transmitted and processed
in order to facilitate extraction of meaningful information. An obvious and increasingly
relevant component in handling huge data sets is compression. Repetitive data can be
compressed and stored in less space than the original, and for highly repetitive data the
difference can be significant.

In this dissertation we design algorithms, data structures and protocols for compu-
tations on compressed data and manipulation of huge data sets. The results presented
appear in the following papers.

Chapter 2 Time-Space Trade-Offs for Lempel–Ziv Compressed Indexing
Philip Bille, Mikko Berggren Ettienne, Inge Li Gørtz, and Hjalte Wedel Vildhøj.
In Theoretical Computer Science, volume 713, 2018. An extended abstract ap-
peared in the Proceedings of the 28th Symposium on Combinatorial Pattern Match-
ing, 2017.

Chapter 3 Compressed Indexing with Signature Grammars
Anders Roy Christiansen, and Mikko Berggren Ettienne.
In Proceedings of the 13th Latin American Symposium on Theoretical Informatics,
2018.

Chapter 4 Fast Lempel-Ziv Decompression in Linear Space
Philip Bille, Mikko Berggren Ettienne, Travis Gagie, Inge Li Gørtz, and Nicola Prezza
Unpublished. Will be submitted for publication in 2018.

Chapter 5 Compressed Communication Complexity of Longest Common Prefixes
Philip Bille, Mikko Berggreen Ettienne, Roberto Grossi, Inge Li Gørtz, and Eva Roten-
berg
In the proceedings of the 25th International Symposium on String Processing and
Information Retrieval, 2018.

Chapter 6 Fast Dynamic Arrays
Philip Bille, Anders Roy Christiansen, Mikko Berggren Ettienne, and Inge Li Gørtz
In Proceedings of the 25th Annual European Symposium on Algorithms, 2017.

1

2 COMPRESSED AND EFFICIENT ALGORITHMS AND DATA STRUCTURES FOR STRINGS

1.1 Overview

Chapters 2 through 6 are verbatim copies of the papers listed above in the given order.
The first four papers present theoretical results whereas the last is mainly experimental.
Chapters 2 through 5 are concerned with compressed computation. In chapters 2 and 3
we consider the problem of designing compressed indexing data structures supporting
efficient queries. Chapter 4 deals with the algorithmic problem of how to efficiently
decompress specified parts of a data set that is given in a compressed representation.
In Chapter 5 we consider how to exploit compression to obtain a low communication
complexity for a fundamental string problem. Lastly, Chapter 6 describes an implementa-
tion of a practical dynamic array data structure and experimentally show that it offers
significant speedups over library implementations of related data structures when dealing
with many elements.

Section 1.2 and 1.3 of this chapter gives some basic terminology and an introduction
to some of the fundamental techniques, concepts and compression schemes that are
relevant to the rest of the dissertation. The sections 1.4 through 1.7 give an overview of
the problems we consider in the following chapters by outlining the problem, related
work and the results. In Section 1.8 we consider ideas for future work.

We note in accordance with the plagiarism checking process recently implemented by
The Technical University of Denmark that the contents of this chapter is based on the
papers that appear in chapters 2 through 6. Some definitions and presentations of results
might coincide with what is found in later chapters.

1.2 Preliminaries

There will be minor variations in notation style between chapters because each paper
appears verbatim, but the papers are self-contained and introduce relevant models,
notation and preliminaries whenever necessary. We here give some basic notation
relevant to the rest of this chapter:

A string S of length n = |S| is a sequence of n symbols S[1] · · ·S[n] drawn from an
alphabet Σ of size σ = |Σ|. The sequence S[i, j] is the substring of S given by S[i] · · ·S[j].
We use [n] as shorthand notation for {1, 2, . . . , n}.

1.2.1 Model of Computation

The results in chapters 2 through 4 are based on the word-RAM model [50]. The word-
RAM is an abstract random-access machine where each memory cell stores a w-bit integer
which we refer to as a word where w is a positive integer called the word size. The model
assumes that w = Ω(lg n) where n is the number of cells required to specify the input. It
follows that a word can hold the address of any of the input cells.

The model allows basic operations such as load, store, jump and comparison and also
bitwise and arithmetic operations such as addition, multiplication, division, logical shifts,
etc. to be carried out on words in constant time. Similarly reading and writing any cell is
a constant-time operation.

The time used by an algorithm is the number of such constant-time operations it
performs and the space usage is the number of distinct memory cells it writes to during
operation. We note that we do not count the input cells toward the space usage and we
assume that the input is available in read-only memory.

Most of our algorithms take as input a sequence of symbols from some alphabet.
Unless otherwise noted, we always assume that this alphabet consists of integers and
that the size of it is polynomially bounded by the length of the input sequence. It follows
that any symbol can be stored in O(1) words.

INTRODUCTION 3

1.2.2 LZ77

The LZ77 algorithm is a seminal lossless compression algorithm by Abraham Lempel and
Jacob Ziv [91]. The algorithm provides theoretical guarantees as well as great efficiency
in practice and has therefore formed the basis of widespread compression techniques
such as 7zip, gzip and PNG to name a few.

The LZ77 parse of a string S of length n from an alphabet Σ divides S into z substrings
f1f2 . . . fz, called phrases, in a greedy left-to-right order. Let u1 = 1, and ui =

∑i−1
1 |fi|+1

for i > 1. Then the ith phrase fi is the longest substring starting at position ui that has
at least one occurrence starting to the left of ui plus the following symbol. To compress
S (assume for simplicity that S is terminated with the special symbol $) we represent
each phrase as a tuple (si, li, αi) ∈ ([n] × [n] × Σ ∪ $), such that si is the position of a
previous occurrence, li is the length of the occurrence, and αi is the symbol at position
ui + li. We define s1 = 0 and it follows that l1 = 0 and α1 = S[1]. We call the substring
S[si, si + li − 1] the source and S[ui + li] the border of the ith phrase fi = S[ui, ui + li].
If si + li > ui for some i ∈ [z] such that the source of the ith phrase overlaps the phrase,
we say that the parse is self-referential. Sometimes, we restrict ourselves to parses that
are not self-referential and thus require that si + li ≤ ui for i ∈ [z].

Text: dissertation_dissemination$
LZ77-representation:(0, 0, d)(0, 0, i)(0, 0, s)(3, 1, e)(0, 0, r)(0, 0, t)(0, 0, a)

(7, 1, i)(0, 0, o)(0, 0, n)(0, 0, _)(1, 5,m)(2, 1, n)(8, 5, $)

The string dissertation_dissemination$ contains 27 symbols while its LZ77 parse consists
of 14 phrases.

Text: (abc)n$
LZ77-representation :(0, 0, a)(0, 0, b)(0, 0, c)(1, 3n− 3, $)

The string formed by repeating the string abc n times has length 3n and is compressed into a
self-referential parse with O(1) phrases.

Bounds The LZ77 parse of a string contains O(n/ logσ n) phrases and as every phrase
can be represented in O(1) words this space usage is O(n lg σ) bits, which is asymptoti-
cally optimal in the worst case. The asymptotic optimality also carries over to statistical
measures of compression such as empirical entropy (see Section 1.3 for more details
on this). Furthermore the LZ77 algorithm performs particularly well when considering
highly repetitive text. This follows naturally from its definition due to the fact that any
repeated occurrence of a substring is represented by a single phrase which requires O(1)
words in the compressed representation.

On top of both the practical and theoretical efficiency of the LZ77 algorithm, it also
offers linear compression and decompression time. The LZ77 parse of a string S can be
found greedily from the suffix tree of S. Decompression is done incrementally phrase
by phrase. A phrase fi = (si, li, αi) is decompressed simply by appending the symbol
αi to the source of the phrase S[si, si + li − 1] which can be read from the already
decompressed prefix f1f2 · · · fi−1 of S.

Variations Due to its widespread academic and practical influence, there are several
variations of the LZ77 algorithm. Limiting the search for identical substrings to a sliding
window that is maintained during compression is a well-studied technique both in theory
and practice [64]. It offers increased compression speed and less working space at the

4 COMPRESSED AND EFFICIENT ALGORITHMS AND DATA STRUCTURES FOR STRINGS

cost of (potentially) worse compression. Other variations like LZ78 [92] and LZ-end [59]
make it easier to do computations on the compressed data but are also provably inferior
to LZ77 when it comes to compression.

Left vs Right Observe that the LZ77 parse of a string is not unique according to
the definition given above because it does not specify which substring to choose as a
source for a phrase when there are multiple possible choices. One way to resolve this
ambiguity, is to choose either the leftmost or the rightmost substring. The rightmost
parse is interesting when one is interested in the number of bits required to represent the
LZ77 parse and not only the number of phrases. By specifying the position of a source
si relative to the position of the corresponding phrase ui, we can hope to reduce the
magnitude of the number. This makes a difference if we further compress the parse by
using variable-length integer encoders.

1.2.3 Grammar Compression

A grammar is a set of symbols called non-terminals, a disjoint set of symbols called
terminals, a set of production rules and a special non-terminal symbol called the starting
symbol. The production rules describe how to map one string of terminals and at least
one non-terminal into a possibly empty string of terminals and non-terminals. A grammar
describes a formal language, namely the set of strings over the alphabet of the terminals
that can be generated by repeated symbol replacements according to the production rules
starting from the starting symbol. We use upper-case letters for the non-terminals and
lower-case letters for the terminals and write production rules as aAb→ acb meaning
that the string aAb can be replaced by the string acb. A grammar is context-free if the
left-hand side of all production rules is a single non-terminal.

Grammars have many applications in computer science, but a grammar can also be
seen as a compact way to represent the language it generates. When compressing a
single string, we can restrict our focus to context-free grammars that produce exactly one
string. This implies that:

• Every non-terminal appears as the left-hand side in exactly one production rule.

• The grammar is acyclic, i.e. if A appears in a string that can be generated from B
then B does not appear in a string that can be generated from A.

For simplicity, we sometime restrict our focus even further and consider context-free
grammars in Chomsky normal form that produce only one string. A context-free grammar
is in Chomsky normal form if the right-hand side of all rules is either a pair of non-
terminals or a single terminal and the starting symbol does not appear in the right-hand
side of any rule. A context-free grammar in Chomsky normal form that produces exactly
one string is in fact a Straight-Line Program (SLP) and has the form

X1 → expr1, X2 → expr2, . . . , Xn → exprn

where Xi is a non-terminal and expri is either a terminal or a pair of non-terminals
XjXk where j, k < i and Xn is the starting symbol.

INTRODUCTION 5

Text: (abc)n (assume n is a power of 2)

Grammar representation:

X1 → a

X2 → b

X3 → c

X4 → X1X2

X5 → X4X3

X6 → X5X5

X7 → X6X6

...

Xlgn+5 → Xlgn+4Xlgn+4

The string formed by repeating the string abc n times has length 3n and can be represented by a
grammar with O(lgn) production rules.

An SLP can also be viewed as an directed acyclic graph (DAG) in which the vertices
are the terminal and non-terminal symbols of the grammar. The starting symbol is the
root of the DAG. If Xi → XjXk is a production rule then the vertex Xi has two outgoing
edges, one to each of the vertices Xj and Xk marked as a left edge and a right edge
respectively. If Xl → α is a production rule (where α is a terminal) then Xl has a single
outgoing edge to the vertex α. There is a one-to-one correspondence between the vertices
of the DAG and the symbols of the grammar end every rule induces one or two edges in
the DAG. Therefore a grammar has the same size as its corresponding DAG and we can
easily go from one representation to the other in linear time.

a b c

X1 X2 X3

X4

X5

X6

X7

Figure 1.1: The DAG corresponding to the SLP from the example above where n = 4. The DAG
produces the string abcabcabcabc.

The derivation tree sometimes called the parse tree is a tree induced by the grammar. It
is a rooted ordered tree in which every vertex corresponds to a terminal or non-terminal.
The starting symbol is the root of the tree. If Xi → XjXk is a production rule then Xj is

6 COMPRESSED AND EFFICIENT ALGORITHMS AND DATA STRUCTURES FOR STRINGS

a b c a b c a b c a b c

X1 X2

X3

X1 X2

X3

X1 X2

X3

X1 X2

X3X4

X5

X4

X5

X4

X5

X4

X5

X6 X6

X7

Figure 1.2: The derivation tree of the DAG from the examples above producing the string
abcabcabcabc

the left child of Xi and Xk is the right child of Xi. If Xl → α is a production rule (where
α is a terminal) then α is the sole child of Xl.

The sequence formed by the left-to-right order of the leaves of the derivation tree
is the string produced by the grammar. We sometimes leave out all rules of the form
Xi → α and replace all occurrences of Xi with α. This implies that all rules have
two symbols in the right-hand side. This gives a more uniform representation and the
derivation tree becomes a binary tree. The change does not affect the string generated
by the grammar or its asymptotic size, but it is no longer in Chomsky normal form. A
grammar is balanced when its derivation tree is balanced according to some balance
criteria, e.g. if the length of any path is asymptotically bounded by the logarithm to the
number of vertices in the tree.

Because all internal vertices are branching (except the parents of the leaves), the
size of the derivation tree is linear in the length of the string produced by the grammar.
The DAG is in fact a compact representation of this tree where identical subtrees are
only explicitly represented once. It is easy to see from the derivation tree that every
non-terminal symbol generates a substring of the string generated by the grammar. This
gives some intuition to why grammars can compress repetitive strings: If a string has
many repetitions of a certain substring, then this can be captured by a grammar because
the subtree(s) generating this substring only have to be represented once.

Bounds and Construction Computing the exact size of the smallest grammar pro-
ducing a string is NP-complete and even o(lg n/ lg lg n) approximations would require
progress on a well-studied algebraic problem [63]. Grammar compression is also not
as good as LZ77 compression. In fact the smallest grammar for a string S of length n
always has at least as many rules as there are phrases in the LZ77 parse of S and there
are families of strings where the number of rules in the smallest grammar is Θ(z lg n).
Grammars remain interesting for compression because they are easier to do computa-
tions on compared to LZ77 representations. For example, decompressing any length `
substring of S can be done in O(`+ lg n) time by a data structure using linear space in
the grammar [13]. In comparison, there are no data structures achieving o(z lg lg n) time
while using linear space in the LZ77 representation of S.

There are several algorithms that produce a grammar from a given string each offering
different trade-offs with respect to measures such as compression ratio, construction
speed, balance, practical efficiency, etc.

Chariker et al. and Rytter [18,84] have shown how to construct a balanced grammar
in O(z lg(n/z)) time and space given the LZ77 parse of a string S of length n . Because
the size of the smallest grammar is bounded from below by the number of phrases in
the LZ77 parse, these construction techniques produce a grammar that is a logarithmic
approximation of the smallest grammar. No better approximation algorithms are known.

INTRODUCTION 7

A different family of construction algorithms provide grammars that are locally
consistent. A grammar is locally consistent when identical substrings of S are generated
by almost identical subtrees of the derivation tree of the grammar. This property is useful
when comparing substrings of strings that are represented as grammars, because we
can compare the non-terminals that produce these strings instead of the actual strings.
In Chapter 3 we consider the signature grammar which is produced by a randomized
construction technique. It is locally consistent, balanced and has size O(z lg(n/z)) in
expectation and its properties form the basis of the compressed index we design.

1.3 Compression, Compact Representations and Succinct Data Structures

The information-theoretic lower bound of representing a length j sequence of k-bit
integers is jk bits. In general, assume that n is the information-theoretical minimum
number of bits needed to store some data and let D be some representation of this data.
If D uses n+O(1) bits of space it is called implicit, if it uses n+ o(n) bits of space it is
called succinct and if it uses O(n) bits it is called compact.

When it comes to compression, there are some subtleties with respect to lower
bounds. For instance, consider a bit string of length n. There are 2n distinct bit strings
of this length, thus lg 2n = n bits are required to represent each bit string simply in
order to distinguish it from the others (assuming that we require that all representations
are of similar length). However, consider the subset of strings where all 1-bits appear
consecutively. We can easily represent each such string in 2 lg n bits by storing how many
1-bits it contains and the position of the first 1-bit.

This example serves to illustrate that the lower bounds are relative to the data we
consider. If we consider only bit strings with some specified set of regularities, then the
Ω(n) lower bound does not apply. One important source for compression is statistical
regularities. Assume that we assign a code to every symbol in the alphabet of a sequence
and represent the sequence by replacing every symbol by its code. If we allow the codes
to be of variable length, then we can choose a short code for symbols that occur with
high frequency and use longer codes for symbols that occur less frequently. The 0th order
empirical entropy is a lower bound on the average number of bits required per symbol
using this technique. For a bit string S it is defined as H0(S) = p lg 1

p + (1 − p) lg 1
1−p

where p is the probability of having a 1-bit and 1− p is the probability of having a 0-bit
at any position of the text. This concept can be extended to kth order empirical entropy
which is the average number of bits required per symbol by a statistical compressor that
can use a length k context when deciding a code for a symbol. This means that the code
for each symbol can be a function of itself and the k preceding symbols. A huge body of
important and relevant research considers this field of compression. For instance, entropy
compressed text indexes aim at using O(nHk(S)) + o(n) bits of space to represent a
string S of length n while supporting fast queries.

It holds that lg σ ≥ H0 ≥ H1 ≥ · · · ≥ Hk however this measure is only sensible when
k is at most logarithmic in the length of the string because the number of codes we have
to store in order to be able to decompress grows exponentially with k.

For practical applications of text compression, the kth order empirical entropy model
captures many of the regularities present in text with one important exception. Highly
repetitive texts formed by sets of very similar strings are very compressible. The intuition
is that we can represent a set of very similar strings S1, S2, . . . , Sk compactly by storing
S1 and then only the differences between S1 and Si for i > 1. If the differences are few
and the strings are long and many, this yields a very effective compression. However, this
form of regularity is not captured by kth order empirical entropy. In fact, the kth order
empirical entropy is virtually unchanged between an original text and a twice as long
text constructed by concatenating the original with itself.

8 COMPRESSED AND EFFICIENT ALGORITHMS AND DATA STRUCTURES FOR STRINGS

Conversely, the LZ77 compression technique captures repetitive regularities very well.
For example, the parse of the concatenation of two identical texts has only O(1) more
phrases than the parse of one of the texts. Furthermore, for collections characterized
by a high degree of repetitiveness, e.g. DNA strings, the Wikipedia database, version-
controlled document collections, etc. the notions of implicit, succinct and compact data
structures also becomes less relevant. This is because the different overheads in space
usage are constant factors which can be significantly outweighed by the savings obtained
by compressing repetitive regularities. The magnitude of such constant factors may still
have an impact in practice, but we argue that it is much less relevant for repetitive texts.
As already mentioned in Section 1.2.2, the LZ77 compression technique also performs
well with respect to emperical entropy and in fact it holds that z lg n ≤ nHk(S)+o(n lg σ)
when k = o(lgσ n) [73]. Thus LZ77 converges to the kth order entropy and is therefore
asymptotically optimal with respect to this measure.

The algorithms and data structures designed in chapters 2 through 5 of this disser-
tation are aimed at highly repetitive data and therefore measure the space usage (and
time whenever relevant) relative to the number of LZ77 phrases in the parse of the text
in question.

1.4 Chapters 2 & 3: Compressed Indexing

The indexing problem is to preprocess a string S of length n into a data structure that
supports efficient pattern matching queries. The pattern matching problem is to determine
the location of all occurrences of a pattern P of length m in a string S of length n often
called the text. Sometimes, we are only interested in whether P occurs in S and do
not care about the number of occurrences and their locations. We call this variation
the pattern existence problem. The suffix tree is a well-known solution that solves the
indexing problem using O(n) space and O(m+ occ) time to report all occ occurrences of
a pattern P in S.

The compressed indexing problem is to preprocess a string S into a compressed
representation that supports efficient pattern matching queries. The goal is to use
little space relative to the compressed size of S while supporting fast queries. In this
dissertation we measure the space usage of the index relative to the LZ77 representation
of the string S, but in general, the compressed representation can be any measure or
compression scheme.

Over the last decades, the compressed indexing problem has received significant
attention as shown by the multitude of both theoretical and practical solutions, see
e.g. [8, 21, 29–32, 40, 47–49, 54, 55, 60, 66, 67, 74] and the surveys [43, 72–74]. The
problem is very relevant as the amount of highly repetitive data increases rapidly and
compressed indexing makes it possible to query large compressed data sets without
decompressing them first. The rapid increase of repetitive data has several sources such
as DNA sequencing, version control repositories, regular backups, etc.

When considering compressed indexing based on LZ77 compression relatively few
results are known. Let n, m, and z denote the length of the input string, the length of
the pattern string, and the number of phrases in the LZ77 parse of the string respectively.
Kärkkäinen and Ukkonen introduced the problem in 1996 [55] and gave an initial
solution that required read-only access to the uncompressed text. Interestingly, this work
is among the first results in compressed indexing [74]. More recently, Gagie et al. [39,40]
and Nishimoto et al. [77] revisited the problem. See Table 1.1 for an overview of recent
results.

Results and Techniques in Chapter 2 We show that if the LZ77 parse of S consists of
z phrases we can solve the compressed indexing problem in O(m+ occ lg lg n) time using

INTRODUCTION 9

Table 1.1: Selection of previous results and our results on compressed indexing. The variables
are the text size n, z is the number of phrases in the LZ77 parse, m is the pattern
length, occ is the number of occurrences and σ is the size of the alphabet. (The time
complexity marked by † is expected whereas all others are worst-case)

Index Space Locate time σ
Gagie et al. [40] O(z lg(n/z)) O(m lgm+ occ lg lg n) O(1)
Nishimoto et al. [77] O(z lg n lg∗ n) O(m lg lg n lg lg z +

lg z lgm lg n(lg∗ n)2 +
occ lg n)

nO(1)

Chapter 2 O(z(lg(n/z) + lgε z)) O(m+ occ(lgε n+ lg lg n)) nO(1)

Chapter 2 O(z lg(n/z) lg lg z) O(m+ occ lg lg n) O(1)

Chapter 2 O(z lg(n/z)) O(m(1 + lgε z
lg(n/z)) +

occ(lgε n+ lg lg n))

O(1)

Chapter 3 O(z lg(n/z)) O(m+ occ(lgε z + lg lg n)) O(1)
Chapter 3 O(z(lg(n/z) + lg lg z)) O(m+ occ(lgε z + lg lg n)) nO(1)

Chapter 3 O(z(lg(n/z)) O(m+ occ(lgε z + lg lg n))† nO(1)

O(z lg(n/z) lg lg z) space for constant-sized alphabets and O(m+occ(lg lg n+lgε z)) time
using O(z(lg(n/z) + lgε z)) space for integer alphabets of size nO(1).

An important property of the LZ77 parse observed by Farach and Thorup [27] is that
any occurrence of a pattern P in S either crosses a phrase border in the LZ77 parse of S,
or there is an earlier occurrence that does. This means that the occurrences can be split
into primary occurrences which are the ones that cross a phrase border and secondary
occurrences which are the ones that do not. Given a list of the primary occurrences, each
of the secondary can be found in O(lg lg n) time by a data structure using O(z lg lg n)
space [55]. So far, finding the primary occurrences is therefore the harder problem. At
its core, the technique of Kärkkäinen and Ukkonen [55] is to search for the pattern at
all locations that could possibly be a primary occurrence. This can be done efficiently
by searching in two tries storing O(z) relevant substrings of S located around phrase
borders combined with a 2D-range reporting data structure that effectively combines
the results from the trie queries. Techniques similar to this are used for several string
problems [65].

Gagie et al. avoid storing the text in read-only memory by storing the text as an SLP
and employ several other ideas to further speed up the query time. They keep the space
low by using a compact trie with fast query time that uses only linear space in the O(z)
strings it stores [6].

We show how to improve the query time by exploiting combinatorial properties of
the LZ77 parse that allow us to increase the number of strings stored in the tries. This
results in a decrease in the number of trie searches we need to make. The details are
numerous, but along the way we give a generalization of the compact trie data structure
by Belazzougui et al. [6] supporting batched queries and show that random access
can be done in O(lg(n/z)) for a balanced SLP. Finally, we show how to combine this
efficiently with range reporting and fast random-access in a balanced grammar leading
to the results.

Results and Techniques in Chapter 3 We show that if the LZ77 parse of S consists of
z phrases we can solve the compressed indexing problem in O(m+ occ(lgε z + lg lg n))
time using O(z lg(n/z)) space for constant-sized alphabets and O(m+occ(lgε z+lg lg n))
time using O(z(lg(n/z) + lg lg z)) space for integer alphabets of size nO(1). Notably, we
are the first to obtain a leading term of order m while using only O(lg(n/z)) space.

The main component in our index is a new locally consistent grammar construction
algorithm. It originates from Mehlhorn et al. [68] who did not use it for compression but

10 COMPRESSED AND EFFICIENT ALGORITHMS AND DATA STRUCTURES FOR STRINGS

instead used it to maintain a dynamic set of strings subject to equality testing. It comes
in a deterministic and a randomized version with slightly different complexity profiles.
We use the randomized construction algorithm but show that the non-determinism can
be restricted to the preprocessing and we obtain new worst-case case complexities for
the compressed indexing problem.

1.5 Chapter 4: Fast Lempel–Ziv Decompression in Linear Space

Given the LZ77 parse of a string S we consider the problem of decompressing substrings
of S using as little working space as possible. This problem is important in settings with
limited storage resources necessitating on-the-fly analysis of data.

The string S is trivially decompressed in optimal O(n) time given its LZ77 parse
but this technique requires read-only access to the entire string and therefore O(n)
working space. Alternatively, the parse can be converted into an SLP of size O(z lg(n/z))
using O(z lg(n/z)) time and space [18,84]. With no additional working space, the SLP
supports decompressing S in O(n) time and also allows any length l substring of S to be
decompressed in time O(l + lg(n/z)) [10]. To the best of our knowledge, no attempts to
solve this problem has been described in the literature with only one remotely relevant
exception of Belazzougui et al. [9] who consider LZ77 decompression in the external
memory model. They aim at minimizing the total number of I/Os required to decompress
S and are not concerned with working space making the results incomparable.

Results and Techniques We provide two smooth time-space trade-offs that give several
new complexities for decompressing S. For instance, we can extract S in O(n) time and
O(z) space for constant-sized alphabets and for integer alphabets of size nO(1) we obtain
the following:

• O(n) time using O(z lg σ) space or,

• O(n lg σ) time using O(z) space or,

• O(n) time using O(z lg lg n) space.

Both trade-offs also work for decompressing any specified set of s substrings of S with
total length l which we solve in O(l+(s+z) lg n) time using O(z) space for constant-sized
alphabets or O(z lg lg n) space for general alphabets.

Our results are obtained by exploiting combinatorial properties of the LZ77 parse
along with novel combinations and extensions of techniques for grammar construction
and the mergeable dictionary data structure by Iacono and Özkan [51]. We show how one
can generally focus the decompression of any set of substrings to an essential set of small
substrings that are all located around the phrase borders of the LZ77 parse. By breaking
the query into carefully chosen subqueries that are handled in batches, we can efficiently
map back and forth between the essential set of strings and the originally queried strings.
We give different techniques for how to handle decompression of this essential set of
strings, for instance, we show how to efficiently construct the SLP generating exactly
these strings.

1.6 Chapter 5: Compressed Communication Complexity of Longest
Common Prefixes

In Chapter 5 we consider communication protocols for the Longest Common Prefix problem
and generalizations hereof.

The longest common prefix problem is to decide the longest common prefix (LCP)
between two strings A and B, that is, the length of the maximal prefix shared by A

INTRODUCTION 11

and B, i.e. an integer k such that A[1, k] = B[1, k] while A[1, k + 1] 6= B[1, k + 1]. This
problem is fundamental and has important applications both in practice (for instance in
IP routing) and theory (for instance in compressed indexing or Lempel–Ziv compression).

We consider the communication complexity of the LCP problem in the setting where
two parties Alice and Bob each hold a string A and B. Their goal is to determine the
length of the longest common prefix of A and B using as few rounds and as few bits of
communication as possible. The communication complexity of this problems is Θ(n) bits
and O(1) rounds for deterministic protocols and Θ(lg n) bits and rounds for randomized
protocols. We also consider the communication complexity of the related problem where
Alice holds a single string A and Bob holds a set of k strings B1, . . . , Bk, and the goal
it to compute the maximal longest common prefix between A and any of the strings
B1, . . . , Bk.

The communication complexity model is often used to prove lower bounds and
generally assumes that Alice and Bob has unbounded computational power. Upper
bounds in this model usually serve to prove that some lower bound cannot be improved.
Another relevant motivation for upper bounds in the communication complexity model is
when the primary concern in solving a distributed computational problem is the amount
of communication rather than the amount of computation done by the entities. This
could apply to any client server scenario, but also applications such as cell-phone data
transfer or long range radio communication. Such scenarios are typically characterized by
limited bandwidth and availability on the communication channel due to contention and
other factors or limited transmitting capacity due to factors such as power consumption.

Results and Techniques While the worst-case communication complexity for random-
ized protocols solving the LCP problem is Θ(lg n) we show how to significantly reduce the
number of rounds required when the longest common prefix of A and B is compressible
without increasing the total communication. Our randomized protocol requires O(lg `)
bits of communication and O(lg z) rounds where ` is the length of the longest common
prefix. When Bob holds a set of k strings, we give a randomized protocol that finds the
maximal longest common prefix between Alice’s string and any of Bob’s strings using
O(lg z lg k + lg `) bits of communication and O(lg z) rounds.

These results hold for LZ77 parses without self-references but we also design protocols
for the self-referential case. We obtain the results by exploiting the fact that the common
prefix between two strings is represented by an almost identical prefix of the phrases in
the LZ77 parse of the respective strings. This allows Alice and Bob to limit their search
to prefixes that align with phrase borders rather than arbitrary prefixes. In order to keep
the number of rounds low, we adapt a noisy binary search technique by Feige et al. [28]
to our problem and generalise it to exponential search. Using this technique we can
maintain the logarithmic complexity of binary and exponential search when comparisons
may give a false answer with some fixed probability.

1.7 Chapter 6: Fast Dynamic Arrays

In Chapter 6 we consider a practical dynamic array data structure. The dynamic array
problem is to maintain a sequence of elements subject to the operations

access(i): return the ith element in the sequence.

access(i,m): return the ith through (i+m− 1)th elements in the sequence.

insert(i, x): insert element x immediately after the ith element.

delete(i): remove the ith element from the sequence.

12 COMPRESSED AND EFFICIENT ALGORITHMS AND DATA STRUCTURES FOR STRINGS

update(i, x): exchange the ith element with x.

This problem is one of the most fundamental dynamic data structure problems and is
solved by textbook data structures such as arrays, linked lists and dynamic trees. These
data structures are important primitives in the design of algorithms and data structures
but the problem is also easily motivated by its direct applications. Consider for instance
how important the problem of maintaining a dynamic sequence is when designing text
editors or file systems.

Arrays provide an extreme in the trade-off between access/update time and in-
sertion/deletion time namely constant time for access/update and linear time for in-
sertion/deletion. Linked lists provide another alternative, and support constant time
insertion and deletions given a pointer to the (neighboring) element. Without such a
pointer, all operations run in linear time. Many dynamic trees provide a balanced com-
plexity and support all operations in O(lg n) time, e.g. 2-3-4 trees, AVL trees, red-black
trees.

The dynamic array problem is sometimes also referred to as List Indexing and is well
studied both in terms of upper and lower bounds for both space and time complexities,
see e.g. [15,25,35,36,46,57,58,82]. Fredman and Saks [36] show that Ω(lg n/ lg lg n)
is a lower bound when identical complexities are required for all operations. This lower
bound is matched by Dietz [25] by a data structure that is essentially weight balanced
B-tree with a lgε n fan-out.

