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ABSTRACT

Wave loading on offshore structures has proven difficult to quantify
through direct full-scale measurements. Therefore, engineers rely on
codes and guidelines, numerical simulations, and scaled experiments
in the design and as-built evaluation process. In this paper, it is
shown that by monitoring the response of the structure and utilizing
Operational Modal Analysis (OMA) it is possible to indirectly
identify loads, occurring in actual conditions. A method employing
modal parameters to establish a response function, which is used
to back-calculate the hydrodynamic wave loading of a structure is
presented. The process of inverting the system matrices is stabilized
by merging the model with linear wave theory and hence constraining
the solution to a scaling function of a predefined load distribution.
The method is validated through a numerical case study and by wave
flume experiments. Both cases are constituted as two-dimensional
loading on a semi submerged cantilever cylinder.

KEYWORDS: Wave Loading; Indirect Measurements; Opera-
tional Modal Analysis; Offshore Structures

INTRODUCTION

In recent years concerning footage from the North Sea have been fu-
elling an intensive investigation lead by Mærsk. The recordings show
plunging breaking waves at the Tyra field in close proximity to the off-
shore structures (Tychsen and Dixen, 2016). It was estimated that the
wave heights were exceeding the 10 000 year return period for abnor-
mal wave design. Questions have been raised whether the load effect
of these extreme waves will compromise the reliability of the struc-
tures at sea.

Although much research has been done in the field of abnormal
and breaking waves, it is evident that more research is needed in the
field of extreme wave loading to offshore structures. Some issues
remain elusive as most methods are based on scaled laboratory ex-
periments. When conducting wave lab experiments, scaling effects
will inevitable be present and especially in the case of breaking waves
(Hughes, 2015).

A new approach - not subjected to scaling limitations for wave load
quantification - is presented in this study. By monitoring the response
of an offshore structure, the structure itself can be used as a live full
scale load cell. This is done by inverse computations from the response
of the structure. Limited research has been done specific to this appli-
cation (Jensen et al., 1992; Perisic et al., 2014), whereas more focus
has been given to indirect methods of e.g. fatigue assessment of off-
shore structures (Noppe et al., 2016; Maes et al., 2016). The indirect
load identification of the wave action is a challenging discipline to ver-
ify, which may be the reason why little work has been done on this in
the past. Input estimation in general is not a new topic as people have
worked with this for many years.

In the late 80’s Karl Stevens wrote an excellent overview on the
topic of indirect load identification (Stevens, 1987). The paper out-
lines the challenges associated with this field of research, but also its
potential. Many different approaches have since been tried out within
the field of input identification. Most of the work done in this context
are based on cases where the input is well defined and hence capable
of verifying the results - either by using impact hammers or by simu-
lation e.g. (Fritzen and Klinkov, 2014; Aenlle et al., 2007; Wang and
Chiu, 2003). In resent years input identification using Kalman filters
has proven successful (Lourens et al., 2012; Hwang et al., 2009; Naets
et al., 2015; Liu et al., 2000; Maes et al., 2017).

In this paper, Operational Modal Analysis (OMA) will be used as
a tool for modal identification of the structures in as-build conditions.
The result from the OMA is used to make a model representation and
this will be the key in deciphering the vibrations of the structure and
hence estimate the wave loading.

The mathematical notation used is denoting matrices by a
double underline and vectors by a single underline. Superscript* is a
complex conjugate and superscriptT is a transposing operation.

THEORY

The response of a linear dynamic system, y(t), is defined as the con-
volution integral between the impulse response function, h(t) and the a
time varying load. (Brandt, 2011). The principle of load identification
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is to measure the response and then de-convolute this expression.

y(t) = h(t)∗ f (t),
∫

∞

−∞

h(τ) f (t − τ) dτ (1)

This integral is more conveniently evaluated in the frequency domain,
so by means of the Fourier transformation Eq. 1 becomes:

Y (ω) = H(ω) F(ω) (2)

here, Y (ω) and F(ω) contain the Fourier coefficients of the response-
and load vectors respectively. H(ω) is referred to as the Frequency
Response Function (FRF). The FRF matrix can be constructed from
either mass-, damping- and stiffness matrices or from modal parame-
ters, which will be the case for this paper.

