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Thermal conductivity of sandstones from Biot’s coefficient

Tobias Orlander1, Eirini Adamopoulou1, Janus Jerver Asmussen1, Adam Andrzej Marczyński1,
Harald Milsch2, Lisa Pasquinelli1, and Ida Lykke Fabricius1

ABSTRACT

Thermal conductivity of rocks is typically measured on core
samples and cannot be directly measured from logs. We have
developed a method to estimate thermal conductivity from
logging data, where the key parameter is rock elasticity. This
will be relevant for the subsurface industry. Present models
for thermal conductivity are typically based primarily on poros-
ity and are limited by inherent constraints and inadequate char-
acterization of the rock texture and can therefore be inaccurate.
Provided known or estimated mineralogy, we have developed a
theoretical model for prediction of thermal conductivity with
application to sandstones. Input parameters are derived from
standard logging campaigns through conventional log interpre-
tation. The model is formulated from a simplified rock cube en-
closed in a unit volume, where a 1D heat flow passes through
constituents in three parallel heat paths: solid, fluid, and

solid-fluid in series. The cross section of each path perpen-
dicular to the heat flow represents the rock texture: (1) The cross
section with heat transfer through the solid alone is limited by
grain contacts, and it is equal to the area governing the material
stiffness and quantified through Biot’s coefficient. (2) The cross
section with heat transfer through the fluid alone is equal to the
area governing fluid flow in the same direction and quantified
by a factor analogous to Kozeny’s factor for permeability.
(3) The residual cross section involves the residual constituents
in the solid-fluid heat path. By using laboratory data for outcrop
sandstones and well-log data from a Triassic sandstone forma-
tion in Denmark, we compared measured thermal conductivity
with our model predictions as well as to the more conventional
porosity-based geometric mean. For outcrop material, we find
good agreement with model predictions from our work and with
the geometric mean, whereas when using well-log data, our
model predictions indicate better agreement.

INTRODUCTION

Thermal conductivity λ is a key parameter in subsurface appli-
cations such as geothermal plants where variations in thermal con-
ductivity can be essential for planning and decision making. Core
materials available for laboratory measurement are, however, often
limited and thermal conductivities are therefore mostly estimated
from empirical relations or from theoretical models based on con-
tributions from constituents and related to the rock texture. Follow-
ing the inherent constraints of purely empirical relations, such
relations should be applied with great caution. However, because
tools developed for in situ measurements of thermal conductivity
(e.g., Freifeld et al., 2008; Moscoso Lembcke et al., 2016) are not
yet part of standard logging campaigns, prediction from other

downhole parameters is still required. Published work on log-
ging-based empirical predictions includes Hartmann et al. (2005)
and Fuchs and Förster (2014), where the latter do an extensive
review of the previous work.
The published research on modeling thermal conductivity with

application to powders, soils, as well as to porous rocks is compre-
hensive. Abdulagatova et al. (2009) list a large number of widely
used theoretical (and empirical) models for λ. In general, the theo-
retical models use porosity ϕ to quantify volume of solid and fluid,
and it is well-established that porosity is one of the key parameters
classifying porous rocks for theoretical modeling. Further, provided
that the constituent thermal conductivity is known, porosity also
governs the physical maximum and minimum bounds of λ by
arranging the constituents in purely serial or parallel heat paths with
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relation to the direction of heat transfer. The physical bounds are
denoted as Wiener (1904) bounds and are illustrated by Tong et al.
(2009), but for sandstones, these bounds are generally too wide be-
cause only a bare minimum of the rock texture is captured solely
through porosity. Although without physical meaning, the geomet-
ric mean is similarly porosity based but in general is closer to the
measured data (e.g., Woodside and Messmer, 1961a, 1961b; Sass
et al., 1971; Brigaud and Vasseur, 1989; Troschke and Burkhardt,
1998) and hence is regarded a good approximation. The geometric
mean is also used as a mixing law for computation of an overall
solid thermal conductivity when more than one solid constituent
is taken into account (e.g., Fuchs and Förster, 2014). Using porosity
and constituent thermal conductivity, the Hashin-Shtrikman formu-
lation for isotropic and homogeneous mixtures (Hashin and Shtrik-
man, 1962) provides narrower bounds for sandstones compared
with the Wiener bounds (Zimmerman, 1989), but it still only cap-
tures a little of the rock texture. Formulations of the geometric
mean, Wiener bounds, and Hashin-Shtrikman bounds are found in
Appendix A.
With respect to thermal conductivity, describing the rock texture

solely through volume fractions is incomplete and, hence, methods
for prediction of thermal conductivity accounting for the effects re-
lated to the texture of constituents are the subject of several studies
including quantification of pore geometry (e.g., Huang, 1971), grain
size (e.g., Midttomme and Roaldset, 1998), and grain shape (e.g.,
Revil, 2000). Adding information on the geometry of pores and sol-
ids improves the description of the rock texture. However, because
the sizes of pores and solids are typically smaller than a represen-
tative volume, emphasis should be on describing the cross sections
between single pores and single solids, respectively. Relating physi-
cal properties such as electrical resistivity (e.g., Revil, 2000) and
elastic wave velocity (e.g., Horai and Simmons, 1969; Zamora et al.,
1993; Kazatchenko et al., 2006) to thermal conductivity indirectly
relates the cross sections between single pores and single
solids, respectively. Because the thermal conductivity of the solid
constituents found in most sandstones is typically several orders of
magnitude larger than that of the saturating fluid, which for most
practical applications is water, the cross section governing heat
transfer is presumably that of the solid and this should hence be
quantified. In general, the cross section governing solid heat transfer

is evaluated as particle to particle contacts, and this has mostly been
addressed through geometric simplification of the solid rock texture
within a representative volume and hence not by a measurable
parameter (e.g., Deissler and Eian, 1952; Kunii and Smith, 1959;
Woodside andMessmer, 1961b; Batchelor and O’Brien, 1977; Had-
ley, 1986; Hsu et al., 1994). Other studies are based on the concept
of sedimentary rocks as a continuous but porous and/or cracked
mineral (e.g., Gegenhuber and Schoen, 2012; Pimienta et al., 2014).
This leads to a general concept of solid particle contacts only being
accessible through mathematical modeling and not through mea-
surements.
We follow other studies (e.g., Woodside and Messmer, 1961a;