An alternative data structure called tiered vectors is described by Goodrich and Kloos
[46] based on similar ideas as Frederickson’s [35] and provides an alternative complexity
trade-off. It is a succinct data structure that supports access/update queries in O(1) time
and insertions/deletions in O(n1/l) time for any constant integer l ≥ 2.

A tiered vector is a tree with constant height l − 1 and a fan-out of n1/l where each
leaf is a cyclic array storing some subsequence of the elements and internal vertices
stores bookkeeping information.

Goodrich and Kloos [46] carry out experiments on an Java implementation of this
data structure with l = 2 and compares it to the vector data structure from the standard
library. Their results show that the tiered vector is competitive for access operations and
significantly faster for insertions and deletions.

Results and Techniques We provide a general implementation of tiered vectors. Our
implementation is in C++ and the height of the tree l is a compile time parameter. We
believe our implementation is the first that supports more than 2 tiers. We carry out an
extensive experimental performance comparison between relevant data structures from
the standard library of C++ and our data structure with different choices for l along with
several other optimizations. The optimizations provides trade-offs with respect to the
speed of the different queries and the memory consumption of the data structure. Our
comparisons are done on large sequences of 108 32-bit integers and our data structure
offers significant speedups for access and update operations compared to the multiset
data structure from the standard library and is only a few percent slower for insertions
and deletions. In comparison with vector the speedups for insertions and deletions are
several orders of magnitude while the access and update operations require less than
double that of vector. Furthermore, the memory usage of our structure is a tenth of the
memory used by multiset and only 1% more than the memory used by vector.

The results are obtained by carefully chosen optimizations, for instance, we manage
to half the number of memory probes for access and update operations compared to the
original tiered vector through a non-trivial memory layout of the tree structure.

INTRODUCTION 13

1.8 Future Work

The time frame for the PhD studies is rigorously regulated to 3 years under Danish
law. This means that any inconclusive research will have to be either postponed or
adapted to some presentable format before the submission of the dissertation. Luckily,
most of the work that I have done during my studies is now condensed to the papers
that this dissertation is based on. However, there is still room for further work on the
topics presented and luckily I’ve been given the opportunity to continue my research in
a postdoctoral position. In the following, I list some of what I consider to be a natural
continuation of the work presented here.

Compressed Indexing The compressed indexing problem is highly relevant in practice
and the theoretical solutions consist of combinations of fundamental data structures for
problems such as 2D-range reporting, prefix search along with insights in combinatorial
properties of grammar-compression and LZ77-compression. I think there are several
obvious directions to consider.

• Achieving O(m) worst-case query time in O(z lg(n/z)) space for alphabets of size
nO(1) is an open problem. As seen in Table 1.1, recent research is approaching
this complexity, but we are not quite there yet. Our progress in Chapter 2 is partly
due to observations that some of the data structures by Gagie et al. [40] was
using less space than the total space of their index. We then show how to exploit
this and achieve a speed-up in query time, and therefore, it is not likely that this
path can lead to further progress. In Chapter 3 we further improve these results
and the main contribution is how to apply properties of the signature grammar
to indexing. The use of the signature grammar for compression is relatively new
[77]. Therefore, it is not unlikely that it could give rise to even further progress in
relation to indexing.

• Indexing techniques that use o(z lg(n/z)) space and have non-trivial time com-
plexities are yet to be seen. Existing techniques usually rely on probabilistic data
structures and then use grammars to do verification. Thus it seems like fundamen-
tally different ideas are required. In Chapter 4 we solve the algorithmic compressed
pattern existence problem in O(z lgm+m) space using O(z lg n+m) time and inter-
estingly the lgm factor is logarithmic in the length of the pattern and independent
of z and n. Here, the input is the pattern of length m and the LZ77 representation
of a text of length n and the goal is to determine if the pattern occurs in the text.
This problem is very different from the indexing problem where the goal is to build
a data structure from the text that supports fast queries. However, it might be
possible to adapt some of the techniques from the algorithmic problem to obtain a
new trade-off.

LZ77 Decompression The mergeable dictionary by Iacono and Özkan [51] plays an
important role in the techniques used in Chapter 4 where we consider how to decompress
substrings of a string S given its LZ77 representation. A mergeable dictionary is a dynamic
data structure that maintains a set of disjoint sets and supports merging and splitting
of such sets. Each of these sets is maintained as biased skip lists and Iacono and Özkan
show how to perform finger versions of the normal skip list operations such as join,
split and search. Through an involved analysis, it is shown that the amortized time
complexity for all operations is logarithmic in the size of the universe the elements are
drawn from. Our application of the mergeable dictionary is limited to certain operations
and there are clear bounds on the universe of each of the sets. Therefore, it would
be interesting to consider this restricted version of the problem to see if it is possible

14 COMPRESSED AND EFFICIENT ALGORITHMS AND DATA STRUCTURES FOR STRINGS

to improve the complexity and also give a simpler analysis. Another obvious question
is whether our results can be generalized to the self-referential LZ77 algorithm. I am
currently working on this and is so far optimistic. It turns out that this problem also
boils down to the analysis of the mergable dictionary which further supports the idea of
designing a mergeable dictionary tailored for computations on LZ77 compressed text.

Signature Grammars Besides having several interesting properties relevant to index-
ing, the signature grammar can also be efficiently constructed online. Preliminary work
indicates that we might be able to combine the indexing techniques of Chapter 3 based
on the signature grammar with relevant dynamic data structures and thereby develop a
technique providing new trade-offs for online construction of the LZ77 representation of
a text.

CHAPTER 2

TIME-SPACE TRADE-OFFS FOR LEMPEL–ZIV

COMPRESSED INDEXING

Philip Bille Mikko Berggreen Ettienne Inge Li Gørtz Hjalte Wedel Vildhøj

The Technical University of Denmark

Abstract

Given a string S, the compressed indexing problem is to preprocess S into a
compressed representation that supports fast substring queries. The goal is to use little
space relative to the compressed size of S while supporting fast queries. We present a
compressed index based on the Lempel–Ziv 1977 compression scheme. We obtain the
following time-space trade-offs: For constant-sized alphabets

(i) O(m+ occ lg lgn) time using O(z lg(n/z) lg lg z) space, or

(ii) O(m(1 + lgε z
lg(n/z)

) + occ(lg lgn+ lgε z)) time using O(z lg(n/z)) space,

For integer alphabets polynomially bounded by n

(iii) O(m(1+ lgε z
lg(n/z)

)+occ(lg lgn+lgε z)) time using O(z(lg(n/z)+ lg lg z)) space,
or

(iv) O(m+ occ(lg lgn+ lgε z)) time using O(z(lg(n/z) + lgε z)) space,

where n and m are the length of the input string and query string respectively, z
is the number of phrases in the LZ77 parse of the input string, occ is the number
of occurrences of the query in the input and ε > 0 is an arbitrarily small constant.
In particular, (i) improves the leading term in the query time of the previous best
solution from O(m lgm) to O(m) at the cost of increasing the space by a factor lg lg z.
Alternatively, (ii) matches the previous best space bound, but has a leading term in
the query time of O(m(1 + lgε z

lg(n/z)
)). However, for any polynomial compression ratio,

i.e., z = O(n1−δ), for constant δ > 0, this becomes O(m). Our index also supports
extraction of any substring of length ` in O(`+ lg(n/z)) time. Technically, our results
are obtained by novel extensions and combinations of existing data structures of
independent interest, including a new batched variant of weak prefix search.

2.1 Introduction

Given a string S, the compressed indexing problem is to preprocess S into a compressed
representation that supports fast substring queries, that is, given a string P , report all
occurrences of substrings in S that match P . Here the compressed representation can be
any compression scheme or measure (kth order entropy, smallest grammar, Lempel–Ziv,

15

16 COMPRESSED AND EFFICIENT ALGORITHMS AND DATA STRUCTURES FOR STRINGS

etc.). The goal is to use little space relative to the compressed size of S while supporting
fast queries. Compressed indexing is a key computational primitive for querying massive
data sets and the area has received significant attention over the last decades with
numerous theoretical and practical solutions, see e.g. [8,21,29–32,40,47–49,54,55,60,
66,67,74] and the surveys [43,72–74].

The Lempel–Ziv 1977 compression scheme (LZ77) [91] is a classic compression
scheme based on replacing repetitions by references in a greedy left-to-right order. Nu-
merous variants of LZ77 have been developed and several widely used implementations
are available (such as gzip [1]). Recently, LZ77 has been shown to be particularly
effective at handling highly-repetitive data sets [7,20,60,67,72] and LZ77 compression
is always at least as powerful as any grammar representation [18,84].

In this paper, we consider compressed indexing based on LZ77 compression. Relatively
few results are known for this version of the problem. Let n, m, and z denote the length
of the input string, the length of the pattern string, and the number of phrases in the LZ77
parse of the string (definition follows), respectively. Kärkkäinen and Ukkonen introduced
the problem in 1996 [55] and gave an initial solution that required read-only access to
the uncompressed text. Interestingly, this work is among the first results in compressed
indexing [74]. More recently, Gagie et al. [39, 40] revisited the problem and gave a
solution using space O(z lg(n/z)) and query time O(m lgm + occ lg lg n), where occ is
the number of occurrences of P in S. Note that these bounds assume a constant-sized
alphabet.

2.1.1 Our Results

We show the following main result.

Theorem 2.1 We can build a compressed-index supporting substring queries in:
For constant-sized alphabets

(i) O(m+ occ lg lg n) time using O(z lg(n/z) lg lg z) space, or

(ii) O(m(1 + lgε z
lg(n/z)) + occ(lg lg n+ lgε z)) time using O(z lg(n/z)) space,

For integer alphabets polynomially bounded by n

(iii) O(m(1 + lgε z
lg(n/z)) + occ(lg lg n+ lgε z)) time using O(z(lg(n/z) + lg lg z)) space, or

(iv) O(m+ occ(lg lg n+ lgε z)) time using O(z(lg(n/z) + lgε z)) space,

where n and m are the length of the input string and query string respectively, z is the
number of phrases in the LZ77 parse of the input string, occ is the number of occurrences
of the query in the input and ε > 0 is an arbitrarily small constant.

Compared to the previous bounds Thm. 2.1 obtains new interesting trade-offs. In
particular, Thm. 2.1 (i) improves the leading term in the query time of the previous
best solution from O(m lgm) to O(m) at the cost of increasing the space by only a
factor lg lg z. Alternatively, Thm. 2.1 (ii) matches the previous best space bound, but
has a leading term in the query time of O(m(1 + lgε z

lg(n/z))). However, for any polynomial
compression ratio, i.e., z = O(n1−δ), for constant δ > 0, this becomes O(m).

Gagie et al. [40] also showed how to extract an arbitrary substring of S of length ` in
time O(` + lg n). We show how to support the same extraction operation and slightly
improve the time to O(`+ lg(n/z)).

Technically, our results are obtained by new variants and extensions of existing data
structures in novel combinations. In particular, we consider a batched variant of the weak
prefix search problem and give the first non-trivial solution to it. We also generalize the

TIME-SPACE TRADE-OFFS FOR LEMPEL–ZIV COMPRESSED INDEXING 17

well-known bidirectional compact trie search technique [65] to reduce the number of
queries at the cost of increasing space. Finally, we show how to combine this efficiently
with range reporting and fast random-access in a balanced grammar leading to the result.

We note that none of our data structures assume constant-sized alphabet and there-
fore, Thm. 2.1 is an instance of a full time-space trade-off for general alphabets. We
discuss the details in Sec. 2.8.

2.2 Preliminaries

We assume a standard unit-cost RAM model with word size w = Θ(lg n) and that the
input is from an integer alphabet Σ = {1, 2, . . . , nO(1)} and measure space complexity in
words unless otherwise specified.

A string S of length n = |S| is a sequence S[1] · · ·S[n] of n characters drawn from Σ.
The string S[i] · · ·S[j] denoted S[i, j] is called a substring of S. ε is the empty string
and S[i, i] = S[i] while S[i, j] = ε when i > j. The substrings S[1, i] and S[j, n] are
the ith prefix and the jth suffix of S respectively. The reverse of the string S is denoted
rev(S) = S[n]S[n−1] · · ·S[1]. We use the results from Fredman et al. [37] when referring
to perfect hashing allowing us to build a dictionary on O(k) integer keys in O(k) expected
time supporting constant time lookups.

2.2.1 Compact Tries

A trie for a set D of k strings is a rooted tree where the vertices correspond to the prefixes
of the strings in D. str(v) denotes the prefix corresponding to the vertex v. str(v) = ε if v
is the root while v is the parent of u if str(v) is equal to str(u) without the last character.
We may use v in place of str(v) when it is clear from the context that we talk about the
str(v). This character is then the label of the edge from u to v. The depth of vertex v is
the number of edges on the path from v to the root.

We assume each string in D is terminated by a special character $ /∈ Σ such that each
string in D corresponds to a leaf. The children of each vertex are sorted from left to right
in increasing lexicographical order, and therefore the left to right order of the leaves
corresponds to the lexicographical order of the strings in D. Let rank(s) denote the rank
of the string s ∈ D in this order.

A compact trie for D denoted TD is obtained from the trie by removing all vertices v
with exactly one child excluding the root and replacing the two edges incident to v with
a single edge from its parent to its child. This edge is then labeled with the concatenation
of the edge labels it replaces, thus the edges of a compact trie may be labeled by strings.
The skip interval of a vertex v ∈ TD with parent u is (|str(u)|, |str(v)|] denoted skip(v)
and skip(v) = ∅ if v is the root. The locus of a string s in TD, denoted locus(s), is the
minimum depth vertex v such that s is a prefix of str(v). If there is no such vertex, then
locus(s) = ⊥.

In order to reduce the space used by TD we only store the first character of every
edge and in every vertex v we store |str(v)| (This variation is also known as a PATRICIA
tree [70]). We navigate TD by storing a dictionary in every internal vertex mapping the
first character of the label of an edge to the respective child. The size of TD is O(k).

2.2.2 Karp–Rabin Fingerprints

A Karp–Rabin fingerprinting function [56] is a randomized hash function for strings. The
fingerprint for a string S of length n is defined as:

φ(S) =

n∑
i=1

S[i] · ri−1 mod p

18 COMPRESSED AND EFFICIENT ALGORITHMS AND DATA STRUCTURES FOR STRINGS

where p is a prime and r is a random integer in Zp (the field of integers modulo p).
Storing the values n, rn mod p and r−n mod p along with a fingerprint allows for efficient
composition and subtraction of fingerprints:

Lemma 2.1 Let x, y, z be strings such that x = yz. Given two of the three fingerprints
φ(x), φ(y) and φ(z), the third can be computed in constant time.

It follows that we can compute and store the fingerprints of each of the prefixes of
a string S of length n in O(n) time and space such that we afterwards can compute
the fingerprint of any substring S[i, j] in constant time. We say that the fingerprints of
the strings x and y collide when φ(x) = φ(y) and x 6= y. A fingerprinting function φ is
collision-free for a set of strings if there are no fingerprint collisions between any of the
strings.

Lemma 2.2 Let x and y be different strings of length at most n and let p = Θ(n2+α) for
some α > 0. The probability that φ(x) = φ(y) is O(1/n1+α).

See e.g. [14,80] for proofs of Lemma 2.1 and 2.2.

2.2.3 Range Reporting

Let X ⊆ {0, . . . , u}d be a set of points in a d-dimensional grid. The orthogonal range
reporting problem in d-dimensions is to compactly represent X while supporting range
reporting queries, that is, given a rectangle R = [a1, b2]× · · · × [ad, bd] report all points in
the set R ∩X. We use the following results for 2-dimensional range reporting:

Lemma 2.3 (Chan et al. [17]) For any set of n points in [0, u] × [0, u] and 2 ≤ B ≤
lgε n, 0 < ε < 1 we can solve 2-d orthogonal range reporting with O(n lg n) expected
preprocessing time, O(n lgB lg n) space and (1 + k) ·O(B lg lg u) query time where k is
the number of occurrences inside the rectangle.

2.2.4 LZ77

The Ziv–Lempel algorithm from 1977 [91] provides a simple and natural way to compress
strings.

The LZ77 parse of a string S of length n is a sequence Z of z subsequent substrings of
S called phrases such that S = Z[1]Z[2] · · ·Z[z]. Z is constructed in a left to right pass of
S: Assume that we have found the sequence Z[1, i] producing the string S[1, j−1] and let
S[j, j′ − 1] be the longest prefix of S[j, n− 1] that is also a substring of S[1, j′ − 2]. Then
Z[i+ 1] = S[j, j′]. The occurrence of S[j, j′ − 1] in S[1, j′ − 2] is called the source of the
phrase Z[i]. Thus a phrase is composed by the contents of its possibly empty source and
a trailing character which we call the phrase border and is typically represented as a triple
Z[i] = (start, len, c) where start is the starting position of the source, len is the length of
the source and c ∈ Σ is the border. For a phrase Z[i] = S[j, j′] we denote the position of
its border by border(Z[i]) = j′ and its source by source(Z[i]) = S[j, j′ − 1]. For example,
the string abcabcabc · · · abc of length n has the LZ77 parse |a|b|c|abcabcabc · · · abc| of
length 4 which is represented as Z = (0, 0, a)(0, 0, b)(0, 0, c)(1, n− 4, c).

2.3 Prefix Search

The prefix search problem is to preprocess a set of strings such that later, we can find
all the strings in the set that are prefixed by some query string. Belazzougui et al. [6]
consider the weak prefix search problem, which is a relaxation of the prefix search
problem. In this variant, we report only the ranks (in lexicographic order) of the strings
that are prefixed by the query pattern and we are only required to answer correctly when

TIME-SPACE TRADE-OFFS FOR LEMPEL–ZIV COMPRESSED INDEXING 19

at least one of the strings is prefixed by the pattern. Thus we may answer arbitrarily
when no strings are prefixed by the query pattern.

Lemma 2.4 (Belazzougui et al. [6, appendix H.3]) Given a set D of k strings with
average length l, from an alphabet of size σ, we can build a data structure using
O(k(lg l + lg lg σ)) bits of space supporting weak prefix search for a pattern P of length
m in O(m lg σ/w + lgm) time where w is the word size.

The term m lg σ/w stems from preprocessing P with an incremental hash function
such that the hash of any substring P [i, j] can be obtained in constant time afterwards.
Therefore we can do weak prefix search for h substrings of P in O(m lg σ/w + h lgm)
time. We now describe a data structure that builds on the ideas from Lemma 2.4 but
obtains the following:

Lemma 2.5 Given a set D of k strings, we can build a data structure taking O(k) space
supporting weak prefix search for h substrings of a pattern P of length m in time
O(m+ h(m/x+ lg x)) where x is a positive integer.

If we know h when building our data structure, we set x to h and obtain a query time of
O(m+ h lg h) with Lemma 2.5.

Before describing our data structure we need the following definition: The 2-fattest
number in a nonempty interval of strictly positive integers is the unique number in the
interval whose binary representation has the highest number of trailing zeroes.

2.3.1 Data Structure

Let TD be the compact trie representing the set D of k strings and let x be a positive
integer. Denote by fat(v) the 2-fattest number in the skip interval of a vertex v ∈ TD. The
fat prefix of v is the length fat(v) prefix of str(v). Denote by Dfat the set of fat prefixes
induced by the vertices of TD. The x-prefix of v is the shortest prefix of str(v) whose
length is a multiple of x and is in the interval skip(v). If v’s skip interval does not span
a multiple of x, then v has no x-prefix. Let Dx be the set of x-prefixes induced by the
vertices of TD. The data structure is the compact trie TD augmented with:

• A fingerprinting function φ.

• A dictionary G mapping the fingerprints of the strings in Dfat to their associated
vertex.

• A dictionary H mapping the fingerprints of the strings in Dx to their associated
vertex.

• For every vertex v ∈ TD we store the rank in D of the string represented by the
leftmost and rightmost leaf in the subtree of v, denoted lv and rv respectively.

The data structure is similar to the one by Belazzougui et al. [6] except for the dictionary
H, which we use in the first step of our search.

There areO(k) strings in each ofDfat andDx thus the total space of the data structure
is O(k).

Let i be the start of the skip interval of some vertex v ∈ TD and define the pseudo-fat
numbers of v to be the set of 2-fattest numbers in the intervals [i, p] where i ≤ p < fat(v).
We use Lemma 2.2 to find a fingerprinting function φ that is collision-free for the strings
in Dfat and all length l prefixes of the strings in D where l is either a pseudo-fat number
in the skip interval of some vertex v ∈ TD or a multiple of x.

Observe that the range of strings in D that are prefixed by some pattern P of length
m is exactly [lv, rv] where v = locus(P). Answering a weak prefix search query for P is

20 COMPRESSED AND EFFICIENT ALGORITHMS AND DATA STRUCTURES FOR STRINGS

comprised by two independent steps. First step is to find a vertex v ∈ TD such that str(v)
is a prefix of P and m − |str(v)| ≤ x. We say that v is in x-range of P . Next step is to
apply a slightly modified version of the search technique from Belazzougui et al. [6] to
find the exit vertex for P , that is, the deepest vertex ve ∈ TD such that str(ve) is a prefix
of P . Having found the exit vertex we can find the locus in constant time as it is either
the exit vertex itself or one of its children.

2.3.2 Finding an x-range Vertex

We now describe how to find a vertex in x-range of P . If m < x we simply report
that the root of TD is in x-range of P . Otherwise, let v be the root of TD and for
i = 1, 2, . . . bm/xc we check if ix > |str(v)| and φ(P [1, ix]) is in H in which case we
update v to be the corresponding vertex. Finally, if |str(v)| ≥ m we report that v is
locus(P) and otherwise we report that v is in x-range of P . In the former case, we report
[lv, rv] as the range of strings in D prefixed by P . In the latter case we pass on v to the
next step of the algorithm.

We now show that the algorithm is correct when P prefixes a string in D. It is easy to
verify that the x-prefix of v prefixes P at all time during the execution of the algorithm.
Assume that |str(v)| ≥ m by the end of the algorithm. We will show that in that case
v = locus(P), i.e., that v is the highest vertex prefixed by P . Since P prefixes a string in
D, the x-prefix of v prefixes P , and |str(v)| ≥ m, then P prefixes v. Since the x-prefix of
v prefixes P , P does not prefix the parent of v and thus v is the highest vertex prefixed
by P .

Assume now that |str(v)| < m. We will show that v is in x-range of P . Since P
prefixes a string in D and the x-prefix of v prefixes P , then str(v) prefixes P . Let P [1, ix]
be the x-prefix of v. Since v is returned, either φ(P [1, jx]) 6∈ H or jx ≤ |str(v)| for
all i < j ≤ bm/xc. If φ(P [1, jx]) 6∈ H then P [1, jx] is not a x-prefix of any vertex
in TD. Since P prefixes a string in D this implies that jx is in the skip interval of v,
i.e., jx ≤ |str(v)|. This means that jx ≤ |str(v)| for all i < j ≤ bm/xc. Therefore
bm/xcx ≤ |str(v)| < m and it follows that m − |str(v)| < x. We already proved that
str(v) prefixes P and therefore v is in x-range of P .

In case P does not prefix any string in D we either report that v = locus(P) even
though locus(P) = ⊥ or report that v is in x-range of P because m− |str(v)| ≤ x even
though str(v) is not a prefix of P due to fingerprint collisions. This may lead to a false
positive. However, false positives are allowed in the weak prefix search problem.

Given that we can compute the fingerprint of substrings of P in constant time the
algorithm uses O(m/x) time.

2.3.3 From x-range to Exit Vertex

We now consider how to find the exit vertex of P hereafter denoted ve. The algorithm is
similar to the one presented in Belazzougui et al. [6] except that we support starting the
search from not only the root, but from any ancestor of ve.

Let v be any ancestor of ve, let y be the smallest power of two greater than m−|str(v)|
and let z be the largest multiple of y no greater than |str(v)|. The search progresses by
iteratively halving the search interval while using G to maintain a candidate for the exit
vertex and to decide in which of the two halves to continue the search.

Let vc be the candidate for the exit vertex and let l and r be the left and right boundary
for our search interval. Initially vc = v, l = z and r = z + 2y. When r − l = 1, the search
terminates and reports vc. In each iteration, we consider the mid b = (l + r)/2 of the
interval [l, r] and update the interval to either [b, r] or [l, b]. There are three cases:

1. b is out of bounds

TIME-SPACE TRADE-OFFS FOR LEMPEL–ZIV COMPRESSED INDEXING 21

a) If b > m set r to b.

b) If b ≤ |str(vc)| set l to b.

2. P [1, b] ∈ Dfat, let u be the corresponding vertex, i.e. G(φ(P [1, b])) = u.

a) If |str(u)| < m, set vc to u and l to b.

b) If |str(u)| ≥ m, report u = locus(P) and terminate.

3. P [1, b] /∈ Dfat and thus φ(P [1, b]) is not in G, set r to b.

Observe that we are guaranteed that all fingerprint comparisons are collision-free in
case P prefixes a string in D. This is because the length of the prefix fingerprints we
consider are all either 2-fattest or pseudo-fat in the skip interval of locus(P) or one of its
ancestors and we use a fingerprinting function that is collision-free for these strings.

Correctness We now show that the invariant l ≤ |str(vc)| ≤ |str(ve)| < r is satisfied
and that str(vc) is a prefix of P before and after each iteration. After O(lg x) iterations
r− l = 1 and thus l = |str(ve)| = |str(vc)| and therefore vc = ve. Initially vc is an ancestor
of ve and thus str(vc) is a prefix of P , l = z ≤ |str(vc)| and r = z + 2y > m > |str(ve)|
so the invariant is true. Now assume that the invariant is true at the beginning of some
iteration and consider the possible cases:

1. b is out of bounds

a) b > m then because |str(ve)| ≤ m, setting r to b preserves the invariant.

b) b ≤ |str(vc)| then setting l to b preserves the invariant.

2. P [1, b] ∈ Dfat, let u = G(φ(P [1, b])).

a) |str(u)| < m then str(u) is a prefix of P and thus b = fat(u) ≤ |str(u)| ≤
|str(ve)| so setting l to b and vc to u preserves the invariant.

b) |str(u)| ≥ m yet u = G(φ(P [1, b])). Then u is the locus of P .

3. P [1, b] /∈ Dfat, and thus φ(P [1, b]) is not in G. As we are not in any of the out of
bounds cases we have |str(vc)| < b < m. Thus, either b > |str(ve)| and setting r to
b preserves the invariant. Otherwise b ≤ |str(ve)| and thus b must be in the skip
interval of some vertex u on the path from vc to ve excluding vc. But skip(u) is
entirely included in (l, r) and because b is 2-fattest in (l, r)1 it is also 2-fattest in
skip(u). It follows that fat(u) = b which contradicts P [1, b] /∈ Dfat and thus the
invariant is preserved.

Thus if P prefixes a string in D we find either the exit vertex ve or the locus of P . In
the former case the locus of P is the child of ve identified by the character P [|str(ve)|+ 1].
Having found the vertex u = locus(P) we report [lu, ru] as the range of strings in D
prefixed by P . In case P does not prefix any strings in D, the fact that the fingerprint of
a prefix of P match the fingerprint of some fat prefix in Dx does not guarantee equality
of the strings. There are two possible consequences of this. Either the search successfully
finds what it believes to be the locus of P even though locus(P) = ⊥ in which case we
report a false positive. Otherwise, there is no child identified by P [|str(ve)|+ 1] in which
case we can correctly report that no strings in D are prefixed by S, a true negative. Recall
that false positives are allowed as we are considering the weak prefix search problem.

1If b− a = 2i, i > 0 and a is a multiple of 2i−1 then the mid of the interval (a+ b)/2 is 2-fattest in (a, b).

22 COMPRESSED AND EFFICIENT ALGORITHMS AND DATA STRUCTURES FOR STRINGS

Complexity The size of the interval [l, r] is halved in each iteration, thus we do at most
O(lg(m− |str(v)|)) iterations, where v is the vertex from which we start the search. If
we use the technique from the previous section to find a starting vertex in x-range of
P , we do O(lg x) iterations. Each iteration takes constant time. Note that if P does not
prefix a string in D we may have fingerprint collisions and we may be given a starting
vertex v such that str(v) does not prefix P . This can lead to a false positive, but we still
have m− |str(v)| ≤ x and therefore the time complexity remains O(lg x).

2.3.4 Multiple Substrings

In order to answer weak prefix search queries for h substrings of a pattern P of length
m, we first preprocess P in O(m) time such that we can compute the fingerprint of any
substring of P in constant time using Lemma 2.1. We can then answer a weak prefix
search query for any substring of P in total time O(m/x + lg x) using the techniques
described in the previous sections. The total time is therefore O(m+ h(m/x+ lg x)).

2.4 Distinguishing Occurrences

The following sections describe our compressed-index consisting of three independent
data structures. One that finds long primary occurrences, one that finds short primary
occurrences and one that finds secondary occurrences.

Let Z be the LZ77 parse of length z representing the string S of length n. If S[i, j]
is a phrase of Z then any substring of S[i, j − 1] is a secondary substring of S. These
are the substrings of S that do not contain any phrase borders. On the other hand, a
substring S[i′, j′] is a primary substring of S when there is some phrase S[i, j] where
i ≤ i′ ≤ j ≤ j′, these are the substrings that contain one or more phrase borders. Any
substring of S is either primary or secondary. A primary substring that matches a query
pattern P is a primary occurrence of P while a secondary substring that matches P is a
secondary occurrence [55].

2.5 Long Primary Occurrences

For simplicity, we assume that the data structure given in Lemma 2.5 not only solves
the weak prefix problem, but also answers correctly when the query pattern does not
prefix any of the indexed strings. Later in Section 2.5.3 we will see how to lift this
assumption. The following data structure and search algorithm is a variation of the
classical bidirectional search technique for finding primary occurrences [55].

2.5.1 Data Structure

Let τ be a fixed positive integer parameter (its value will be determined later). For every
phrase S[i, j], we consider the strings S[i, j+ k], 0 ≤ k < τ relevant substrings of S unless
there is some longer relevant substring ending at position j + k. If S[i′, j′] is a relevant
substring then the string S[j′+ 1, n] is the associated suffix. There are at most zτ relevant
substrings of S and equally many associated suffixes. The primary index is comprised by
the following:

• A prefix search data structure TD on the set of reversed relevant substrings.

• A prefix search data structure TD′ on the set of associated suffixes.

• An orthogonal range reporting data structure R on the zτ × zτ grid. Consider a
relevant substring S[i, j]. Let x denote the rank of rev(S[i, j]) in the lexicographical
order of the reversed relevant substrings, let y denote the rank of its associated

TIME-SPACE TRADE-OFFS FOR LEMPEL–ZIV COMPRESSED INDEXING 23

suffix S[j + 1, n] in the lexicographical order of the associated suffixes. Then (x, y)
is a point in R and along with it we store the pair (j, b), where b is the position of
the rightmost phrase border contained in S[i, j].

Note that every point (x, y) in R is induced by some relevant substring S[i, j] and
its associated suffix S[j + 1, n]. If some prefix P [1, k] is a suffix of S[i, j] and the suffix
P [k + 1,m] is a prefix of S[j + 1, n] then S[j − k + 1, j − k + m] is an occurrence of P
and we can compute its exact location from k and j.

2.5.2 Searching

The data structure can be used to find the primary occurrences of a pattern P of length
m when m > τ . Consider the O(m/τ) prefix-suffix pairs (P [1, iτ], P [iτ + 1,m]) for
i = 1, . . . , bm/τc and the pair (P [1,m], ε) in case m is not a multiple of τ . For each such
pair, we do a prefix search for rev(P [1, iτ]) and P [iτ + 1,m] in TD and TD′ , respectively.
If either of these two searches report no matches, we move on to the next pair. Otherwise,
let [l, r], [l′, r′] be the ranges reported from the search in TD and TD′ respectively. Now
we do a range reporting query on R for the rectangle [l, r] × [l′, r′]. For each point
reported, let (j, b) be the pair stored with the point. We report j − iτ + 1 as the starting
position of a primary occurrence of P in S.

