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A fully non-linear optimization approach to acousto-electric
tomography

B. J. Adesokan∗, K. Knudsen∗, V. P. Krishnan† and S. Roy†

Abstract

This paper considers the non-linear inverse problem of reconstructing an electric con-
ductivity distribution from the interior power density in a bounded domain. Applications
include the novel tomographic method known as acousto-electric tomography, in which the
measurement setup in Electrical Impedance Tomography is modulated by ultrasonic waves
thus giving rise to a method potentially having both high contrast and high resolution. We
formulate the inverse problem as a regularized non-linear optimization problem, show the
existence of a minimizer, and derive optimality conditions. We propose a non-linear conju-
gate gradient scheme for finding a minimizer based on the optimality conditions. All our
numerical experiments are done in two-dimensions. The experiments reveal new insight into
the non-linear effects in the reconstruction. One of the interesting features we observe is that,
depending on the choice of regularization, there is a trade-off between high resolution and
high contrast in the reconstructed images. Our proposed non-linear optimization framework
can be generalized to other hybrid imaging modalities.

1 Introduction

Hybrid tomography refers to a combination of two or more existing imaging modalities. Several
modalities such as X-ray Computed Tomography (CT), Ultrasound Imaging (UI), Magnetic Res-
onance Imaging (MRI) offer high resolution but have poor contrast in some situations. Other
imaging modalities such as Electrical Impedance Tomography (EIT) and Optical Tomography
(OT) have the reverse properties, that is, they offer high contrast in various applications, but
suffer from poor resolution. By combining two modalities with different nature, one can hope to
achieve a tomographic modality with both high-contrast with high-resolution. A partial list of
modalities for hybrid tomography includes Impedance-acoustic Tomography (IAT) [14] (coupling
of EIT and UI), Acousto-electric tomography (AET) [4, 34] (coupling of EIT and UI), Photoa-
coustic tomography (PAT) [22] (coupling of OT and UI), and Magnetic resonance EIT (MREIT)
[31, 19, 20] (coupling of MRI and EIT). For an overview of the several hybrid imaging modalities
for conductivity imaging we refer the reader to [33].

In this paper we focus on a computational approach to the hybrid imaging problem relevant
to AET. Mathematically the problem is as follows: Let Ω ⊂ Rn be an open, bounded, convex
set with smooth boundary. The interior conductivity distribution is given by a scalar function
bounded above and below by positive constants. The application of a voltage potential f to the
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boundary ∂Ω generates an interior voltage potential u that is characterized by the elliptic PDE

−∇ · (σ∇u) = 0 in Ω,

u|∂Ω = f.
(1)

In EIT one measures the normal current flux through the boundary given by σ∇u · ν, with ν
denoting the outward unit normal on ∂Ω. Ultrasound waves generated in the exterior of Ω can
be used to perturb the interior conductivity due to the acousto-electric effect, and by measuring
the resulting perturbed boundary current flux one can, in principle, compute the interior power
density [4, 7]

H(σ) = σ|∇u|2 in Ω.

The inverse problem in AET is to uniquely determine and reconstruct the conductivity σ from
several power densities

Hi(σ) = σ|∇ufi |2, for 1 ≤ i ≤ m, (2)

where ufi is the unique solution to (1) with boundary potential fi. As one can easily see, the
problem is a non-linear inverse problem.

For the two dimensional (n = 2) problem uniqueness is known [13] for any three (m = 3)
boundary conditions f1, f2 and f3 = f1 + f2 provided that the interior gradient fields satisfy

det [∇u1,∇u2] ≥ C > 0. (3)

This conditions state that u1, u2 has no critical points and that∇u1 and∇u2 are nowhere collinear.
This condition is satisfied for instance for f1 = x1, f2 = x2 written in Cartesian coordinates
x = (x1, x2), but in fact any two boundary conditions f1, f2 that are almost two-to-one can be
taken together with f3 [3]. In dimensions n ≥ 3 the same question is a much more delicate issue
[2, 12].

The non-linear inverse problem has been analyzed mainly from a theoretical point of view,
see [6, 13, 9, 26] for a partial list of works in this direction. One approach for studying the non-
linear problem is to consider the linearized problem. This has been analyzed both theoretically
and numerically, see for example, [23, 24, 8, 27, 11, 16, 21, 17, 25]. It can be shown that the
linearized problem in R2 is (microlocally) solvable in case of only two boundary conditions [8].
However, if the interior gradient fields ∇u1,∇u2 are somewhere orthogonal in the interior, then
local instabilities occur and the inversion allows propagation of singularities [10]. Consequently,
the particular choice of boundary conditions turns out to be crucial.