Sass et al., 1971; Huang, 1971; Tarnawski and Leong, 2012) sug-
gesting modeling of 1D heat transfer through simplification of the
rock structure in three parallel heat-transfer paths: solid, fluid, and
solid-fluid in series. In the proposed model, we constrain the three
heat paths in a unit volume and we determine the cross sections
governing all three heat paths to capture the rock texture and its
implications on thermal conductivity. In its simplest form, the
model uses a minimum number of input parameters to describe
the modeled rock, hence posing the maximum simplification, but
this provides extensions to include a mixed mineralogy for the case
in which detailed mineralogy is known.
We introduce Biot’s coefficient (Biot, 1941) derived from min-

eralogy, bulk density, and elastic wave velocities as a measure of
the solid heat transfer cross section, so we follow the conceptual
idea of relating material stiffness to thermal conductivity (Horai and
Simmons, 1969; Zamora et al., 1993; Kazatchenko et al., 2006; Ge-
genhuber and Schoen, 2012; Pimienta et al., 2014). As a measure of
the cross section governing heat transfer through the pore space, we
introduce a geometric factor modeled from porosity according to
Mortensen et al. (1998), quantifying the proportion of the pore
space that is open for fluid flow in a given direction and we assumed
it to be identical to the pore space open for heat transfer. Residuals
of respectively solid and pore volumes are arranged in series, which
constitutes a third path of heat transfer. Then, we proceed to model
thermal conductivity for dry and water-saturated sandstones using
laboratory and logging data.

THEORY

Cross sections governing heat transfer

We envisage sandstones as single grains cemented together con-
stituting a porous frame (Figure 1), and we associate solid heat
transfer with rock texture through mechanical stiffness and we pro-
pose solid heat transfer cross sections equal to solid stiffness cross
sections.
In the concept of effective stress and provided a drained case,

Biot’s coefficient α quantifies the amount of fluid pressure P, which
counteracts an external stress σ and reduces resulting elastic com-
paction. As illustrated by Fabricius (2010) and in Figure 1, we in-
terpret the residual of α as a quantification of the grain-to-grain
contact area perpendicular to a given direction. The relation be-
tween α and the grain contact areas is discussed by Gommesen et al.
(2007) and Alam et al. (2012) establishing that quantifying Biot’s
coefficient directly provides quantification of the grain-to-grain
contact area equal to (1 – α).
Provided knowledge of the mineral bulk modulus Kmin, Biot’s

coefficient is defined as

PP

1

1 – 

Figure 1. Conceptual sketch of a porous sedimentary rock with
saturating fluid (gray) and sediment particles (white) connected
by contact cement (after Fabricius, 2010). The effective stress is
σ 0 ¼ σ − αP because the pore pressure is diminished by α because
it only acts on a part of the cross-sectional area.
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α ¼ 1 − Kdra∕Kmin; (1)

where Kdra is the drained bulk modulus, i.e., the frame bulk modulus
Kframe. The term Kdra is typically determined from compressional
and shear moduli of rocks in the dry state as Kframe ¼ Kdry ¼
Mdry − 4∕3Gdry, where Mdry ¼ ρdryV2

P;dry and Gdry ¼ ρdryV2
S;dry are

compressional and shear moduli and ρdry, VP;dry, and VS;dry are the
dry density, dry compressional, and dry S-wave velocities, respectively.
Alternatively, Kdry and Mdry can be approximated through fluid
substitution of data obtained for rocks in the saturated state by, e.g.,
Gassmann (1951) for Kdry and the formulation by Mavko et al. (2009)
forMdry. In many cases, S-wave velocities are not available or are con-
sidered unreliable and, as a consequence, estimations of Biot’s coef-
ficient are often limited to an approximated value δ, based on
compressional moduli as

δ ¼ 1 −Mdry∕Mmin; (2)

where Mmin is the compressional mineral modulus.
We approach quantification of the cross sections of the pore space

open for heat transfer through permeability and Kozeny’s (1927)
equation, which is formulated as

k ¼ c
ϕ3

Sb
; (3)

where k is the permeability, ϕ is the porosity, Sb is the specific sur-
face with respect to the bulk volume, and c is the Kozeny’s factor
accounting for effects of shielded pore space and heterogeneous dis-
tributions of specific surface.
Kozeny’s model of a porous medium uses parallel circular tubes

in one direction and is in line with Poiseuille’s law. By assuming the
pore space as 3D orthogonal interpenetrating circular tubes, Mor-
tensen et al. (1998) apply Poiseuille’s law to derive the porosity
open to flow in only one direction and derive an expression for Ko-
zeny’s factor assuming a homogeneous distribution of specific sur-
face, hence, only accounting for shielding effects obstructing fluid
flow. The expression by Mortensen et al. (1998) is

cM ¼
�
4 cos

�
1

3
arccos

�
ϕ
64

π3
− 1

�
þ 4π

3

�
þ 4

�
−1
; (4)

where ϕ is the porosity. Because the expression by Mortensen et al.
(1998) has a different physical meaning than Kozeny’s factor, it is
denoted as cM . Because the proposed model does not include effects
of a specific surface, we introduce cMϕ as a quantification of the
cross section governing heat transfer solely through the pore space.