Finally, in case m is not a multiple of τ , we need to also check the pair (P [1,m], ε).
We search for rev(P [1,m]) in in TD and ε in TD′ . If the search for rev(P [1,m]) reports
no match we stop. Otherwise, we do a range reporting query as before. For each point
reported, let (j, b) be the pair stored with the point. To check that the occurrence has not
been reported before we do as follows. Let k be the smallest positive integer such that
j −m+ kτ > b. Only if kτ > m we report j −m+ 1 as the starting position of a primary
occurrence.

Correctness We claim that the reported occurrences are exactly the primary occur-
rences of P . We first prove that all primary occurrences are reported correctly. Let
P = S[i′, j′] be a primary occurrence. As it is a primary occurrence, there must be some
phrase S[i∗, j∗] such that i∗ ≤ i′ ≤ j∗ ≤ j′. Let k be the smallest positive integer such
that i′ + kτ − 1 ≥ j∗. There are two cases: kτ ≤ m and kτ > m. If kτ ≤ m then P [1, kτ]
is a suffix of the relevant substring ending at i′ + kτ − 1. Such a relevant substring exists
since i′ + kτ − 1 < j∗ + τ . Thus its reverse rev(P [1, kτ]) prefixes a string s in D, while
P [kτ+1,m] is a prefix of the associated suffix S[i′+kτ, n] ∈ D′. Therefore, the respective
ranks of s and S[i′ + kτ, n] in D and D′ are plotted as a point in R which stores the pair
(i′ + kτ − 1, b). We will find this point when considering the prefix-suffix pair (P [1, kτ],
P [kτ + 1,m]), and correctly report (i′ + kτ − 1)− kτ + 1 = i′ as the starting position of
a primary occurrence. If kτ > m then P [1,m] is a suffix of the relevant substring ending
in i′ + m − 1. Such a relevant substring exists since i′ + m − 1 < i′ + kτ − 1 < j∗ + τ .
Thus its reverse prefixes a string in D and trivially ε is a prefix of the associated suffix. It
follows as before that the ranks are plotted as a point in R storing the pair (i′ +m− 1, b)
and that we find this point when considering the pair (P [1,m], ε). When considering
(P [1,m], ε) we report (i′ + m − 1) − m + 1 = i′ as the starting position of a primary
occurrence if kτ > m, and thus i′ is correctly reported.

We now prove that all reported occurrences are in fact primary occurrences. Assume
that we report j− iτ + 1 for some i and j as the starting position of a primary occurrence
in the first part of the procedure. Then there exist strings rev(S[i′, j]) and S[j+ 1, n] in D
and D′ respectively such that S[i′, j] is suffixed by P [1, iτ] and S[j + 1, n] is prefixed by
P [iτ+1,m]. Therefore j− iτ+1 is the starting position of an occurrence of P . The string
S[i′, j] is a relevant suffix and therefore there exists a border b in the interval [j− τ +1, j].
Since i ≥ 1 the occurrence contains the border b and it is therefore a primary occurrence.

24 COMPRESSED AND EFFICIENT ALGORITHMS AND DATA STRUCTURES FOR STRINGS

If we report j −m+ 1 for some j as the starting position of a primary occurrence in the
second part of the procedure, then rev(P [1,m]) is a prefix of a string rev(S[i′, j]) in D. It
follows immediately that j −m+ 1 is the starting point of an occurrence. Since m > τ
we have j −m + 1 < j − τ + 1, and by the definition of relevant substring there is a
border in the interval [j − τ + 1, j]. Therefore the occurrence contains the border and is
primary.

Complexity We now consider the time complexity of the algorithm described. First
we will argue that any primary occurrence is reported at most once and that the search
finds at most two points in R identifying it. Let S[i′, j′] be a primary occurrence reported
when we considered the prefix-suffix pair (P [1, kτ], P [kτ + 1,m]) as in the proof of
correctness. Recall that there is some phrase S[i∗, j∗] such that i∗ ≤ i′ ≤ j∗ ≤ j′ and
again let k be the smallest positive integer such that i′ + kτ − 1 ≥ j∗. None of the pairs
(P [1, hτ], P [hτ + 1,m]), where 1 ≤ h < k will identify this occurrence as the reverse of
P [1, hτ] does not prefix the reverse of any relevant substring when i∗ ≤ i′ ≤ i′+hτ −1 <
j∗ which is true when h < k. None of the pairs (P [1, hτ], P [hτ+1,m]), where h > k, will
identify this occurrence. This is the case since i′+hτ−1 > j∗+τ−1 whenever h > k, and
from the definition of relevant substrings it follows that if S[i∗, j∗] is a phrase, S[a, b] is a
relevant substring and a < i∗, then b < i∗ + τ − 1. Thus there are no relevant substrings
that end after j∗ + τ − 1 and start before i′ < j∗. Therefore, only one of the pairs
(P [1, hτ], P [hτ + 1,m]) for h = 1, . . . bm/τc identifies the occurrence. If (k + 1)τ > m
then we might also find the occurrence when considering the pair (P [1,m], ε), but we do
not report i′ as kτ ≤ m.

After preprocessing P in O(m) time, we can do the O(m/τ) prefix searches in total
time O(m + m/τ(m/x + lg x)) where x is a positive integer by Lemma 2.5. Using the
range reporting data structure by Chan et al. [17] each range reporting query takes
(1+k)·O(B lg lg(zτ)) time where 2 ≤ B ≤ lgε(zτ) and k is the number of points reported.
As each such point in one range reporting query corresponds to the identification of a
unique primary occurrence of P , which happens at most twice for every occurrence we
charge O(kB lg lg(zτ)) to reporting the occurrences. The total time to find all primary
occurrences is thus O(m+ m

τ (mx + lg x+B lg lg(zτ)) + occ B lg lg(zτ)) where occ is the
number of primary and secondary occurrences of P .

2.5.3 Prefix Search Verification

The prefix data structure from Lemma 2.5 gives no guarantees of correct answers when
the query pattern does not prefix any of the indexed strings. If the prefix search gives
false-positives, we may end up reporting occurrences of P that are not actually there.
We show how to solve this problem after introducing a series of tools that we will need.

Straight Line Programs A straight line program (SLP) for a string S is a context-free
grammar generating the single string S.

Lemma 2.6 (Rytter [84], Charikar et al. [18]) Given an LZ77 parse Z of length z pro-
ducing a string S of length n we can construct a SLP for S of size O(z lg(n/z)) in time
O(z lg(n/z)).

The construction from Rytter [84] produces a balanced grammar for every consecutive
substring of length n/z of S after a preprocessing step transforms Z such that no
compression element is longer than n/z. These grammars are then connected to form a
single balanced grammar of height O(lg n) which immediately yields extraction of any
substring S[i, j] in time O(lg(n) + j − i). We give a simple solution to reduce this to
O(lg(n/z) + j − i), that also supports computation of the fingerprint of a substring in
O(lg(n/z)) time.

TIME-SPACE TRADE-OFFS FOR LEMPEL–ZIV COMPRESSED INDEXING 25

Lemma 2.7 Given an LZ77 parse Z of length z producing a string S of length n we can
build a data structure that for any substring S[i, j] can extract S[i, j] in O(lg(n/z) + j− i)
time and compute the fingerprint φ(S[i, j]) in O(lg(n/z)) time. The data structure uses
O(z lg(n/z)) space and O(n) construction time.

Proof Assume for simplicity that n is a multiple of z. We construct the SLP producing S
from Z. Along with every non-terminal of the SLP we store the size and fingerprint of
its expansion. Let s1, s2, . . . sz be consecutive length n/z substrings of S. We store the
balanced grammar producing si along with the fingerprint φ(S[1, (i− 1)n/z]) at index i
in a table A.

Now we can extract si inO(n/z) time and any substring si[j, k] in timeO(lg(n/z)+k−
j). Also, we can compute the fingerprint φ(si[j, k]) in O(lg(n/z)) time. We can easily do a
constant time mapping from a position in S to the grammar in A producing the substring
covering that position and the corresponding position inside the substring. But then any
fingerprint φ(S[1, j]) can be computed in time O(lg(n/z)). Now consider a substring
S[i, j] that starts in sk and ends in sl, k < l. We extract S[i, j] in O(lg(n/z) + j − i) time
by extracting the appropriate suffix of sk, all of sm for k < m < l and the appropriate
prefix of sl. Each of the fingerprints stored by the data structure can be computed in
O(1) time after preprocessing S in O(n) time. Thus table A is filled in O(z) time and by
Lemma 2.6 the SLPs stored in A use a total of O(z lg(n/z)) space and construction time.

Verification of Fingerprints We need the following lemma for the verification.

Lemma 2.8 (Bille et al. [12]) Given a string S of length n, we can find a fingerprinting
function φ in O(n lg n) expected time such that

φ(S[i, i+ 2l]) = φ(S[j, j + 2l]) iff S[i, i+ 2l] = S[j, j + 2l] for all (i, j, l).

Verification Technique Our verification technique is identical to the one given by Gagie
et al. [40] and involves a simple modification of the search for long primary occurrences.
By using Lemma 2.7 instead of bookmarking [40] for extraction and fingerprinting
and because we only need to verify O(m/τ) strings, the verification procedure takes
O(m+ (m/τ) lg(n/z)) time and uses O(z lg(n/z)) space.

Consider the string S of length n that we wish to index and let Z be the LZ77 parse
of S. The verification data structure is given by Lemma 2.7. Consider the prefix search
data structure TD′ as given in Section 2.5.1 and let φ be the fingerprinting function
used by the prefix search, the case for TD is symmetric. We alter the search for primary
occurrences such that it first does the O(m/τ) prefix searches, then verifies the results
and discards false-positives before moving on to do the O(m/τ) range reporting queries
on the verified results. We also modify φ using Lemma 2.8 to be collision-free for all
substrings of the indexed strings which length is a power of two.

Let Q1, Q2, . . . Qj be all the suffixes of P for which the prefix search found a locus
candidate, let the candidates be v1, v2, . . . vj ∈ TD′ and let pi be str(vi)[1, |Qi|]. Assume
that |Qi| < |Qi+1|, and let 2-suf(Q) and 2-pre(Q) denote the fingerprints using φ of
the suffix and prefix respectively of length 2blg |Q|c of some string Q. The verification
progresses in iterations. Initially, let a = 1, b = 2 and for each iteration do as follows:

1. 2-suf(Qa) 6= 2-suf(pa) or 2-pre(Qa) 6= 2-pre(pa): Discard va and set a = a+ 1 and
b = b+ 1.

2. 2-suf(Qa) = 2-suf(pa) and 2-pre(Qa) = 2-pre(pa), let R = pb[|pb| − |pa|+ 1, |pb|].

a) 2-suf(R) = 2-suf(Qa) and 2-pre(R) = 2-pre(Qa): set a = a+ 1 and b = b+ 1.

b) 2-suf(R) 6= 2-suf(Qa) or 2-pre(R) 6= 2-pre(Qa): discard vb and set b = b+ 1.

26 COMPRESSED AND EFFICIENT ALGORITHMS AND DATA STRUCTURES FOR STRINGS

3. b = j + 1: If all vertices have been discarded, report no matches. Otherwise, let
vf be the last vertex in the sequence v1, . . . , vj that was not discarded. Report all
non-discarded vertices vi where |pi| is no longer than the longest common suffix of
pf and Qf as verified and discard the rest.

Consider the correctness and complexity of the algorithm. In case 1, clearly, pa does
not match Qa and thus va must be a false-positive. Now observe that because Qi is a
suffix of P , it is also a suffix of Qi′ for any i < i′. Thus in case 2 (b), if R does not
match Qa then vb must be a false-positive. In case 2 (a), both va and vb may still be
false-positives, yet by Lemma 2.8, pa is a suffix of pb because 2-suf(pa) = 2-suf(R) and
2-pre(pa) = 2-pre(R). Finally, in case 3, vf is a true positive if and only if pf = Qf . But
any other non-discarded vertex vi 6= vf is also only a true positive if pf and Qf share a
length |pi| suffix because pi is a suffix of pf and Qi is a suffix of Qf .

The algorithm does j iterations and fingerprints of substrings of P can be computed
in constant time after O(m) preprocessing. Every vertex v ∈ TD′ represents one or more
substrings of S. If we store the starting index in S of one of these substrings in v when
constructing TD′ we can compute the fingerprint of any substring str(v)[i, j] by computing
the fingerprint of S[i′+i−1, i′+j−1] where i′ is the starting index of one of the substrings
of S that v represents. By Lemma 2.7, the fingerprint computations take O(lg(n/z))
time, the longest common suffix of pf and Qf can be found in O(m+ lg(n/z)) time and
because j ≤ m/τ the total time complexity of the algorithm is O(m+ (m/τ) lg(n/z)).

2.6 Short Primary Occurrences

We now describe a simple data structure that can find primary occurrences of P in time
O(m+ occ) using space O(zτ) whenever m ≤ τ where τ is a positive integer.

Let Z be the LZ77 parse of the string S of length n. Let Z[i] = S[si, ei] and define F to
be the union of the strings S[k,min{ei + τ − 1, n}] where max{1, si, ei − τ + 1} ≤ k ≤ ei
for i = 1, 2, . . . z. There are O(zτ) such strings, each of length O(τ) and they are all
suffixes of the z length 2τ − 1 substrings of S starting τ − 1 positions before each border
position. We store these substrings along with the compact trie TF over the strings in F .
The edge labels of TF are compactly represented by storing references into one of the
substrings. Every leaf stores the starting positions in S of all the string it represents and
the positions of the leftmost borders these strings contain.

The combined size of TF and the substrings we store isO(zτ) and we simply search for
P by navigating vertices using perfect hashing [37] and matching edge labels character
by character. Now either locus(P) = ⊥ in which case there are no primary occurrences
of P in S; otherwise, locus(P) = v for some vertex v ∈ TF and thus every leaf in the
subtree of v represents a substring of S that is prefixed by P . By using the indices stored
with the leaves, we can determine the starting position for each occurrence and if it
is primary or secondary. Because each of the strings in F start at different positions
in S, we will only find an occurrence once. Also, it is easy to see that we will find all
primary occurrences because of how the strings in F are chosen. It follows that the time
complexity is O(m+ occ) where occ is the number of primary and secondary occurrences.

2.7 The Secondary Index

Let Z be the LZ77 parse of length z representing the string S of length n. We find the
secondary occurrences by applying the most recent range reporting data structure by
Chan et al. [17] to the technique described by Kärkkäinen and Ukkonen [55] which is
inspired by the ideas of Farach and Thorup [27].

Let o1, . . . oocc be the starting positions of the occurrences of P in S ordered increas-
ingly. Assume that oh is a secondary occurrence such that P = S[oh, oh +m− 1]. Then

TIME-SPACE TRADE-OFFS FOR LEMPEL–ZIV COMPRESSED INDEXING 27

by definition, S[oh, oh +m− 1] is a substring the prefix S[i, j − 1] of some phrase S[i, j]
and there must be an occurrence of P in the source of that phrase. More precise, let
S[k, l] = S[i, j − 1] be the source of the phrase S[i, j] then oh′ = k + oh − i is an occur-
rence of P for some h′ < h. We say that oh′ , which may be primary or secondary, is the
source occurrence of the secondary occurrence oh given the LZ77 parse of S. Thus every
secondary occurrence has a source occurrence. Note that it follows from the definition
that no primary occurrence has a source occurrence.

We find the secondary occurrences as follows: Build a range reporting data structure
Q on the n× n grid and if S[i, j] is a phrase with source S[i′, j′] we plot a point (i′, j′)
and along with it we store the phrase start i.

Now for each primary occurrence o found by the primary index, we query Q for the
rectangle [0, o]× [o+m− 1, n]. The points returned are exactly the occurrences having
o as source. For each point (x, y) and phrase start i reported, we report an occurrence
o′ = i+ o− x and recurse on o′ to find all the occurrences having o′ as source.

Because no primary occurrence have a source, while all secondary occurrences have
a source, we will find exactly the secondary occurrences.

The range reporting structure Q is built using Lemma 2.3 with B = 2 and uses space
O(z lg lg z). Exactly one range reporting query is done for each primary and secondary
occurrence each taking O((1 + k) lg lg n) where k is the number of points reported. Each
reported point identifies a secondary occurrence, so the total time is O(occ lg lg n).

2.8 The Compressed Index

We obtain our final index by combining the primary index, the verification data structure
and the secondary index. We use a standard technique to guarantee that no phrase in
the LZ77 parse is longer than n/z when building our primary index, see e.g. [18, 84].
Therefore any primary occurrence of P will have a prefix P [1, k] where k ≤ n/z that
is a suffix of some phrase. It then follows that we need only consider the multiples
(P [1, iτ], P [iτ + 1,m]) for i < bn/zτ c when searching for long primary occurrences. This
yields the following complexities:

• O(m+min{m,n/z}
τ (mx +lg x+B lg lg(zτ))+occB lg lg(zτ)) time andO(zτ lgB lg(zτ))

space for the index finding long primary occurrences where x and τ are positive
integers and 2 ≤ B ≤ lgε(zτ).

• O(m+ occ) time and O(zτ) space for the index finding short primary occurrences.

• O(m+ (m/τ) lg(n/z)) time and O(z lg(n/z)) space for the verification data struc-
ture.

• O(occ lg lg n) time and O(z lg lg z) space for the secondary index.

If we fix x at n/z we have min{m,n/z}
τ

m
x ≤ m in which case we obtain the following

trade-off simply by combining the above complexities.

Theorem 2.2 Given a string S of length n from an alphabet of size σ, we can build
a compressed-index supporting substring queries in O(m+ m

τ (lg(n/z) + B lg lg(zτ)) +
occ(B lg lg(zτ) + lg lg n)) time using O(z(lg(n/z) + τ lgB lg(zτ) + lg lg z)) space for any
query pattern P of length m where 2 ≤ B ≤ lgε(zτ) and 0 < ε < 1 are constants, τ is a
positive integer, z is the number of phrases in the LZ77 parse of S and occ is the number
of occurrences of P in S.

We note that none of our data structures assume constant sized alphabet and thus
Thm. 2.2 holds for any alphabet size.

28 COMPRESSED AND EFFICIENT ALGORITHMS AND DATA STRUCTURES FOR STRINGS

2.8.1 Trade-offs

Thm. 2.2 gives rise to a series of interesting time-space trade-offs.

Corollary 2.1 Given a string S of length n from an alphabet of size σ we can build a
compressed-index supporting substring queries in

(i) O(m(1 + lg lg z
lg(n/z)) + occ lg lg n) time using O(z lg(n/z) lg lg z) space, or

(ii) O(m(1 + lgε z
lg(n/z)) + occ(lg lg n+ lgε z)) time using O(z(lg(n/z) + lg lg z)) space, or

(iii) O(m+ occ lg lg n) time using O(z(lg(n/z) lg lg z + lg2 lg z)) space, or

(iv) O(m+ occ(lg lg n+ lgε z)) time using O(z(lg(n/z) + lgε z)) space.

where ε > 0 is an arbitrarily small constant.

Proof For (i) set B = 2 and τ = lg(n/z), for (ii) set B = lgε z and τ = lg(n/z), for (iii)

set B = 2 and τ = lg(n/z) + lg lg z, for (iv) set B = lgε′ z and τ = lg(n/z) + lgε z where
ε′ < ε.

The leading term in the time complexity of Cor. 2.1 (i) is O(m) whenever lg lg(z) =
O(lg(n/z)) which is true when z = O(n/ lg n), i.e. for all strings that are compressible by
at least a logarithmic fraction. For σ = O(1) we have z = O(n/ lg n) for all strings [74]
and thus Thm. 2.1 (i) follows immediately. Cor. 2.1 (ii) matches previous best space
bounds but obtains a leading term ofO(m) for any polynomial compression rate. Thm. 2.1
(ii) assumes constant-sized alphabet and therefore follows from (ii). Cor. 2.1 (iii) and
(iv) show how to guarantee the fast query times with leading term O(m) without the
assumptions on compression ratio that (i) and (ii) require to match this, but at the cost
of increased space. Thm. 2.1 (iii) is Cor. 2.1 (ii) and thm. 2.1 (iv) is Cor. 2.1 (iv).

2.8.2 Preprocessing

We now consider the preprocessing time of the data structure. Let Z be the LZ77 parse
of the string S of length n let TD and TD′ be the compact tries used in the index for long
primary occurrences. The compact trie TD indexes O(zτ) substrings of S with overall
length O(nτ). Thus we can construct the trie in O(nτ) time by sorting the strings and
successively inserting them in their sorted order [3]. The compact tries TD′ indexes
zτ < n suffixes of S and can be built in O(n) time using O(n) space [26]. The index for
short primary occurrences is a generalized suffix tree over z strings of length O(τ) with
total length zτ < n and is therefore also built in O(n) time. The dictionaries used by the
prefix search data structures and for trie navigation contain O(zτ) keys and are built in
expected linear time using perfect hashing [37]. The range reporting data structures
used by the primary and secondary index over O(zτ) points are built in O(zτ lg(zτ))
expected time using Lemma 2.3.

Building the SLP for our verification data structure takes O(z lg(n/z)) time using
Lemma 2.6 and finding an appropriate fingerprinting function φ takes O(n lg n) expected
time using Lemma 2.8. The prefix search data structures TD and TD′ also require that
φ is collision-free for all prefixes whose length are either pseudo fat or multiples of x.
There are at most O(zτ lg n+ nτ/x) such prefixes [6]. If we compute these fingerprints
incrementally while doing a traversal of the tries, we expect all the fingerprints to be
unique. We simply check this by sorting the fingerprints in linear time and checking
for duplicates by doing a linear scan. If we choose a prime p = Θ(n5) with Lemma 2.2
then the probability of a collision between any two strings is O(1/n4) and by a union
bound over the O((n lg n)

2
) possible collisions the probability that φ is collision-free is

TIME-SPACE TRADE-OFFS FOR LEMPEL–ZIV COMPRESSED INDEXING 29

at least 1− 1/n. Thus the expected time to find our required fingerprinting function is
O(n+ n lg n).

All in all, the preprocessing time for our combined index is therefore expected
O(n lg n+ nτ).

CHAPTER 3

COMPRESSED INDEXING WITH SIGNATURE

GRAMMARS

Anders Roy Christiansen Mikko Berggreen Ettienne

The Technical University of Denmark

Abstract

The compressed indexing problem is to preprocess a string S of length n into a
compressed representation that supports pattern matching queries. That is, given a
string P of length m report all occurrences of P in S.

We present a data structure that supports pattern matching queries in O(m +
occ(lg lgn + lgε z)) time using O(z lg(n/z)) space where z is the size of the LZ77
parse of S and ε > 0 is an arbitrarily small constant, when the alphabet is small or
z = O(n1−δ) for any constant δ > 0. We also present two data structures for the
general case; one where the space is increased by O(z lg lg z), and one where the
query time changes from worst-case to expected. These results improve the previously
best known solutions. Notably, this is the first data structure that decides if P occurs
in S in O(m) time using O(z lg(n/z)) space.

Our results are mainly obtained by a novel combination of a randomized grammar
construction algorithm with well known techniques relating pattern matching to
2D-range reporting.

3.1 Introduction

Given a string S and a pattern P , the core problem of pattern matching is to report
all locations where P occurs in S. Pattern matching problems can be divided into two:
the algorithmic problem where the text and the pattern are given at the same time,
and the data structure problem where one is allowed to preprocess the text (pattern)
before a query pattern (text) is given. Many problems within both these categories are
well-studied in the history of stringology, and optimal solutions to many variants have
been found.

In the last decades, researchers have shown an increasing interest in the compressed
version of this problem, where the space used by the index is related to the size of some
compressed representation of S instead of the length of S. This could be measures such
as the size of the LZ77-parse of S, the smallest grammar representing S, the number of
runs in the BWT of S, etc. see e.g. [10, 39, 40, 42, 55, 74, 77]. This problem is highly
relevant as the amount of highly-repetitive data increases rapidly, and thus it is possible

31

32 COMPRESSED AND EFFICIENT ALGORITHMS AND DATA STRUCTURES FOR STRINGS

Table 3.1: Selection of previous results and our new results on compressed indexing. The variables
are the text size n, the LZ77-parse size z, the pattern length m, occ is the number of
occurrences and σ is the size of the alphabet. (The time complexity marked by † is
expected whereas all others are worst-case)

Index Space Locate time σ
Gagie et al. [40] O(z lg(n/z)) O(m lgm+ occ lg lg n) O(1)
Nishimoto et al. [77] O(z lg n lg∗ n) O(m lg lg n lg lg z +

lg z lgm lg n(lg∗ n)2 +
occ lg n)

nO(1)

Bille et al. [10] O(z(lg(n/z) + lgε z)) O(m+ occ(lgε n+ lg lg n)) nO(1)

Bille et al. [10] O(z lg(n/z) lg lg z) O(m+ occ lg lg n) O(1)

Bille et al. [10] O(z lg(n/z)) O(m(1 + lgε z
lg(n/z)) +

occ(lgε n+ lg lg n))

O(1)

Theorem 1 O(z lg(n/z)) O(m+ occ(lgε z + lg lg n)) O(1)
Theorem 2 (1) O(z(lg(n/z) + lg lg z)) O(m+ occ(lgε z + lg lg n)) nO(1)

Theorem 2 (2) O(z(lg(n/z)) O(m+ occ(lgε z + lg lg n))† nO(1)

to handle greater amounts of data by compressing it. The increase in such data is due to
things like DNA sequencing, version control repositories, etc.

In this paper we consider what we call the compressed indexing problem, which is to
preprocess a string S of length n into a compressed representation that supports fast
pattern matching queries. That is, given a string P of length m, report all occ occurrences
of substrings in S that match P .

Table 3.1 gives an overview of the results on this problem.

3.1.1 Our Results

In this paper we improve previous solutions that are bounded by the size of the LZ77-
parse. For constant-sized alphabets we obtain the following result:

Theorem 3.1 Given a string S of length n from a constant-sized alphabet with an LZ77
parse of length z, we can build a compressed-index supporting pattern matching queries
in O(m+ occ(lg lg n+ lgε z)) time using O(z lg(n/z)) space.

In particular, we are the first to obtain optimal search time using only O(z lg(n/z)) space.
For general alphabets we obtain the following:

Theorem 3.2 Given a string S of length n from an integer alphabet polynomially
bounded by n with an LZ77-parse of length z, we can build a compressed-index support-
ing pattern matching queries in:

(1) O(m+ occ(lg lg n+ lgε z)) time using O(z(lg(n/z) + lg lg z)) space.

(2) O(m+ occ(lg lg n+ lgε z)) expected time using O(z lg(n/z)) space.

(3) O(m+ lgε z + occ(lg lg n+ lgε z)) time using O(z lg(n/z)) space.

Note lg lg z = O(lg(n/z)) when either the alphabet size is O(2lg
ε n) or z = o(n

lgε′n)

where ε and ε′ are arbitrarily small positive constants. Theorem 3.1 follows directly
from Theorem 3.2 (1) given these observations. Theorem 3.2 is a consequence of
Lemma 3.9, 3.11, 3.12 and 3.13.

COMPRESSED INDEXING WITH SIGNATURE GRAMMARS 33

3.1.2 Technical Overview

Our main new contribution is based on a new grammar construction. In [68] Melhorn et
al. presented a way to maintain dynamic sequences subject to equality testing using a
technique called signatures. They presented two signature construction techniques. One
is randomized and leads to complexities that hold in expectation. The other is based on
a deterministic coin-tossing technique of Cole and Vishkin [23] and leads to worst-case
running times but incurs an iterated logarithmic overhead compared to the randomized
solution. This technique has also resembles the string labeling techniques found e.g. in
[85]. To the best of our knowledge, we are the first to consider grammar compression
based on the randomized solution from [68]. Despite it being randomized we show how
to obtain worst-case query bounds for text indexing using this technique.

The main idea in this grammar construction is that similar substrings will be parsed
almost identically. This property also holds true for the deterministic construction
technique which has been used to solve dynamic string problems with and without
compression, see e.g. [2, 77]. In [52] Jeż devices a different grammar construction
algorithm with similar properties to solve the algorithmic pattern matching problem
on grammar compressed strings which has later been used for both static and dynamic
string problems, see [45,89]

Our primary solution has an lgε z term in the query time which is problematic for
short query patterns. To handle this, we show different solutions for handling short query
patterns. These are based on the techniques from LZ77-based indexing combined with
extra data structures to speed up the queries.

3.2 Preliminaries

We assume a standard unit-cost RAM model with word size Θ(lg n) and that the input
is from an integer alphabet Σ = {1, 2, . . . , nO(1)}. We measure space complexity in
terms of machine words unless explicitly stated otherwise. A string S of length n = |S|
is a sequence of n symbols S[1] . . . S[n] drawn from an alphabet Σ. The sequence
S[i, j] is the substring of S given by S[i] . . . S[j] and strings can be concatenated, i.e.
S = S[1, k]S[k+ 1, n]. The empty string is denoted ε and S[i, i] = S[i] while S[i, j] = ε if
j < i, S[i, j] = S[1, j] if i < 1 and S[i, n] if j > n. The reverse of S denoted rev(s) is the
string S[n]S[n− 1] . . . S[1]. A run in a string S is a substring S[i, j] with identical letters,
i.e. S[k] = S[k + 1] for k = i, . . . , j − 1. Let S[i, j] be a run in S then it is a maximal run
if it cannot be extended, i.e. S[i− 1] 6= S[i] and S[j] 6= S[j + 1]. If there are no runs in S
we say that S is run-free and it follows that S[i] 6= S[i+ 1] for 1 ≤ i < n. Denote by [u]
the set of integers {1, 2, . . . , u}.

Let X ⊆ [u]2 be a set of points in a 2-dimensional grid. The 2D-orthogonal range
reporting problem is to compactly represent Z while supporting range reporting queries,
that is, given a rectangle R = [a1, b1]× [a2, b2] report all points in the set R ∩X. We use
the following:

Lemma 3.1 (Chan et al. [17]) For any set of n points in [u] × [u] and constant ε > 0,
we can solve 2D-orthogonal range reporting with O(n lg n) expected preprocessing time
using:

i O(n) space and (1 + k) ·O(lgε n lg lg u) query time

ii O(n lg lg n) space and (1 + k) ·O(lg lg u) query time

where k is the number of occurrences inside the rectangle.

A Karp-Rabin fingerprinting function [56] is a randomized hash function for strings.
Given a string S of length n and a fingerprinting function φwe can inO(n) time and space

34 COMPRESSED AND EFFICIENT ALGORITHMS AND DATA STRUCTURES FOR STRINGS

compute and store O(n) fingerprints such that the fingerprint of any substring of S can be
computed in constant time. Identical strings have identical fingerprints. The fingerprints
of two strings S and S′ collide when S 6= S′ and φ(S) = φ(S′). A fingerprinting function
is collision-free for a set of strings when there are no collisions between the fingerprints
of any two strings in the set. We can find collision-free fingerprinting function for a set
of strings with total length n in O(n) expected time [80].

Let D be a lexicographically sorted set of k strings. The weak prefix search problem
is to compactly represent D while supporting weak prefix queries, that is, given a query
string P of length m report the rank of the lexicographically smallest and largest strings
in D of which P is a prefix. If no such strings exist, the answer can be arbitrary.

Lemma 3.2 (Belazzougui et al. [6], appendix H.3) Given a set D of k strings with
average length l, from an alphabet of size σ, we can build a data structure using
O(k(lg l + lg lg σ)) bits of space supporting weak prefix search for a pattern P of length
m in O(m lg σ/w + lgm) time where w is the word size.