H(ω) =
N

∑
r=1

(
Qrψr ·ψr

T

iω −λr
+

Q∗
r ψ∗

r ·ψ∗
r

T

iω −λ ∗
r

)
(3)

where, ψr is the mode shape vector for mode r. Qr is a mode shape
scaling constant and λr is the complex pole. The parameters needed
for the FRF matrix - mode shapes and poles - can be experimentally
determined by utilizing the concepts of operational modal analysis.
(Brincker and Ventura, 2015). This is done by monitoring the response
caused from what may be assumed as random excitation. For instance,
in the context of offshore structures: small crested random waves and
a light breeze touching the topside. The ID algorithm of choice can
be applied and the modal parameters can be extracted from the signal.
Both time- and frequency domain techniques exists for this.

Once the FRF matrix is estimated and the response of the structure,
Y (ω), is measured, the load can be calculated. This yields a type of
inverse computation, where the load indirectly can be determined from
measuring the response. Although it seems simple, problems persist
as Eq. 2 is sensitive to truncation errors so when inverting the FRF
matrix, the load estimate quickly becomes erroneous and may appear
as non-physical.

As it was demonstrated by Vigsø et al. (2018) - if the load distribu-
tion is known this can be utilized to constrain the solution and hence
improve the load estimate. This is implemented by separating the load
variable from Eq. 1, into a spacial distribution, f0, and scaling func-
tion, g(t):

f (t) = f0 g(t) (4)

when inserting this definition into Eq. 2 we have

Y (ω) = H(ω) F(ω)

= H(ω) f0 G(ω)

=C(ω) G(ω) (5)

Time variant distributionTime invariant 
distribution

f0 (t + Dt)f0 (t)f0 

a) b) c)

Fig. 1. Principle of spacial distributions, f0.

here, C(ω) is the matrix product of the FRF matrix and the spacial
distribution. The scaling function can now be estimated by a pseudo
inverse operation.

Ĝ(ω) =C†(ω) Y (ω) (6)

The final load estimate is then found by an inverse Fourier transforma-
tion and back substitution into Eq. 4. In order to do this, the spacial
distribution, f0, must be known.

In order to apply this in the context of wave loading of an offshore
structure it may be assumed that the structural loading is solely caused
by water waves. Fig. 1 shows the principle of how the spacial distri-
bution can be defined.

If the wave height is not recorded, the spacial distribution may be
assumed as time invariant - for instance varying between the seabed
and the mean water level as indicated by Fig. 1 a). On the other hand
- if the surface elevation is recorded simultaneously as the response
of the structure, this additional information can be incorporated in the
calculations, Fig. 1 b), c). For instance, taking the same distribution as
in a) and stretching it to follow the surface elevation near the structure
and hence assuming that the loading will occur at the entire wetted
area.

When the spacial distribution of the load is changing in time (case b)
and c)), the procedure for solving the scaling function changes. That is
due to the convolution theorem which states that a product in the time
domain is a convolution in the frequency domain and vice versa. If
we apply the time variant definition of the spacial distribution, Eq. 2
becomes

Y (ω) = H(ω) F(ω)

= H(ω)
(

f0(ω)∗G(ω)
)

(7)

= H(ω)
∫

∞

−∞

f0(ξ ) G(ω −ξ ) dξ (8)

here, ξ is the frequency lag. As seen in the equation; when f0(t) is a
time variant function this yields a more complex problem to be solved.
If the frequency content of the load is known this can be included else
wise the equation can be solved through iteration.

SIMULATION

This simulation case study will demonstrate, that by monitoring the
response of an offshore structure and applying the procedure described
above, it is possible to indirectly estimate the wave load. A plane semi-
submerged cantilever structure exposed to non-breaking waves will be
the scope of this demonstration. The benefits of a simulation is that the
method can be evaluated with as much noise as desired and the result

Random waves

b)a)

Regular waves

Fig. 2. Simulation sea states.
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Fig. 3. Singular value decomposition of the response spectral density.
Data composed using Welch averaging.

can be compared to the precise input and hence indicate how sensitive
the solution is to different assumptions and sources of error.