A model of thermal conductivity

For modeling thermal conductivity in sandstones, we establish,
within a unit volume, cross sections of (1) solid heat transfer,
(2) heat transfer through the pore space, and (3) heat transfer
through the residual of constituents from (1) and (2). Combined
with constituent volumes, (1−3) constitute the quantitative mini-
mum of descriptors for a representative elementary volume of a
sandstone. We propose the conceptual simplification of (1−3)
for a sandstone illustrated in Figure 2a. In addition, we acknowl-
edge that for most of the sandstones, the solid consists of several
minerals. However, as illustrated in Figure 2a, only one solid is

assumed to be load bearing. Hence, we introduce (4) as Vsus defined
as the solid nonload-bearing fraction of the total solid volume and
assume (4) to be part of (3), which should be modeled as a serial
connection. Assuming a 1D and purely conductive heat flow, so that
the presumably minor contributions from convection and radiation
are neglected, we relate (1–4) to the bulk volume and we distribute
all in three parallel heat paths and within the boundaries of a unit
cell (Figure 2b). In line with the previous section, we propose
(1 − α) and cMϕ as quantification of the solid heat transfer cross
section, respectively, the pore space heat transfer cross section (with
ϕ and (1 − ϕ) as the total pore volume and solid volume, respec-
tively) and we derive (α − ϕ) and (1 − cM)ϕ as residual volumes of
the solid and pore space, respectively. The residual load-bearing
solid is derived as (α − ϕ − Vsus) and is arranged in series with
Vsus and the residual pore space (Figure 2a).
From the proposed distribution (Figure 2b) and by assuming a

constant thermal conductivity of each constituent, we derive λ from
thermal conductivity in the three parallel heat paths by formulating
the thermal resistance R of the paths constituting a total thermal
resistance Rtot as

1

Rtot

¼ 1

R1

þ 1

R2

þ 1

R3 þ R4 þ R5

; (5)

1

1

1

R1

1 – 

R5

 –  – Vsus

R4

Vsus

R3

(1 – cM)

R2

cM

Nonload bearing solid 
in suspension with 

residual pore space 

Load-bearing solid

Direction of
heat flow

Load-bearing solid

Pore space
Nonload bearing solid

Grain contact, (1 – ),
 is Biot’s Coefficient

Pore space open for flow
estimated as cM  where cM is

accounting for shielding effects
 in the pore space

b)

a)

1

1 –

c
M

 – c
M

(1 – cM)

M

Vsus

M

α

α

α
α

α

α

α
α

α

α

 –  – Vsus

 – c

 – c

 – cM

Figure 2. (a) Conceptual illustration of a sandstone. (b) Partitioned
rock unit volume showing distribution of the load-bearing solid, the
nonload-bearing solid, the connected pore space, and the residual
pore space. The figure shows the length scale and volumes of the
constituents.
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where R1, R2, R3, R4, and R5 are

R1 ¼
1

ð1 − αÞλlbs
; R2 ¼

1

cMϕλf
;

R3 ¼
ð1 − cMÞϕ

ðα − cMϕÞ2λf
; R4 ¼

Vsus

ðα − cMϕÞ2λsus
;

R5 ¼
α − ϕ − Vsus

ðα − cMϕÞ2λlbs
; (6)

and λlbs, λsus, λf are the thermal conductivities of the load-bearing
solid, the suspended nonload-bearing solid, and the saturating liquid
or gaseous fluid, respectively. For a unit volume, Rtot is equal to
1∕λ, where λ is the effective thermal conductivity. Solving Rtot

for λ equals

λ ¼ ð1 − αÞλlbs þ cMϕλf

þ ðα − cMϕÞ2
�ð1 − cMÞϕ

λf
þ Vsus

λsus
þ α − ϕ − Vsus

λlbs

�
−1
;

ðα − ϕ − VsusÞ ≥ 0: (7)

When two or more solids are suspended, Vsus and λsus must be in
accordance with

Vsus ¼
Xn
i¼1

Vsol;i and λsus ¼
Xn
i¼1

λsol;i; (8)

where Vsol, λsol, n, and i are the solid volume, thermal conductivity
of suspended solid, the total number of nonload-bearing solids, and
the ith solid, respectively.

Figure 3 shows an example of model predic-
tions from equation 7 illustrating curves for λsus
equal to 1.3 and 6 Wm−1 K−1, Vsus correspond-
ing to 0.05, 0.2, 0.4, and λlbs ¼ 7.7 Wm−1 K−1.
No significant changes in model predictions are
observed for changes in Vsus and λsus in the dry
state (Figure 3a) illustrating λlbs and (1 − α) as
the dominating contribution to λ. Significant
changes in model prediction are observed in the
saturated state for Vsus > 0.05 and λsus ¼
1.3 Wm−1 K−1 (Figure 3b), illustrating a signifi-
cant influence of the thermal conductivity of the
saturating fluid on λ, especially with the increas-
ing volume of suspended solids with low thermal
conductivity.

MATERIALS AND METHODS

We used two sets of data for validation of the
proposed model (1) from laboratory measure-
ments on outcrop sandstones and (2) downhole
data from a logging campaign and corresponding
core material.