We will refer to the data structure of Lemma 3.2 as a z-fast trie following the notation
from [6]. The m term in the time complexity is due to a linear time preprocessing of
the pattern and is not part of the actual search. Therefore it is simple to do weak prefix
search for any length l substring of P in O(lg l) time after preprocessing P once in O(m)
time.

The LZ77-parse [91] of a string S of length n is a string Z of the form (s1, l1, α1) . . .
(sz, lz, αz) ∈ ([n], [n],Σ)z. We define u1 = 1, ui = ui−1 + li−1 + 1 for i > 1. For Z to
be a valid parse, we require l1 = 0, si < ui, S[ui, ui + li − 1] = S[si, si + li − 1], and
S[ui + li] = αi for i ∈ [z]. This guarantees Z represents S and S is uniquely defined
in terms of Z. The substring S[ui, ui + li] is called the ith phrase of the parse and
S[si, si + li − 1] is its source. A minimal LZ77-parse of S can be found greedily in O(n)
time and stored in O(z) space [91]. We call the positions u1 + l1, . . . , uz + lz the borders
of S.

3.3 Signature Grammars

We consider a hierarchical representation of strings given by Melhorn et al. [68] with
some slight modifications. Let S be a run-free string of length n from an integer alphabet
Σ and let π be a uniformly random permutation of Σ. Define a position S[i] as a local
minimum of S if 1 < i < n and π(S[i]) < π(S[i − 1]) and π(S[i]) < π(S[i + 1]). In the
block decomposition of S, a block starts at position 1 and at every local minimum in S
and ends just before the next block begins (the last block ends at position n). The block
decomposition of a string S can be used to construct the signature tree of S denoted
sig(S) which is an ordered labeled tree with several useful properties.

Lemma 3.3 Let S be a run-free string S of length n from an alphabet Σ and let π be a
uniformly random permutation of Σ such that π(c) is the rank of the symbol c ∈ Σ in
this permutation. Then the expected length between two local minima in the sequence
π(S[1]), π(S[2]), . . . , π(S[n]) is at most 3 and the longest gap is O(lg n) in expectation.

Proof First we show the expected length between two local minima is at most 3. Look at
a position 1 ≤ i ≤ n in the sequence π(S[1]), π(S[2]), . . . , π(S[n]). To determine if π(S[i])
is a local minimum, we only need to consider the two neighbouring elements π(S[i− 1])
and π(S[i+ 1]) thus let us consider the triple (π(S[i− 1]), π(S[i]), π(S[i+ 1])). We need
to consider the following cases. First assume S[i− 1] 6= S[i] 6= S[i+ 1]. There exist 3! = 6
permutations of a triple with unique elements and in two of these the minimum element
is in the middle. Since π is a uniformly random permutation of Σ all 6 permutations
are equally likely, and thus there is 1/3 chance that the element at position i is a local

COMPRESSED INDEXING WITH SIGNATURE GRAMMARS 35

minimum. Now instead assume S[i − 1] = S[i + 1] 6= S[i] in which case there is 1/2
chance that the middle element is the smallest. Finally, in the case where i = 1 or i = n
there is also 1/2 chance. As S is run-free, these cases cover all possible cases. Thus there
is at least 1/3 chance that any position i is a local minimum independently of S. Thus
the expected number of local minima in the sequence is therefore at least n/3 and the
expected distance between any two local minima is at most 3.

The expected longest distance between two local minima of O(lg n) was shown in
[68].

3.3.1 Signature Grammar Construction

We now give the construction algorithm for the signature tree sig(S). Consider an
ordered forest F of trees. Initially, F consists of n trees where the ith tree is a single
node with label S[i]. Let the label of a tree t denoted l(t) be the label of its root node.
Let l(F) denote the string that is given by the in-order concatenation of the labels of the
trees in F . The construction of sig(S) proceeds as follows:

1. Let ti, . . . , tj be a maximal subrange of consecutive trees of F with identical labels,
i.e. l(ti) = . . . = l(tj). Replace each such subrange in F by a new tree having as
root a new node v with children ti, . . . , tj and a label that identifies the number of
children and their label. We call this kind of node a run node. Now l(F) is run-free.

2. Consider the block decomposition of l(F). Let ti, . . . , tj be consecutive trees in F
such that their labels form a block in l(F). Replace all identical blocks ti, . . . , tj by
a new tree having as root a new node with children ti, . . . , tj and a unique label.
We call this kind of node a run-free node.

3. Repeat step 1 and 2 until F contains a single tree, we call this tree sig(S).

In each iteration the size of F decreases by at least a factor of two and each iteration
takes O(|F |) time, thus it can be constructed in O(n) time.

Consider the directed acyclic graph (DAG) of the tree sig(S) where all identical
subtrees are merged. Note we can store run nodes in O(1) space since all out-going edges
are pointing to the same node, so we store the number of edges along with a single edge
instead of explicitly storing each of them. For run-free nodes we use space proportional
to their out-degrees. We call this the signature DAG of S denoted dag(S). There is
a one-to-one correspondence between this DAG and an acyclic run-length grammar
producing S where each node corresponds to a production and each leaf to a terminal.

3.3.2 Properties of the Signature Grammar

We now show some properties of sig(S) and dag(S) that we will need later. Let str(v)
denote the substring of S given by the labels of the leaves of the subtree of sig(S) induced
by the node v in left to right order.

Lemma 3.4 Let v be a node in the signature tree for a string S of length n. If v has
height h then |str(v)| is at least 2h and thus sig(S) (and dag(S)) has height O(lg n).

Proof This follows directly from the out-degree of all nodes being at least 2.

Denote by T (i, j) the set of nodes in sig(S) that are ancestors of the ith through jth

leaf of sig(S). These nodes form a sequence of adjacent nodes at every level of sig(S)
and we call them relevant nodes for the substring S[i, j].

Lemma 3.5 T (i, j) and T (i′, j′) have identical nodes except at most the two first and
two last nodes on each level whenever S[i, j] = S[i′, j′].

36 COMPRESSED AND EFFICIENT ALGORITHMS AND DATA STRUCTURES FOR STRINGS

Proof Trivially, the leaves of T (i, j) and T (i′, j′) are identical if S[i, j] = S[i′, j′]. Now
we show it is true for nodes on level l assuming it is true for nodes on level l − 1. We
only consider the left part of each level as the argument for the right part is (almost)
symmetric. Let v1, v2, v3, . . . be the nodes on level l − 1 in T (i, j) and u1, u2, u3, . . . the
nodes on level l − 1 in T (i′, j′) in left to right order. From the assumption, we have
va, va+1, . . . are identical with ub, ub+1, . . . for some 1 ≤ a, b ≤ 3. When constructing
the lth level of sig(S), these nodes are divided into blocks. Let va+k be the first block
that starts after va then by the block decomposition, the first block after ub starts at
ub+k. The nodes v1, . . . , va+k are spanned by at most two blocks and similarly for
u1, . . . , ub+k. These blocks become the first one or two nodes on level l in T (i, j) and
T (i′, j′) respectively. The block starting at va+k is identical to the block starting at ub+k
and the same holds for the following blocks. These blocks result in identical nodes on
level l. Thus, if we ignore the at most two first (and last) nodes on level l the remaining
nodes are identical.

We call nodes of T (i, j) consistent in respect to T (i, j) if they are guaranteed to be in
any other T (i′, j′) where S[i, j] = S[i′, j′]. We denote the remaining nodes of T (i, j) as
inconsistent. From the above lemma, it follows at most the left-most and right-most two
nodes on each level of T (i, j) can be inconsistent.

Lemma 3.6 The expected size of the signature DAG dag(S) is O(z lg(n/z)).

Proof We first bound the number of unique nodes in sig(S) in terms of the LZ77-
parse of S which has size z. Consider the decomposition of S into the 2z substrings
S[u1, u1 + l1], S[u1 + l1 + 1], . . . , S[uz, uz + lz], S[uz + lz + 1] given by the phrases and
borders of the LZ77-parse of S and the corresponding sets of relevant nodes R =
{T (u1, u1 + l1), T (u1 + l1 + 1, u1 + l1 + 1), . . .}. Clearly, the union of these sets are all
the nodes of sig(S). Since identical nodes are represented only once in dag(S) we need
only count one of their occurrences in sig(S). We first count the nodes at levels lower
than lg(n/z). A set T (i, i) of nodes relevant to a substring of length one has no more
than O(lg(n/z)) such nodes. By Lemma 3.5 only O(lg(n/z)) of the relevant nodes for
a phrase are not guaranteed to also appear in the relevant nodes of its source. Thus
we count a total of O(z lg(n/z)) nodes for the O(z) sets of relevant nodes. Consider the
leftmost appearance of a node appearing one or more times in sig(S). By definition, and
because every node of sig(S) is in at least one relevant set, it must already be counted
towards one of the sets. Thus there are O(z lg(n/z)) unique vertices in sig(S) at levels
lower than lg(n/z). Now for the remaining at most lg(z) levels, there are no more than
O(z) nodes because the out-degree of every node is at least two. Thus we have proved
that there are O(z lg(n/z)) unique nodes in sig(S). By Lemma 3.3 the average block size
and thus the expected out-degree of a node is O(1). It follows that the expected number
of edges and the expected size of dag(S) is O(z lg(n/z)).

Lemma 3.7 A signature grammar of S using O(z lg(n/z)) (worst case) space can be
constructed in O(n) expected time.

Proof Construct a signature grammar for S using the signature grammar construction
algorithm. If the average out-degree of the run-free nodes in dag(S) is more than some
constant greater than 3 then try again. In expectation it only takes a constant number of
retries before this is not the case.

Lemma 3.8 Given a node v ∈ dag(S), the child that produces the character at position i
in str(v) can be found in O(1) time.

COMPRESSED INDEXING WITH SIGNATURE GRAMMARS 37

Proof First assume v is a run-free node. If we store |str(u)| for each child u of v in order,
the correct child corresponding to position i can simply be found by iterating over these.
However, this may take O(lg n) time since this is the maximum out-degree of a node in
dag(S). This can be improved to O(lg lg n) by doing a binary search, but instead we use
a Fusion Tree from [38] that allows us to do this in O(1) time since we have at most
O(lg n) elements. This does not increase the space usage. If v is a run node then it is
easy to calculate the right child by a single division.

3.4 Long Patterns

In this section we present how to use the signature grammar to construct a compressed
index that we will use for patterns of length Ω(lgε z) for constant ε > 0. We obtain the
following lemma:

Lemma 3.9 Given a string S of length n with an LZ77-parse of length z we can build a
compressed index supporting pattern matching queries in O(m + (1 + occ) lgε z) time
using O(z lg(n/z)) space for any constant ε > 0.

3.4.1 Data Structure

Consider a vertex v with children u1, . . . uk in dag(S). Let pre(v, i) denote the prefix of
str(v) given by concatenating the strings represented by the first i children of v and let
suf(v, i) be the suffix of str(v) given by concatenating the strings represented by the last
k − i children of x.

The data structure is composed of two z-fast tries (see Lemma 3.2) T1 and T2 and a
2D-range reporting data structure R.

For every non-leaf node v ∈ dag(S) we store the following. Let k be the number of
children of v if v is a run-free node otherwise let k = 2:

• The reverse of the strings pre(v, i) for i ∈ [k − 1] in the z-fast trie T1.

• The strings suf(v, i) for i ∈ [k − 1] in the z-fast trie T2.

• The points (a, b) where a is the rank of the reverse of pre(v, i) in T1 and b is the
rank of suf(v, i) in T2 for i ∈ [k − 1] are stored in R. A point stores the vertex
v ∈ dag(S) and the length of pre(v, i) as auxiliary information.

There areO(z lg(n/z)) vertices in dag(S) thus T1 and T2 take no more thanO(z lg(n/z))
words of space using Lemma 3.2. ThereO(z lg(n/z)) points inR which takesO(z lg(n/z))
space using Lemma 3.1 (i) thus the total space in words is O(z lg(n/z)).

3.4.2 Searching

Assume in the following that there are no fingerprint collisions. Compute all the prefix fin-
gerprints of P φ(P [1]), φ(P [1, 2]), . . . , φ(P [1,m]). Consider the signature tree sig(P) for
P . Let lki denote the k’th left-most vertex on level i in sig(P) and let j be the last level. Let
PL = {|str(l11)|, |str(l11)| + |str(l21)|, |str(l12)|, |str(l12)| + |str(l22)|, . . . , |str(l1j)|, |str(l1j)| +
|str(l2j)|}. Symmetrically, let rki denote the k’th right-most vertex on level i in sig(P)

and let PR = {m − |str(r11)|,m − |str(r11)| − |str(r21)|,m − |str(r12)|,m − |str(r12)| −
|str(r22)|, . . . ,m− |str(r1j)|,m− |str(r1j)| − |str(r2j)|}. Let PS = PL ∪ PR.

For p ∈ PS search for the reverse of P [1, p] in T1 and for P [p+ 1,m] in T2 using the
precomputed fingerprints. Let [a, b] and [c, d] be the respective ranges returned by the
search. Do a range reporting query for the (possibly empty) range [a, b]× [c, d] in R. Each
point in the range identifies a node v and a position i such that P occurs at position i in

38 COMPRESSED AND EFFICIENT ALGORITHMS AND DATA STRUCTURES FOR STRINGS

the string str(v). If v is a run node, there is furthermore an occurrence of P in str(v) for
all positions i+ k · |str(child(v))| where k = 1, . . . , j and j · |str(child(v))|+m ≤ str(v).

To report the actual occurrences of P in S we traverse all ancestors of v in dag(S);
for each occurrence of P in str(v) found, recursively visit each parent u of v and offset
the location of the occurrence to match the location in str(u) instead of str(v). When u
is the root, report the occurrence. Observe that the time it takes to traverse the ancestors
of v is linear in the number of occurrences we find.

We now describe how to handle fingerprint collisions. Given a z-fast trie, Gagie
et al. [40] show how to perform k weak prefix queries and identify all false positives
using O(k lgm+m) extra time by employing bookmarked extraction and bookmarked
fingerprinting. Because we only compute fingerprints and extract prefixes (suffixes) of
the strings represented by vertices in dag(S) we do not need bookmarking to do this.
We refer the reader to [40] for the details. Thus, we modify the search algorithm such
that all the searches in T1 and T2 are carried out first, then we verify the results before
progressing to doing range reporting queries only for ranges that were not discarded
during verification.

3.4.3 Correctness

For any occurrence S[l, r] of P in S there is a node v in sig(S) that stabs S[l, r], ie. a
suffix of pre(v, i) equals a prefix P [1, j] and a prefix of suf(v, i) equals the remaining
suffix P [j + 1,m] for some i and j. Since we put all combinations of pre(v, i), suf(v, i)
into T1, T2 and R, we would be guaranteed to find all nodes v that contains P in str(v)
if we searched for all possible split-points 1, . . . ,m − 1 of P i.e. P [1, i] and P [i + 1,m]
for i = 1, . . . ,m− 1.

We now argue that we do not need to search for all possible split-points of P but only
need to consider those in the set PS . For a position i, we say the node v stabs i if the
nearest common ancestor of the ith and i+ 1th leaf of sig(S) denoted NCA(li, li+1) is v.

Look at any occurrence S[l, r] of P . Consider TS = T (l, r) and TP = sig(P). Look at
a possible split-point i ∈ [1,m− 1] and the node v that stabs position i in TP . Let ul and
ur be adjacent children of v such that the rightmost leaf descendant of ul is the ith leaf
and the leftmost leaf descendant of ur is the i+ 1th leaf. We now look at two cases for v
and argue it is irrelevant to consider position i as split-point for P in these cases:

1. Case v is consistent (in respect to TP). In this case it is guaranteed that the node
that stabs l + i in TS is identical to v. Since v is a descendant of the root of TP (as
the root of TP is inconsistent) str(v) cannot contain P and thus it is irrelevant to
consider i as a split-point.

2. Case v is inconsistent and ul and ur are both consistent (in respect to TP). In
this case ul and ur have identical corresponding nodes u′l and u′r in TS . Because
ul and ur are children of the same node it follows that u′l and u′r must also both
be children of some node v′ that stabs l + i in TS (however v and v′ may not
be identical since v is inconsistent). Consider the node u′ll to the left of u′l (or
symmetrically for the right side if v is an inconsistent node in the right side of
TP). If str(v′) contains P then u′ll is also a child of v′ (otherwise ul would be
inconsistent). So it suffices to check the split-point i− |ul|. Surely i− |ul| stabs an
inconsistent node in TP , so either we consider that position relevant, or the same
argument applies again and a split-point further to the left is eventually considered
relevant.

Thus only split-points where v and at least one of ul or ur are inconsistent are relevant.
These positions are a subset of the position in PS , and thus we try all relevant split-points.

COMPRESSED INDEXING WITH SIGNATURE GRAMMARS 39

3.4.4 Complexity

A query on T1 and T2 takes O(lgm) time by Lemma 3.2 while a query on R takes
O(lgε z) time using Lemma 3.1 (i) (excluding reporting). We do O(lgm) queries as
the size of PS is O(lgm). Verification of the O(lgm) strings we search for takes total
time O(lg2m + m) = O(m). Constructing the signature DAG for P takes O(m) time,
thus total time without reporting is O(m + lgm lgε z) = O(m + lgε′ z) for any ε′ > ε.
This holds because if m ≤ lg2ε z then lgm lgε z ≤ lg lg2ε z lgε z = O(lgε′ z), otherwise
m > lg2ε z ⇔

√
m > lgε z and then lgm lgε z = O(lgm

√
m) = O(m). For every query

on R we may find multiple points each corresponding to an occurrence of P . It takes
O(lgε z) time to report each point thus the total time becomes O(m+ (1 + occ) lgε′ z).

3.5 Short Patterns

Our solution for short patterns uses properties of the LZ77-parse of S. A primary substring
of S is a substring that contains one or more borders of S, all other substrings are called
secondary. A primary substring that matches a query pattern P is a primary occurrence of
P while a secondary substring that matches P is a secondary occurrence of P . In a seminal
paper on LZ77 based indexing [55] Kärkkäinen and Ukkonen use some observations
by Farach and Thorup [27] to show how all secondary occurrences of a query pattern
P can be found given a list of the primary occurrences of P through a reduction to
orthogonal range reporting. Employing the range reporting result given in Lemma 3.1
(ii), all secondary occurrences can be reported as stated in the following lemma:

Lemma 3.10 (Kärkkäinen and Ukkonen [55]) Given the LZ77-parse of a string S there
exists a data structure that uses O(z lg lg z) space that can report all secondary occur-
rences of a pattern P given the list of primary occurrences of P in S in O(occ lg lg n)
time.

We now describe a data structure that can report all primary occurrences of a pattern
P of length at most k in O(m+ occ) time using O(zk) space.

Lemma 3.11 Given a string S of length n and a positive integer k ≤ n we can build
a compressed index supporting pattern matching queries for patterns of length m in
O(m+ occ lg lg n) time using O(zk + z lg lg z) space that works for m ≤ k.

Proof Consider the set C of z substrings of S that are defined by S[ui − k, ui + k − 1]
for i ∈ [z], ie. the substrings of length 2k surrounding the borders of the LZ77-parse. The
total length of these strings is Θ(zk). Construct the generalized suffix tree T over the set
of strings C. This takes Θ(zk) words of space. To ensure no occurrence is reported more
than once, if multiple suffixes in this generalized suffix tree correspond to substrings of
S that starts on the same position in S, only include the longest of these. This happens
when the distance between two borders is less than 2k.

To find the primary occurrences of P of length m, simply find all occurrences of P
in T . These occurrences are a super set of the primary occurrences of P in S, since
T contains all substrings starting/ending at most k positions from a border. It is easy
to filter out all occurrences that are not primary, simply by calculating if they cross a
border or not. This takes O(m+ occ) time (where occ includes secondary occurrences).
Combined with Lemma 3.10 this gives Lemma 3.11.

3.6 Semi-Short Patterns

In this section, we show how to handle patterns of length between lg lg z and lgε z. It is
based on the same reduction to 2D-range reporting as used for long patterns. However,

40 COMPRESSED AND EFFICIENT ALGORITHMS AND DATA STRUCTURES FOR STRINGS

the positions in S that are inserted in the range reporting structure is now based on the
LZ77-parse of S instead. Furthermore we use Lemma 3.1 (ii) which gives faster range
reporting but uses super-linear space, which is fine because we instead put fewer points
into the structure. We get the following lemma:

Lemma 3.12 Given a string S of length n we solve the compressed indexing problem
for a pattern P of length m with lg lg z ≤ m ≤ lgε z for any positive constant ε < 1

2 in
O(m+ occ(lg lg n+ lgε z)) time using O(z(lg lg z + lg(n/z))) space.

3.6.1 Data Structure

As in the previous section for short patterns, we only need to worry about primary
occurrences of P in S. Let B be the set of all substrings of length at most lgε z that cross
a border in S. The split positions of such a string are the offsets of the leftmost borders
in its occurrences. All primary occurrences of P in S are in this set. The size of this set is
|B| = O(z lg2ε z). The data structure is composed by the following:

• A dictionary H mapping each string in B to its split positions.

• A z-fast trie T1 on the reverse of the strings T [ui, li] for i ∈ [z].

• A z-fast trie T2 on the strings T [ui, n] for i ∈ [z].

• A range reporting data structure R with a point (c, d) for every pair of strings
Ci = T [ui, li], Di = T [ui+1, n] for i ∈ [z] where Dz = ε and c is the lexicographical
rank of the reverse of Ci in the set {C1, . . . , Cz} and d is the lexicographical rank
of Di in the set {D1, . . . Dz}. We store the border ui along with the point (c, d).

• The data structure described in Lemma 3.10 to report secondary occurrences.

• The signature grammar for S.

Each entry in H requires lg lgε z = O(lg lg z) bits to store since a split position can
be at most lgε z. Thus the dictionary can be stored in O(|B| · lg lg z) = O(z lg2ε z lg lg z)
bits which for ε < 1

2 is O(z) words. The tries T1 and T2 take O(z) space while R takes
O(z lg lg z) space. The signature grammar takes O(z lg(n/z)). Thus the total space is
O(z(lg lg z + lg(n/z))).

3.6.2 Searching

Assume a lookup for P in H does not give false-positives. Given a pattern P compute all
prefix fingerprints of P . Next do a lookup in H. If there is no match then P does not
occur in S. Otherwise, we do the following for each of the split-points s stored in H.
First split P into a left part Pl = P [0, s− 1] and a right part Pr = P [s,m]. Then search
for the reverse of Pl in T1 and for Pr in T2 using the corresponding fingerprints. The
search induces a (possibly empty) range for which we do a range reporting query in R.
Each occurrence in R corresponds to a primary occurrence of P in S, so report these.
Finally use Lemma 3.10 to report all secondary occurrences.

Unfortunately, we cannot guarantee a lookup for P in H does not give a false positive.
Instead, we pause the reporting step when the first possible occurrence of P has been
found. At this point, we verify the substring P matches the found occurrence in S. We
know this occurrence is around an LZ-border in S such that Pl is to the left of the border
and Pr is to the right of the border. Thus we can efficiently verify that P actually occurs
at this position using the grammar.

COMPRESSED INDEXING WITH SIGNATURE GRAMMARS 41

3.6.3 Analysis

Computing the prefix fingerprints of P takes O(m) time. First, we analyze the running
time in the case P actually exists in S. The lookup in H takes O(1) time using perfect
hashing. For each split-point we do two z-fast trie lookups in time O(lgm) = O(lg lg z).
Since each different split-point corresponds to at least one unique occurrence, this takes
at most O(occ lg lg z) time in total. Similarly each lookup and occurrence in the 2D-range
reporting structure takes lg lg z time, which is therefore also bounded by O(occ lg lg z)
time. Finally, we verified one of the found occurrence against P in O(m) time. So the
total time is O(m+ occ lg lg z) in this case.

In the case P does not exists, either the lookup in H tells us that, and we spend O(1)
time, or the lookup in H is a false-positive. In the latter case, we perform exactly two
z-fast trie lookups and one range reporting query. These all take time O(lg lg z). Since
m ≥ lg lg z this is O(m) time. Again, we verified the found occurrence against P in O(m)
time. The total time in this case is therefore O(m).

Note we ensure our fingerprint function is collision free for all substrings in B during
the preprocessing thus there can only be collisions if P does not occur in S when
m ≤ lgε z.

3.7 Randomized Solution

In this section we present a very simple way to turn the O(m+ (1 + occ) lgε z) worst-case
time of Lemma 3.9 into O(m + occ lgε z) expected time. First observe, this is already
true if the pattern we search for occurs at least once or if m ≥ lgε z.

As in the semi-short patterns section, we consider the set B of substrings of S of
length at most lgε z that crosses a border. Create a dictionary H with z lg3ε z entries and
insert all the strings from B. This means only a lgε z fraction of the entries are used,
and thus if we lookup a string s (where |s| ≤ lgε z) that is not in H there is only a 1

lgε z

chance of getting a false-positive.
Now to answer a query, we first check if m ≤ lgε z in which case we look it up in H.

If it does not exist, report that. If it does exist in H or if m > lgε z use the solution from
Lemma 3.9 to answer the query.

In the case P does not exist, we spend eitherO(m) time ifH reports no, orO(m+lgε z)
time if H reports a false-positive. Since there is only 1

lgε z chance of getting a false
positive, the expected time in this case is O(m). In all other cases, the running time is
O(m + occ lgε z) in worst-case, so the total expected running time is O(m + occ lgε z).
The space usage of H is O(z lg3ε z) bits since we only need to store one bit for each entry.
This is O(z) words for ε ≤ 1/3. To sum up, we get the following lemma:

Lemma 3.13 Given a signature grammar for a text S of length n with an LZ77-parse
of length z we can build a compressed index supporting pattern matching queries in
O(m+ occ lgε z) expected time using O(z lg(n/z)) space for any constant 0 < ε ≤ 1/3.

CHAPTER 4

FAST LEMPEL-ZIV DECOMPRESSION IN LINEAR

SPACE

Philip Bille∗ Mikko Berggreen Ettienne∗ Travis Gagie† Inge Li Gørtz∗ Nicola Prezza∗

∗ The Technical University of Denmark
† EIT, Diego Portales University, Chile

Abstract

We consider the problem of decompressing the Lempel–Ziv 77 representation
of a string S of length n using a working space as close as possible to the size z
of the input. The folklore solution for the problem runs in O(n) time but requires
random access to the whole decompressed text. A better solution is to convert LZ77
into a grammar of size O(z lg(n/z)) and then stream S in linear time. In this paper,
we show that O(n) time and O(z) working space can be achieved for constant-size
alphabets. On larger alphabets, we describe (i) a trade-off achieving O(n lgδ σ) time
and O(z lg1−δ σ) space for any 0 ≤ δ ≤ 1 where σ is the size of the alphabet, and
(ii) a solution achieving O(n) time and O(z lg lgn) space. Our solutions can, more
generally, extract any specified subsequence of S with little overheads on top of the
linear running time and working space. As an immediate corollary, we show that our
techniques yield improved results for pattern matching problems on LZ77-compressed
text.

4.1 Introduction

In this paper we consider the following problem: given an LZ77 representation of a string
S of length n, decompress S and output it as a stream in left-to-right order (without
storing it explicitly). Our goal is to solve this problem in as little space as possible, i.e.
close to the size z of the compressed input string, and as fast as possible. In this respect,
note that at least Ω(z) time is needed to read the input. This problem is fundamental
and of great relevance in domains characterized by the production of huge amounts of
repetitive data, where information has to be analyzed on-the-fly due to limitations in
storage resources.

The folklore solution for the Lempel-Ziv decompression problem achieves linear time,
but requires random access to the whole string. A better solution is to convert LZ77
into a straight-line program (i.e. a context-free grammar generating the text) of size
O(z lg(n/z)). This conversion can be performed in O(z lg(n/z)) space and time [18,84].
Then, the entire text can be decompressed and streamed in linear time using just the
space of the grammar. The problem has also been recently considered in [9] in the

43

44 COMPRESSED AND EFFICIENT ALGORITHMS AND DATA STRUCTURES FOR STRINGS

context of external-memory algorithms. To the best of our knowledge, no other attempts
to solve the problem have been described in the literature. In particular, no solutions
using O(z) space are known.

4.1.1 Our contributions

The main contribution of this paper is to show that LZ77 decompression can be performed
in linear space (in the compressed input’s size) and near-optimal time (i.e. almost linear
in the length of the extracted string). We provide two smooth space-time trade-offs
which enable us to achieve either linear time or linear space or both if the alphabet’s size
is constant. The first trade-off is particularly appealing on small alphabets, while the
second dominates the first on large alphabets.

Our solution even works for decompressing any specified subsequence of S with
little overheads on top of the linear running time and working space. As an application,
we show that our techniques yield improved results for pattern matching problems on
LZ77-compressed text.

We formalize the LZ77 decompression problem as follows. The input consists
of an LZ77 representation of a text and a list of text substrings encoded as pairs:
(i1, j1), . . . , (is, js). We decompress these substrings and output them (e.g. to a stream
or to disk) character-by-character in the order S[i1, j1], . . . , S[is, js]. Since both the
input strings and the output can be streamed (for example, from/to disk) we only
count the working space used on top of the input and the output. Let the quantity
l =

∑s
k=1(jk − ik + 1) denote the total number of characters to be extracted. Our main

results are summarized in the following two theorems:

Theorem 4.1 Let S be a string of length n from an alphabet of size σ compressed into
an LZ77 representation with z phrases. For any parameter 0 ≤ δ ≤ 1, we can decompress
any s substrings of S with total length l in O(l lgδ σ+ (s+ z) lg n) time using O(z lg1−δ σ)
space.

Theorem 4.2 Let S be a string of length n compressed into an LZ77 representation with
z phrases. For any parameter 1 ≤ τ ≤ lg n, we can decompress any s substrings of S
with total length l in O

(
l + l lgn

τ + (s+ z) lg n
)

time using O(z lg τ) space.

Theorems 4.1 and 4.2 lead to a series of new and non-trivial bounds on different
algorithmic problems on LZ77. For instance, we provide a smooth time-space trade-off for
decompressing S in O(n lgδ σ) time using O(z lg1−δ σ) space for any constant 0 ≤ δ ≤ 1.
This gives the linear time and O(z) space for constant-sized alphabets. By combining
Theorem 4.2 with τ = lg n with the technique based on grammars, we show how to
decompress S in O(n) time using O(z lg lg n) space. Both bounds are strict improvements
over the previous best complexity of O(n) time and O(z lg(n/z)) space. See Section 4.4
and Corollaries 4.2 and 4.3 for details.

Our results also imply new trade-offs for the pattern matching and approximate
pattern matching problems on LZ77-compressed texts. By showing how our techniques
can be combined with existing pattern matching results, we obtain the following:

Theorem 4.3 Let S be a string of length n compressed into an LZ77 representation Z
with z phrases, let P be a pattern of lengthm and letA be an algorithm that can detect an
(approximate) occurrence of P in S (with at most k errors) given P and Z in t(z, n,m, k)
time and s(z, n,m, k) space. Then, we can solve the same task in O(t(z, zm,m, k)+z lg n)
time and O(s(z, zm,m, k) + z) space. If A reports all occ occurrences using t(z, n,m, k)
time and s(z, n,m, k) space, then we can report all occurrences in O(t(z, zm,m, k) +
z lg n+ occ) time and O(s(z, zm,m, k) + z + occ) space.