The simulation is conducted as a plane scenario using an finite ele-
ment (FE) cantilever beam model. The wave loading is evaluated using
linear theory and Wheeler stretching to account for fluid motion above
mean water level (Wheeler, 1969). Although fluid surrounding a struc-
ture is known to retard the response by added mass and damping, for
this simulation, it is assumed that no interaction between the fluid and
structure is present. The drag- and added mass coefficients are set to
1.3 and 1.9 respectively and the loads are evaluated using the Mori-
son equation (Morison et al., 1950). (The coefficients are assumed to
be unknown in the successive load identification). The geometrical
quantities and hydrodynamic properties are selected to resemble the
physical experiment covered by this paper (water depth 0.9 m, struc-
ture diameter 50 mm).

The simulation will be divided into two parts: 1): A simulation of
the system response caused by a series of random waves. This shall
be the basis for the OMA analysis and hence provide estimated modal
parameters needed for the successive analysis of the wave loads. The
random waves are synthesized from a Pierson–Moskowitz spectra with
a peak frequency of 0.5 Hz and a significant wave height of 0.2 m.

2): Next a series with regular waves is simulated and shall be the
basis for the indirect load identification calculations. A wave height of
0.2 m and period of 2 s is chosen as the sea state for the simulation.
This gives a relative wave height of H/h = 0.22 and a wave steepness
of H/L = 0.04. The two different simulation cases are shown by Fig.
2, where a set of five FE-DOFs are chosen as sensor information and
only the response from these are kept for the analysis. The sensors in
Fig. 2 are indicated by squares (� ). For both of the simulation cases,
a noise level of 150 dBW is added to the recorded signal.

Modal identification from random waves

The frequency domain response from 180 seconds of random wave
simulation can be seen in Fig. 3 in terms of singular values (Brincker
and Ventura, 2015). Despite the loading not being perfect white noise,
four modes are revealed in the signal within the frequency band of
0-300 Hz. The modes are peak picked and analysed using the Fre-
quency Domain Decomposition method (Brincker et al., 2000). The
damping estimates are found by applying the Eigensystem Realization
Algorithm (Juang and Pappa, 1985) at a band passed signal near the
resonance frequencies. The modal parameters are listed in Table 1.
Since no fluid/structure interaction is considered, the estimated modal
parameters shall resemble the FE model with deviation only caused by
noise and statistical error. The 4th mode shape from the FE model is
an axial deformation mode and since only horizontal sensor informa-
tion is available for the OMA, this mode cannot be estimated from the
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Fig. 4. Steady state response from top sensor when subjected to
regular wave loading.

Table 1. Modal parameters from simulation case study.

FE model

Mode 1 2 3 4 5
Natural Frequency, ω [Hz] 4.47 39.5 121 180 250
Damping Ratio, ζ [%] 1.80 0.33 0.45 0.61 0.82

OMA estimates

Mode 1 2 3 4 5
Natural Frequency, ω [Hz] 4.46 39.5 122 251
Damping Ratio, ζ [%] 2.07 0.31 0.44 0.82

signal.
Assuming that the structural properties, geometry and material, are

known quantities for the offshore structure. These can be used to make
a new FE model to aid in the mass normalization of the OMA mode
shapes. This FE model can also be used for mode shape expansion
(O’Callahan et al., 1989) in order to obtain a higher resolution near the
splash zone as desired. Now, the obtained modal parameters can be
used to establish the frequency response function for the structure at
actual in-place conditions, Eq. 3.

Load identification

The response due to regular wave loading is seen in Fig. 4. The re-
sponse of the structure will be truncated in terms of the sensor position
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Fig. 5. Load distributions. a) Drag dominated is proportional to
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are shown and compared to the actual input force in the simulation. The windowing is added during post processing.

and noise level though still be of value for the load identification.
Before making the final load identification calculation, the spacial

distribution must be revisited. As the assumed load distribution is of
great importance for the quality of the load estimate this must be se-
lected with care. In principle any reasonable distribution can be used
and for this study, two different distributions will be tried out. They
are shown by Fig. 5. Distribution a) is generated from linear wave the-
ory by assuming velocity squared proportionality at du(z, t)/dt = 0.
Distribution b) is likewise generated from linear wave theory but from
an acceleration proportional assumption at u(z, t) = 0. Information re-
garding water depth, wave height and period are of course needed to
derive these. The normalized z coordinate is 0 at the seabed and 1 at
the water surface. Both the distributions are normalized with a max-
imum value of 1 N/m. Neither of these will perfectly describe the
actual loading used in the simulation, however it is demonstrated that
they yield a reasonable approximation.