Outcrop material

The studied outcrop sandstones originate from
(1) Fontainebleau, France, (2) Castlegate, USA,
(3) Bentheim, Germany, (4) Obernkirchen, Ger-
many, and (5) Berea, USA, and were selected,
such that a reasonable range of porosity and stiff-
ness are represented. The bulk mineralogical
composition as derived from X-ray diffraction
(XRD) analysis conducted on side trims shows
the dominance of quartz in all samples (Table 1).
Clay minerals were detected by XRD in Castle-
gate, Obernkirchen, and Berea samples, and they
are listed as a single mineral group in Table 1. No
other minerals except quartz were detected for
Bentheimer sandstone samples by XRD and the
specific surface measured by the N2 adsorption
(the BET method, Brunauer et al., 1938) listed
for Bentheimer in Table 1 likewise does not in-
dicate the presence of clay minerals. However,

Figure 3. Model predictions of thermal conductivity from equation 7 as a function
of porosity using λlbs ¼ 7.7 Wm−1 K−1 for quartz (Clauser and Huenges, 1995) and
fixed values of α ¼ 0.7 and cM after equation 4. Labels on lines indicate Vsus ¼
0.05, 0.2, and 0.4, respectively. (a) In the dry state, assuming air as saturating fluid
and λf ¼ 0.024 Wm−1 K−1 (Beck, 1976), (b) in the water-saturated state, assuming
λf ¼ 0.62 Wm−1 K−1 equal to that of pure water (Beck, 1976).
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backscatter electron micrograph (BSEM) images from sidetrims
show the presence of kaolinite suggesting that kaolinite is only lo-
cally distributed as clusters within the pore space (Figure 4f). In
accordance with Peksa et al. (2017), a clay content of 2.7 mass
% is consequently listed for Bentheimer.
Figure 4a–4f shows BSEM images of sidetrims from the studied

geologic material. No clay minerals were detected in Fontainebleau
samples (Figure 4a–4c). Kaolinite was detected in the Castlegate,
Bentheimer, Obernkirchen, and Berea samples (Figure 4d–4h). Fig-
ure 4a and 4b shows that weathering of Fontainebleau samples with
indices 1 or 2 has led to weak grain contacts. Quartz is the load-
bearing mineral in all samples, including the Gassum Formation
(GF) sandstone (Figure 4i), which is one formation studied from
downhole data.

Experimental methods

Outcrop samples were prepared for laboratory measurement of
thermal conductivity in two stages: (1) 75 mm diameter cores were
used in the dry state and at atmospheric pressure for measurements
of dry thermal conductivity λdry using an ISOMET 2104 heat-trans-
fer analyzer instrument from Applied Precision Ltd. at an experi-
mental accuracy of 10%, and (2) 38 mm diameter plugs were
cored from the larger cores and saturated with
demineralized water in vacuum followed by pres-
surized water submersion. In the saturated state
and at atmospheric pressure thermal conduc-
tivity, λsat was measured using a C-Therm TCi
instrument from C-THERM TECHNOLOGIES
at GFZ, Germany and with 5% accuracy. Applied
instruments both use a transient plane source
placed directly on sample material to determined
thermal conductivity. The sample material was
oven dried (60°C) and equilibrated at ambient
temperature before measurements of dry density,
grain density, and gas-porosity by N2 expansion,
Klinkenberg corrected N2 permeability, as well
as elastic wave velocities. Elastic wave velocities
were measured in the dry state with a central
frequency of approximately 0.2 MHz for the
P-wave VP, and 0.5 MHz for the S-wave Vs,
and at hydrostatic stress σh of 40 MPa.

Measured physical parameters
of outcrop material

Physical properties measured on outcrop
material are shown in Table 2. In accordance with
XRD analysis, grain densities close to 2.66 g∕cm3

(Table 2) correspond to the dominance of quartz in
all outcrop samples (Table 1).

Logging data and core material
from ST-18

Downhole data and the corresponding core
material used for model validation originate from
an exploration well denoted ST-18 and located
on mid Zealand near Stenlille, Denmark. The
logging campaign conducted on ST-18 included

bulk density, electrical resistivity, natural gamma ray (GR), and P-
wave velocityVP in the depth range from 1250 to 1700m (Figure 5).
The shale interval in ST-18 from 1250 to 1580 m represents the
Fjerritslev Formation (FF). Solid volumes of the FF consist of ap-
proximately 40% quartz silt, 51% clay minerals dominated by illite
and kaolinite and 9% other minerals and with clay being the load-

Figure 4. (a-h) BSEM images of polished thin sections from side trims of Fontaine-
bleau, Castlegate, Bentheimer, Obernkirchen, and Berea sandstones. (i) Polished thin
section of Gassum sandstone. Q, quartz; F, feldspar; and K, kaolinite.

Table 1. Mineral content from quantitative XRD analysis
and specific surface by BET on outcrop material.

Formation Quartz Feldspar Clay
BET,

specific surface

Mass % of total solid m2∕g

Fontainebleau 100 — — 0.03

Castlegate 95.4 1.1 3.5 1.72

Bentheimer 95.3 4.7 (2.7)3 0.31

Obernkirchen 96.0 — 4.0 1.06

Berea 95.0 — 5.0 1.50

3Peksa et al. (2017).
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bearing mineral (Mbia et al., 2014). The interval from 1560 to
1700 m represents the GF and consists of sandstone with a series
of clayey interlayered sections. According to Kjøller et al. (2011),
the solid volume of the Gassum sandstone is dominated by 85%
quartz and small amounts of feldspar and kaolinite (Figure 4i).
Thermal conductivity λamb was measured on the surface of the

slabbed core of ST-18 in an ambient state using the same instrument
as for λdry of outcrop material.