In our work, we consider a fully non-linear approach to the optimization problem. While
there are several works, most notably [4, 13], that have considered non-linear approaches to the
reconstruction problem, to the best of our knowledge, ours is the first work that explicitly considers
a regularized bilinear least squares optimization framework in the context of AET. The main
novelty of the paper is that we provide a non-linear computational framework that has the potential
for reconstructing conductivities with better contrast as well as resolution. In this context, a
computational approach using edge-enhancing techniques for AET been done recently in [30, 1].

We will, as in [11], assume that σ ∈ Hs(Ω) with s > n
2

an integer. Then Hs(Ω) is a Banach

algebra and σ ∈ C(Ω). This is a rather strong regularity assumption that allows our theoretical
analysis below, but most likely the results can be extended to less regular conductivities. We take
two boundary conditions m = 2 such that (3) is satisfied. For the two dimensional problem we
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conjecture that for such two well-chosen boundary conditions the non-linear problem is uniquely
solvable, however, we will not attempt to prove this. Instead we take a computational approach
to the fully non-linear problem. We cast the inverse problem as a bilinear optimization problem,
show existence of a minimizer and develop a non-linear conjugate gradient (NLCG) optimization
approach for the reconstruction.

The outline of the paper is as follows: In Section 2 we formulate the optimization problem, show
existence of solutions and derive optimality conditions. In Section 3 we discretize the optimality
system and outline the NLCG approach. In Section 4, we describe the numerical implementation
and carry out several computational experiments. We conclude in Section 5.

2 The optimization problem and its minimizer

We consider an optimization-based approach for reconstructing σ given H1(σ), H2(σ). For σ ∈
Hs(Ω), the power density function H(σ) also belongs to Hs(Ω) [11], and thus it makes sense to
consider the following cost functional:

J(σ, u1, u2) =
1

2
‖σ|∇u1|2 −Hδ

1‖2
L2(Ω) +

1

2
‖σ|∇u2|2 −Hδ

2‖2
L2(Ω) +

α

2
‖σ − σb‖2

Hs(Ω). (4)

In the above equation, u1 and u2 satisfy (1) with boundary data f1 and f2, respectively, and
σb ∈ Hs(Ω) is a chosen background conductivity. The quantities Hδ

1 , H
δ
2 ∈ L2(Ω) denote the

power density functionals possibly corrupted with noise. We will reconstruct σ in the following
admissible set

Hs
ad(Ω) := {σ ∈ Hs(Ω) such that 0 < σl ≤ σ(x) ≤ σu for all x ∈ Ω},

(here σl and σu are given positive constants) by considering the minimization problem:

min
σ

J(σ, u1, u2),

such that Lfi(ui, σ) = 0, i = 1, 2.
(P)

In the rest of the paper, we consider s = bn
2
c + 1, where b·c denotes the greatest integer func-

tion. The equality Lf (u, σ) = 0 is a short-hand notation for (1). In this section, we discuss the
existence of solutions to the minimization problem (P) and state the optimality system for the
characterization of a minimizer.

2.1 Existence of a minimizer

Our analysis of the minimization problem (P) begins with the discussion of the existence of solution
of (1) which is proved in [32].

Proposition 2.1. Let σ ∈ Hs
ad and f ∈ Hs+1/2(∂Ω). Then (1) has a unique solution u ∈ Hs+1(Ω).

We will denote this unique solution by u(σ). Next we consider the Fréchet differentiability of
the mapping u(σ) which is proved in [11].

Lemma 2.2. The map u(σ) defined by (1) is Fréchet differentiable as a mapping from Hs(Ω) to
Hs+1(Ω).
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Using Lemma 2.2, we introduce the reduced cost functional

Ĵ(σ) = J(σ, u1(σ), u2(σ)), (5)

where ui(σ), i = 1, 2 denotes the unique solution of (1) given σ and fi, i = 1, 2.

We next state some properties of the reduced functional Ĵ which can be proved using the
arguments in [11].