FAST LEMPEL-ZIV DECOMPRESSION IN LINEAR SPACE 45

Theorem 4.4 Let A be a streaming algorithm that reports all occ (approximate) oc-
currence of a pattern P ∈ [σ]m (with at most k errors) in a stream of length n in
t(n,m, k) time and s(n,m, k) space. Then, we can report all occurrences of P in the
LZ77 representation of a string S ∈ [σ]n in either:

• O(t(zm,m, k) + z lg n) time and O(s(zm,m, k) + z lg lg n+ occ) space or

• O(t(zm,m, k) + z lg n+ zm lgδ σ) time and O(s(zm,m, k) + z lg1−δ σ+ occ) space.

The best known algorithm for detecting if pattern P occurs in a string S given P
and Z uses O(z lg(n/z) + m) time and O(z lg n + m) space [44]. If we plug this into
Theorem 4.3 we obtain O(z lg n + m) time and O(z lgm + m) space thereby reducing
the lg n factor in the space to lgm at the cost of slightly increasing the time.

We also obtain new trade-offs for reporting all approximate occurrences of P with
at most k errors. For example if we plug in the Landau–Vishkin and Cole–Hariharan
[22, 62] algorithms, we can solve the problem in O(z lg n + zmin{mk, k4 + m} + occ)
time using O(z +m+ occ) space for constant-sized alphabets or O(z lg lg n+m+ occ)
space for general alphabets. The previous best solution has the same time complexity
but uses O(z lg n+m+ occ) space [41]. We refer to Section 4.5 for more details.

To obtain our results we need mergeable dictionaries with shift operations. We
show how to extend the mergeable dictionary by Iacono & Özkan [51] to support shifts.
(Iacono & Özkan [51] write that their data structure can be extended to support the shift
operation but do not provide any details.)

4.1.2 Related work

While the LZ77 decompression problem has not been studied much in the literature, the
problem of fast LZ77 compression in small working space has lately attracted a lot of
research in the field of compressed computation [33,34,77–79].

A closely related problem is the random access problem, where the aim is to build a
data structure taking space as close as possible to O(z) words and supporting efficient
access queries to single characters. Existing solutions for the random access problem
[11,18,84] need Ω(z lg(n/z)) space to achieve O(lg(n/z)) access time.

Because these data structures can be built efficiently they also solve the LZ77 decom-
pression problem considered in this paper. In particular they can decompress the entire
string S given its LZ77 representation in O(n) time using O(z lg(n/z)) working space.
Our results improve this working space bound as we show how to decompress S in O(n)
time using only O(z lg lg n) working space for general alphabets and O(z) working space
for constant-sized alphabets.

The random access data structures can also decompress any set of s substrings with
total length l in O(l+s lg n) time. We provide several new trade-offs for this problem; for
instance we can solve it using O(l+ (z+ s) lg n) time using O(z) space for constant-sized
alphabets or O(z lg lg n) space for general alphabets.

4.2 Preliminaries

We assume a standard unit-cost RAM model with word size w = Θ(lg n) and that the
input is from an integer alphabet Σ = {1, 2, . . . , σ} where σ ≤ nO(1), and we measure
space complexity in words unless otherwise specified. A string S of length n = |S| is
a sequence S[1] . . . S[n] of n symbols from an alphabet Σ of size |Σ| = σ. The string
S[i] . . . S[j] denoted S[i, j] is called a substring of S. Let ε denote the empty string
and let S[i, j] = ε when i > j. To ease the notation, let S[i, j] = S[1, j] if i < 1 and
S[i, n] if j > n. Let [u] be shorthand for the interval [1;u] = {1, 2, . . . , u} and let $ be a

46 COMPRESSED AND EFFICIENT ALGORITHMS AND DATA STRUCTURES FOR STRINGS

special symbol that never occurs in the input text. A straight-line program (SLP) is an
acyclic grammar in Chomsky normal form where each non-terminal T has exactly one
production rule with T as its left-hand side i.e., a grammar where each non-terminal
production rule expands to two other rules and generates one string only.

4.2.1 Lempel-Ziv 77 Algorithm

For simplicity of exposition we use the scheme given by Farach & Thorup [27]. Map Σ
into [σ] and assume that S is prefixed by Σ in the negative positions, i.e. S[−c] = c for
c ∈ Σ and S[0] = $ /∈ Σ.

An LZ77 representation [64, 91] of S is a string Z of the form (s1, l1) . . . (sz, lz) ∈
([−σ;n] × [n])z. Let u1 = 1 and ui = ui−1 + li−1, for i > 1. For Z to be a valid LZ77
representation of S, we require that si+li ≤ ui and that S[ui, ui+li−1] = S[si, si+li−1]
for i ∈ [z]. This guarantees that Z represents S and clearly S is uniquely defined in terms
of Z.

We refer to the substring S[ui, ui + li − 1] as the ith phrase of the representation, the
substring S[si, si + li − 1] as the source of the ith phrase and (si, li) as the ith member of
Z. We note that the restriction si + li ≤ ui for all i implies that a source and a phrase
cannot overlap and thus we do not handle representations that are self-referential.

By the given definition, the LZ77 representation of a string is not unique, however a
minimal LZ77 representing a text S can be found greedily in O(n) time [24,53].

4.2.2 Mergeable Dictionary

The Mergeable Dictionary problem is to maintain a dynamic collection G of disjoint
sets {G1, G2, . . .} of n elements from an ordered universe {1, 2, . . . ,U} starting from n
singleton sets under the operations:

1. C ← merge(A,B): Creates C = A ∪ B. C is inserted into G while A and B are
removed.

2. (A,B)← split(G, x): Splits G into two sets A = {y ∈ G | y ≤ x} and B = {y ∈
G | y > x}. G is removed from G while A and B are inserted.

Iacono & Özkan [51] show how to solve the mergeable dictionary problem. The
initial collection of singleton sets is created in linear time [51]. We need an extended
version of the mergeable dictionary that also supports the following operation.

3. G′ ← shift(G, x) for some x such that y+ x ∈ [U] for each y ∈ G: Creates the set
G′ = {y + x | y ∈ G}. G is removed from G while G′ is inserted.

Now, there is no guarantee that the sets in G remain disjoint. Iacono & Özkan [51]
write that their data structure can be extended to support the shift operation but do not
provide any details. We show how shifts are done in Appendix A.1 and thus we obtain
the following:

Theorem 4.5 There exists a data structure for the Mergeable Dictionary Problem sup-
porting any sequence of m split, shift and merge operations in worst-case O(m lgU) time
using O(n) space.

FAST LEMPEL-ZIV DECOMPRESSION IN LINEAR SPACE 47

4.3 LZ77 Induced Context

In this section we present the centerpiece of our algorithm. It builds on the fundamental
property of LZ77 compression that any substring of a phrase also occurs in the source of
that phrase. Our technique is to store a short substring, which we call context, around
the start and end of every phrase. The contexts are stored in a compressed form that
allows faster substring extraction than that of LZ77. We then take advantage of this
property when extracting a substring of S by splitting it into short chunks which in turn
are extracted by repeatedly mapping them to the source of the phrase they are part
of. Eventually, they will end up as a substrings of the contexts from where they can be
efficiently extracted.

The technique resembles what Farach & Thorup refer to as winding in [27]. We
show new applications of the technique and obtain better time complexity by using the
mergeable dictionaries by Iacono & Özkan [51] presented in Section 4.2.2.

In Section 4.3.1 we show how to obtain an LZ77 parse for the subsequence of S
that includes only the context of every phrase. This representation can then efficiently
be transformed into an SLP as shown in Section 4.3.2 using the online construction
algorithm by Charikar et al. [18] or Rytter [84].

Recall that we assume S is prefixed by the alphabet in the negative positions, that
S[0] = $, and that uk is the starting position in S of the kth phrase.

Definition 4.1 Let τ be a positive integer. The τ -context of a string S (induced by an
LZ77 representation Z of S) is the set of positions j where either j ≤ 0 or there is some
k such that uk − τ < j < uk + τ . If positions i through j are in the τ -context of S, then
we simply say “S[i, j] is in the τ -context of S”.

$

-σ ui ui+1 ui+2 ui+3 ui+4 …u1 …0 n

Figure 4.1: Example of the τ -context of a string. Dashed parts are truncated parts of the string not
shown by the figure, grey parts represent substrings in the τ -context and white parts
represent substrings not in the τ -context. The first substring in the negative positions
−σ through 0 is always in the τ -context. Recall that li is the length of the ith phrase.
In this example, li < τ, li+1 ≤ 2τ and li+2, li+3 > 2τ .

Definition 4.2 Let τ be a positive integer. The τ -context string of S, denoted Sτ , is
the subsequence of S that includes S[j] if and only if j is in the τ -context of S. We
denote with πτ (j) the unique position in Sτ where such a position j is mapped to (i.e.
Sτ [πτ (j)] = S[j]).

We show how to map positions from S to Sτ .

Lemma 4.1 Let Z be an LZ77 representation of a string S of length n with z phrases
and let τ be a positive integer. Given t = O(z) sorted positions, p1 ≤ . . . ≤ pt ∈ [n] in the
τ -context of S we can compute πτ (p1), . . . , πτ (pt) in O(z) time and space.

Proof Let gapk = max{0, lk − 2τ + 1} be the number of positions inside the k-th LZ77
phrase that are not in the τ -context of S.

Let i, k, L be three integers initialized as follows: i = 0, k = 1, and L = 0. We keep
the following two invariants:

(i) if i > 0, then k is the smallest integer such that pi < uk + lk, i.e. position pi is in
the k-th phrase, and

48 COMPRESSED AND EFFICIENT ALGORITHMS AND DATA STRUCTURES FOR STRINGS

(ii) L is the number of positions j < uk such that j is in the τ -context of S (i.e. L is
the length of the prefix of Sτ containing characters from S[1..uk − 1]).

It is clear that (i) and (ii) hold in the beginning of our procedure. We now show how to
iterate through the LZ77 phrases and compute the desired output in one pass.

Assume that we already computed πτ (p1), . . . , πτ (pi) (or none of them if i = 0). To
compute πτ (pi+1), we check whether uk ≤ pi+1 < uk+ lk, i.e. whether pi+1 is in the k-th
phrase. If not, we find the phrase containing pi+1 as follows. We set L← L+ lk − gapk,
k ← k + 1 and repeat until we find a value of k that satisfies uk ≤ pi+1 < uk + lk. It is
clear that, at each step, L is still the length of the prefix of Sτ containing characters from
S[1..uk − 1] (i.e. invariant (ii) is maintained).

Once such a k is found, we compute πτ (pi+1) simply adding L to the relative position
of pi+1 inside its phrase, and subtract gapk from this quantity if pi+1 is within τ characters
from the end of the phrase. More in detail, if pi+1 < uk + τ , then πτ (pi+1) ← L + 1 +
(pi+1 − uk). Otherwise, πτ (pi+1)← L+ 1 + (pi+1 − uk)− gapk. The correctness of this
computation is guaranteed by the way we defined L in property (ii).

Note that k is again the smallest integer such that pi+1 < uk + lk (invariant (i)), so
we can proceed with the same strategy to compute πτ (pi+2), . . . , πτ (pt).

Overall, the algorithm runs in O(z) time and space.

We use π as shorthand for πτ whenever τ is clear from context. The following
properties follow from the definitions and Lemma 4.1 but will come in handy later on:

Property 4.1 If a, a′ are positions in the τ -context of S and a < a′ then π(a) < π(a′).

Property 4.2 If S[a, b] is in the τ -context of S then Sτ [π(a), π(b)] = S[a, b]

We now consider the following problem: given a substring S[i, j] of length at most
τ , find a pair of integers (i′, j′) such that i′ ≤ i, S[i, j] = S[i′, j′] and S[i′, j′] is in the
τ -context of S.

We first give an informal overview of how the algorithm works. Recall that if a
substring of S is contained within a phrase in the LZ77 parse of S, then the substring
also occurs in the source of that phrase. The idea is to repeat this process of finding an
identical substring in the source until the found string is in the τ -context of S, which
happens after at most z steps. To do this efficiently for multiple strings, we use the
mergeable dictionary structure to maintain the relevant positions. This allows us to
process all strings inside a phrase simultaneously because they all need to be moved
to the same source. By processing the phrases in right-to-left order we can bound the
number of dictionary operations by the number of phrases.

The following algorithm gives the details of how to solve the problem for a set of z
substrings using O(z) space and O(z lg n) time.

Algorithm 4.1 Let Z be an LZ77 representation of a string S of length n with z phrases
and let τ be a positive integer. The input is t = O(z) substrings of S given as pairs of
integers denoting start and end position: (a1, b1), . . . , (at, bt) where bi − ai < τ for all
i ∈ [t]. Let G be a mergeable dictionary as given by Lemma 4.5. For each of the pairs
(ai, bi) create a singleton set Gi with element xi at position ai and finally merge all these
elements into a single set G. Each element xi has associated its rank i (i.e. its rank
among the input pairs) as satellite information.

We now consider the members of Z one by one in reverse order. Member (si, li) is
processed as follows:

1. If li ≤ τ skip to the next member.

2. Otherwise let

FAST LEMPEL-ZIV DECOMPRESSION IN LINEAR SPACE 49

a) (A,B)← split(G, ui + li − τ)

b) (A′, B′)← split(A, ui − 1),

c) B′′ ← shift(B′, si − ui)
d) G← merge(A′, B′′).

In step 1, we skip a phrase if it is no longer than τ because any string of length τ or
shorter starting in that phrase is already in the τ -context of S. In step 2a, we split the set
such that all strings that start in the last τ positions of the phrase are not shifted, because
these already are in the τ -context of S. In 2a-d we split the set to obtain the set of strings
B′′ that starts in the ith phrase excluding those starting in the last τ positions, as they
are already in the τ -context of S. These strings are then shifted to the source and will be
considered again in later iterations.

si ui
n

xj xj+1xj xj+1

G

A’

B’

B

B’’

A

Figure 4.2: Example of the dictionaries created during an iteration. The dashed parts of the string
are truncated parts not relevant to the example. The dotted triangles represent the
B-sets from earlier iterations. The grey parts show the τ -context of the string inside
the ith and i− 1th phrase. Note that the set B′′ is the set B′ after the shift operation.
As exemplified by the elements xj and xj+1, the relative order and position inside the
set is unaffected by the shift. Let p and p′ be the position of xj before and after the
shift, respectively. Observe also that S[p, p+ (bj − aj)− 1] = S[p′, p′ + (bj − aj)− 1],
so the shift does not affect the substring represented by xj . An iteration starts from
the set G, obtain A by cutting off B. The new G (not shown in the figure) is then
obtained by shifting all elements in the range of B′, which are all contained in the ith

phrase to the same relative position in the source of the phrase.

After processing all members, scan each set in G to retrieve all the elements. Let p(xi)
denote the new position in G of element xi. We then output the pairs (p(x1), e1), . . . , (p(xt), et)
in order of their rank i where ei = p(xi) + bi − ai.

Correctness Let p(xi) denote the position in G of element xi at any point of the
algorithm. We now show that for any element xi, we have S[ai, bi] = S[p(xi), ei] both
before and after considering the jth member of Z. Initially, p(xi) = ai so this is trivially
true before the first iteration.

Assume by induction that this is true before considering member j. If p(xi) >
uj + lj − τ or p(xi) < uj , then p(xi) will not be changed when considering member i.
Otherwise, uj ≤ p(xi) ≤ uj+ lj−τ , and thus S[p(xi), ei] is a substring of S[uj , uj+ lj−1]
which also occurs at the same relative position in S[sj , sj + lj − 1]. Now xi is shifted
such that p(xi)← p(xi)−uj + sj thereby maintaining the relative position inside the two

50 COMPRESSED AND EFFICIENT ALGORITHMS AND DATA STRUCTURES FOR STRINGS

identical strings and it follows that xi still represents S[ai, bi] after considering member
j and thus also before considering member j − 1.

We now show that, for any element xi, the string S[p(xi), ei] is in the τ -context of
S after considering the last member. Observe that when considering member j, every
element positioned in S[uj , uj + lj − τ] is shifted to a position less than uj , because
sj + lj ≤ uj by definition. As we are considering the members in reverse order, this
means that every element xi must end in a position such that either there is some k such
that uk + lk − τ < p(xi) < uk + lk or p(xi) < 0 which concludes the proof of correctness.

Complexity Creating the z singleton elements with positions in the range [n] and
merging them to G takes O(z lg n) time. For every member of Z we do O(1) dictionary
operations. All positions remain in the range [−σ;n] thus this also takes total time
O(z lg n). We can easily compute and store u1, . . . , uz in O(z) time and space. Outputting
the elements xi in order of their rank i takes linear time as the ranks are consecutive
integers thus the total time is O(z lg n). We never store more than the O(z) elements,
thus the total space is O(z).

This proves the following lemma:

Lemma 4.2 Let Z be an LZ77 representation of a string S of length n with z phrases
and let τ be a positive integer. Given t ∈ O(z) substrings of S as pairs of integers
(a1, b1), . . . , (at, bt) where bi − ai < τ we can find t pairs of integers (a′1, b

′
1), . . . , (a′t, b

′
t)

such that S[a′i, b
′
i] = S[ai, bi], a′i ≤ ai and S[a′i, b

′
i] is in the τ -context of S using O(z)

space and O(z lg n) time.

4.3.1 LZ77 Compressed Context

It is possible to obtain an LZ77 representation Zτ of the string Sτ directly from an LZ77
representation Z of S. Informally, the idea is to split every phrase of Z into two new
phrases consisting of respectively the first and last O(τ) characters of the phrase. In
order to find a source for these phrases, we use Algorithm 4.1 which finds an identical
string that also occurs in Sτ .

We now describe the algorithm sketched above that constructs an LZ77 representation
Zτ of Sτ given the LZ77 parse Z of S.

Algorithm 4.2 First we construct O(z) relevant pairs of integers representing substrings
of S by considering the members of Z one by one in order. Member (si, li) is processed
as follows:

1. If li ≤ τ : Let (ui, ui + li − 1) be a relevant pair.

2. If τ < li < 2τ : Let (ui, ui + τ − 1) and (ui + τ, ui + li − 1) be relevant pairs.

3. Otherwise li ≥ 2τ : Let (ui, ui + τ − 1) and (ui + li − τ + 1, ui + li − 1) be relevant
pairs.

Each of the relevant pairs represents a prefix or a suffix of a phrase. The concatenation
of these phrase prefixes and suffixes in left-to-right order is exactly the string Sτ . Let
(a, b) be a relevant pair created when considering the ith member of Z. Then we say that
(a′, b′) = (a−ui+si, b−ui+si) is the related source pair pair and clearly S[a, b] = S[a′, b′].

Note that the related source pairs might not be in the τ -context. We now use
Algorithm 4.1 to find a pair of integers (a′′, b′′) for each related source pair (a′, b′) such
that S[a′′, b′′] = S[a′, b′], a′′ ≤ a′ and S[a′′, b′′] is in the τ -context of S. We give the pairs
in order of creation and this order is preserved by Algorithm 4.1. If (a′′, b′′) is the ith

output of Algorithm 4.1 then (πτ (a′′), l) is the ith member of Zτ where l = b− a+ 1 and
πτ (a′′) is computed using Lemma 4.1.

FAST LEMPEL-ZIV DECOMPRESSION IN LINEAR SPACE 51

Correctness Let (a1, b1), . . . , (at, bt) be the relevant pairs in order of creation, (a′1, b
′
1) . . .

(a′t, b
′
t) be the related source pairs, (a′′1 , b

′′
1) . . . (a′′t , b

′′
t) be the output of Algorithm 4.1,

and let li = bi − ai + 1.
Our goal is to show that Zτ = (π(a′′1), l1), . . . , (π(a′′t), lt) is a valid LZ77 representation

of Sτ , that is: (i) the concatenation of the phrases of Zτ yields Sτ , (ii) phrases of Zτ are
equal to their sources, and (iii) phrases of Zτ do not overlap their sources. Note that Zτ
consists of at most 2z phrases

(i-ii) It follows directly from Definition 4.2 that the concatenation of the strings
represented by the relevant pairs in order of creation is S[a1, a1] · · ·S[at, bt] = Sτ .
Since S[ai, bi] = S[a′i, b

′
i] and, by Lemma 4.2, S[a′′i , b

′′
i] = S[a′i, b

′
i] then we also have

that Sτ = S[a′′1 , a
′′
1] · · ·S[a′′t , b

′′
t]. Now, observe that since S[ai, bi] and S[a′′i , b

′′
i] are

in the τ -context of S then by Property 4.2 we have S[ai, bi] = Sτ [π(ai), π(bi)] and
S[a′′i , b

′′
i] = Sτ [π(a′′i), π(b′′i)]. This proves properties (i) and (ii).

(iii) By definition of the LZ77 representation of S and since the substring represented
by the pair (ai, bi) is entirely contained in a phrase we must have a′i + li ≤ ai and
therefore, by Lemma 4.2, a′′i ≤ a′i. But this means that a′′i + li ≤ ai and therefore, by
Property 4.1, π(a′′i + li) ≤ π(ai), i.e. property (iii) holds.

Complexity For every member of Z we create at most two relevant substrings taking
total O(z) time and space. Applying Algorithm 4.1 takes time O(z lg n) and O(z) space.
We can easily compute and store u1, . . . , uz time and space and computing πτ (a′) for ev-
ery substring reported by Algorithm 4.1 takes total O(z) time and space using Lemma 4.1
thus the total time is O(z lg n) and the total space is O(z).

In summary, we have the following lemma:

Lemma 4.3 Let Z be an LZ77 representation of a string S of length n with z phrases.
We can construct an LZ77 representation Zτ of Sτ with O(z) phrases in O(z lg n) time
and O(z) space.

4.3.2 SLP and Word Compressed Context

In this section we consider how to store in compressed form a τ -context string of S.
Our first solution is to decompress the context string efficiently and store it using

word packing. First, we construct the LZ77 representation of Sτ using Algorithm 4.2
and decompress it naively. Constructing the representation takes time O(z lg n) while
decompressing it takes linear time in its length O(zτ). A string of length zτ can be stored
in O(zτ lg σ/ lg n) words using word packing. We obtain:

Lemma 4.4 Let S be a string S of length n from an alphabet of size σ compressed into
an LZ77 representation with z phrases, and let τ be a positive integer. We can construct
and store the τ -context of S in O(z(lg n+ τ)) time and O(zτ lg σ/ lg n) space.

As an alternative solution, we show how to store the context string as an SLP. First
we need the following theorem:

Theorem 4.6 (Charikar et al. [18], Rytter [84]) Let z be the number of phrases in the
LZ77 representation of a string S of length n. We can build a balanced SLP for Sτ with
height O(lg n) in O(z lg(n/z)) space and time.

At this point, we build the LZ77 representation of Sτ using Lemma 4.3 and then
convert it into an SLP using Theorem 4.6. Note that n′ = |Sτ | ≤ zτ and the SLP’s size is
O(z lg(n′/z)) = O(z lg(zτ/z)) = O(z lg τ). We obtain:

Corollary 4.1 Let S be a string of length n compressed into an LZ77 representation with
z phrases, and let τ be a positive integer. We can build a balanced SLP for Sτ with height
O(lg n) in O(z lg τ) time and space.

52 COMPRESSED AND EFFICIENT ALGORITHMS AND DATA STRUCTURES FOR STRINGS

4.4 LZ77 Decompression

We now describe how to apply the techniques described in the previous section to extract
arbitrary substrings of S.

We first show how to extract a substring of length l. Let S be a string of length n
compressed into an LZ77 representation with z phrases and let τ be a positive integer
that we will fix later.

Split the string into consecutive blocks of length τ and process a batch of z blocks at
a time in left-to-right order. There are O(1 + l/(τz)) batches each containing z blocks. A
batch is processed in O(z lg n) time using Lemma 4.2 thereby finding a substring s′ in
the τ -context of S for every block s in the batch.

Using Corollary 4.1 these z substrings can be extracted in O(z lg n+ zτ) time. Thus
the time to extract and output all batches is O(l + (1 + l

τz)z lg n) = O(l + l lgn
τ + z lg n)

while the time to construct the SLP is O(z lg τ). The total space is O(z lg τ). If we instead
use Lemma 4.4 the time is unchanged while the space becomes O(zτ lg σ/ lg n)

Generalizing to s substrings of total length l the procedure is similar. We split each
string into blocks of length τ (or less, if the string’s length is not a multiple of τ) and
process a batch of z such blocks at a time. In total, there are no more than O(s+ l/τ)
blocks of length at most τ . Now there are O(1+s/z+ l/(τz)) batches of O(z) blocks thus
the total time becomes O(l+ (s+ z) lg n+ l lgn

τ) using O(z lg τ) space with Corollary 4.1
which proves Theorem 4.2. Using Lemma 4.4 the time remains the same while the
space again becomes O(zτ lg σ/ lg n). Fixing τ = lg n/ lgδ σ for any constant 0 ≤ δ ≤ 1

the time is O
(
l + (s+ z) lg n+ l lgn

lgn/ lgδ σ

)
= O((s + z) lg n + l lgδ σ) while the space is

O(z lgn lg σ
lgδ σ lgn

) = O(z lg1−δ σ) which proves Theorem 4.1.
Theorems 4.1 and 4.2 give rise to the following two corollaries on the complexity of

decompressing the entire string S.

Corollary 4.2 For any parameter 0 ≤ δ ≤ 1, we can decompress S in O(n lgδ σ) time
using O(z lg1−δ σ) space.

Proof When decompressing the entire text, the number of substrings is s = 1 and
the total length is l = n. First, we compute n and σ with a simple scan of the LZ77
representation of S. If z lg n ≤ n lgδ σ, then we use Theorem 4.1. This solution runs in
time O(n lgδ σ + z lg n) = O(n lgδ σ) and uses O(z lg1−δ σ) space.

Otherwise z lg n > n lgδ σ, but then it must be the case that z lg1−δ σ = z lgn lg1−δ σ
lgn >

n lgδ σ lg1−δ σ
lgn = n lg σ

lgn (inequality follows from replacing z lg n with n lgδ σ). This means

that the entire string S can be packed in O(n lg σ
lgn) ⊆ O(z lg1−δ σ) words, so we can

decompress it naively in O(n) time and O(z lg1−δ σ) space.

Note that, in particular, Corollary 4.2 achieves O(n) time and O(z) space when σ is
constant. On large alphabets, we can further improve upon this result:

Corollary 4.3 We can decompress S in O(n) time using O(z lg lg n) space.

Proof We compute n and σ with a scan of the LZ77 representation of S. If z lg n ≤ n,
then we use Theorem 4.2 with τ = lg n. This solution runs in time O(n+ z lg n) = O(n)
and uses space O(z lg τ) = O(z lg lg n).

Otherwise z lg n > n. In this case, we simply build a grammar for S of size
O(z lg(n/z)) ⊆ O(z lg lg n) using [84]. The time to build the grammar is O(z lg(n/z)) ⊆
O(n). We use this grammar to stream the text in O(n) time.

Note that, when aiming at linear running time, Corollary 4.3 is at least as good as
Corollary 4.2 whenever σ ∈ Ω(lg n) (and asymptotically better for lg σ ∈ ω(lg lgn)).

FAST LEMPEL-ZIV DECOMPRESSION IN LINEAR SPACE 53

4.5 Applications in Pattern Matching

In this section we show how our techniques can be applied as a black box in combination
with existing pattern matching results.

Let S be a string of length n and let P be a pattern of length m. The classical pattern
matching problem is to report all starting positions of occurrences of P in S. In the
approximate pattern matching problem we are given an error threshold k in addition to P
and S. The goal is to find all starting positions of substrings of S that are within distance
k of P under some metric, e.g. edit distance where the distance is the number of edit
operations required to convert the substring to P . When considering the compressed
pattern matching problem, the string S is given in some compressed form. Sometimes,
we are only interested in whether or not P occurs in S.

Pattern matching on LZ77 compressed texts usually takes advantage of the property
that any substring of a phrase also occurs in the source of the phrase. This means
that if an occurrence of P is contained in single phrase, then there must also be an
occurrence in the source of that phrase. The implication is that the occurrences of P
can be split into two categories: the ones that overlap two or more phrases and the
ones that are contained inside a single phrase — usually referred to as primary and
secondary occurrences, respectively [55]. The secondary occurrences can be found from
the primary in O(z + occ) time and space [41] where z is the number of phrases in the
LZ77 representation of S and occ is the total number of occurrence of P in S.

Approximate pattern matching in small space Consider the $-padded m-context
string of S denoted S$m obtained by replacing each of the maximal substrings of S that
are not in the m-context by a single copy of the symbol $. This string has length O(zm).
Observe that all the primary occurrences of P in S are in this string, that any occurrence
of P in this string corresponds to a unique primary or secondary occurrence of P in S
and that we can map these occurrences to their position in S in O(occ + z lg z) time
and O(z) space using the same technique as Lemma 4.1 but by adding the gap lengths
instead of subtracting them.

We now prove Theorem 4.3. Let A be the (approximate) pattern matching algorithm
from the theorem using t(z, n,m, k) time and s(z, n,m, k) space. The idea is to run
algorithm A on an LZ77 representation of S$m to find all the primary occurrences.

Our algorithm works as follows. First create an LZ77 representation Z$m of S$m

using Algorithm 4.2. If two consecutive phrases of Z$m are both induced by the same
phrase of Z of length 2m or more we add a phrase between them representing only the
symbol $. This is easy to do as part of Algorithm 4.2 without changing its complexity and
the result is exactly an LZ77 representation of S$m with O(z) phrases. The pattern P
occurs in S if and only if it occurs in S$m. Thus we can run algorithm A on Z$m to detect
an (approximate) occurrence of P in S. Constructing Z$m takes O(z lg n) time and O(z)
space thus the total time becomes O(z lg n+t(z, zm,m, k)) time and O(z+s(z, zm,m, k))
space.

All primary occurrences are found by finding all occurrences of P in S$m, mapping
them to their positions in S and filtering out the secondary occurrences. Hereafter, all
the secondary occurrences can be found in O(z + occ) time and space [41]. Mapping
and filtering also takes O(occ + z) time and space. Thus, if algorithm A reports all
(approximate) occurrences of P in S in t(z, n,m, k) time and s(z, n,m, k) space we can
report all (approximate) occurrences of P in S in O(z lg n+ t(z, zm,m, k) + occ) time
and O(z + s(z, zm,m, k) + occ) space.

We now prove Theorem 4.4. Let A be the streaming algorithm from the theorem
that reports all (approximate) occurrences of P in a stream of length n using t(n,m, k)
time and s(n,m, k) space. The idea is to run algorithm A on the string S$m, which we
will stream in chunks to find all the primary occurrences. We use the same technique as

54 COMPRESSED AND EFFICIENT ALGORITHMS AND DATA STRUCTURES FOR STRINGS

above to first filter the primary occurrences and then find all the secondary occurrences
in O(z + occ) time and space.

We stream the string S$m consisting of O(z) substrings of total length O(zm). We
can easily compute when to output a $ during the substring extraction. Thus using
Theorems 4.1 or 4.2 we can stream S$m in either O(zm) time using O(z lg lg n) space or
O(zm lgδ σ + z lg n) time using O(z lg1−δ σ) space. The total time is then either:

• O(t(zm,m, k) + z lg n) time and O(s(zm,m, k) + z lg lg n+ occ) space or

• O(t(zm,m, k) + z lg n+ zm lgδ σ) time and O(s(zm,m, k) + z lg1−δ σ+ occ) space.

Compressed Existence Gawrychowski [44] shows how to decide if P occurs in S given
P and the LZ77 representation of S using O(z lg(n/z) +m) time and space. Applying
Theorem 4.3 we get the following:

Corollary 4.4 We can detect an occurrence of a pattern P of length m given the LZ77
representation of S in O(z lg n+m) time using O(z lgm+m) space.