RESULTS

Thermal conductivity of clay constituent

In sandstones, clay minerals often constitute a nonload-bearing
mineral and the clay mineral thermal conductivity λclay would typ-
ically represent λsus as a model input. However, because of the small
geometric size of the mineral particles, it is to the authors’ best
knowledge currently experimentally impossible to measure thermal
conductivity of a single clay mineral. In the literature, values of λclay
are given in the range from 1.3 to 3 Wm−1 K−1 (Horai, 1971; Brig-
aud and Vasseur, 1989; Poelchau et al., 1997), but they represent
modeled values typically derived by extrapolating data for porous

clay to zero porosity. Figure 6 shows the experimental results of
thermal conductivity for a series of clay samples (Brigaud and Vas-
seur, 1989). The samples are classified into water-saturated natural
clays and recompacted samples of clay mineral powders, which on
average contain 93% water and 7% air saturation in the pore space
(Brigaud and Vasseur, 1989). Measured thermal conductivity of re-
compacted samples is hence most likely lower than would be expected
for water-saturated samples. For use in the proposed model, we derive
an estimated range of λclay by using the data of recompacted samples
from Brigaud and Vasseur (1989). Assuming full water saturation and
using the lower Wiener bound in line with the model assumption of
nonload-bearing minerals being in suspension with the saturating
fluid, we adjust λclay to enclose the data and thus we deduct the range
of λclay at zero porosity (Figure 6). At zero porosity, the range of λclay
becomes 1.3 − 6.0 Wm−1 K−1 (Figure 6).

Outcrop material

Bulk and compressional moduli derived from density and
ultrasonic velocities (Table 2) are shown in Table 3. Assuming a pure
quartz matrix, Biot’s coefficients α and δ are derived from equations 1
and 2, respectively, using Kmin andMmin of respectively 37 GPa after

Table 2. Physical properties of the outcrop sample material.

Grain density Dry density Porosity Permeability VP VS TC9 saturated TC9 dry

ρmin ρdry ϕ k σh ¼ 40 MPa λsat λdry

cm3∕g cm3∕g – m2 km∕s Wm−1 K−1

F1.14 2.66 2.36 0.104 1.34 × 10–13 5.02 3.30 5.92 2.76

F1.24 2.65 2.46 0.071 1.72 × 10–14 5.34 3.51 6.08 2.90

F2.14 2.65 2.38 0.084 3.75 × 10–14 5.20 3.41 5.92 1.81

F2.24 2.66 2.32 0.085 3.86 × 10–14 5.18 3.45 6.06 2.14

F3.14 2.65 2.52 0.047 6.9 × 10–16 5.65 3.85 6.32 5.74

F3.24 2.65 2.52 0.046 5.9 × 10–16 5.67 3.86 6.31 5.75

F3.34 2.65 2.53 0.047 6.9 × 10–16 5.22 3.56 6.43 5.77

C2.15 2.67 1.91 0.284 3.07 × 10–13 3.17 2.04 2.75 1.75

C2.25 2.67 1.92 0.279 3.13 × 10–13 3.44 2.20 2.86 1.88

C2.35 2.67 1.91 0.284 2.84 × 10–13 3.41 2.15 2.86 1.77

B16 2.67 1.97 0.262 10 3.73 2.45 4.71 2.29

B26 2.67 1.98 0.265 10 3.16 2.44 4.74 2.29

B36 2.67 1.97 0.263 10 3.68 2.84 4.69 2.14

O17 2.67 2.21 0.175 4.86 × 10–13 4.33 2.84 5.39 3.47

O27 2.67 2.15 0.196 7.30 × 10–13 4.19 2.76 5.38 3.46

O37 2.67 2.19 0.175 7.30 × 10–13 4.12 2.75 5.37 3.30

BR18 2.68 2.17 0.190 9.72 × 10–14 4.00 2.62 4.73 2.46

BR28 2.68 2.20 0.193 1.26 × 10–14 4.00 2.60 4.74 2.46

BR38 2.68 2.18 0.186 4.64 × 10–14 4.00 2.60 4.43 2.48

4Fontainebleau.
5Castlegate.
6Bentheimer.
7Obernkirchen.
8Berea.
9Thermal conductivity.
10The expected range of the Bentheimer permeability is 4.9 × 10−13 − 2.9 × 10−12 m2, based on findings of Al-Yaseri et al. (2015) and Peksa et al. (2015).
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Carmichael (1961) and 97 GPa using quartz den-
sity and P-wave velocity after citations in Mavko
et al. (2009) (Table 3).
Crossplots of α and δ from Table 3 show a

good linear correlation (Figure 7) with forced
zero crossing, and only minor difference is ob-
served. Linear correlation is used in cases in
which only the P-wave velocity is available.
A general tendency of increasing thermal con-

ductivity with decreasing porosity is observed for
the outcrop samples (Figure 8). All data fall
within Wiener bounds and in the dry state also
within Hashin-Shtrikman bounds (Figure 8). In
the four Fontainebleau samples with first index
1 or 2 and the highest porosity (Table 2), a dis-
tinct decrease in thermal conductivity from the
saturated to the dry case is observed (Figure 8,
circle). The four samples are outliers and fall
between the geometric mean and the lower
Hashin-Shtrikman bound. The geometric mean
approximately captures sample data in the dry
and saturated states; however, disregarding
outliers, a better fit is found in the dry state in
terms of R2 and root-mean-square (rms) error
(Figure 8). To illustrate the effect of α in this
work (equation 7), we chose two values of α
in Figure 8. In the example, we used (1) cM after
equation 4, (2) quartz as the load-bearing
mineral, (3) a nonload-bearing clay volume
of Vclay ¼ Vsus ¼ 0.05. For constituents, we as-
sumed thermal conductivities of saturating fluids
as in Figure 3, λlbs ¼ 7.7 Wm−1 K−1 for quartz,
and λsus ¼ λclay ¼ 6 Wm−1 K−1 for clay in line
with the upper value found in Figure 6.
Crossplotting the measured thermal conduc-

