
 
 
General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright 
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 

 You may not further distribute the material or use it for any profit-making activity or commercial gain 

 You may freely distribute the URL identifying the publication in the public portal 
 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 
  
 

   

 

 

Downloaded from orbit.dtu.dk on: Mar 29, 2019

Bile salt enhancers for inhalation: correlation between in vitro and in vivo lung effects

Sørli, Jorid Birkelund; Sivars, Kinga Balogh; Da Silva, Emilie; Hougaard, Karin S.; Koponen, Ismo K.;
Zuo, Yi Y.; Weydahl, Ingrid E.K.; berg, Per M.; Fransson, Rebecca
Published in:
International Journal of Pharmaceutics

Link to article, DOI:
10.1016/j.ijpharm.2018.08.031

Publication date:
2018

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Sørli, J. B., Sivars, K. B., Da Silva, E., Hougaard, K. S., Koponen, I. K., Zuo, Y. Y., ... Fransson, R. (2018). Bile
salt enhancers for inhalation: correlation between in vitro and in vivo lung effects. International Journal of
Pharmaceutics, 550(1-2), 114-122. DOI: 10.1016/j.ijpharm.2018.08.031

https://doi.org/10.1016/j.ijpharm.2018.08.031
http://orbit.dtu.dk/en/publications/bile-salt-enhancers-for-inhalation-correlation-between-in-vitro-and-in-vivo-lung-effects(9d34dd63-eba8-457c-bd5a-cafd3664ced2).html


Accepted Manuscript

Bile salt enhancers for inhalation: correlation between in vitro and in vivo lung
effects

Jorid B. Sørli, Kinga Balogh Sivars, Emilie Da Silva, Karin S. Hougaard, Ismo
K. Koponen, Yi Y. Zuo, Ingrid E.K. Weydahl, Per M. Åberg, Rebecca Fransson

PII: S0378-5173(18)30604-5
DOI: https://doi.org/10.1016/j.ijpharm.2018.08.031
Reference: IJP 17716

To appear in: International Journal of Pharmaceutics

Received Date: 28 May 2018
Revised Date: 10 August 2018
Accepted Date: 14 August 2018

Please cite this article as: J.B. Sørli, K.B. Sivars, E. Da Silva, K.S. Hougaard, I.K. Koponen, Y.Y. Zuo, I.E.K.
Weydahl, P.M. Åberg, R. Fransson, Bile salt enhancers for inhalation: correlation between in vitro and in vivo lung
effects, International Journal of Pharmaceutics (2018), doi: https://doi.org/10.1016/j.ijpharm.2018.08.031

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers
we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and
review of the resulting proof before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.ijpharm.2018.08.031
https://doi.org/10.1016/j.ijpharm.2018.08.031


  

 

1 

 

Bile salt enhancers for inhalation: correlation between in vitro and in vivo lung effects  

 

Jorid B. Sørli*
a,b

, Kinga Balogh Sivars
c
, Emilie Da Silva

a,d
, Karin S. Hougaard

a,e
, Ismo K. Koponen

a
, Yi Y. 

Zuo
f
, Ingrid E. K. Weydahl

a
, Per M. Åberg

c
, and Rebecca Fransson

b
 

Affiliation 

a: The National Research Centre for the Working Environment, Copenhagen, Denmark 

b: Early Product Development, Pharmaceutical Science, IMED Biotech Unit, AstraZeneca, Gothenburg, 

Sweden 

c: RIA Safety, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden 

d: Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark 

e: Institute of Public Health, University of Copenhagen, Copenhagen K, Denmark. 

f: Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, HI, USA 

 

*Corresponding author 

jbs@nrcwe.dk 

Postal address: The National Research Centre for the Working Environment, Lersø Parkalle 105, 2100 