Approximate Pattern Matching

By combining the Landau-Vishkin and Cole-Hariharan [22, 62] algorithms all approx-
imate occurrences with at most k errors on a stream of length n can be found in
O(min{nk, nk4/m + n}) time using O(m) space. Gagie et al. [41] shows how this
algorithm can be used to solve the same problem given an LZ77 representation of S
in O(z lg n+ z ·min{mk, k4 +m}+ occ) time and O(z lg n+m+ occ) space. Applying
Theorem 4.4 to the combined Landau-Vishkin and Cole-Hariharan algorithm we get the
following new trade-offs:

Corollary 4.5 We can report all approximate occurrences of a pattern P of length m
with k errors given the LZ77 representation with z phrases of a string S of length n in:

• O(z lg n+ z ·min{mk, k4 +m}+ occ) time using O(z lg lg n+m+ occ) space or

• O(z lg n+ z ·min{mk, k4 +m}+ zm lgδ σ+ occ) time using O(z lg1−δ σ+m+ occ)
space.

4.6 Conclusions

In this paper we described the first solution for decompressing Lempel-Ziv 77 in linear
time using a space proportional to the input’s size on constant alphabets. On general
alphabets, we presented a trade-off that allows getting either linear time or linear space.
Our solutions can, in general, decompress any subsequence of the text. Our work leaves
several open problems. First of all, our solutions for general alphabets cannot achieve
both linear time and space. We also note that our running times could be improved by
fully exploiting packed computation; while it is definitely possible to slightly improve
running times of Theorems 4.1 and 4.2 in this sense (at the price of a higher space
usage), the (opportunely adjusted) case analysis of Corollaries 4.2 and 4.3 would not
yield optimal packed extraction times. We therefore suspect that a different technique
is needed in order to achieve optimality. Finally, we did not a straight forward way
to generalize our results to self-referential LZ77. However, we do believe that this is
possible through a closer analysis of our application of the mergeable dictionary.

CHAPTER 5

COMPRESSED COMMUNICATION COMPLEXITY OF

LONGEST COMMON PREFIXES

Philip Bille∗ Mikko Berggreen Ettienne∗ Roberto Grossi† Inge Li Gørtz∗ Eva Rotenberg∗

∗ The Technical University of Denmark
† Università di Pisa, Italy

Abstract

We consider the communication complexity of fundamental longest common
prefix (LCP) problems. In the simplest version, two parties, Alice and Bob, each hold
a string, A and B, and we want to determine the length of their longest common
prefix ` = LCP(A,B) using as few rounds and bits of communication as possible. We
show that if the longest common prefix of A and B is compressible, then we can
significantly reduce the number of rounds compared to the optimal uncompressed
protocol, while achieving the same (or fewer) bits of communication. Namely, if
the longest common prefix has an LZ77 parse of z phrases, only O(lg z) rounds and
O(lg `) total communication is necessary. We extend the result to the natural case
when Bob holds a set of strings B1, . . . , Bk, and the goal is to find the length of the
maximal longest prefix shared by A and any of B1, . . . , Bk. Here, we give a protocol
with O(lg z) rounds and O(lg z lg k+lg `) total communication. We present our result
in the public-coin model of computation but by a standard technique our results
generalize to the private-coin model. Furthermore, if we view the input strings as
integers the problems are the greater-than problem and the predecessor problem.

5.1 Introduction

Communication complexity is a basic, useful model, introduced by Yao [90], which
quantifies the total number of bits of communication and rounds of communication
required between two or more players to compute a function, where each player holds
only part of the function’s input. A detailed description of the model can be found, for
example, in the book by Kushilevitz and Nisam [61].

Communication complexity is widely studied and has found application in many
areas, including problems such as equality, membership, greater-than, and predecessor
(see the recent book by Rao and Yehudayoff [83]). For the approximate string matching
problem, the paper by Starikovskaya [87] studies its deterministic one-way commu-
nication complexity, with application to streaming algorithms, and provides the first
sublinear-space algorithm. Apart from these results, little work seems to have been done
in general for the communication complexity of string problems [88].

55

56 COMPRESSED AND EFFICIENT ALGORITHMS AND DATA STRUCTURES FOR STRINGS

In this paper, we study the fundamental longest common prefix problem, denoted
LCP, where Alice and Bob each hold a string, A and B, and want to determine the
length of the longest common prefix of A and B, that is, the maximum ` ≥ 0, such
that A[1..`] = B[1..`] (where ` = 0 indicates the empty prefix). This problem is also
called the greater than problem, since if we view both A and B as integers, the position
immediately after their longest common prefix determines which is larger and smaller.
The complexity is measured using the number of rounds required and the total amount of
bits exchanged in the communication. An optimal randomized protocol for this problem
uses O(lg n) communication and O(lg n) rounds [76] where n is the length of the strings.
Other trade-offs between communication and rounds are also possible [86]. Buhrman et
al. [16] describe how to compute LCP in O(1) rounds and O(nε) communication.

We show that if A and B are compressible we can significantly reduce the number of
needed rounds while simultaneously matching the O(lg n) bound on the number of bits
of communication. With the classic and widely used Lempel-Ziv 77 (LZ77) compression
scheme [91] we obtain the following bound.

Theorem 5.1 The LCP problem has a randomized public-coin O(lg z)-round protocol
with O(lg `) communication complexity, where ` ≤ n is the length of the longest common
prefix of A and B and z ≤ ` is the number of phrases in the LZ77 parse of this prefix.

Compared to the optimal uncompressed bound we reduce the number of rounds
from O(lg n) to O(lg z) (where typically z is much smaller than n). At the same time
we achieve O(lg `) = O(lg n) communication complexity and thus match or improve the
O(lg n) uncompressed bound. Note that the number of rounds is both compressed and
output sensitive and the communication is output sensitive.

As far as we know, this is the first result studying the communication complexity
problems in LZ77 compressed strings. A previous result by Bar-Yossef et al. [5] gives
some impossibility results on compressing the text for (approximate) string matching in
the sketching model, where a sketching algorithm can be seen as a public-coin one-way
communication complexity protocol.

Here we exploit the fact that the common prefixes have the same parsing into phrases
up to a certain point, and that the “mismatching” phrase has a back pointer to the
portion of the text represented by the previous phrases: Alice and Bob can thus identify
the mismatching symbol inside that phrase without further communication (see the
“techniques” paragraph).

We extend the result stated in Theorem 5.1 so as to compute longest common prefixes
when Bob holds a set of k strings B1, . . . , Bk, and the goal is to compute the maximal
longest common prefix between A and any of the strings B1, . . . , Bk. This problem,
denoted LCPk, naturally captures the distributed scenario, where clients need to search
for query strings in a text database stored at a server. To efficiently handle many queries
we want to reduce both communication and rounds for each search. If we again view
the strings as integers this is the predecessor problem. We generalize Theorem 5.1 to this
scenario.

Theorem 5.2 The LCPk problem has a randomized public-coin O(lg z) round communi-
cation protocol with O(lg z lg k+ lg `) communication complexity, where ` is the maximal
common prefix between A and any one of B1, . . . , Bk, and z is the number of phrases in
the LZ77 parse of this prefix.

Compared to Theorem 5.1 we obtain the same number of rounds and only increase the
total communication by an additive O(lg z lg k) term. As z ≤ ` the total communication
increases by at most a factor lg k.

The mentioned results hold only for LZ77 parses without self-references (see Sec. 5.2).
We also show how to handle self-referential LZ77 parses and obtain the following bounds,
where we add either extra O(lg lg `) rounds or extra O(lg lg lg |A|) communication.

COMPRESSED COMMUNICATION COMPLEXITY OF LONGEST COMMON PREFIXES 57

Theorem 5.3 The LCP problem has a randomized public-coin protocol with

1. O(lg z + lg lg `) rounds and O(lg `) communication complexity,

2. O(lg z) rounds and O(lg `+ lg lg lg |A|) communication complexity

where ` is the length of the longest common prefix of A and B, and z is the number of
phrases in the self-referential LZ77 parse of this prefix.

Theorem 5.4 The LCPk problem has a randomized public-coin protocol with

1. O(lg z + lg lg `) rounds and O(lg z lg k + lg `) communication complexity,

2. O(lg z) rounds and O(lg z lg k + lg `+ lg lg lg |A|) communication complexity

where ` is the length of the maximal common prefix betweenA and any one ofB1, . . . , Bk,
and z is the number of phrases in the self-referential LZ77 parse of this prefix.

Turning again to LZ77 parses without self-references we also show the following
trade-offs between rounds and communication.

Theorem 5.5 For any constant ε > 0 the LCP problem has a randomized public-coin
protocol with

1. O(1) rounds and O(zεA) total communication where zA is the number of phrases in
the LZ77 parse of A,

2. O(lg lg `) rounds and O(zε) total communication where z is the number of phrases
in the LZ77 parse of the longest common prefix between A and B.

We note that all the given bounds are in expectation. Using the standard transforma-
tion technique by Newman [75] all of the above results can be converted into private-coin
results for bounded length strings: If the sum of the lengths of the strings is ≤ n, then,
Newman’s construction adds an O(lg n) term in communication complexity, and only
gives rise to 1 additional round.

Techniques

Our results rely on the following key idea. First, we want to perform an exponential
search followed by a binary search over the LZ77-parses of the strings, to find the
first phrase where Alice and Bob disagree. Then, the longest common prefix must end
somewhere in the next phrase (see Figure 5.1). So Alice needs only to send the offset
and length of her next phrase, and Bob can determine the longest common prefix with
his string or strings (as proven in Lemma 5.6).

A

B

1 `

Figure 5.1: If the longest common prefix L of A and B has z phrases, then the first z − 1 phrases
of A, B, and L are identical.

To implement the idea efficiently, we use standard techniques that allow Alice and Bob
to check if a specific prefix of their strings match using O(1) communication, with only
constant probability of error (we call this the EQUALITY problem). Similarly, if Bob holds
k strings, they can check whether any of the k strings matches Alice’s string with only
O(lg k) communication, with constant error probability (we call this the MEMBERSHIP

problem). This leads to the following O(lg z) round communication protocol.

58 COMPRESSED AND EFFICIENT ALGORITHMS AND DATA STRUCTURES FOR STRINGS

1. Alice and Bob do an exponential search, comparing the first, two first, four first, etc,
phrases of their strings using EQUALITY or MEMBERSHIP, until they find a mismatch.

2. Alice and Bob do a binary search on the last interval of phrases from Step 1, again,
using EQUALITY or MEMBERSHIP, until they find their longest common prefix up to
a phrase border.

3. Alice sends the offset and length of her next phrase, and Bob uses this to determine
the longest common prefix.

To efficiently cope with errors in each step (which can potentially accumulate), we
show how to extend techniques for noisy binary search [28] to an exponential search.
Our new noisy exponential search only increases the number of rounds by a constant
factor.

Paper outline

In Section 5.2, we review protocols for EQUALITY and MEMBERSHIP. Section 5.2 also
contains a formal definition of the LZ77-parse of a string. In Section 5.3, we recall
efficient techniques to handle errors using noisy binary search, and extend them to
exponential search. In Section 5.4 we go on to prove Theorem 5.1 and Theorem 5.2. In
Section 5.5, we show how to extend our results to self-referencing LZ77 (Theorems 5.3
and 5.4). Finally, in Section 5.6, we give the constant-round and near-constant round
protocols promised in Theorem 5.5.

5.2 Definition and Preliminaries

A string S of length n = |S| is a sequence of n symbols S[1] · · ·S[n] drawn from an
alphabet Σ. The sequence S[i, j] is the substring of S given by S[i] · · ·S[j] and, if i = 1,
this substring is a prefix of S. Strings can be concatenated, i.e. S = S[1, k]S[k + 1, n].
Let LCP(A,B) denote the length of the longest common prefix between strings A and B.
Also, denote by [u] the set of integers {1, 2, . . . , u}.

Communication Complexity Primitives

We consider the public-coin and private-coin randomized communication complexity
models. In the public-coin model the parties share an infinite string of independent
unbiased coin tosses and the parties are otherwise deterministic. The requirement is
that for every pair of inputs the output is correct with probability at least 1− ε for some
specified 1/2 > ε > 0, where the probability is on the shared random string. We note
that any constant probability of success can be amplified to an arbitrarily small constant
at the cost of a constant factor overhead in communication. In the private-coin model,
the parties do not share a random string, but are instead allowed to be randomized using
private randomness. Newman [75] showed that any result in the public-coin model can
be transformed into private-coin model result at the cost of an additive O(lg lg T) bits of
communication, where T is the number of different inputs to the players. In our results
this leads to an O(lg n) additive overhead, if we restrict our input to bounded length
strings where the sum of the lengths of the strings is ≤ n.

In the MEMBERSHIP problem, Alice holds a string A of length |A| ≤ n, and Bob holds
a set B of k strings. The goal is to determine whether A ∈ B (we assume that n and k
are known to both parties) [83].

Lemma 5.1 The MEMBERSHIP problem has a public-coin randomized 1-round communi-
cation protocol with m communication complexity and error probability k2−m, for any
integer m > 0.

COMPRESSED COMMUNICATION COMPLEXITY OF LONGEST COMMON PREFIXES 59

Proof sketch. Let F : {0, 1}n → {0, 1}m be a random linear function over GF (2) where
the coefficients of F are read from the shared random source (public coin). Alice applies
F to A and sends the resulting m bits to Bob, i.e., she computes the product between a
random m× n matrix and her string as a vector. Bob applies the same function to each
of his strings, i.e., he computes the product between the same random matrix and each
of his strings. If one of these products is the same as the one he received from Alice
he sends a “1” to Alice indicating a match. This protocol has no false-negatives and by
union bound the probability of a false-positive is at most k2−m. For further details see
e.g. [16,69].

In the EQUALITY problem, Alice holds a string A of size |A| ≤ n, and Bob holds a
string B. The goal is to determine whether A = B (we assume that n is known to both
parties). Lemma 5.1 implies the following corollary.

Corollary 5.1 The EQUALITY problem has a public-coin randomized 1-round communi-
cation protocol with m communication complexity and error probability 2−m, for any
integer m > 0.

Lempel-Ziv Compression

The LZ77 parse [91] of a string S of length n divides S into z substrings f1f2 . . . fz,
called phrases, in a greedy left-to-right order. The ith phrase fi starting at position ui
is the longest substring having at least one occurrence starting to the left of ui plus
the following symbol. To compress S, we represent each phrase as a tuple (si, li, αi) ∈
([n] × [n] × Σ), such that si is the position of the previous occurrence, li is the length
of the previous occurrence, and αi is the symbol at position ui + li. It follows that
s1 = l1 = 0, u1 = 1, α1 = S[1] and we define ei = ui + li for i ∈ z . That is, the ith

phrase of S ends at position ei. We call the positions e1, . . . , ez the borders of S and the
substring S[si, si + li − 1] is the source of the ith phrase fi = S[ui, ui + li].

When a phrase is allowed to overlap with its source, the parse is self-referential. A
more restricted version does not allow self-references and thus requires that si + li ≤ ui
for i ∈ [z]. We consider LZ77 parse without self-references unless explicitly stated. An
LZ77 parse of S can be found greedily in O(n lg |Σ|) time from the suffix tree of S. It
is easy to see that z = Ω(lg n) if self-references are not allowed, while z = Ω(1) for
self-referential parses.

5.3 Noisy Search

The noisy binary search problem is to find an element xt among a sequence of elements
x1, . . . , xn where xi ≤ xi+1 using only comparisons in a binary search. Each comparison
may fail with a constant probability less than 1/2 and faults are independent.

Lemma 5.2 (Feige et al. [28, Theorem 3.2]) For every constantQ < 1/2, we can solve
the noisy binary search problem on n elements with probability at least 1 − Q in
O(lg(n/Q)) steps.

We now show how to generalize the algorithm by Feige et al. to solve the noisy exponential
search problem. That is, given a sequence x1, x2, . . . where xi ≤ xi+1 and an element x`
find an element xr such that ` ≤ r ≤ 2` using exponential search.

Lemma 5.3 For every constant Q < 1/2, we can solve the noisy exponential search
problem searching for x` with probability at least 1−Q in O(lg(`/Q)) steps.

60 COMPRESSED AND EFFICIENT ALGORITHMS AND DATA STRUCTURES FOR STRINGS

. . .
.

.

Figure 5.2: In the proof of Lemma 5.3, the decision tree for exponential search (left) is transformed
to a fault-tolerant decision tree (right).

Proof In case of no errors we can find xr on O(lg `) steps comparing x` and xi for
i = 1, 2, 4, 8 . . . until xi ≥ x`. At this point we have ` ≤ i ≤ 2`.

Consider the decision tree given by this algorithm. (See Figure 5.2). This tree is
simply a path v0, v1, v2, . . . and when reaching vertex vi the algorithm compares elements
x` and x2i . In order to handle failing comparisons we transform this tree by adding a path
with length li (to be specified later) as a child of vertex vi. Denote such a path with pi.
The search now performs a walk in this tree starting in the root and progresses as follows:
Reaching vertex vi we first check if x` ≥ x2i−1 (i.e. repeat the previous comparison). If
not, this reveals an earlier faulty comparison and we backtrack by moving to the parent.
Otherwise, we check if x` ≥ x2i . If so we move to vertex vi+1. Otherwise, we move to
the first vertex on the path pi. Reaching a vertex u on a path pi we test if x` ≥ x2i−1

and if x` < x2i . If both tests are positive, we move to the only child of u. Otherwise,
this reveals an earlier faulty comparison and we backtrack by moving to the parent of u.
When reaching a leaf on path pi we terminate and report the element corresponding to
vi.

The search can be modeled as a Markov process. Assume that dlg `e = j and thus
j = O(lg `) and direct all edges towards the leaf u on the path pj . For every vertex v 6= u,
exactly one adjacent edge is directed away from v and the remaining edges are directed
towards v. Without loss of generality we can assume that the transition probability along
an outgoing edge of a vertex is greater than 1/2 and the transition probability along the
remaining edges is less than 1/2 (this probability can be achieved by taking the majority
of O(1) comparisons). Let b be the number of backward transitions and f the number
of forward transitions. We need to show that f − b ≥ j + lj with probability at least
1 − Q for Q < 1/2 implying that the search terminates in the leaf u. Setting li = ic1
this follows after c2(lg(2j/Q)) = O(lg(`/Q)) rounds from Chernoff’s bound [19] with
suitable chosen constants c1 and c2.

5.4 Communication Protocol for LCP

We now present our protocol for the LCP problem without self-references. We consider
the case with self-references in the next section. First, we give an efficient uncompressed
output sensitive protocol that works for an arbitrary alphabet (Lemma 5.4). Secondly,
we show how to encode LZ77 strings as strings from a small alphabet (Lemma 5.5)
which allows us to efficiently determine the first phrase where Alice and Bob disagree.
Thirdly, we show that given this phrase Alice and Bob can directly solve LCP (Lemma 5.6).
Combining these results leads to Theorem 5.1. Finally, we generalize the results to the
LCPk case.

First we show how to solve the LCP problem with output-sensitive complexity for
both the number of rounds and the amount of bits of communication.

COMPRESSED COMMUNICATION COMPLEXITY OF LONGEST COMMON PREFIXES 61

Lemma 5.4 Let A and B be strings over an alphabet Σ known to the parties. The
LCP problem has a public-coin randomized O(lg `)-round communication protocol with
O(lg `) communication complexity, where ` is the length of the longest common prefix
between A and B.

Proof Alice and Bob compare prefixes of exponentially increasing length using equality,
and stop after the first mismatch. Let t be the length of the prefixes that do not match
and observe that t ≤ 2`. They now do a binary search on the interval [0, t], using equality
to decide if the left or right end of the interval should be updated to the midpoint in
each iteration. The parties use Corollary 5.1 with m = 2, and new random bits from the
shared random source for every equality check. Thus, the probability of a false-positive
is at most 1/4, and the faults are independent. Using Lemma 5.3 and Lemma 5.2 we get
that we can solve the problem in O(lg(`/Q)) rounds of communication with probability
at least 1−Q for any constant Q < 1/2.

Note that the size of the alphabet Σ does not affect the complexity of this protocol.
Alice and Bob do however need to agree on how many bits to use per symbol in order to
use the same number of random bits for the equality checks. Because Σ is known to the
parties, they sort the alphabet and use lg |Σ| bits per symbol.

We move on to consider how to handle LZ77 compressed strings. Recall that the ith

phrase in the LZ77 parse of a string S is represented as a tuple (si, li, αi) consisting of
the source si, the length li of the source, and a symbol αi ∈ Σ. Observe that the LZ77
parse can be seen as a string where each tuple describing a phrase corresponds to a
symbol in this string. Because we consider LZ77 without self-references a phrase is never
longer than the sum of the lengths of the previous phrases and we can thus bound the
number of bits required to write a phrase.

Lemma 5.5 Let Zi = (s1, l1, α1), . . . , (si, li, αi) be the first i elements in the LZ77 parse
of a string S. Then, si and li can be written in binary with i bits.

Proof Recall that ej is the position in S of the last symbol in the jth phrase. Since we
have no self-references si and li are both no larger than ei−1 they can be written with
lg ei−1 bits. By definition uj = ej−1+1. Therefore, ej = uj+lj = ej−1+1+lj ≤ 2ej−1+1,
and it follows that ei−1 ≤ 2ei−2 + 1 ≤ · · · ≤ 2i − 1 since e1 = 1.

We show that ` = LCP(A,B) can be determined from LCP(ZA, ZB) with only one
round and O(lg `) communication, where ZA and ZB are the respective LZ77 parses of
A and B.

While a LZ77 parse of a string is not necessarily unique, in this case, we can assume
that the parties as part of the protocol agree deterministically upon their same decisions
on LZ77-compression algorithm (e.g. taking always the leftmost source when there are
multiple possibilities). This ensures that we obtain the same parsing for equal strings,
independently and without any communication.

Lemma 5.6 Let A and B be strings and let ZA and ZB be their respective LZ77 parses.
If Alice knows A and Bob knows B and the length of the longest common prefix
LCP(ZA, ZB), then they can determine the length ` = LCP(A,B) of the longest common
prefix of A and B in O(1) rounds and O(lg `) communication.

Proof First, ZA and ZB themselves can be seen as strings over the special alphabet
Σ′ ≡ ([n] × [n] × Σ) of tuples. Letting z = LCP(ZA, ZB), these LZ77 parses of A and
B are identical up until but no longer than their zth tuple. Now, let ` = LCP(A,B).
Let ai and bi denote the ith phrase border in the LZ77 parse of A and B respectively.
Observe that A[1, az] = B[1, bz] but A[1, az+1] 6= B[1, bz+1] because of how we choose

62 COMPRESSED AND EFFICIENT ALGORITHMS AND DATA STRUCTURES FOR STRINGS

z and, thus, az = bz ≤ ` < az+1, bz+1. Let sz+1, lz+1 be the source and length of the
(z+ 1)th phrase in ZA. Alice sends sz+1, lz+1 to Bob in one round with O(lg az) = O(lg `)
bits of communication since sz+1, lz+1 ≤ az. At this point, it is crucial to observe that
Bob can recover A[1, az+1] by definition of LZ77 parsing: he deduces that A[1, az+1] =
B[1, bz]B[sz+1, sz+1 + lz+1], from which he can compute LCP(A[1, az+1], B[1, bz+1]) =
LCP(A,B).

We can now combine Lemmas 5.4, 5.5, and 5.6 to prove Theorem 5.1. Alice and Bob
construct the LZ77 parse of their respective strings and interpret the parse as a string.
Denote these strings by ZA and ZB . They first use Lemma 5.4 to determine LCP(ZA, ZB),
where the parties decide to use 2i + lg |Σ| random bits for the equality check of the
ith symbols (from Σ′), which suffices by Lemma 5.5. Then they apply Lemma 5.6 to
determine LCP(A,B). In conclusion this proves Theorem 5.1.

5.4.1 The LCPk case

In this section we generalize the result on LCP to the case where Bob holds multiple
strings. Here, Alice knows a string A and Bob knows strings B1, . . . , Bk, where all strings
are drawn from an alphabet Σ known to the parties.

The main idea is to substitute the equality-tests by membership queries. We first
generalize Lemma 5.4 to the LCPk-case.

Lemma 5.7 The LCPk-problem has a randomized public-coin O(lg `)-round communica-
tion protocol with O(lg ` lg k) communication complexity, where ` is the length of the
maximal longest common prefix between A and any Bi.

Proof Along the same lines as the proof of Lemma 5.4, Alice and Bob perform membership-
queries on exponentially increasing prefixes, and then, perform membership-queries
to guide a binary search. They use Lemma 5.1 with m = 2 lg k, and exploit shared
randomness as in the previous case. Again, the probability of a false positive is ≤ 1/4,
and the faults are independent. Thus Lemma 5.3 and Lemma 5.2 gives us an O(lg `/Q)
round communication protocol with total error probability 1−Q for any constant choice
of Q < 1/2.

Since there are O(lg `) rounds in which we spend O(lg k) communication, the total
communication becomes O(lg ` lg k).

We go on to show that the maximal LCP(A,Bi) can be determined from solving LCPk

on ZA and {ZB1
, . . . , ZBk} with only one additional round and O(lg n) communication.

Lemma 5.8 Let ZA, ZB1
, . . . , ZBk be the LZ77 parses of the strings A,B1, . . . , Bk. If

Alice knows A, and Bob knows B1, . . . , Bk and the length of the maximal longest
common prefix between ZA and any ZBi , they can find maxi LCP(A,Bi) in O(1) rounds
and O(lg n) communication.

Proof In this case, Bob holds a set, B′, of at least one string that matches Alice’s first z
phrases, and no strings that match Alice’s first z + 1 phrases. Thus, if Alice sends the
offset and length of her next phrase, he may determine LCP(A,Bi) for all strings Bi ∈ B′.
Since the maximal LCP among Bi ∈ B′ is indeed the maximal over all Bi ∈ B, we are
done.

Combining Lemma 5.7 and Lemma 5.8 we get Theorem 5.2.

COMPRESSED COMMUNICATION COMPLEXITY OF LONGEST COMMON PREFIXES 63

5.5 Self-referencing LZ77

We now consider how to handle LZ77 parses with self-references. The main hurdle is
that Lemma 5.5 does not apply in this case as there is no bound on the phrase length
except the length of the string. This becomes a problem when the parties need to agree
on the number of bits to use per symbol when computing LCP of ZA and ZB, but also
when Alice needs to send Bob the source and length of a phrase in order for him to
decide LCP(A,B).

First we show how Alice and Bob can find a bound on the number of random bits to
use per symbol when computing LCP(ZA, ZB).

Lemma 5.9 Bob and Alice can find an upper bound `′ on the length ` of the longest
common prefix between A and B where

1. `′ ≤ `2 using O(lg lg `) rounds and O(lg lg `) total communication,

2. `′ ≤ |A|2 using O(1) rounds and O(lg lg lg |A|) total communication.

Proof Part (1): Alice and Bob do a double exponential search for ` and find a number
` ≤ `′ ≤ `2 using equality checks on prefixes of their uncompressed strings in O(lg lg `)
rounds. Again, at the cost of only a constant factor, we apply Lemma 5.3 to deal with the
probability of false positives.

Part (2): Alice sends the minimal i such that |A| ≤ 22
i

thus i = dlg lg |A|e can be
written in O(lg lg lg |A|) bits. Alice and Bob can now use n = 22

i

as an upper bound for
`, since ` ≤ |A| ≤ 22

i

< |A|2.

Assume that Alice and Bob find a bound `′ using one of those techniques, then they
can safely truncate their strings to length `′. Now they know that every symbol in ZA
and ZB can be written with O(lg `′ + lg |Σ|) bits, and thus, they agree on the number of
random bits to use per symbol when doing equality (membership) tests. Using Lemma 5.4
they can now find the length of the longest common prefix between ZA and ZB in O(lg `)
rounds with O(lg `) communication.

We now show how to generalize Lemma 5.6 to the case of self-referential parses.

Lemma 5.10 Let A and B be strings and let ZA and ZB be their respective self-
referential LZ77 parses. If Alice knows A and Bob knows B and the length of the
longest common prefix between ZA and ZB , then they can determine the length ` of the
longest common prefix of A and B in

1. O(1 + lg lg `) rounds and O(lg `) communication,

2. O(1) rounds and O(lg `+ lg lg lg |A|) communication.

Proof Let si, ei and li be the respective source, border and length of the ith phrase in
ZA. The proof is the same as in Lemma 5.6 except that the length lz+1 of the (z + 1)th

phrase in ZA that Alice sends to Bob is no longer bounded by `.
There are two cases. If lz+1 ≤ 2ez, then lz+1 ≤ 2`, and Alice can send lz+1 to Bob in

one round and O(lg `) bits and we are done.
If lz+1 > 2ez then the source of the (z + 1)th phrase must overlap with the phrase

itself and thus the phrase is periodic with period length at most ez and has at least 2
full repetitions of its period. Alice sends the starting position of the source of the phrase
si+1 along with a message indicating that we are in this case to Bob in O(lg `) bits. Now
Bob can check if they agree on next 2ez symbols. If this is not the case, he has also
determined LCP(A,B) and we are done. Otherwise, they agree on the next 2ez symbols
and therefore the (z+ 1)th phrase in the parse of both A and B is periodic and they have

64 COMPRESSED AND EFFICIENT ALGORITHMS AND DATA STRUCTURES FOR STRINGS

the same period. What remains is to determine which phrase that is shorter. Let la and lb
denote the lengths of respectively Alice’s and Bob’s next phrase. Then (1) follows from
Alice and Bob first computing a number `′ ≤ `2 using a double exponential search and
equality checks in O(lg lg `) rounds and total communication. Clearly either la or lb must
be shorter than `′ and the party with the shortest phrase sends its length to the other
party in O(lg `) bits and both can then determine LCP(A,B). To get the result in (2)
Alice sends the smallest integer i such that la ≤ 22

i

in a single round and O(lg lg lg |A|)
bits of communication. Bob then observes that if lb ≤ 22

i−1

, then lb = ` and he sends `
to Alice using O(lg `) bits. If lb > 22

i

then la = ` and he informs Alice to send him la in
O(lg `) bits. Finally, if 22

i−1 < lb and la ≤ 22
i ≤ `2 he sends lb to Alice using O(lg `) bits.

Theorem 5.3 now follows from Lemmas 5.4, 5.9, and 5.10.

5.5.1 LCPk in the self-referential case.

Finally, we may generalize Theorem 5.2 to the self-referential case. Substituting equality
with membership, we may directly translate Lemma 5.9:

Lemma 5.11 Bob and Alice can find an upper bound on the length `′ of the maximal
longest common prefix between A and B1, . . . , Bk where

1. `′ ≤ `2 using O(lg lg `) rounds and O(lg lg ` lg k) total communication,

2. `′ ≤ |A|2 using O(1) round and O(lg lg lg |A|) total communication.

Using the lemma above, we can generalize Corollary 5.10 to the LCPk-case.

Lemma 5.12 Let A and B1, . . . , Bk be strings, and let ZA and ZBi be their respective
self-referential LZ77 parses. If Alice knows A and Bob knows B1, . . . , Bk and Bob knows
the length of the maximal longest common prefix between ZA and any ZBi , then they
can determine ` in

1. O(1 + lg lg `) rounds and O(lg ` lg k) communication,

2. O(1) rounds and O(lg ` lg k + lg lg lg |A|) communication.

Proof tweak. Alice and Bob have already found a common prefix of size ez – question is
whether a longer common prefix exists. As before, if Alice’s next phrase is shorter than
2ez, she may send it. Otherwise, she sends the offset, and indicates we are in this case.
Now, Bob can check if any of his strings agree with Alice’s on the next 2ez symbols. If
none do, we are done. If several do, he forgets all but the one with the longest (z + 1)st

phrase, and continue as in the proof of Corollary 5.10.
Theorem 5.4 now follows from the combination of Lemmas 5.11 and 5.12.