tivity and Biot’s coefficient yields an increasing
thermal conductivity for decreasing Biot’s
coefficient derived at high stress (Figure 9). Fontainebleau samples
with the first index 1 or 2 plot as outliers in the dry state (Figure 9a,
circle), but not in the saturated state (Figure 9b). Disregarding out-
liers, trend lines show different slopes for the dry and saturated
states, respectively, but in terms of R2 and rms error, we find good
agreement between Biot’s coefficient and thermal conductivity us-
ing linear correlation (Figure 9). Trend lines cross the y-axis at prac-
tically identical values.
Crossplots of modeled (equation 7) and measured thermal con-

ductivity for the outcrop samples are shown in Figure 10. For mod-
eled thermal conductivity, we assumed quartz as the load-bearing
mineral and the remaining solids as clays (Table 1; Figure 4).
We used (1) values of α from ultrasonic velocities (Table 3),
(2) ϕ as listed in Table 2, (3) the clay content listed in Table 1 equal
to Vsus, (4) thermal conductivities of load-bearing solids and satu-
rating fluids identical to the example in Figure 3, and (5) thermal
conductivity of nonload-bearing clay mineral as 6.0 Wm−1 K−1.
With the exception of the four Fontainebleau samples previously
identified as outliers, we find good agreement in terms of rms error
between the measured and modeled thermal conductivity in the dry
and saturated states (Figure 10).

Figure 5. Depth plot from ST-18 of natural GR, electrical resistivity, bulk density, and
P-wave velocity VP.

Figure 6. Thermal conductivity versus porosity of recompacted and
natural clays. Data are from Brigaud and Vasseur (1989). Lines en-
close data of recompacted clay samples by the lower Wiener bound
using λclay ¼ 1.3 Wm−1 K−1, respectively, 6.0 and 0.62 Wm−1 K−1

as thermal conductivity of water.
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Core material from ST-18

Using conventional log interpretation and input from Figure 5,
we derived (1) porosity from density and resistivity logs, (2) clay
volume Vclay with reference to the bulk volume from the GR log as
well as porosity, (3) cM from porosity in accordancewith equation 4,
and (4) δ from fluid substitution through the approximated Gass-
mann’s equation (Mavko et al., 2009) with the compressional
modulus derived from the density and P-wave log and a compres-
sional mineral modulus of 97 GPa as for the outcrop material. The
derived parameters are shown in Figure 11a, in which Biot’s coef-
ficient α was calculated from δ using the linear correlation from
Figure 7 because only P-wave data were logged for ST-18. In gen-
eral, increasing Vclay coincides with decreasing porosity, whereas
decreasing porosity coincides with decreasing Biot’s coefficient.
Biot’s coefficient remains close to 0.8.

Table 3. Derived properties of outcrop sample material.
The value c is derived by solving equation 3 using the inputs
of porosity, permeability (Table 2), and specific surface with
respect to the bulk volume calculated from BET (Table 1).
The value cM is calculated from equation 4 using the input
of porosity (Table 2).

Dry bulk
modulus
Kdry

Dry
compress.
modulus
Mdry

Biot’s
coefficient

α δ
Kozeny’s
factor c cM

σh ¼ 40 MPa σh ¼ 40 MPa

GPa GPa – – – –

F1.111 25.12 59.40 0.32 0.39 0.52 0.19

F1.211 29.73 70.08 0.20 0.28 0.22 0.19

F2.111 27.15 64.09 0.27 0.34 0.29 0.19

F2.211 25.40 62.23 0.31 0.36 0.28 0.19

F3.111 30.50 80.43 0.18 0.17 0.03 0.18

F3.211 31.15 81.33 0.16 0.16 0.03 0.18

F3.311 26.27 68.98 0.29 0.29 0.03 0.18

C2.112 8.61 19.17 0.77 0.80 145 0.22

C2.212 10.34 22.72 0.72 0.77 158 0.22

C2.312 10.32 22.12 0.72 0.77 134 0.22

B113 11.66 27.41 0.68 0.72 16 0.22

B213 8.20 19.72 0.78 0.80 16 0.22

B313 11.09 26.65 0.70 0.73 16 0.22

O114 17.65 41.33 0.52 0.57 4.9 0.21

O214 15.30 37.74 0.59 0.61 4.9 0.21

O314 14.81 37.00 0.60 0.62 6.7 0.21

BR115 15.66 35.44 0.58 0.63 148 0.21

BR215 15.74 35.62 0.57 0.63 184 0.21

BR315 15.30 34.97 0.59 0.64 77 0.21

11Fontainebleau.
12Castlegate.
13Bentheimer.
14Obernkirchen.
15Berea.
16The range of c is 10–60 using the expected range of permeability of Table 2.

a)

b)

Figure 8. Thermal conductivity versus porosity crossplots of out-
crop samples. Outliers (Font., indices 1 and 2) are marked with a
circle. Error bars larger than the marker size are shown. (a) In the
dry state and (b) in the water-saturated state. Bounds are calculated
using the thermal conductivity of quartz equal to 7.7 Wm−1 K−1

and the values for air and water as in Figure 3.