Fig. 6 shows the final load estimate for both the time variant and
time invariant approach - recall their definitions from Fig. 1. The
figure shows the total load applied to the structure from the wave ac-
tion. As a general observation, for this type of cantilever structure, the
assumed point of attack for the load distribution is governing for the
load estimate. When the point of attack is assumed to be lower than the
real, this will result in a over estimated load and vice versa. Hence the
two time variant distributions (drag- or inertia dominated) will yield an
absolute lower and upper bound for the estimate respectively and the
span between should be considered as the uncertainty of the estimate.

If the surface elevation is not recorded - hence the distribution is
described as time invariant - this yields an offset in the load estimate
as the point of attack at some instances of time will be too low and at
some instances too high. As seen from the estimates, the two solutions
using stretching of the load distribution, yield a better estimate, than
the time invariant distribution. It is expected that the deviation between
the two methods will increase with the wave height.

EXPERIMENT

An experimental campaign has been conducted in a wave flume at
Newcastle University, UK 2016 (Kristoffersen et al., 2018). A can-
tilever beam made from plexiglass is used for the experiment. The
model is equipped with 7 uni-axial accelerometers; 6 positioned in the
the wave direction and one in the transverse direction. Accelerometers

used are Brüel & Kjær type 4508-B 100mV/g. Three wave gauges are
positioned in line with the model and an average of these are used as a
basis for the surface elevation, η(t). The model and the sensor layout
is sketched in Fig. 7.

The model is resting on a 6 DOF ATI load cell which is used to
record the all the mudline forces. The mean water level of the flume is
0.9 m and the plexiglass model has a diameter of Ø50 mm. The total
height of the model is 1.35 m.

Modal identification

As for the simulation case study; the model is observed at two
stages, 1): Recording the response due to random excitation - the ex-
citation is caused by making some random disturbance to the water
surface surrounding the model. Again the concepts of OMA are de-
ployed and mode shapes and damping estimates of the structure are
obtained. For the frequency band of 0-100 Hz four in-plane bending
modes were identified. Their frequency and damping ratio are listed in
Table 2. The ID algorithm used is the same as for the simulation case
study.

Disregarding the complex part of the mode shapes, an FE model is
made and updated with focus on mode shape correlation and frequency
match. The model is made using beam elements with 6 degrees of
freedom (DOF) at each node. The influence of water is included as
added mass below the mean water level.

As a simplification; proportional damping is assumed and coeffi-

A
ccelerom

eters

ATI 6DOF
load cell

Fig. 7. Experimental setup.
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cients adjusted for a best fit. The FE model is used for mode shape ex-
pansion and mass normalization of the experimentally obtained mode
shapes from the OMA analysis.

A frequency response function (FRF) of the system can yet again
be formulated using Eq. 3. Obviously when using expanded mode
shapes to construct the FRF matrix, the matrix will suffer from rank
deficiency as no new modes are added. However, when the estimate is
afterwards constrained by the assumed load distribution and solved by
the pseudo inverse operation, this stabilizes the result.

Table 2. Modal parameters from experimental case study. (In-plane
modes only).

OMA estimates

Mode 1 2 3 4
Natural Frequency, ω [Hz] 2.12 13.4 44.5 97.7
Damping Ratio, ζ [%] 2.0 4.2 3.6 2.1

Load identification

2): Next step is to generate a wave configuration which can be used
for the load computations. For this, a series of regular waves is chosen
and the structural response is recorded. The waves are synthesized as
linear waves with a period of 1.43 s and a wave height of 114 mm.
These yield a relative wave height of H/h = 0.127 and a wave steep-
ness of H/L = 0.038. The recording is initiated once the wave maker
has reached a steady state output. As for the simulation case study; a
set of two spacial distributions is used for the estimates. The distribu-
tions are generated in the same manner by assuming acceleration- or
velocity proportionality and using linear wave theory. Only the solu-
tion using the time variant approach will be shown, i.e. utilizing the
readings from the wave gauges and hence stretching the assumed load
distribution to always cover the wet surface of the pile.

The solution on the load estimate can be seen in Fig. 8. The estimate
is shown as an interval between the drag dominated and the inertia
dominated distribution. From the same reasoning as mentioned earlier:
the absolute lower bound is the drag dominated result and the absolute
upper bound is the inertia result.
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Fig. 9. Estimated dynamic reaction forces, shear.
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Fig. 10. Estimated dynamic reaction forces, moment.