5.6 Obtaining a Trade-Off via D-ary Search.

We show that the technique of Buhrman et al. [16], to compute LCP of two strings of
length n in O(1) rounds and O(nε) communication, can be used to obtain a compressed
communication complexity. Note that we again consider LZ77 compression without
self-references. We first show the following generalization of Lemma 5.4.

Lemma 5.13 Let A and B be strings over an alphabet Σ known to the parties. The LCP

problem has a public-coin randomized communication protocol with

1. O(1) rounds and O(|A|ε) communication

COMPRESSED COMMUNICATION COMPLEXITY OF LONGEST COMMON PREFIXES 65

2. O(lg lg `) rounds and O(`ε) communication

where ` is the length of the longest common prefix between A and B, and ε > 0 is any
arbitrarily small constant.

Proof Assume the parties agree on some parameter C and have previous knowledge
of some constant ε′ with 0 < ε′ < ε (i.e. ε′ and ε are plugged into their protocol).
They perform a D-ary search in the interval [−1, C] with D = Cε′ . In each round, they
split the feasible interval into D chunks, and perform equality tests from Corollary 5.1
with m = 2 lg(D/ε′) on the corresponding prefixes. The feasible interval is updated
to be the leftmost chunk where the test fails. There are lgD C = 1/ε′ = O(1) rounds.
The communication per round is 2D lg(D/ε′) and the total communication is 1/ε′ ·
2D lg(D/ε′) = O(Cε′ lgC). The probability of a false positive for the equality test is
2−m, and thus, by a union bound over D comparisons in each round and 1/ε′ rounds,
the combined probability of failure becomes 1/4.

1. Alice sends |A| to Bob in lg |A| = O(|A|ε) bits and they use C = |A|. The total
communication is then O(Cε′ lgC) = O(|A|ε) with O(1) rounds.

2. Alice and Bob use Lemma 5.9 to find an `′ such that ` ≤ `′ ≤ `2 in O(lg lg `) rounds
and communication. They run the D-ary search protocol where ε′ < ε/4, setting
C = `′. The extra communication is O(Cε′ lgC) = O(`ε).

We can now combine Lemmas 5.13, 5.5, and 5.6 to prove Theorem 5.5. Alice and Bob
construct the LZ77 parse of their respective strings and interpret the parses as strings,
denoted by ZA and ZB . They first use Lemma 5.13 to determine LCP(ZA, ZB), and then
Lemma 5.6 to determine LCP(A,B). The parties use 2i+ lg |Σ| random bits for the ith

symbol, which suffices by Lemma 5.5. This enables them to apply Lemma 5.13 to ZA
and ZB . In conclusion this proves Theorem 5.5.

We note without proof that this trade-off also generalizes to self-referential parses
by paying an additive extra O(lg lg lg |A|) in communication for Theorem 5.5 (1) and an
additive O(lg `) communication cost for Theorem 5.5 (2). The same goes for LCPk where
the communication increases by a factor O(lg k) simply by increasing m by a factor lg k
and using the techniques already described.

CHAPTER 6

FAST DYNAMIC ARRAYS

Philip Bille Anders Roy Christiansen Mikko Berggreen Ettienne Inge Li Gørtz

The Technical University of Denmark

Abstract

We present a highly optimized implementation of tiered vectors, a data structure
for maintaining a sequence of n elements supporting access in time O(1) and insertion
and deletion in timeO(nε) for ε > 0 while using o(n) extra space. We consider several
different implementation optimizations in C++ and compare their performance to
that of vector and multiset from the standard library on sequences with up to 108

elements. Our fastest implementation uses much less space than multiset while
providing speedups of 40× for access operations compared to multiset and speedups
of 10.000× compared to vector for insertion and deletion operations while being
competitive with both data structures for all other operations.

6.1 Introduction

We present a highly optimized implementation of a data structure solving the dynamic ar-
ray problem, that is, maintain a sequence of elements subject to the following operations:

access(i): return the ith element in the sequence.

access(i,m): return the ith through (i+m− 1)th elements in the sequence.

insert(i, x): insert element x immediately after the ith element.

delete(i): remove the ith element from the sequence.

update(i, x): exchange the ith element with x.

This is a fundamental and well studied data structure problem [15, 25, 35, 36, 46, 57,
58,82] solved by textbook data structures like arrays and binary trees. Many dynamic
trees provide all the operations in O(lg n) time including 2-3-4 trees, AVL trees, splay
trees, etc. and Dietz [25] gives a data structure that matches the lower bound of
Ω(lg n/ lg lg n) showed by Fredman and Saks [36]. The lower bound only holds when
identical complexities are required for all operations. In this paper we focus on the
variation where access must run in O(1) time. Goodrich and Kloss present what they
call tiered vectors [46] with a time complexity of O(1) for access and update and O(n1/l)
for insert and delete for any constant integer l ≥ 2, using ideas similar to Frederickson’s

67

68 COMPRESSED AND EFFICIENT ALGORITHMS AND DATA STRUCTURES FOR STRINGS

in [35]. The data structure uses only o(n) extra space beyond that required to store
the actual elements. At the core, the data structure is a tree with out degree n1/l and
constant height l − 1.

Goodrich and Kloss compare the performance of an implementation with l = 2 to
that of vector from the standard library of Java and show that the structure is competitive
for access operations while being significantly faster for insertions and deletions. Tiered
vectors provide a performance trade-off between standard arrays and balanced binary
trees for the dynamic array problem.

Our Contribution In this paper, we present what we believe is the first implementation
of tiered vectors that supports more than 2 tiers. Our C++ implementation supports
access and update in times that are competitive with the vector data structure from C++’s
standard library while insert and delete run more than 10.000× faster. It performs access
and update more than 40× faster than the multiset data structure from the standard
library while insert and delete is only a few percent slower. Furthermore multiset uses
more than 10× more space than our implementation. All of this when working on large
sequences of 108 32-bit integers.

To obtain these results, we significantly decrease the number of memory probes per
operation compared to the original tiered vector. Our best variant requires only half
as many memory probes as the original tiered vector for access and update operations
which is critical for the practical performance. Our implementation is cache efficient
which makes all operations run fast in practice even on tiered vectors with several tiers.

We experimentally compare the different variants of tiered vectors. Besides the
comparison to the two commonly used C++ data structures, vector and multiset, we
compare the different variants of tiered vectors to find the best one. We show that
the number of tiers have a significant impact on the performance which underlines the
importance of tiered vectors supporting more than 2 tiers.

Our implementations are parameterized and thus support any number of tiers ≥ 2.
We use techniques like template recursion to keep the code rather simple while enabling
the compiler to generate highly optimized code.

The source code can be found at https://github.com/mettienne/tiered-vector.

6.2 Preliminaries

The first and ith element of a sequenceA are denotedA[0] andA[i−1] respectively and the
ith through jth elements are denoted A[i− 1, j− 1]. Let A1 ·A2 denote the concatenation
of the sequences A1 and A2. |A| denotes the number of elements in the sequence A. A
circular shift of a sequence A by x is the sequence A[|A| − x, |A| − 1] ·A[0, |A| − x− 1].
Define the remainder of division of a by b as a mod b = a − qb where q is the largest
integer such that q ·b ≤ a. Define A[i, j] mod w for some integer w to be the elements A[i
mod w], A[(i + 1) mod w], . . . , A[j mod w], i.e. A[4, 7] mod 5 = A[4], A[0], A[1], A[2].
Let bxc denote the largest integer smaller than x.

6.3 Tiered Vectors

In this section we will describe how the tiered vector data structure from [46] works.

Data Structure An l-tiered vector can be seen as a tree T with root r, fixed height l− 1
and out-degree w for any l ≥ 2. A node v ∈ T represents a sequence of elements A(v)
thus A(r) is the sequence represented by the tiered vector. The capacity cap(v) of a node
v is wheight(v)+1 and the size size(v) = |A(v)| ≤ cap(v) is the number of elements in the
sequence A(v). For a node v with children c1, c2, . . . , cw, A(v) is a circular shift of the

https://github.com/mettienne/tiered-vector

FAST DYNAMIC ARRAYS 69

0 0 1 0 1 2 0

7 3 0

12

R S T Y P Q F D E A B C I G H K L J M N O

1

X U V

DEF???ABC => ???ABCDEF

GHIJKLMNO => GHIJKLMNORSTUVXYPQ => PQRSTUVXY

PQRSTUVXY???ABCDEFGHIJKLMNO => ABCDEFGHIJKLMNOPQRSTUVXY???

Figure 6.1: An illustration of a tiered vector with l = w = 3. The elements are letters, and the
tiered vector represents the sequence ABCDEFGHIJKLMNOPQRSTUVX. The elements
in the leaves are the elements that are actually stored. The number above each node
is its offset. The strings above an internal node v with children c1, c2, c3 is respectively
A(c1) · A(c2) · A(c3) and A(v), i.e. the elements v represents before and after the
circular shift. ? specifies an empty element.

concatenation of the elements represented by its children, A(c1) ·A(c2) · . . . ·A(cw). The
circular shift is determined by an integer off(v) ∈ [cap(v)] that is explicitly stored for all
nodes. Thus the sequence of elements A(v) of an internal node v can be reconstructed
by recursively reconstructing the sequence for each of its children, concatenating these
and then circular shifting the sequence by off(v). See Figure 6.1 for an illustration.

A leaf v of T explicitly stores the sequence A(v) in a circular array elems(v) with
size w whereas internal nodes only store their respective offset. Call a node v full if
|A(v)| = cap(v) and empty if |A(v)| = 0. In order to support fast access, for all nodes v
the elements of A(v) are located in consecutive children of v that are all full, except the
children containing the first and last element of A(v) which may be only partly full.

Access & Update To access an element A(r)[i] at a given index i; one traverses a path
from the root down to a leaf in the tree. In each node the offset of the node is added to
the index to compensate for the cyclic shift, and the traversing is continued in the child
corresponding to the newly calculated index. Finally when reaching a leaf, the desired
element is returned from the elements array of that leaf. The operation access(v, i)
returns the element A(v)[i] and is recursively computed as follows:

v is internal: Compute i′ = (i + off(v)) mod cap(v), let v′ be the bi′ · w/cap(v)cth
child of v and return the element access(v′, i′ mod cap(v′)).

v is leaf: Compute i′ = (i+ off(v)) mod w and return the element elems(v)[i′].

The time complexity is Θ(l) as we visit all nodes on a root-to-leaf path in T . To
navigate this path we must follow l − 1 child pointers, lookup l offsets, and access the
element itself. Therefore this requires l − 1 + l + 1 = 2l memory probes.

The update operation is entirely similar to access, except the element found is not
returned but substituted with the new element. The running time is therefore Θ(l) as
well. For future use, let update(v, i, e) be the operation that sets A(v)[i] = e and returns
the element that was substituted.

Range Access Accessing a range of elements, can obviously be done by using the
access-operation multiple times, but this results in redundant traversing of the tree, since
consecutive elements of a leaf often – but not always due to circular shifts – corresponds
to consecutive elements ofA(r). Let access(v, i,m) report the elementsA(v)[i . . . i+m−1]
in order. The operation can recursively be defined as:

70 COMPRESSED AND EFFICIENT ALGORITHMS AND DATA STRUCTURES FOR STRINGS

v is internal: Let il = (i + off(v)) mod cap(v), and let ir = (il + m) mod cap(v).
The children of v that contains the elements to be reported are in the range
[bil · w/cap(v)c, bir · w/cap(v)c] mod w, call these cl, cl+1, . . . , cr. In order, call
access(cl, il,min(m, cap(cl)− il)), access(ci, 0, cap(ci)) for ci = cl+1, . . . , cr−1, and
access(cr, er−1, 0, ir mod cap(cr)).

v is leaf: Report the elements elems(v)[i, i+m− 1] mod w.

The running time of this strategy is O(lm), but saves a constant factor over the naive
solution.

Insert & Delete Inserting an element in the end (or beginning) of the array can simply
be achieved using the update-operation. Thus the interesting part is fast insertion at an
arbitrary position; this is where we utilize the offsets.

Consider a node v, the key challenge is to shift a big chunk of elementsA(v)[i, i+m−1]
one index right (or left) to A(v)[i+ 1, i+m] to make room for a new element (without
actually moving each element in the range). Look at the range of children cl, cl+1, . . . , cr
that covers the range of elements A(v)[i, i + m − 1] to be shifted. All elements in
cl+1, . . . , cr−1 must be shifted. These children are guaranteed to be full, so make a
circular shift by decrementing each of their offsets by one. Afterwards take the element
A(ci−1)[0] and move it to A(ci)[0] using the update operation for l < i ≤ r. In cl and cr
only a subrange of the elements might need shifting, which we do recursively. In the
base case of this recursion, namely when v is a leaf, shift the elements by actually moving
the elements one-by-one in elems(v).

Formally we define the shift(v, e, i,m) operation that (logically) shifts all elements
A(v)[i, i+m− 1] one place right to A[i+ 1, i+m], sets A[i] = e and returns the value
that was previously on position A[i+m] as:

v is internal: Let il = (i+off(v)) mod cap(v), and let ir = (il+m) mod cap(v). The
children of v that must be updated are in the range [bil ·w/cap(v)c, bir ·w/cap(v)c]
mod w call these cl, cl+1, . . . , cr. Let el = shift(cl, e, il,min(m, cap(cl) − il)). Let
ei = update(ci, size(c) − 1, ei−1) and set off(ci) = (off(ci) − 1) mod cap(c) for
ci = cl+1, . . . , cr−1. Finally call shift(cr, er−1, 0, ir mod cap(cr)).

v is leaf: Let eo = elems(v)[(i+m) mod w]. Move the elements elems(v)[i, (i+m−1)
mod w] to elems(v)[i+ 1, (i+m) mod w], and set elems(v)[i] = e. Return eo.

An insertion insert(i, e) can then be performed as shift(root, e, i, size(root) − i − 1).
The running time of an insertion is T (l) = 2T (l − 1) + w · l⇒ T (l) = O(2lw).

A deletion of an element can basically be done as an inverted insertion, thus deletion
can be implemented using the shift-operation from before. A delete(i) can be performed
as shift(r,⊥, 0, i) followed by an update of the root’s offset to (off(r) + 1) mod cap(r).

Space There are at most O(wl−1) nodes in the tree and each takes up constant space,
thus the total space of the tree is O(wl−1). All leaves are either empty or full except
the two leaves storing the first and last element of the sequence which might contain
less than w elements. Because the arrays of empty leaves are not allocated the space
overhead of the arrays is O(w). Thus beyond the space required to store the n elements
themselves, tiered vectors have a space overhead of O(wl−1).

To obtain the desired bounds w is maintained such that w = Θ(nε) where ε = 1/l
and n is the number of elements in the tiered vector. This can be achieved by using
global rebuilding to gradually increase/decrease the value of w when elements are
inserted/deleted without asymptotically changing the running times. We will not provide
the details here. We sum up the original tiered vector data structure in the following
theorem:

FAST DYNAMIC ARRAYS 71

Theorem 6.1 ([46]) The original l-tiered vector solves the dynamic array problem for
l ≥ 2 using Θ(n1−1/l) extra space while supporting access and update in Θ(l) time and
2l memory probes. The operations insert and delete take O(2ln1/l) time.

6.4 Improved Tiered Vectors

In this paper, we consider several new variants of the tiered vector. This section considers
the theoretical properties of these approaches. In particular we are interested in the
number of memory accesses that are required for the different memory layouts, since
this turns out to have an effect on the experimental running time. In Section 6.5.1 we
analyze the actual impact in practice through experiments.

6.4.1 Implicit Tiered Vectors

As the degree of all nodes is always fixed at some constant value w (it may be changed
for all nodes when the tree is rebuilt due to a full root), it is possible to layout the offsets
and elements such that no pointers are necessary to navigate the tree. Simply number
all nodes from left-to-right level-by-level starting in the root with number 0. Using this
numbering scheme, we can store all offsets of the nodes in a single array and similarly
all the elements of the leaves in another array.

To access an element, we only have to lookup the offset for each node on the root-to-
leaf path which requires l− 1 memory probes plus the final element lookup, i.e. in total l
which is half as many as the original tiered vector. The downside with this representation
is that it must allocate the two arrays in their entirety at the point of initialization (or
when rebuilding). This results in a Θ(n) space overhead which is worse than the Θ(n1−ε)
space overhead from the original tiered vector.

Theorem 6.2 The implicit l-tiered vector solves the dynamic array problem for l ≥ 2
using O(n) extra space while supporting access and update in O(l) time requiring l
memory probes. The operations insert and delete take O(2ln1/l) time.

6.4.2 Lazy Tiered Vectors

We now combine the original and the implicit representation, to get both few memory
probes and little space overhead. Instead of having a single array storing all the elements
of the leaves, we store for each leaf a pointer to a location with an array containing
the leaf’s elements. The array is lazily allocated in memory when elements are actually
inserted into it.

The total size of the offset-array and the element pointers in the leaves is O(n1−ε).
At most two leaves are only partially full, therefore the total space is now again reduced
to O(n1−ε). To navigate a root-to-leaf path, we now need to look at l − 1 offsets, follow
a pointer from a leaf to its array and access the element in the array, giving a total of
l + 1 memory accesses.

Theorem 6.3 The lazy l-tiered vector solves the dynamic array problem for l ≥ 2 using
Θ(n1−1/l) extra space while supporting access and update in Θ(l) time requiring l + 1
memory probes. The operations insert and delete take O(2ln1/l) time.

6.5 Implementation

We have implemented a generic version of the tiered vector data structure such that
the number of tiers and the size of each tier can be specified at compile time. To the
best of our knowledge, all prior implementations of the tiered vector are limited to
the considerably simpler 2-tier version. Also, most of the performance optimizations

72 COMPRESSED AND EFFICIENT ALGORITHMS AND DATA STRUCTURES FOR STRINGS

applied in the 2-tier implementations do not easily generalize. We have implemented the
following variants of tiered vectors:

• Original The data structure described in Theorem 6.1.

• Optimized Original As described in Theorem 6.1 but with the offset of a node v
located in the parent of v, adjacent in memory to the pointer to v. Leaves only
consist of an array of elements (since their parent store their offset) and the root’s
offset is maintained separately as there is no parent to store it in.

• Implicit This is the data structure described in Theorem 6.2 where the tree is
represented implicitly in an array storing the offsets and the elements of the leaves
are located in a single array.

• Packed Implicit This is the data structure described in Theorem 6.2 with the follow-
ing optimization; The offsets stored in the offset array are packed together and
stored in as little space as possible. The maximum offset of a node v in the tree
is nε(height(v)+1) and the number of bits needed to store all the offsets is therefore∑l
i=0 n

1−iε lg(niε) = lg(n)
∑l
i=0 iεn

1−iε ≈ εn1−ε lg(n) (for sufficiently large n).
Thus the n1−ε offsets can be stored in approximately εn1−ε words giving a space
reduction of a constant factor ε. The smaller memory footprint could lead to better
cache performance.

• Lazy This is the data structure described in Theorem 6.3 where the tree is repre-
sented implicitly in an array storing the offsets and every leaf stores a pointer to an
array storing only the elements of that leaf.

• Packed Lazy This is the data structure described in Theorem 6.3 with the following
optimization; The offset and the pointer stored in a leaf is packed together and
stored at the same memory location. On most modern 64-bit systems – including
the one we are testing on – a memory pointer is only allowed to address 48 bits.
This means we have room to pack a 16 bit offset in the same memory location as
the elements pointer, which results in one less memory probe during an access
operation.

• Non-Templated The implementations described above all use C++ templating for
recursive functions in order to let the compiler do significant code optimizations.
This implementation is template free and serves as a baseline to compare the
performance gains given by templating.

In Section 6.6 we compare the performance of these implementations.

6.5.1 C++ Templates

We use templates to support storing different types of data in our tiered vector similar
to what most other general purpose data structures in C++ do. This is a well-known
technique which we will not describe in detail.

However, we have also used template recursion which is basically like a normal
recursion except that the recursion parameter must be a compile-time constant. This
allows the compiler to unfold the recursion at compile-time eliminating all (recursive)
function calls by inlining code, and allows better local code optimizations. In our case,
we exploit that the height of a tiered vector is constant.

To show the rather simple code resulting from this approach (disregarding the
template stuff itself), we have included a snippet of the internals of our access operation:

FAST DYNAMIC ARRAYS 73

template <class T, class Layer>
struct helper {

static T& get(size_t node, size_t idx) {
idx = (idx + get_offset(node)) % Layer::capacity;
auto child = get_child(node, idx / Layer::child::capacity);
return helper<T, typename Layer::child>::get(child, idx);

}
}

template <class T, size_t W>
struct helper<T, Layer<W, LayerEnd> > {

static T& get(size_t node, size_t idx) {
idx = (idx + get_offset(node)) % L::capacity;
return get_elem(node, idx);

}
}

We also briefly show how to use the data structure. To specify the desired height of
the tree, and the width of the nodes on each tier, we also use templating:

Tiered<int, Layer<8, Layer<16, Layer<32>>>> tiered;

This will define a tiered vector containing integers with three tiers. The height of
the underlying tree is therefore 3 where the root has 8 children, each of which has 16
children each of which contains 32 elements. We call this configuration 8-16-32.

In this implementation of tiered vectors we have decided to let the number of children
on each level be a fixed number as described above. This imposes a maximum on the
number of elements that can be inserted. However, in a production ready implementation,
it would be simple to make it grow-able by maintaining a single growth factor that should
be multiplied on the number of children on each level. This can be combined with the
templated solution since the growing is only on the number of children and not the
height of the tree (per definition of tiered vectors the height is constant). This will
obviously increase the running time for operations when growing/shrinking is required,
but will only have minimal impact on all other operations (they will be slightly slower
because computations now must take the growth factor into account).

In practice one could also, for many uses, simply pick the number of children on
each level sufficiently large to ensure the number of elements that will be inserted is less
than the maximum capacity. This would result in a memory overhead when the tiered
vector is almost empty, but by choosing the right variant of tiered vectors and the right
parameters this overhead would in many cases be insignificant.

6.6 Experiments

In this section we compare the tiered vector to some widely used C++ standard library
containers. We also compare different variants of the tiered vector. We consider how the
different representations of the data structure listed in Section 6.5, and also how the
height of the tree and the capacity of the leaves affects the running time. The following
describes the test setup:

Environment All experiments have been performed on a Intel Core i7-4770 CPU @
3.40GHz with 32 GB RAM. The code has been compiled with GNU GCC version 5.4.0
with flags “-O3”. The reported times are an average over 10 test runs.

74 COMPRESSED AND EFFICIENT ALGORITHMS AND DATA STRUCTURES FOR STRINGS

Procedure In all tests 108 32-bit integers are inserted in the data structure as a prelim-
inary step to simulate that it has already been used1. For all the access and successor
operations 109 elements have been accessed and the time reported is the average time
per element. For range access, 10.000 consecutive elements are accessed. For inser-
tion/deletion 106 elements have been (semi-)randomly2 added/deleted, though in the
case of “vector” only 10.000 elements were inserted/deleted to make the experiments
terminate in reasonable time.

6.6.1 Comparison to C++ STL Data Structures

In the following we have compared our best performing tiered vector (see the next
sections) to the vector and the multiset class from the C++ standard library. The vector
data structure directly supports the operations of a dynamic array. The multiset class is
implemented as a red-black tree and is therefore interesting to compare with our data
structure. Unfortunately, multiset does not directly support the operations of a dynamic
array (in particular it has no notion of positions of elements). To simulate an access
operation we instead find the successor of an element in the multiset. This requires a
root-to-leaf traversal of the red-black tree, just as an access operation in a dynamic array
implemented as a red-black tree would. Insertion is simulated as an insertion into the
multiset, which again requires the same computations as a dynamic array implemented
as a red-black tree would.

Besides the random access, range access and insertion, we have also tested the
operations data dependent access, insertion in the end, deletion, and successor queries.
In the data dependent access tests, the next index to lookup depends on the values of
the prior lookups. This ensures that the CPU cannot successfully pipeline consecutive
lookups, but must perform them in sequence. We test insertion in the end, since this is a
very common use case. Deletion is performed by deleting elements at random positions.
The successor queries returns the successor of an element and is not actually part of
the dynamic array problem, but is included since it is a commonly used operation on a
multiset in C++. It is simply implemented as a binary search over the elements in both
the vector and tiered vector tests where the elements are now inserted in sorted order.

The results are summarized in Table 6.1 which shows that the vector performs slightly
better than the tiered vector on all access and successor tests. As expected from the
Θ(n) running time, it performs extremely poor on random insertion and deletion. For
insertion in the end of the sequence, vector is also slightly faster than the tiered vector.
The interesting part is that even though the tiered vector requires several extra memory
lookups and computations, we have managed to get the running time down to less than
the double of the vector for access, even less for data dependent access and only a few
percent slowdown for range access. As discussed earlier, this is most likely because the
entire tree structure (without the elements) fits within the CPU cache, and because the
computations required has been minimized.

Comparing our tiered vector to multiset, we would expect access operations to be
faster since they run in O(1) time compared to O(lg n). On the other hand, we would
expect insertion/deletion to be significantly slower since it runs in O(n1/l) time compared
to O(lg n) (where l = 4 in these tests). We see our expectations hold for the access
operations where the tiered vector is faster by more than an order of magnitude. In
random insertions however, the tiered vector is only 8% slower – even when operating
on 100.000.000 elements. Both the tiered vector and set requires O(lg n) time for

1In order to minimize the overall running time of the experiments, the elements were not added randomly,
but we show this does not give our data structure any benefits

2In order to not impact timing, a simple access pattern has been used instead of a normal pseudo-random
generator.

FAST DYNAMIC ARRAYS 75

tiered vector multiset s / t vector v / t
access 34.07 ns 1432.05 ns 42.03 21.63 ns 0.63
dd-access 99.09 ns 1436.67 ns 14.50 79.37 ns 0.80
range access 0.24 ns 13.02 ns 53.53 0.23 ns 0.93
insert 1.79 µs 1.65 µs 0.92 21675.49 µs 12082.33
insert in end 7.28 ns 242.90 ns 33.38 2.93 ns 0.40
successor 0.55 µs 1.53 µs 2.75 0.36 µs 0.65
delete 1.92 µs 1.78 µs 0.93 21295.25 µs 11070.04
memory 408 MB 4802 MB 11.77 405 MB 0.99

Table 6.1: The table summarizes the performance of the implicit tiered vector compared to the
performance of multiset and vector from the C++ standard library. dd-access refers to
data dependent access.

the successor operation. In our experiments the tiered vector is 3 times faster for the
successor operation.

Finally, we see that the memory usage of vector and tiered vector is almost identical.
This is expected since in both cases the space usage is dominated by the space taken by
the actual elements. The multiset uses more than 10 times as much space, so this is also
a considerable drawback of the red-black tree behind this structure.

To sum up, the tiered vectors performs better than multiset on all tests but insertion,
where it performs only slightly worse.

6.6.2 Tiered Vector Variants

In this test we compare the performance of the implementations listed in Section 6.5 to
that or the original data structure as described in 6.1.

Optimized Original By co-locating the child offset and child pointer, the two memory
lookups are at adjacent memory locations. Due to the cache lines in modern processors,
the second memory lookup will then often be answered directly by the fast L1-cache. As
can be seen on Figure 6.2, this small change in the memory layout results in a significant
improvement in performance for both access and insertion. In the latter case, the running
time is more than halved.

Lazy and Packed Lazy Figure 6.2 shows how the fewer memory probes required by
the lazy implementation in comparison to the original and optimized original results in

0 s
10 ns
20 ns
30 ns
40 ns
50 ns
60 ns
70 ns

ori
gin

al

op
tim

ize
d o

rig
ina

l
laz

y

pa
ck

ed
 la

zy

im
pli

cit

pa
ck

ed
 im

pli
cit

(a) access

0 s
1 us
2 us
3 us
4 us
5 us
6 us
7 us
8 us

ori
gin

al

op
tim

ize
d o

rig
ina

l
laz

y

pa
ck

ed
 la

zy

im
pli

cit

pa
ck

ed
 im

pli
cit

(b) insert

Figure 6.2: Figures (a) and (b) show the performance of the original (), optimized original (),
lazy () packed lazy (), implicit () and packed implicit () layouts.

76 COMPRESSED AND EFFICIENT ALGORITHMS AND DATA STRUCTURES FOR STRINGS

better performance. Packing the offset and pointer in the leaves results in even better
performance for both access and insertion even though it requires a few extra instructions
to do the actual packing and unpacking.

Implicit From Figure 6.2, we see the implicit data structure is the fastest. This is as
expected because it requires fewer memory accesses than the other structures except for
the packed lazy which instead has a slight computational overhead due to the packing
and unpacking.

As shown in Theorem 6.2 the implicit data structure has a bigger memory overhead
than the lazy data structure. Therefore the packed lazy representation might be beneficial
in some settings.

Packed Implicit Packing the offsets array could lead to better cache performance due
to the smaller memory footprint and therefore yield better overall performance. As can
be seen on Figure 6.2, the smaller memory footprint did not improve the performance
in practice. The simple reason for this is that the strategy we used for packing the
offsets required extra computation. This clearly dominated the possible gain from the
hypothesized better cache performance. We tried a few strategies to minimize the extra
computations needed at the expense of slightly worse memory usage, but none of these
led to better results than when not packing the offsets at all.

6.6.3 Width Experiments

This experiment was performed to determine the best capacity ratio between the leaf
nodes and the internal nodes. The six different width configurations we have tested are:
32-32-32-4096, 32-32-64-2048, 32-64-64-1024, 64-64-64-512, 64-64-128-256, and 64-
128-128-128. All configurations have a constant height 4 and a capacity of approximately
130 mio.

We expect the performance of access operations to remain unchanged, since the
amount of work required only depends on the height of the tree, and not the widths.
We expect range access to perform better when the leaf size is increased, since more
elements will be located in consecutive memory locations. For insertion there is not a
clearly expected behavior as the time used to physically move elements in a leaf will
increase with leaf size, but then less operations on the internal nodes of the tree has to
be performed.

In Figure 6.3 we see access times are actually decreasing slightly when leaves get
bigger. This was not expected, but is most likely due to small changes in the memory
layout that results in slightly better cache performance. The same is the case for range
access, but this was expected. For insertion, we see there is a tipping point. For our
particular instance, the best performance is achieved when the leaves have size 512.

0 s

10 ns

20 ns

30 ns

40 ns

50 ns

60 ns

40
96

40
96

20
48

20
48

10
24

10
24 51

2
51

2
25

6
25

6
12

8
12

8

(a) access

0 s

50 ps

100 ps

150 ps

200 ps

250 ps

300 ps

40
96

40
96

20
48

20
48

10
24

10
24 51

2
51

2
25

6
25

6
12

8
12

8

(b) range access

0 s

1 us

2 us

3 us

4 us

5 us

6 us

40
96

40
96

20
48

20
48

10
24

10
24 51

2
51

2
25

6
25

6
12

8
12

8

(c) insert

Figure 6.3: Figures (a), (b) and (c) show the performance of the implicit () and the optimized
original tiered vector () for different tree widths.

FAST DYNAMIC ARRAYS 77

6.6.4 Height Experiments

In these tests we have studied how different heights affect the performance of access
and insertion operations. We have tested the configurations 8196-16384, 512-512-512,
64-64-64-512, 16-16-32-32-512, 8-8-16-16-16-512. All resulting in the same capacity,
but with heights in the range 2-6.

We expect the access operations to perform better for lower trees, since the number
of operations that must be performed is linear in the height. On the other hand we
expect insertion to perform significantly better with higher trees, since its running time
is O(n1/l) where l is the height plus one.