Copenhagen Ø, Denmark 

Phone: +45 39 16 52 25, Fax: +45 39 16 52 01 

Kinga.Balogh-Sivars@astrazeneca.com 

eds@nrcwe.dk 

mailto:jbs@nrcwe.dk
mailto:Kinga.Balogh-Sivars@astrazeneca.com
mailto:eds@nrcwe.dk


  

 

2 

 

ksh@nrcwe.dk 

yzuo@hawaii.edu  

Per.Aberg@astrazeneca.com  

Rebecca.Fransson@astrazeneca.com 

 

Abstract 

The lungs have potential as a means of systemic drug delivery of macromolecules. Systemic delivery 

requires crossing of the air-blood barrier, however with molecular size-dependent limitations in lung 

absorption of large molecules. Systemic availability after inhalation can be improved by absorption 

enhancers, such as bile salts. Enhancers may potentially interfere with the different constituents of the lungs, 

e.g. the lung surfactant lining the alveoli or the lung epithelium. We used two in vitro models to investigate 

the potential effects of bile salts on lung surfactant function (with the constrained drop surfactometer) and on 

the epithelium in the proximal airways (with the MucilAir
TM

 cell system), respectively. In addition, we 

measured direct effects on respiration in mice inhaling bile salt aerosols. The bile salts inhibited lung 

surfactant function at different dose levels, however they did not affect the integrity of ciliated cells at the 

tested doses. Furthermore, the bile salt aerosols induced changes in the breathing pattern of mice indicative 

of pulmonary irritation. The bile salts were ranked according to potency in vitro for surfactant function 

disruption and in vivo for induction of pulmonary irritation. The ranking was the same, suggesting a 

correlation between the interference with lung surfactant and the respiratory response.   

Keywords 

Lung surfactant, constrained drop surfactometer, inhaled pharmaceutical enhancer, bile salt, 3D human 

airway in vitro model, MucilAir
TM

, alternative method. 
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Chemical compounds studied in this paper 

Sodium deoxycholate (PubChem CID: 23668196); Sodium taurodeoxycholate (PubChem CID: 23664773); 

Sodium glycocholate (PubChem CID: 23670522); Sodium taurocholate (PubChem CID: 23666345) 

 

Abbreviations 

ADSA: axisymmetric drop shape analysis, ATP: adenosine triphosphate, APIs: active pharmaceutical 

ingredients, BPM: breaths per minute, bw: body weight, CDS: constrained drop surfactometer, CMC: critical 

micelle concentration, DMSO: dimethylsulfoxid, GLP: good laboratory practice, IP: impregnation product, 

kDa: kilo Dalton, LDH: lactate dehydrogenase, LS: lung surfactant, NA: not applicable, NaDCA: sodium 

deoxycholate, NaGCA: sodium glycocholate, NaTCA: sodium taurocholate, NaTDCA: sodium 

taurodeoxycholate, OPS: optical particle sizer, PBS: Phosphate-buffered saline, RSB: rapid shallow 

breathing, sd: standard deviation, TB: time of break, TE: time of expiration, TEER: trans-epithelial electrical 

resistance, TI: time of inspiration, TP: time of pause, VT: tidal volume  
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1. Introduction 

Inhalation of therapeutic agents is essential for treatment of respiratory diseases, where local delivery targets 

the molecules to the diseased organ whilst limiting systemic exposure. Furthermore, inhalation is promising 

as a means of systemic delivery of active pharmaceutical ingredients (APIs), such as biomolecules. In this 

case fast and efficient absorption is essential. Drugs can be delivered to the airways via dry powder aerosols, 

these typically contain excipients, such as carriers. To optimize gas-exchange, the lungs have a large surface 

area and a thin barrier between the air and the systemic circulation. The lungs are however also designed as a 

barrier to foreign substances as the continuous branching of the airways constitutes an efficient filter for 

particles entering the lungs. Generally, large particles are retained in the upper/central airways, and removed 

by constant upward movement by mucus covered ciliated cells, while smaller particles (<2 μm in 

aerodynamic diameter) reach the respiratory region of the lungs, the alveoli and respiratory bronchioles 

(Pulliam et al., 2007).  