Proposition 2.3. The reduced functional Ĵ , given in (5), is weakly lower semi-continuous (w.l.s.c.),
non-negative and Fréchet differentiable as a function of σ.

We are now ready to show the existence of a minimizer of the optimization problem (P) using

the reduced functional Ĵ . In the statement of the theorem below, we denote Hs
f (Ω) as the closed

convex subset of Hs(Ω) with boundary trace f .

Theorem 2.4. Let f1, f2 ∈ Hs+1/2(∂Ω). Then there exists a triplet (σ∗, u∗1, u
∗
2) ∈ Hs

ad(Ω) ×
Hs+1
f1

(Ω) × Hs+1
f2

(Ω) such that u∗i , i = 1, 2 are solutions to Lfi(ui, σ) = 0, i = 1, 2 and σ∗

minimizes Ĵ in Hs
ad(Ω).

Proof. We have that the boundedness from below of Ĵ guarantees the existence of a minimizing
sequence {σm} ∈ Hs

ad(Ω) and since Ĵ is coercive, this sequence is bounded. Therefore it contains
a weakly convergent subsequence {σml} in Hs

ad(Ω) such that σml ⇀ σ∗ (say). Since Hs
ad(Ω) is

weakly closed, we have that σ∗ ∈ Hs
ad(Ω). Since {σml} is a minimizing sequence for Ĵ , we obtain

the sequence (uml
1 , uml

2 ), where uml
i = ui(σ

ml), which is bounded in Hs+1
f1

(Ω) × Hs+1
f2

(Ω). This

implies that the sequence converges weakly to (say) (u∗1, u
∗
2) ∈ Hs+1

f1
(Ω)×Hs+1

f2
(Ω).

We next show that the sequence (σ∗, u∗1, u
∗
2) is a weak solution of (1). First note that the

triplet (σml , uml
1 , uml

2 ) is a weak solution of (1) for all ml ∈ N, that is 〈σml∇uml
i ,∇v〉L2(Ω) = 0 for

any v ∈ H1
0 (Ω). Now, since Hs(Ω) is compactly embedded in L4(Ω), we have that σml and ∇uml

i

converges strongly to σ∗ and u∗i respectively in L4(Ω). Consequently σml∇uml
i converges strongly

to σ∗∇u∗i in L2(Ω). Hence 0 = 〈σml∇uml
i ,∇v〉L2(Ω) → 〈σ∗∇u∗i ,∇v〉L2(Ω) all for v ∈ H1

0 (Ω) showing
that (σ∗, u∗1, u

∗
2) is the unique solution of (1).

Now by w.l.s.c. of J , we have

Ĵ(σ∗) ≤ lim inf
ml→∞

Ĵ(σml) = inf
σ∈Hs

ad(Ω)
Ĵ(σ).

Thus, σ∗ minimizes the reduced functional Ĵ and this proves the existence of a minimizer of the
optimization problem (P).

2.2 The reduced functional and optimality conditions

In this section, we state the first order necessary optimality conditions for the minimizer of (4).

Correspondingly, a local minimum σ∗ ∈ Hs
ad(Ω) of Ĵ is characterized by the first-order necessary

optimality conditions given by〈
∇Ĵ(σ∗), σ̃ − σ∗

〉
L2(Ω)

≥ 0, for all σ̃ ∈ Hs
ad(Ω),
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where ∇Ĵ(σ∗) denotes the L2(Ω) gradient and in the inner product above, we interpret ∇Ĵ(σ∗)

as the Riesz representative of the Frechét derivative of Ĵ in L2 evaluated at σ∗. It is well known
(see for instance [29]) that using the Lagrange functional,

L(σ, u1, u2, v1, v2) = J(σ, u1, u2) + 〈σ∇u1,∇v1〉L2(Ω) + 〈σ∇u2,∇v2〉L2(Ω),

in the framework of the adjoint method, the condition
〈
∇Ĵ(σ∗), σ̃ − σ∗

〉
L2(Ω)

≥ 0, results in the

following optimality system, consisting of the forward and adjoint equations and a variational
inequality. We have

−∇ · (σ∇u1) = 0 in Ω, u1|∂Ω = f1, (6)

−∇ · (σ∇v1) = 2∇ · (σ[σ|∇u1|2 −Hδ
1 ]∇u1) in Ω, v1|∂Ω = 0, (7)