On Figure 6.4 we see the results follow our expectations. However, the access
operations only perform slightly worse on higher trees. This is most likely because all
internal nodes fit within the L3-cache. Therefore the running time is dominated by the
lookup of the element itself. (It is highly unlikely that the element requested by an
access to a random position would be among the small fraction of elements that fit in
the L3-cache).

Regarding insertion, we see significant improvements up until a height of 4. After
that, increasing the height does not change the running time noticeably. This is most
likely due to the hidden constant in O(n1/l) increasing rapidly with the height.

0 s

10 ns

20 ns

30 ns

40 ns

50 ns

60 ns

2 2 3 3 4 4 5 5 6 6

(a) access(i)

0 s

50 ps

100 ps

150 ps

200 ps

250 ps

300 ps

2 2 3 3 4 4 5 5 6 6

(b) access(i,m)

0 s

5 us

10 us

15 us

20 us

25 us

2 2 3 3 4 4 5 5 6 6

(c) insert

Figure 6.4: Figures (a),(b) and (c) show the performance of the implicit () and the optimized
original tiered vector () for different tree heights.

6.6.5 Configuration Experiments

In these experiments, we test a few hypotheses about how different changes impact
the running time. The results are shown on Figure 6.5, the leftmost result (base) is
the implicit 64-64-64-512 configuration of the tiered vector to which we compare our
hypotheses.

Rotated: As already mentioned, the insertions performed as a preliminary step to the
tests are not done at random positions. This means that all offsets are zero when our
real operations start. The purpose of this test is the ensure that there are no significant

0 s

50 ns

100 ns

150 ns

200 ns

250 ns

ba
se

rot
ate

d

no
n-a

lig
ne

d w
idt

hs

no
n-t

em
pla

ted

(a) access

0 s
50 ps

100 ps
150 ps
200 ps
250 ps
300 ps
350 ps
400 ps
450 ps

ba
se

rot
ate

d

no
n-a

lig
ne

d w
idt

hs

no
 te

mpla
tin

g

(b) range access

0 s
2 us
4 us
6 us
8 us

10 us
12 us
14 us
16 us
18 us

ba
se

rot
ate

d

no
n-a

lig
ne

d s
ize

s

no
n-t

em
pla

ted

(c) insert(i,x)

Figure 6.5: Figures (a) and (b) show the performance of the base (), rotated (), non-aligned
sizes (), non-templated () layouts.

78 COMPRESSED AND EFFICIENT ALGORITHMS AND DATA STRUCTURES FOR STRINGS

performance gains in starting from such a configuration which could otherwise lead to
misleading results. To this end, we have randomized all offsets (in a way such that the
data structure is still valid, but the order of elements change) after doing the preliminary
insertions but before timing the operations. As can be seen on Figure 6.5, the difference
between this and the normal procedure is insignificant, thus we find our approach gives
a fair picture.

Non-Aligned Sizes: In all our previous tests, we have ensured all nodes had an out-
degree that was a power of 2. This was chosen in order to let the compiler simplify some
calculations, i.e. replacing multiplication/division instructions by shift/and instructions.
As Figure 6.5 shows, using sizes that are not powers of 2 results in significantly worse
performance. Besides showing that powers of 2 should always be used, this also indicates
that not only the number of memory accesses during an operation is critical for our
performance, but also the amount of computation we make.

Non-Templated The non-templated results in Figure 6.2 the show that the change to
templated recursion has had a major impact on the running time. It should be noted that
some improvements have not been implemented in the non-templated version, but it
gives a good indication that this has been quite useful.

6.7 Conclusion

This paper presents the first implementation of a generic tiered vector supporting any
constant number of tiers. We have shown a number of modified versions of the tiered
vector, and employed several optimizations to the implementation. These implementa-
tions have been compared to vector and multiset from the C++ standard library. The
benchmarks show that our implementation stays on par with vector for access and on
update operations while providing a considerable speedup of more than 40× compared to
multiset. At the same time the asymptotic difference between the logarithmic complexity
of multiset and the polynomial complexity of tiered vector for insertion and deletion
operations only has little effect in practice. For these operations, our fastest version of
the tiered vector suffers less than 10% slowdown. Arguably, our tiered array provides a
better trade-off than the balanced binary tree data structures used in the standard library
for most applications that involve big instances of the dynamic array problem.

CHAPTER A

APPENDIX

A.1 Mergable Dictionaries

In this section we show how to extend the mergeable dictionary to support shifts. We
first give a simple reduction showing that the requirement that the sets are disjoint can
be lifted without affecting the asymptotic complexity as long as n ≤ U . We then move on
to consider the internals of the data structure and the changes needed to support shifts.

Disjointness

We use the following simple reduction to avoid breaking the disjointness when shifting
the sets. Let y1 < . . . < yn be the values stored in the singleton sets. Consider instead
a problem from the universe {1, 2, . . . ,U2} and and let f : U → U2 be the function
f(x) = (x − 1)(U + 1) and let g : U2 → U be the function g(x) = dx/(U + 1)e + 1.
We now let the values of the singleton sets be zi = f(yi) for i = 1, . . . , n. Replace any
shift(G, x) by shift(G, x · U). Because zi 6≡ zj (mod U) the sets will always remain
disjoint. Replace any (A,B) ← split(G, x) by (A,B) ← split(G, f(x)) and when
reporting all values s1, s2, . . . of a set S report instead g(s1), g(s2),

Biased Skip Lists

The mergeable dictionary given by Iacono and Özkan [51] uses biased skip lists to
maintain every setG ∈ G. The skip list was first introduced by Pugh [81] as a probabilistic
alternative to dynamic binary search trees supporting the same set of operations inO(lg n)
expected time. Munro et al. [71] show how to achieve worst-case bounds, Bagchi et
al. [4] generalises to biased skip lists with finger searches and Iacono and Özkan show
how to support finger split, finger reweight and finger join (we give the details of these
operations later).

A biased skip list (BSL) S stores an ordered set X where each element x ∈ X
corresponds to a node x ∈ S. Node x has weight wx ≥ 1 and some integral height,
hx ≥ 1, and the rank of x is defined as rx = blgwxc. The height of S denoted H(S) is
the maximal height amongst the nodes in S. Each node x is represented by a linked list
of length hx + 1 called the tower of that node. The level-j predecessor of a node x is the
maximal node y < x with height hy ≥ j and the level-j successor is defined symmetrically.
Let y be the level-k predecessor (successor) of x then the kth element in the tower of
x contains pointers to the kth element in the tower of y with one exception: If y is the
predecessor (successor) of x in the set X then the pointer at level min{hx, hy} − 1 is nil
and the pointers below this level are undefined. Assume that there are sentinel nodes
of height H(S) at the beginning (with key −∞) and the end (with key ∞) of S. The

79

80 COMPRESSED AND EFFICIENT ALGORITHMS AND DATA STRUCTURES FOR STRINGS

sentinels are not actually needed but eases the explanation. Two distinct elements x and
y are called consecutive if and only if they are linked together in S. We orient the pointers
so that the skip list stores items in left-to-right order and the node levels progress from
bottom to top. There are three invariants for biased skip lists:

(I1) Each item x has height hx ≥ rx.

(I2) There are never more than 6 consecutive items of any height.

(I3) For each node x and for all rx < i ≤ hx there are at least 2 nodes of height i− 1
between x and any consecutive node of height at least i.

To support the shift operation, we extend the biased skip list by storing an integral offset
with each of the pointers between the towers of the nodes in S initially set to 0. Consider
any sequence of shift, join and merge operations starting from n singleton biased skip
lists and track one element x through this sequence. If x has been affected by l shift
operations, then the value of x should be ox + k1 + k2 + · · · + kl where ki the integer
value shifted by in the ith shift and ox is the original value of x. Denote by xs the shift of
x (at some point in time). The accumulated offset of a node x is the sum of the offsets of
the pointers on any path from a sentinel to x. We introduce the following invariant to
support lazy shifts of biased skip lists:

(I4) The accumulated offset of any path from x to y is ys − xs.

It follows immediately that we can search for an element using standard skip list search
[81] and report its value correctly by keeping track of the accumulated offset while
navigating the pointers of a biased skip lists. Similarly, we report the correct value of all
elements by keeping track of accumulated offset while traversing a biased skip list.

Trivially, invariant (I4) is true when creating a singleton BSL with the offset of all
pointers set to 0. We now show how to shift a biased skip list:

Shift(S, k) To shift S by k we increment the offset on the right-pointers of the left
sentinel and the left pointers on the right sentinel by k and decrement the pointers with
opposite direction by k. Let sx be the shift of some element x ∈ S before this shift then
the shift of x after this operation is sx + k. Any path starting from a sentinel has an
increased accumulated offset of k and it follows that invariant (I4) is still true after the
shift. The shift operation does not change the structure of S and therefore it does not
invalidate the invariants (I1 - I3). The operation takes linear time in the height of the
sentinels which is O(lg n) [71].

The operations reweight, join and split involves splicing and splitting pointers and
changing the height of nodes which again involves splicing and splitting pointers. We
refer the reader to [51] for the details on the operations including complexities and
proofs of correctness. We now give the details on how to maintain the offsets of pointers
during splicing and splitting which is the only change required for the operations.

Delete Pointer Deleting a pointer between any two towers does not invalidate (I4)
and thus no offsets need to change.

New Pointer Whenever a new pointer x→ y between some level in the towers of x
and y is introduced set the offset of that pointer to ys − xs where ys and xs is the shift of
y and x respectively.

The new pointer introduces a path between x and y which has accumulated offset
ys − xs. Thus if (I4) was true before, it remains true.

APPENDIX 81

Merge

Two biased skip lists A and B are merged using a folklore version of merging called
segment merging. Assume w.l.o.g. that min(A) < min(B). If we consider the elements of
A and B in increasing order, the observation is that we can split A and B into ordered
segments A1, A2, . . . , Ai and B1, B2, . . . , Bj where j ∈ [i− 1; i], and max(Ai) < min(Aj)
and max(Bi) < min(Bj) for i < j and max(Ai) < min(Bi) < max(Bi) < min(Ai+1) for
all i. The merge strategy is then to find the min and max element of each segment, extract
the segments using split operations and merge all the segments using join operations.

Iacono & Özkan [51] find the node that separates the segments Ai and Ai+1 by
searching for the successor of max(Bi) in A starting from the node f = min(Ai) and
similarly for B. Thus they perform a finger search starting from f (initially the finger is
the left sentinel). By keeping pointers to all these fingers, the splits and joins are also
done as finger operations. This is the key to obtaining the desired complexity bound.
Since the merge starts from a left sentinel it is easy to keep track of the accumulated
offset while navigating the skip lists.

Finally, the amortized complexities of the search, join, split and reweight are not
affected by shifts as they solely depend on the internal structure of the biased skip lists
and not the values stored in the nodes [4,51]. The amortized complexity of the merge
operation is proven using the following potential function:

Let Di be the data structure containing the dynamic collection of disjoint sets G(i) =

{G(i)
1 , G

(i)
2 , . . .} after the ith operation. Let G = {x1, x2, . . .} be the values of the elements

of G in increasing order then

φ(G) =

|G|∑
i=1

(lg(xi − xi−1) + lg(xi+1 − xi))

where we define x1 − x0 = 1 and x|G|+1 − x|G| = 1. Then the potential after the ith

operation is
Φ(Di) = cd ·

∑
j

φ(S
(i)
j)

where cd is a constant [51]. I.e. the potential is the sum of the logarithm to the gaps
between the elements in every set. This measure depends on the relative difference
between the values of the elements inside every set and not the absolute value, thus the
potential is not affected by a shift. Therefore the amortized cost of the shift operation is
O(lgU) and the complexities of the other BSL operations are unchanged which concludes
the proof of Theorem 4.5.

BIBLIOGRAPHY

[1] www.gzip.org.

[2] S. Alstrup, G. S. Brodal, and T. Rauhe. Pattern matching in dynamic texts. In
Proceedings of the 11th Annual Symposium on Discrete Algorithms. Citeseer, 2000.

[3] A. Andersson and S. Nilsson. A new efficient radix sort. In Proc. 35th FOCS, pages
714–721. IEEE Computer Society, 1994.

[4] A. Bagchi, A. L. Buchsbaum, and M. T. Goodrich. Biased skip lists. Algorithmica,
42(1):31–48, May 2005.

[5] Z. Bar-Yossef, T. S. Jayram, R. Krauthgamer, and R. Kumar. The sketching complex-
ity of pattern matching. In Proc. 8th RANDOM, pages 261–272, 2004.

[6] D. Belazzougui, P. Boldi, R. Pagh, and S. Vigna. Fast prefix search in lit-
tle space, with applications. In Proc. 18th ESA, LNCS, vol 6346, pages
427–438. Springer Berlin Heidelberg, 2010, (appendix H.3 can be found at
http://www.itu.dk/people/pagh/papers/prefix.pdf).

[7] D. Belazzougui, F. Cunial, T. Gagie, N. Prezza, and M. Raffinot. Composite
repetition-aware data structures. In Proc. 26st CPM, LNCS, vol 9133, pages 26–39.
Springer Cham, 2015.

[8] D. Belazzougui, T. Gagie, P. Gawrychowski, J. Kärkkäinen, A. O. Pereira, S. J.
Puglisi, and Y. Tabei. Queries on lz-bounded encodings. In Proc. DCC 2015, pages
83–92. IEEE Computer Society, 2015.

[9] D. Belazzougui, J. Kärkkäinen, D. Kempa, and S. J. Puglisi. Lempel-Ziv Decoding in
External Memory. In Proceedings of 15th SEA, pages 63–74, 2016.

[10] P. Bille, M. B. Ettienne, I. L. Gørtz, and H. W. Vildhøj. Time-space trade-offs for
Lempel-Ziv compressed indexing. In 28th Annual Symposium on Combinatorial
Pattern Matching. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2017.

[11] P. Bille, M. B. Ettienne, I. L. Gørtz, and H. W. Vildhøj. Time-space trade-offs for
lempel-ziv compressed indexing. Theoretical Computer Science, 713:66 – 77, 2018.

[12] P. Bille, I. L. Gørtz, B. Sach, and H. W. Vildhøj. Time-space trade-offs for longest
common extensions. In Proc. 23rd CPM, LNCS, vol 7354. Springer Berlin Heidelberg,
2012.

[13] P. Bille, G. M. Landau, R. Raman, K. Sadakane, S. R. Satti, and O. Weimann.
Random access to grammar-compressed strings. In Proceedings of 22nd SODA,
pages 373–389, 2011.

83

84 COMPRESSED AND EFFICIENT ALGORITHMS AND DATA STRUCTURES FOR STRINGS

[14] D. Breslauer and Z. Galil. Real-time streaming string-matching. ACM Trans. Algo-
rithms, 10(4):22:1–22:12, 2014.

[15] A. Brodnik, S. Carlsson, E. D. Demaine, J. I. Munro, and R. Sedgewick. Resizable
arrays in optimal time and space. In Proceedings of the 6th International Workshop
on Algorithms and Data Structures, WADS ’99, pages 37–48, London, UK, UK, 1999.
Springer-Verlag.

[16] H. Buhrman, M. Koucký, and N. Vereshchagin. Randomised individual communica-
tion complexity. In Proc. 23rd CCC, pages 321–331, 2008.

[17] T. M. Chan, K. G. Larsen, and M. Pătraşcu. Orthogonal range searching on the ram,
revisited. In Proc. 27th SoCG, pages 1–10. ACM, 2011.

[18] M. Charikar, E. Lehman, D. Liu, R. Panigrahy, M. Prabhakaran, A. Sahai, and A. She-
lat. The smallest grammar problem. IEEE Trans. Information Theory, 51(7):2554–
2576, 2005.

[19] H. Chernoff. A measure of asymptotic efficiency for tests of a hypothesis based on
the sum of observations. Ann. Math. Stat., 23:493–507, 1952.

[20] F. Claude, A. Fariña, M. A. Martínez-Prieto, and G. Navarro. Universal indexes for
highly repetitive document collections. Inf. Syst., 61:1–23, 2016.

[21] F. Claude and G. Navarro. Improved grammar-based compressed indexes. In Proc.
19th SPIRE, LNCS, vol 7608, pages 180–192. Springer Berlin Heidelberg, 2012.

[22] R. Cole and R. Hariharan. Approximate string matching: A simpler faster algorithm.
SIAM Journal on Computing, 31(6):1761–1782, 2002.

[23] R. Cole and U. Vishkin. Deterministic coin tossing with applications to optimal
parallel list ranking. Information and Control, 70(1):32 – 53, 1986.

[24] M. Crochemore, L. Ilie, and W. F. Smyth. A simple algorithm for computing the
Lempel Ziv factorization. In Proceedings of 2008 DCC, pages 482–488, 2008.

[25] P. F. Dietz. Optimal algorithms for list indexing and subset rank. In Proceedings of
the Workshop on Algorithms and Data Structures, WADS ’89, pages 39–46, London,
UK, UK, 1989. Springer-Verlag.

[26] M. Farach. Optimal suffix tree construction with large alphabets. In Proc. 38th
FOCS, pages 137–143. IEEE Computer Society, 1997.

[27] M. Farach and M. Thorup. String Matching in Lempel—Ziv Compressed Strings.
Algorithmica, 20(4):388–404, 1998.

[28] U. Feige, P. Raghavan, D. Peleg, and E. Upfal. Computing with noisy information.
SIAM J. Comput., 23(5):1001–1018, Oct. 1994.

[29] P. Ferragina and G. Manzini. Opportunistic data structures with applications. In
Proc. 41st FOCS, pages 390–398. IEEE Computer Society, 2000.

[30] P. Ferragina and G. Manzini. An experimental study of an opportunistic index. In
Proc. 12th SODA, pages 269–278. Society for Industrial and Applied Mathematics,
2001.

[31] P. Ferragina and G. Manzini. Indexing compressed text. J. ACM, 52(4):552–581,
2005.

BIBLIOGRAPHY 85

[32] P. Ferragina, G. Manzini, V. Mäkinen, and G. Navarro. Compressed representations
of sequences and full-text indexes. ACM Trans. Algorithms, 3(2), 2007.

[33] J. Fischer, T. Gagie, P. Gawrychowski, and T. Kociumaka. Approximating LZ77 via
small-space multiple-pattern matching. In Proceedings of 23rd ESA, pages 533–544.
2015.

[34] J. Fischer, T. I, and D. Köppl. Lempel Ziv Computation In Small Space (LZ-CISS).
In Proceedings of 26th CPM, pages 172–184, 2015.

[35] G. N. Frederickson. Implicit data structures for the dictionary problem. J. ACM,
30(1):80–94, Jan. 1983.

[36] M. Fredman and M. Saks. The cell probe complexity of dynamic data structures.
In Proceedings of the Twenty-first Annual ACM Symposium on Theory of Computing,
STOC ’89, pages 345–354, New York, NY, USA, 1989. ACM.

[37] M. L. Fredman, J. Komlós, and E. Szemerédi. Storing a sparse table with 0(1) worst
case access time. J. ACM, 31(3):538–544, 1984.

[38] M. L. Fredman and D. E. Willard. Blasting through the information theoretic barrier
with fusion trees. In Proceedings of the Twenty-second Annual ACM Symposium on
Theory of Computing, STOC ’90, pages 1–7, New York, NY, USA, 1990. ACM.

[39] T. Gagie, P. Gawrychowski, J. Kärkkäinen, Y. Nekrich, and S. J. Puglisi. A faster
grammar-based self-index. In Proc. 6th LATA, pages 240–251, 2012.

[40] T. Gagie, P. Gawrychowski, J. Kärkkäinen, Y. Nekrich, and S. J. Puglisi. LZ77-based
self-indexing with faster pattern matching. In Proc. 11th LATIN, LNCS, vol 8392,
pages 731–742. Springer Berlin Heidelberg, 2014.

[41] T. Gagie, P. Gawrychowski, and S. J. Puglisi. Approximate pattern matching in
LZ77-compressed texts. Journal of Discrete Algorithms, 32:64–68, 2015.

[42] T. Gagie, G. Navarro, and N. Prezza. Optimal-time text indexing in bwt-runs
bounded space. arXiv preprint arXiv:1705.10382, 2017.

[43] T. Gagie and S. J. Puglisi. Searching and indexing genomic databases via kerneliza-
tion. Frontiers in Bioengineering and Biotechnology, 3:12, 2015.

[44] P. Gawrychowski. Pattern matching in Lempel-Ziv compressed strings: Fast, Simple,
and deterministic. Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 6942:421–432,
2011.

[45] P. Gawrychowski, A. Karczmarz, T. Kociumaka, J. Łącki, and P. Sankowski. Optimal
dynamic strings. arXiv preprint arXiv:1511.02612, 2015.

[46] M. T. Goodrich and J. G. Kloss. Tiered Vectors: Efficient Dynamic Arrays for Rank-
Based Sequences, pages 205–216. Springer Berlin Heidelberg, Berlin, Heidelberg,
1999.

[47] R. Grossi, A. Gupta, and J. S. Vitter. High-order entropy-compressed text indexes. In
Proc. 14th SODA, pages 841–850. Society for Industrial and Applied Mathematics,
2003.

[48] R. Grossi, A. Gupta, and J. S. Vitter. When indexing equals compression: Experi-
ments with compressing suffix arrays and applications. In Proc. 15th SODA, pages
636–645. Society for Industrial and Applied Mathematics, 2004.

86 COMPRESSED AND EFFICIENT ALGORITHMS AND DATA STRUCTURES FOR STRINGS

[49] R. Grossi and J. S. Vitter. Compressed suffix arrays and suffix trees with applications
to text indexing and string matching. In Proc. 32nd STOC, pages 397–406. ACM,
2000.

[50] T. Hagerup. Sorting and Searching on the Word RAM. In Proc. 15th STACS, pages
366–398, 1998.

[51] J. Iacono and Ö. Özkan. Mergeable dictionaries. Lecture Notes in Computer Sci-
ence (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 6198(PART 1):164–175, 2010.

[52] A. Jeż. Faster fully compressed pattern matching by recompression. ACM Transac-
tions on Algorithms (TALG), 11(3):20, 2015.

[53] J. Kärkkäinen, D. Kempa, and S. J. Puglisi. Linear time Lempel-Ziv factorization:
Simple, fast, small. In Proceedings of 24th CPM, pages 189–200, 2013.

[54] J. Kärkkäinen and E. Sutinen. Lempel-Ziv index for q-grams. Algorithmica,
21(1):137–154, 1998.

[55] J. Kärkkäinen and E. Ukkonen. Lempel-Ziv parsing and sublinear-size index struc-
tures for string matching. In Proceedings of 3rd WSP, pages 141–155, 1996.

[56] R. M. Karp and M. O. Rabin. Efficient randomized pattern-matching algorithms.
IBM J. Res. Dev., 31(2):249–260, 1987.

[57] J. Katajainen. Worst-Case-Efficient Dynamic Arrays in Practice, pages 167–183.
Springer International Publishing, Cham, 2016.

[58] J. Katajainen and B. B. Mortensen. Experiences with the Design and Implementation of
Space-Efficient Deques, pages 39–50. Springer Berlin Heidelberg, Berlin, Heidelberg,
2001.

[59] S. Kreft and G. Navarro. Lz77-like compression with fast random access. In
Proceedings of the 2010 Data Compression Conference, DCC ’10, pages 239–248,
Washington, DC, USA, 2010. IEEE Computer Society.

[60] S. Kreft and G. Navarro. On compressing and indexing repetitive sequences. Theoret.
Comp. Sci., 483:115 – 133, 2013.

[61] E. Kushilevitz and N. Nisan. Communication complexity. Cambridge University
Press, 1997.

[62] G. M. Landau and U. Vishkin. Fast parallel and serial approximate string matching.
Journal of Algorithms, 10(2):157–169, 1989.

[63] E. Lehman and A. Shelat. Approximation algorithms for grammar-based compres-
sion. In Proceedings of the Thirteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’02, pages 205–212, Philadelphia, PA, USA, 2002. Society for
Industrial and Applied Mathematics.

[64] A. Lempel and J. Ziv. On the complexity of finite sequences. IEEE Transactions on
Information Theory, 22(1):75–81, 1976.

[65] M. Lewenstein. Orthogonal range searching for text indexing. In Space-Efficient
Data Structures, Streams, and Algorithms - Papers in Honor of J. Ian Munro on the
Occasion of His 66th Birthday, LNCS, vol 8066, pages 267–302. Springer Berlin
Heidelberg, 2013.

BIBLIOGRAPHY 87

[66] V. Mäkinen. Compact suffix array. In Proc. 11th CPM, LNCS, vol 3109, pages
305–319. Springer Berlin Heidelberg, 2000.

[67] V. Mäkinen, G. Navarro, J. Sirén, and N. Välimäki. Storage and retrieval of highly
repetitive sequence collections. J. Comput. Bio., 17(3):281–308, 2010.

[68] K. Mehlhorn, R. Sundar, and C. Uhrig. Maintaining dynamic sequences under
equality tests in polylogarithmic time. Algorithmica, 17(2):183–198, 1997.

[69] P. B. Miltersen, N. Nisan, S. Safra, and A. Wigderson. On data structures and
asymmetric communication complexity. J. Comp. Syst. Sci., 57(1):37 – 49, 1998.

[70] D. R. Morrison. Patricia—practical algorithm to retrieve information coded in
alphanumeric. J. ACM, 15(4):514–534, Oct. 1968.

[71] J. I. Munro, T. Papadakis, and R. Sedgewick. Deterministic skip lists. In Proceed-
ings of the Third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’92,
pages 367–375, Philadelphia, PA, USA, 1992. Society for Industrial and Applied
Mathematics.

[72] G. Navarro. Indexing highly repetitive collections. In Proc. 23rd IWOCA, LNCS, vol
7643, pages 274–279. Springer Berlin Heidelberg, 2012.

[73] G. Navarro. Compact Data Structures - A Practical Approach. Cambridge University
Press, 2016.

[74] G. Navarro and V. Mäkinen. Compressed full-text indexes. ACM Comput. Surv.,
39(1), 2007.

[75] I. Newman. Private vs. common random bits in communication complexity. Inf.
Proc. Lett., 39(2):67 – 71, 1991.

[76] N. Nisan. The communication complexity of threshold gates. Combinatorics, Paul
Erdos is Eighty, 1:301–315, 1993.

[77] T. Nishimoto, T. I, S. Inenaga, H. Bannai, and M. Takeda. Dynamic index and lz
factorization in compressed space. In J. Holub and J. Žd’árek, editors, Proceedings of
the Prague Stringology Conference 2016, pages 158–170, Czech Technical University
in Prague, Czech Republic, 2016.

[78] A. Policriti and N. Prezza. Fast online Lempel-Ziv factorization in compressed space.
In Proceedings of 22rd SPIRE, pages 13–20, 2015.

[79] A. Policriti and N. Prezza. LZ77 computation based on the run-length encoded
BWT. Algorithmica, Special Issue on Compact Data Structures, 79:1–26, 2017.

[80] B. Porat and E. Porat. Exact and approximate pattern matching in the streaming
model. In Proc. 50th FOCS, pages 315–323. IEEE Computer Society, 2009.

[81] W. Pugh. Skip lists: A probabilistic alternative to balanced trees. Commun. ACM,
33(6):668–676, 1990.

[82] R. Raman, V. Raman, and S. S. Rao. Succinct Dynamic Data Structures, pages
426–437. Springer Berlin Heidelberg, Berlin, Heidelberg, 2001.

[83] A. Rao and A. Yehudayoff. Communication Complexity (Early Draft). https:
//homes.cs.washington.edu/~anuprao/pubs/book.pdf, 2018.

[84] W. Rytter. Application of Lempel-Ziv factorization to the approximation of grammar-
based compression. Theoretical Computer Science, 302(1-3):211–222, 2003.

https://homes.cs.washington.edu/~anuprao/pubs/book.pdf
https://homes.cs.washington.edu/~anuprao/pubs/book.pdf

88 COMPRESSED AND EFFICIENT ALGORITHMS AND DATA STRUCTURES FOR STRINGS

[85] S. C. Sahinalp and U. Vishkin. Efficient approximate and dynamic matching of
patterns using a labeling paradigm. In Proceedings of 37th Conference on Foundations
of Computer Science, Oct 1996.

[86] P. Sena and S. Venkateshb. Lower bounds for predecessor searching in the cell
probe model. J. Comp. Syst. Sci., 74:364–385, 2008.

[87] T. A. Starikovskaya. Communication and streaming complexity of approximate
pattern matching. In Proc. 28th CPM, pages 13:1–13:11, 2017.

[88] T. A. Starikovskaya. Streaming and property testing algorithms for string processing.
26th London Stringology Days, 2018.

[89] I. Tomohiro. Longest common extension with recompression. 2017.

[90] A. C.-C. Yao. Some complexity questions related to distributive comput-
ing(preliminary report). In Proc. 11th STOC, pages 209–213, 1979.

[91] J. Ziv and A. Lempel. A Universal Algorithm for Sequential Data Compression. IEEE
Transactions on Information Theory, (3), 1977.

[92] J. Ziv and A. Lempel. Compression of individual sequences via variable-rate coding.
IEEE Trans. Inf. Theory, 24(5):530–536, 1978.

	Preface
	Abstract
	Danish Abstract
	Contents
	Introduction
	Overview
	Preliminaries
	Model of Computation
	LZ77
	Grammar Compression

	Compression, Compact Representations and Succinct Data Structures
	Chapters 2 & 3: Compressed Indexing
	Chapter 4: Fast Lempel–Ziv Decompression in Linear Space
	Chapter 5: Compressed Communication Complexity of Longest Common Prefixes
	Chapter 6: Fast Dynamic Arrays
	Future Work

	Time-Space Trade-Offs for Lempel–Ziv Compressed Indexing
	Introduction
	Our Results

	Preliminaries
	Compact Tries
	Karp–Rabin Fingerprints
	Range Reporting
	LZ77

	Prefix Search
	Data Structure
	Finding an x-range Vertex
	From x-range to Exit Vertex
	Multiple Substrings

	Distinguishing Occurrences
	Long Primary Occurrences
	Data Structure
	Searching
	Prefix Search Verification

	Short Primary Occurrences
	The Secondary Index
	The Compressed Index
	Trade-offs
	Preprocessing

	Compressed Indexing with Signature Grammars
	Introduction
	Our Results
	Technical Overview

	Preliminaries
	Signature Grammars
	Signature Grammar Construction
	Properties of the Signature Grammar

	Long Patterns
	Data Structure
	Searching
	Correctness
	Complexity

	Short Patterns
	Semi-Short Patterns
	Data Structure
	Searching
	Analysis

	Randomized Solution

	Fast Lempel-Ziv Decompression in Linear Space
	Introduction
	Our contributions
	Related work

	Preliminaries
	Lempel-Ziv 77 Algorithm
	Mergeable Dictionary

	LZ77 Induced Context
	LZ77 Compressed Context
	SLP and Word Compressed Context

	LZ77 Decompression
	Applications in Pattern Matching
	Conclusions

	Compressed Communication Complexity of Longest Common Prefixes
	Introduction
	Definition and Preliminaries
	Noisy Search
	Communication Protocol for Lcp
	The Lcpk case

	Self-referencing LZ77
	`39`42`"613A``45`47`"603ALcpk in the self-referential case.

	Obtaining a Trade-Off via D-ary Search.

	Fast Dynamic Arrays
	Introduction
	Preliminaries
	Tiered Vectors
	Improved Tiered Vectors
	Implicit Tiered Vectors
	Lazy Tiered Vectors

	Implementation
	C++ Templates

	Experiments
	Comparison to C++ STL Data Structures
	Tiered Vector Variants
	Width Experiments
	Height Experiments
	Configuration Experiments

	Conclusion

	Appendix
	Mergable Dictionaries

	Bibliography