To enter the blood stream, APIs need to cross not only the alveolar-capillary cell barrier, but also the layer of 

lung surfactant (LS) that covers the alveolar epithelium. The movement of large biomolecules across the air-

blood barrier is restricted, where the quantity of the biomolecule that transfers from the lung lumen to the 

blood is inversely proportional to size. These larger molecules (defined as >40 kDa) will predominantly be 

retained in the lungs and will not reach the systemic circulation (Hastings et al., 2004; Pfister et al., 2014). 

To make inhaled macromolecules systemically bioavailable, absorption enhancers can be added to the 

formulation (Hussain et al., 2004). Identifying enhancers that do not evoke adverse effects on the respiratory 

tract will greatly improve the potential for pulmonary drug delivery of systemically acting APIs. 

Development of new inhalation therapeutics is complex and attrition during the development process has 

historically been high. Analysis of the AstraZeneca drug portfolio between 2005 and 2010 showed that 

safety attrition of inhaled candidate drugs due to toxicity to the respiratory system accounted for about 30% 

of the project closures related to adverse respiratory effects (Cook et al., 2014). These closures occurred 

relatively late in the development process, i.e. at the stage of comprehensive regulatory GLP toxicology 

studies or during clinical evaluation. The high rate of attrition highlights the lack of available predictive in 
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vitro and in vivo tools for screening for toxicity in the respiratory tract. Absorption enhancers work by 

altering the local physiology of the air-blood barrier and their invasive mode of action may pose an 

especially high potential for induction of unwanted reactions in the lungs. These effects could include 

sustained alterations in the mucus layer in the upper airways or opening of tight junctions between epithelial 

cells, direct damage of epithelial cells by solubilization of membrane phospholipids, or increased transfer of 

other biomolecules than the intended API.  

In the present study we have focused on bile salts as enhancers for systemic delivery of APIs via the lungs. 

Bile salts are amphipathic cholesterol derivatives that increase the dispersion of lipids and facilitate their 

absorption by the intestinal mucosa in the small intestine. Based on these properties, bile salts have been 

investigated for their applicability as enhancers in inhaled formulations of peptide- and protein-based drug 

formulations (Okumura et al., 1992; Komada et al., 1994; Yamamoto et al., 1994; Bäckström et al., 1996; 

Yamamoto et al., 1997; Griese et al., 1998; Herting et al., 2001; Johansson et al., 2002; Gross et al., 2006; 

Lopez-Rodriguez et al., 2011). Our use of bile salts was primarily related to a principle evaluation of the 

models, rather than an exact characterization of dose-relationship for any specific application. 

The LS layer is the very first barrier any inhaled substance meets in the alveoli. This thin film coats the 

respiratory regions of the lungs. The LS lowers the surface tension at the air-liquid interface, but also 

provides some protection against hazardous inhaled substances (Zuo et al., 2008). Under normal conditions, 

the surface tension changes during the breathing cycle and makes breathing effortless. However, if the LS is 

damaged, the surface tension does not decrease during the expiratory compression, and the alveoli may 

collapse and the respiratory bronchioles fill with liquid, making breathing labored. The bile salts can 

potentially disrupt the structure of the LS film and thereby potentially inhibit its function.  

Here we used the constrained drop surfactometer (CDS) to explore the effect of bile salts on LS function by 

exposing a drop of LS to increasing amounts of the different bile salts. This approach has previously been 

used in investigations of nanomaterials, pharmaceuticals and impregnation products (Valle et al., 2014; Valle 
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et al., 2015; Sørli et al., 2015a; Sørli et al., 2017). Importantly disruption of LS function in vitro correlates 

strongly with respiratory effects in vivo for impregnation products (Sørli et al., 2015b; Sørli et al., 2017).  