−∇ · (σ∇u2) = 0 in Ω, u2|∂Ω = f2, (8)

−∇ · (σ∇v2) = 2∇ · (σ[σ|∇u2|2 −Hδ
2 ]∇u2) in Ω, v2|∂Ω = 0, (9)〈

(σ|∇u1|2 −Hδ
1)|∇u1|2 + (σ|∇u2|2 −Hδ

2)|∇u2|2+

α
s∑

k=0

(−1)k∆k(σ − σb) +∇u1 · ∇v1 +∇u2 · ∇v2, σ̃ − σ
〉
L2(Ω)

≥ 0, (10)

for all σ̃ ∈ Hs
ad(Ω).

3 Discretization of the optimality system

3.1 Numerical discretization of the forward and adjoint problems

In this section, we discuss the numerical approximation to the forward and adjoint elliptic equa-
tions in (6)–(9) using the finite element method. We describe the discretization schemes for solving
(6)-(7). The same schemes would be used for (8)-(9). We first note that for a two-dimensional or
three-dimensional setup s = bn

2
c+1 = 2, i.e. σ ∈ H2(Ω). This implies that the regularization term

in (4) is
α

2
‖σ−σb‖2

H2(Ω). Consequently, the left hand side of (10) involves a fourth order PDE and

is computationally very expensive to solve. Therefore, in the numerical simulations below, we use
lower order regularization terms to determine the optimality system and use the NLCG method
with the corresponding reduced gradient. More specifically, we use L2 and H1 regularization terms
(corresponding to s = 0 and s = 1 respectively). The corresponding reduced gradients used in
the NLCG method are the L2 and the H1 gradients. We emphasize that though the optimal so-
lution σ∗ obtained through this procedure is less regular, the method is computationally efficient.
Furthermore, using the H1 gradient, we have a good approximation of the desired σ ∈ H2(Ω).

The weak form representation of (6) is as follows: Find u ∈ H1(Ω) with boundary trace f such
that ∫

Ω

σ∇u · ∇ũ = 0 (11)

for all ũ ∈ H1
0 (Ω). Let us define the space of continuous functions which are piecewise polynomials

of degree k in a triangle element K belonging to a mesh τh as follows

W k
f,h(Ω) = {uh ∈ C0(Ω) : uh|K ∈ Pk for all K ∈ τh} ∩ {uh = f on ∂Ω}. (12)

5



We also define the bilinear form

A(u, ũ) =

∫
Ω

σ∇u · ∇ũ. (13)

Then the discrete scheme for (6) is given as follows: Find uh ∈ W k
f,h(Ω), such that

A(uh, ũh) = 0, (14)

for all ũh ∈ W k
0,h(Ω), where

W k
0,h = {uh ∈ C0(Ω) : uh|K ∈ Pk ∀K ∈ τh} ∩ {uh = 0 on ∂Ω}. (15)

For the adjoint equation (7), we define the linear form

L(ṽ) = −2

∫
Ω

(σ[σ|∇uh|2 −Hδ
1 ]∇uh) · ∇ṽ, (16)

where ∇uh is the derivative of the solution uh to (14). Then the discrete scheme for (7) is given
as follows: Find vh ∈ W k

0,h, such that

A(vh, ṽh) = L(ṽh), (17)

for all ṽh ∈ W k
0,h defined in (15), and A(u, v) is the bilinear form defined in (13).

3.2 The reduced H1 gradient

For the case s = 1, in the optimality system (10), the following reduced L2 gradient components
appear

∇Ĵ(σ) =
[ (
σ|∇u1|2 −Hδ

1

)
|∇u1|2 +

(
σ|∇u2|2 −Hδ

2

)
|∇u2|2+

α(σ − σb)− α∆(σ − σb) +∇u1 · ∇v1 +∇u2 · ∇v2

]
,

(18)

where ∆ is the distributional Laplacian. Let us now discuss the unconstrained case. In this
case, optimality requires ∇Ĵ(σ) = 0. Because of the H1 cost for σ − σb, we have a setting that
allows to include boundary conditions on the conductivity σ. By considering the derivation of
the optimality system above using the Lagrange formulation, we find that a convenient choice is
to require σ − σb = 0 on ∂Ω as the conductivity distribution near the boundary is constant and
equals to the background distribution σb.