In principle, now the wave load has been indirectly determined from
the response. However, since the structure at hand has some dynamic
properties, which yields a dynamic amplification to the wave loading,
it is not possible to directly measure the wave load at the load cell and
hence verify the estimates. The estimated load from Fig. 8 must then
be transformed to reaction forces in order for a direct comparison to be
made. Although accumulated uncertainty is present, this can be done
by solving the unconstrained system of motion (Eq. 9), where the three
response vectors are synthesized using the estimated load from Fig. 8
along with the mass, damping and stiffness matrices from the updated

288



Force [N]

1.5

2

2.5

3

3.5

M
om

en
t [

N
m

]

2 2.5 3 3.5 4 4.5
- Force [N]

1.5

2

2.5

3

3.5

- M
om

en
t [

N
m

]

2 2.5 3 3.5 4 4.5

a) b)

Measured Drag porportional estimate Inertia porportional estimate

Fig. 11. Maximum mudline forces for each passing wave. Average
relative wave height H/h = 0.127 and average wave
steepness H/L = 0.038

FE-model.

M ÿ(t)+C ẏ(t)+K y(t) = f (t) (9)

here, y(t) is the nodal displacement, ẏ(t) is the nodal velocity and ÿ(t)
is the nodal acceleration.

The results of the estimated mudline forces (including dynamic am-
plification) are shown in Fig 9 and Fig. 10 along with the readings
from the load cell. The measurements from the load cell are affiliated
by a severe degree of noise from 50 Hz. Thus the measured values
shown by Fig. 8 to 10 have been low-pass filtered at 40 Hz.

In terms of peak values for each passing wave, the estimated value of
the force and moment is fairly good. Especially for the drag dominated
end of the range. When it comes to variations between the peaks,
the FE model is not capable in predicting the load variation and the
estimate deviates more. This is naturally enough as the peak values of
the load are the most governing for the response and as the response is
the basis for the load estimate; the estimated load should have a best
fit towards the peak values. The maximum and minimum forces and
moments for each passing wave are plotted in Fig. 11. Fig. 11 a)
shows the maximum negative forces i.e. caused during wave trough
and Fig. 11 b) shows the maximum positive forces i.e. caused during
wave crest. The mean value and standard deviations are given by Table
3 and 4.

From Fig. 11, linear wave theory adjusted by stretching of the pro-
file seems to yield a too low point of attack - especially for the positive
forces as indicated by Fig. 11 b). As a result of that, the mean value
of the estimated bending moments is in good agreement with the mea-
surements, whereas the force is overestimated. The increase in stan-
dard deviation in the estimated values are suspected to originate from
integration error and noise in the response measurements.

Table 3. Mean and standard deviation of the negative loads, i.e. from
Fig 11 a).

Moment [Nm] Force [N]
µ σ µ σ

Measured -2.44 0.22 -2.98 0.16
Drag proportional estimate -2.31 0.53 -2.94 0.49
Inertia proportional estimate -2.39 0.36 -3.36 0.56

Table 4. Mean and standard deviation of the positive loads, i.e. from
Fig 11 b).

Moment [Nm] Force [N]
µ σ µ σ

Measured 2.60 0.22 3.07 0.15
Drag proportional estimate 2.54 0.44 3.26 0.55
Inertia proportional estimate 2.65 0.45 3.76 0.62

CONCLUSION

It has been demonstrated that operational modal analysis can be
used for indirect load quantification for offshore structures. For the
analyses presented, it has been assumed that the only loading to the
structure is originated from wave action. If several other contributions
are present this complicates the procedure. The paper also demon-
strates that by merging different sensor information (accelerations and
wave gauges/LIDAR) this can be incorporated in the load estimate.
The method is not subjected to scaling issues and can be applied on a
full scale if the response of the structure is successfully recorded and
a well updated FE model is available.

Although the structures considered by this paper are based on a sim-
ple static systems, nothing dictates that the method cannot be applied
on more complex systems as long as there are sufficient sensors to
describe the additional mode shapes.

FUTURE WORK

Although the results presented by this paper are promising, they are
based on a single structural system and one directional regular waves
only. More research is needed in order to verify this method in cases
where multi directional- irregular and even breaking waves are present.
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