Figure 7. Biot’s coefficient α versus δ. Data are from Table 3. The
dashed line shows the best linear fit with a forced crossing at zero.
The ranges of the sample porosity are shown. The error bars are
approximately equal to the marker size.
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From equation 7 and by using values from Figure 11a as input,
we modeled thermal conductivity as a function of depth for the well
ST-18 for the dry and the water-saturated cases (Figure 11b). Based
on petrographic evidence (Mbia et al., 2014), we modeled thermal
conductivity assuming clay as the load-bearing mineral in sections
with Vclay∕ð1 − ϕÞ > 0.2. In sections with Vclay∕ð1 − ϕÞ < 0.2,
we assumed quartz to be load bearing. In general, the depth section
from 1250 to 1600 m is identified as clay bearing and the section
from 1600 to 1700 m as quartz bearing. In the clay-bearing section,
modeled values of thermal conductivity range from 2 to 3 Wm−1 K−1

in the saturated case (Figure 11b) showing good agreement with
experimental results by Brigaud and Vasseur (1989) on natural clays
(Figure 6), justifying the use of 6.0 Wm−1 K−1 as clay thermal con-
ductivity. In the same section, values of dry thermal conductivity
range from 0.8 to 2 Wm−1 K−1 (Figure 11b).
The section from 1600 to 1700 m in Figure 11 is magnified in

Figure 12 showing porosity and Biot’s coefficient together with
modeled results of thermal conductivity from this work, the geomet-
ric mean and Hashin-Shtrikman bounds. In the saturated state,
model predictions of this work closely approximate the lower

Hashin-Shtrikman bound. However, this is not the case for the
dry state (Figure 12b and 12c). In the dry state, the geometric mean,
closely approximates model prediction of this work; however, in sec-
tions with decreasing porosity and increasing clay volume, the geo-
metric mean overestimates the thermal conductivity compared with
measurements (Figure 12b). The available data set does not include
thermal conductivity measured at in situ stress conditions, but disre-
garding the potential stress effect, we find good agreement between
modeled and measured thermal conductivities in the dry state, assum-
ing λdry ¼ λamb (Figure 12b). No data of thermal conductivity of
saturated samples are available for ST-18.
Data from Figure 12b of thermal conductivity as modeled by,

respectively, the geometric mean and this work are plotted versus
measured the thermal conductivity (λamb) in Figure 13. Still assum-

a)

b)

Figure 9. Measured thermal conductivity versus Biot’s coefficient
crossplots for the samples listed in Tables 2 and 3. Error bars larger
than marker size are shown. Outliers are indicated with a circle. The
dashed ellipses enclose the Castlegate sample and indicate a pre-
sumable underestimation of α because the applied mineral modulus
is that of pure quartz, not fully in line with findings from the BSEM
images (Figure 4). (a) In the dry state and (b) in the water-saturated
state.

a)

b)

Figure 10. Modeled thermal conductivity (equation 7) versus mea-
sured thermal conductivity. Error bars larger than the marker size are
shown. (a) In the dry state and (b) in the water-saturated state.
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ing λdry ¼ λamb, the geometric mean shows a larger scatter and de-
rived rms error values illustrate a better fit for this work.

DISCUSSION

Any given model designed for prediction of downhole thermal
conductivity and based on logging data must be theoretically based
to secure application beyond the constraints of empirical relations.
Furthermore, it should be judged by its ability to predict within suf-
ficient accuracy, independent of saturating fluid and mineralogy of
the solid constituents.
Our data show that the texture found in sandstones cannot com-

pletely be captured in the dry and water-saturated cases by use of
conventional two-constituent porosity-based models (Figure 8); how-
ever, the geometric mean provides a good approximation. Further,
the data show decreasing thermal conductivity for increasing Biot’s
coefficient illustrating a significant contribution of heat transfer
through the solid, but as the general trends are different for air
and water, the contributions from the saturating fluid are significant
(Figure 9). Four of the studied Fontainebleau samples deviated dis-
tinctly in crossplots both of thermal conductivity with porosity and

Biot’s coefficient (Figures 8 and 9). It is, however, only in the dry
state, which illustrates an influence of saturating fluid on the solid
heat transfer, when grain contacts are weak or nonexisting (Figure 4a
and 4b) causing insufficient surface contact between the sample
material and the measuring sensor. When quantifying regressions
and model predictions, we disregard outliers in the dry case, but
not for saturated samples. The discrepancy in counted samples (n)
does, however, not change the outcome because saturated values
of thermal conductivity measured on Fontainebleau samples range
within 0.5 Wm−1 K−1.
For outcrop specimens, we derived Biot’s coefficient at a hydro-

static stress level of 40 MPa corresponding to a presumable maxi-
mum contact area between grain contacts, and with the exception of
the mentioned Fontainebleau samples in the dry state, we observed
good agreement with the experimental results, and compared with
the geometric mean, differences in the rms error are minor (Figures 8
and 10). This indicates that at the applied boundary conditions, the
solid heat transfer cross section is equal to that of the grain contacts
(Figure 10). This justifies the applicability of using material stiff-
ness for prediction of thermal conductivity as was proposed by, e.g.,
Horai and Simmons (1969), Zamora et al. (1993), Kazatchenko et al.

a) b)