We wish to apply a gradient-based optimization scheme where the residual of (18) is used
such that σ ∈ H1(Ω). For this purpose, we cannot use this residual directly for updating the
conductivity, since it is not in H1(Ω). Therefore, it is necessary to determine the reduced H1

gradient. This is done based on the following fact〈
∇Ĵ(σ)H1(Ω), ϕ

〉
H1(Ω)

=
〈
∇Ĵ(σ), ϕ

〉
L2(Ω)

,

where ϕ ∈ H1
0 (Ω). Using the definition of the H1 inner product and integrating by parts, we have

that the H1 gradient is obtained by solving the following boundary value problem

−∆(∇Ĵ(σ)H1(Ω)) +∇Ĵ(σ)H1(Ω) = ∇Ĵ(σ) in Ω (19)

∇Ĵ(σ)H1(Ω) = 0 on ∂Ω. (20)

6



where (19)-(20) is defined in the weak sense. The solution to this problem provides the appropriate
gradient to be used in a gradient update of the conductivity that includes projection to ensure
σ ∈ H1

ad(Ω).

3.3 A projected NLCG optimization scheme

We solve the optimization problem (P) by implementation of a projected non-linear conjugate
scheme (NLCG); see [29] in L2 and H1 spaces. Such a scheme is an extension of the conjugate
gradient method to constrained non-linear optimization problems. In the following discussing
we denote Xh as both the discrete approximations to the L2(Ω) and H1(Ω) spaces. We also
denote the corresponding discrete inner product and norm as 〈·, ·〉Xh

and ‖ · ‖Xh
, respectively,

where‖ · ‖2
Xh

= 〈·, ·〉Xh
. For the definition of the discrete L2

h, H
1
h inner product we refer to [18].

To describe this iterative method, we start with an initial guess σ0 for the conductivity and the
corresponding search direction:

d0 = −g0 := −(∇Ĵ(σ0))Xh
,

where ∇Ĵ(σ0)Xh
represents the discrete L2 or H1 gradient computed through a finite element

discretization of (10) or (19)–(20), respectively. The search directions are obtained recursively as

dk+1 = −gk+1 + βkdk, (21)

where gk = ∇Ĵ(σk)Xh
, k = 0, 1, . . . and the parameter βk is chosen according to the formula of

Hager-Zhang [15] given by

βHGk =
1

dTk yk

(
yk − 2dk

‖yk‖2
Xh

dTk yk

)T
gk+1, (22)

where yk = gk+1 − gk.
We update the value of the conductivity σ with a steepest descent scheme given as follows

σk+1 = σk + αk dk, (23)

where k is a index of the iteration step and αk > 0 is a step length obtained using a line search
algorithm as in [5]. For this line search, we use the following Armijo condition of sufficient decrease

of Ĵ
Ĵ(σk + αkdk) ≤ Ĵ(uk) + δαk〈∇Ĵ(σk), dk〉Xh

, (24)

where 0 < δ < 1/2.
Notice that this gradient procedure should be combined with a projection step onto Hs

ad.
Therefore, we consider the following

σk+1 = PL [σk + αk dk] , (25)

where
PL [σ] = max{σl,min{σu, σ}}.

The projected NLCG scheme can be summarized as follows:

7



1. Input: initial approximation, σ0. Evaluate d0 = −∇Ĵ(σ0)Xh
, index k = 0, maximum k =

kmax, tolerance =tol.

2. While (k < kmax) do

(a) Set σk+1 = PL [σk + αk dk], where αk is obtained using a line-search algorithm.

(b) Compute gk+1 = ∇Ĵ(σk+1)Xh
.

(c) Compute βHGk using (22).

(d) Set dk+1 = −gk+1 + βHGk dk.

(e) If ‖σk+1 − σk‖Xh
< tol., terminate.

(f) Set k = k + 1.

3. End while.

4 Numerical experiments

In this section we discuss the numerical implementation of the NLCG scheme for the minimization
problem (P). The domain of definition is the unit circle centered at (0, 0). We choose the value
of the background conductivity as σb = 1.0 and the lower and upper values σl = 0.01, σu = 4.0.
The initial guess for σ in the NLCG algorithm is chosen to be 1. The computations are done in
FENICS with P2 elements for the electric potential u and P1 for the conductivity function σ in
case s = 0. In the case s = 1, we note that the optimality condition (10) contains a Laplacian
of σ and thus we use P2 elements for σ. The average mesh size for the optimization algorithm is
0.01. The plot of the mesh is shown in Figure 1. We choose the regularization parameter α = 0.1
for all the numerical experiments.