The effect of bile salts was also assessed in a 3D human airway in vitro model (MucilAir
TM

), representative 

of the central airways. Respiratory toxicity was evaluated by measuring cell viability and barrier integrity by 

trans-epithelial electrical resistance (TEER) after bile salt exposure. A reduction in TEER indicates that the 

epithelial barrier integrity is disrupted by the test chemical. The model has earlier been used to test 

compounds with known inhalation toxicity profiles, where it was found that cell barrier integrity and 

viability were predictive of in vivo toxicity (Balogh Sivars et al., 2018).  

Furthermore, we used measurements of breathing patterns in mice to evaluate acute respiratory reactions to 

inhaled bile salts. Mice in head-out plethysmographs were exposed to increasing aerosol concentrations of 

bile salts and their breathing pattern was compared to baseline values. The method is a standard method for 

measuring airway irritation, and has previously been used to test airway irritation potential of industrial 

chemicals (Alarie, 1973; Nielsen et al., 2005; ASTM International, 2012).   

As described above, bile salts may potentially be hazardous to the airways. We therefore hypothesized that 

bile salts could cause inhibition of LS function in the CDS set-up, alter the TEER and viability of lung 

epithelial cells and affect the breathing pattern in mice at different doses. We furthermore hypothesized that 

the compounds could be ranked according to toxicity and that the ranking in vitro and in vivo would be 

correlated.  

 

2. Materials and methods 

2.1 Chemicals 

The following chemicals were bought from Sigma-Aldrich: cadmium chloride, dimethylsulfoxid (DMSO), 

Triton™ X-100, sodium taurocholate, sodium glycocholate, sodium taurodeoxycholate and sodium 

deoxycholate. The abbreviations, hydroxyl positions and structures of the bile salts are summarized in Table 
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1. The concentration of bile salts was below the critical micelle concentration (CMC) reported in the 

literature for the in vitro experiments, and below or on the CMC for the in vivo experiments (Reis et al., 

2004; Monte et al., 2009). Micronized lactose (Lactohale®300) was a kind gift from DFE pharma, (Goch, 

Germany). MucilAir™ culture medium was purchased from Epithelix Sàrl and PBS from Thermo Fisher.  

Curosurf® (Chiesi, Parma, Italy) was used as a model LS for all the experiments. It is made from solvent 

extracted minced porcine lung tissue and contains ~99% w/w phospholipids and 1% w/w hydrophobic 

surfactant-associated proteins (SP-B and SP-C) (Zhang et al., 2011). Curosurf® was diluted to 0.5 mg/mL in 

a buffer containing 0.9% NaCl, 1.5 mM CaCl2, and 2.5 mM HEPES, adjusted to pH 7.0 (Valle et al., 2015). 

2.2 pH measurements 

LS is sensitive to extreme pH (the optimal range is between pH 4 and 7) (Amirkhanian and Merritt, 1995). 

Bile salts were diluted in water to a final concentration of 1 mg/mL. The pH of the solutions was measured 

using pH indicator strips (Alkalit, Merck). The pH of all bile salt solutions was between 5.5 and 6. 

 

Table 1: Name, abbreviation and structure of bile salts used 

Compound Abbreviation Position 

of 

hydroxyls 

Structure 

Sodium 

taurocholate  

NaTCA 3α7α12α 

O

Na
HO

N
H S

O

O

O

OH

OH
 

Sodium 

glycocholate 

NaGCA 3α7α12α 

Na
HO

N
H

O

OH

OH

O

O
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Sodium 

taurodeoxycholate  

NaTDCA 3α12α 

O

Na
HO

N
H S

O

O

O

OH

 

Sodium 

deoxycholate 

NaDCA 3α12α 

O

HO

O
OH

Na

 

 

2.3 In vitro determination of lung surfactant inhibition in the CDS model 

Inhibition of LS function in vitro was tested using the constrained drop surfactometer (Sørli et al., 2015a; 

Valle et al., 2015) by exposing a drop of LS to increasing amounts of the different bile salts. A drop of LS 

(Curosurf®, 10 μL of 0.5 mg/mL) was placed on a hollow based pedestal with a sharp edge, and was 

dynamically cycled at 20 cycles/min and <30% compression rate (baseline). The LS was cycled prior to 

exposure to obtain a baseline value. Any baseline experiment with a minimum surface tension >5 mN/m and 

compression >35% was discarded. Images were continuously taken of the drop and analyzed by 

axisymmetric drop shape analysis (ADSA) software (Yu et al., 2016). The output was, among others, surface 

tension of the drop. The CDS was kept at 37°C inside a heating box. 