Figure 11. (a) Depth plot of derived porosity, clay volume (Vclay), cM and Biot’s coefficient (α). (b) Modeled thermal conductivity in the dry
and saturated states of well ST-18 as a function of depth using input from Figure 11a, λclay of 6 Wm−1 K−1 and additional constituent thermal
conductivities as in Figure 2.
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(2006), Gegenhuber and Schoen (2012), and Pimienta et al. (2014),
but with the use of empirical relations or empirical parameters.
The weak grain contacts found in outliers of Fontainebleau samples
(Figures 8a, 9a, and 10), illustrate the discrepancy between the
boundary conditions at which the thermal conductivity is measured,
respectively, modeled. The discrepancy causes an overestimation of
the physical solid heat transfer controlled by the weak grain contacts
when the thermal conductivity is modeled from Biot’s coefficient
and thereby maximum closure of the grain contacts. Our data set does
not include the possibility for quantification of discrepancies in the
boundary conditions between the input for the modeled and the mea-
sured thermal conductivities because the latter was only measured at
ambient conditions. However, Horai and Susaki (1989) and Abdula-
gatova et al. (2009) show an order of 0.1 Wm−1 K−1 increase in ther-
mal conductivity following a 40 MPa stress increase for sandstones
with intact grain contacts. In contrast, Lin et al. (2011) show an in-
crease in the order of 1 − 2 Wm−1 K−1 for Rajasthan sandstone,
Japan, Shirahama sandstone, India, and Berea sandstone, USA, in
the approximate stress range, but with a dependency of the saturating
fluid. In general, the presumable increase in thermal conductivity
due to stress is not believed to change the finding that the solid heat
transfer cross section is equal to the cross section governing the solid
stiffness in cases in which weathering or tensile stress-induced micro-
cracks is limited (Figure 10).

rms error

rms error

Figure 13. Measured thermal conductivty versus modeled thermal
conductivity. The round and square markers show the modeled re-
sults of, respectively, the geometric mean and this work. Data are
from Figure 12b.

a) b) c) Figure 12. Depth plots of section from 1600 to
1700 m showing porosity, Biot’s coefficient,
and modeled thermal conductivities from geomet-
ric mean, the Hashin-Shtrikman bounds, and this
work. (a) In situ porosity and Biot’s coefficient.
(b) In the dry state, further with laboratory mea-
sured data points at ambient conditions. (c) In
the water-saturated state.
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The heterogeneity in distribution of specific surface in the studied
sandstones containing clay is illustrated by the range of derived val-
ues for Kozeny’s factor c. No effect of specific surface is included in
the proposed model, but only shielding effects obstructing direct
heat transfer in the pore space. This emphasizes the importance of
using cM in the modeling of thermal conductivity and not Kozeny’s
factor c.
Predictions of thermal conductivity from logging data of the in-

vestigated shale formation range within experimental values found
in the literature, justifying the use of clay thermal conductivity two
to four times those published elsewhere (e.g., Horai, 1971; Brigaud
and Vasseur, 1989; Poelchau et al., 1997) (Figures 3, 6, and 11b).
Further, in the studied sandstone formation, we see a good agree-
ment between modeled and measured thermal conductivity (Fig-
ure 12) justifying the proposed model and its applicability in
downhole logging also in cases with a lack of S-wave data, such
as the present because the correction from δ to α is minor (Figure 7).
Compared with the geometric mean, the proposed model provides
more accurate estimates of thermal conductivity in general (Fig-
ures 12 and 13), but, especially in the clayey sandstone sections
with low porosity (Figure 12a and 12b), our model provides a good
agreement with experimental results, further justifying the applied
value of clay thermal conductivity.

CONCLUSION

We used laboratory and logging data to validate a theoretical
model of thermal conductivity with application to sandstones. The
proposed model includes quantifications of solid and fluid heat trans-
fer cross sections derived from measurable parameters, and it is able
to predict thermal conductivity with good agreement to experimental
results using either laboratory or logging data as input, hence show-
ing an improvement compared with porosity-based models. Further,
because input data are derived from well-known physical properties,
constraints of locality, implicit when using empirical relations, are
removed. The model is able to address mixed mineralogy provided
that the detailed mineralogy is known but it is, however, limited to a
single load-bearing mineral. The obtained results showed that with
closure of open grain contacts by stress increase, heat transfer
through the solids can be estimated through Biot’s coefficient.
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APPENDIX A

FORMULATION OF GEOMETRIC MEAN, WIENER
BOUNDS, AND HASHIN-SHTRIKMAN BOUNDS

In this appendix, we summarize formulations of the geometric
mean, Wiener bounds, and Hashin-Shtrikman bounds because
the proposed model is compared with these. For a two-constituent
mixture, the geometric mean is formulated as

λgeo ¼ λϕfλ
1−ϕ
s ; (A-1)

where ϕ, λf , and λs are the porosity and thermal conductivity of,
respectively, the fluid and solid constituent.
In accordance with Wiener (1904), the Wiener bounds are for a

two-constituent mixture formulated as

λW;l ¼
�
ϕ

λf
þ 1 − ϕ

λs

�
−1

ðlower boundÞ; (A-2)

λW;u ¼ ϕλf þ ð1 − ϕÞλs ðupper boundÞ; (A-3)

where ϕ, λf , and λs are the porosity and thermal conductivity of,
respectively, the fluid and solid constituent.
In accordance with Hashin and Shtrikman (1962), the lower and

upper Hashin-Shtrikman bounds are for a isotropic and homo-
geneous two-constituent mixture with λs < λf formulated as

λHS;l ¼ λf þ
1 − ϕ
1

λs−λf
þ ϕ

3λf

ðlower boundÞ; (A-4)

λHS;u ¼ λs þ
ϕ

1
λf−λs

þ 1−ϕ
3λs

ðupper boundÞ; (A-5)

where ϕ, λf , and λs are the porosity and the thermal conductivity of,
respectively, the fluid and solid constituent.
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