(a) Mesh (b) Zoomed view of the mesh

Figure 1: The mesh for the experiments
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In our numerical simulations, we consider the following sets of boundary conditions:

BC1: f1 = x, f2 =
x+ y√

2
,

BC2: f1 = x, f2 = y,

BC3: f1 = x, f2 = y, f3 =
x+ y√

2
.

(BC)

With either of these choice of boundary conditions, u1 and u2 have no critical points and ∇u1,∇u2

are non-parallel in Ω [3]. This choice of boundary conditions is motivated by the linear reconstruc-
tion algorithms, where BC1 and BC2 lead to different qualitative behavior in the reconstructions
[10].

Unless otherwise explicitly stated, the boundary condition in the numerical experiments is
BC1; see (BC). To generate the data H in (2), we choose a σ and solve (6) on a finer mesh with
mesh size h = 0.005. We then compute the gradients of u using a finite element discretization and
thus compute the internal data H. Finally, we project the data onto the computational mesh for
our NLCG algorithm.

In general, we expect a better resolution of the reconstructions with L2 regularization than
with H1 regularization. Recall that at each iterative step, the update for σ is found by solving (10).
In the case of H1 regularization, since (10) involves an additional Laplacian term, the obtained
update for σ is more regular compared to that with the L2 regularization set up. Due to this,
the artifacts with H1 regularization are less pronounced leading to reconstructions with better
contrast. For the same reason, the edges are enhanced using L2 regularization resulting in images
with better resolution. Also note that more artifacts are present in images with L2 regularization
compared to that with H1 regularization.

Test Case I: In the first test case, we consider a phantom represented by a disk and the
conductivity σ is defined as follows:

Let r =
√

(x− 0.2)2 + (y − 0.2)2. Define

σ(x) =

{
2.0, r < 0.3,

1.0, r ≥ 0.3.
(26)

The plots of the actual and reconstructed σ with the boundary condition BC1 given in (BC)
and with various values of L2 and H1 regularization parameter α are shown in Figure 2. We
observe that as α increases, the contrast in both the cases decreases. Regardless of the value of
the regularization parameter α, we observe better resolution with L2 regularization and better
contrast with H1 regularization. We also compare our algorithm with the paramterix method of
[21] (shown in Figure 2(b)), and while there is a slightly better resolution of the edges compared
to our algorithm, there is a substantial loss of contrast in the parametrix method.

Test Case II: In the second test case, we consider the heart and lung phantom for σ as described
in [28]. It has a background value of 1.0 that is perturbed in two ellipses (representing the lungs)
where the value is 0.5 and in a circular region (representing the heart) where the value is 2.0.

In order to demonstrate the robustness of our optimization framework, we add 10% and 25%
white Gaussian noise in the exact interior data H. The noise is added to H in the following way:
Let δ denote the noise level. Then

Hδ = H + δ ·H ·N, (27)
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where Hδ is the 2D-matrix of noisy data, H is the 2D-matrix of data without noise and N is
the 2D-matrix of values each obtained from a standard normal distribution. In (27), the product
refers to entrywise multiplication.

The reconstructions of σ with L2 and H1 regularizations are shown in Figures 3 and 3(c),
respectively. The simulations show that our algorithm is very robust in the presence of noisy data.
Furthermore, better contrast is obtained with the H1 regularization term in comparison to the L2

case.
Test Case III: In the third test case, we consider a phantom where the conductivity σ is

supported inside a rotated rectangle

σ(x) =

 2.0, if

∣∣∣∣∣ x√2
+ y√

2
− 0.2

∣∣∣∣∣ < 0.2 and

∣∣∣∣∣ x√2
− y√

2
− 0.2

∣∣∣∣∣ < 0.4,

1.0, elsewhere.

(28)

The reconstructions of σ with L2 and H1 regularizations and with BC1, BC2 and BC3 given in
(BC) are shown in Figure 4.

Our goal with this simulation is to show the effect of boundary conditions on the reconstructed
images. As we can see, the reconstructions with boundary conditions BC1 and BC3 are better
compared to the ones with BC2, in the sense that there are fewer artifacts with BC1 and BC3. We
note that a similar behavior was previously observed and studied theoretically and numerically for
the linearized reconstruction method [16, 10] using microlocal analysis. The characterization of
artefacts appearing in reconstructions from the fully non-linear algorithm is, in our opinion, non-
trivial, and beyond the scope of the current work. Note further that BC1 with only two boundary
conditions yields reconstructions similar in quality to the reconstructions from BC3 with three
boundary conditions. This makes us conjecture that the non-linear reconstruction problem in
AET is solvable with only two properly chosen boundary conditions.

Test Case IV: In the fourth test case, we consider a combination of phantoms supported in a
square Sa = {(x, y) ∈ R2 : −0.1 < x < −0.1,−0.1 < y < −0.1} with σ = 3.0, 2 disks centered
at (−0.1, 0.5) with radius 0.2 and σ = 2.0 and at (0.1, 0.5) with radius 0.2 and σ = 1.0 and a
bean-shaped annulus with value of σ = 2.0 in the annular region and σ = 0.5 in the hole. The
plots of the reconstructed σ for s = 0, α = 0.1 and s = 1, α = 0.1 with BC1 as given in (BC)
and with the parametrix method are shown in Figure 5.

Our numerical procedure performs well for a phantom with an inclusion as well as with a self-
intersection as shown in Figure 5. Note that the inclusion is clearly visible. Furthermore for the
two disks with intersections, the intersecting region is clearly distinguishable as well. We compare
with the parametrix method of [21] (see Figure 5(b)), and similar to what was observed in the
case of Figure 2, there is a substantial loss of contrast with the parametrix method.

5 Conclusion

In this work, we considered a non-linear computational approach to acousto-electric tomography
involving the reconstruction of the electric conductivity of a medium from interior power density

10



distribution. We formulated the inverse problem as a non-linear optimization problem, showed the
existence of a minimizer and developed a non-linear conjugate gradient (NLCG) scheme for the
reconstruction of the conductivity of the medium from interior power density functionals. We pre-
sented several numerical simulations showing the robustness of the NLCG algorithm. We observed
that the H1 regularization, in general, reconstructed images with better contrast compared to the
L2 regularization which reconstructed images with better resolution. The proposed non-linear
framework is versatile and can be applied to other hybrid imaging modalities as well.
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(a) Actual phantom (b) Parametrix method [21]
(Done in Matlab)

(c) s = 0, α = 0.1 (d) s = 1, α = 0.1

(e) s = 0, α = 0.4 (f) s = 1, α = 0.4

(g) s = 0, α = 0.7 (h) s = 1, α = 0.7

Figure 2: Test Case I: The actual and reconstructed Gaussian phantom for α = 0.1 with boundary
condition BC1 and with the parametrix method.
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(a) Actual phantom

(b) s = 0, α = 0.1 (c) s = 1, α = 0.1

(d) s = 0, α = 0.1, 10% noise (e) s = 1, α = 0.1, 10% noise

(f) s = 0, α = 0.1, 25% noise (g) s = 1, α = 0.1, 25% noise

Figure 3: Test Case II: The actual and reconstructed heart and lung phantom with L2 and H1

regularizations and with noiseless/noisy data.
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(a) Actual phantom

(b) s = 0, α = 0.1 with BC1 (c) s = 1, α = 0.1 with BC1

(d) s = 0, α = 0.1 with BC2 (e) s = 1, α = 0.1 with BC2

(f) s = 0, α = 0.1 with BC3 (g) s = 1, α = 0.1 with BC3

Figure 4: Test Case III: The actual and reconstructed rotated rectangle phantom with L2 and H1

regularization, and with the boundary conditions BC1, BC2 and BC3.
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(a) Actual phantom (b) Paramterix method [21]
(Done in Matlab)

(c) s = 0, α = 0.1 (d) s = 1, α = 0.1

Figure 5: Test Case IV: The actual and reconstructed images of a phantom with an inclusion as
well as with self-intersections.

17


	1 Introduction
	2 The optimization problem and its minimizer
	2.1 Existence of a minimizer
	2.2 The reduced functional and optimality conditions

	3 Discretization of the optimality system
	3.1 Numerical discretization of the forward and adjoint problems
	3.2 The reduced H1 gradient
	3.3 A projected NLCG optimization scheme

	4 Numerical experiments
	5 Conclusion