The effect of the bile salts (1 mg/mL) on LS function was tested in 2 ways: by injecting a bile salt solution 

into the cycling drop or by spreading of the bile salt solution on top of the cycling drop as follows. A drop of 

surfactant was cycled during the entire experiment. After a 15 sec baseline, 0.5 µl of bile salt solution was 

injected into the drop or spread on the drop, respectively (see Fig. 1). A new injection/spreading was 

repeated every 30 sec. After 12.5 minutes of injection/spreading, the drop was cycled for 7.5 min (i.e. each 

experiment took 20 min). The experiment was repeated 5 times for each bile salt and technique. The dose of 

bile salt leading to persistent inhibition of LS function (minimum surface tension >10 mN/m) was defined as 

the inhibitory dose, calculated as µg bile salt per mg LS. Lactose was used as negative control and the 
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experiments were done as for the bile salts. We have previously shown that lactose does not inhibit LS 

function (Sørli et al., 2015a). 

 

2.4 3D human airway in vitro model 

Primary airway cells were acquired from human patients undergoing surgical lobectomy where the study was 

conducted according to the declaration of Helsinki on biomedical research (World Health Organization, 

2001) and received approval from the local ethics commission. The experimental procedures were explained 

in full and all subjects provided informed consent. MucilAir™ (Epithelix Sàrl) airway epithelia was 

reconstituted of a mixture of human tracheal and bronchial cells and cultured at the air liquid interface (ALI) 

in MucilAir™ culture medium (Epithelix Sàrl), in 24-well plates with 6.5-mm Transwell® inserts (Corning). 

At each sampling point, or every 2-3 days for those wells not being sampled, the cell culture medium was 

changed.  

NaTCA, NaGCA, NaTDCA and cadmium chloride were dissolved in DMSO and diluted further in a 

buffered saline solution (0.9% NaCl, 1.25 mM CaCl2, 10 mM HEPES) to obtain a total concentration of 

0.8% DMSO (v/v). To mimic inhalation in vivo, bile salts and cadmium chloride (10 µL) were applied daily 

on the apical surface of the MucilAir™ cultures at 1, 10 and 100 μM and left to incubate for 6 h prior to 

replacing with fresh medium. The procedure was repeated for a period of 48 hours and each treatment was 

run as four replicates for each bile salt concentration.  

Barrier integrity was assessed by measuring TEER as previously described (Huang et al. 2017). Cell viability 

was determined by quantitation of ATP in cell lysates at termination by CellTiter-Glo® Luminescent Cell 

Viability Assay (Promega) according to the manufacturer’s instructions. Cadmium chloride and 1% Triton™ 

X-100 diluted in PBS (without MgCl2 and CaCl2) were used as positive controls. 
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2.5 Mouse bioassay 

2.5.1 Animals 

A total of 52 inbred BALB/cJ male mice aged 5-8 weeks at arrival were purchased from Taconic M&B (Ry, 

Denmark) and housed in polypropylene cages (380x220x150 mm) furnished with aspen bedding (Tapvei, 

Estonia), enriched with a mouse house (80-ACRE011, Techniplast, Italy) and small aspen blocks (Tapvei, 

Estonia). The photo-period was from 06:00 to 18:00, and the temperature was 21°C and relative humidity in 

the animal room was 55%. The inhalation exposures were done between 09:00 and 15:00. Cages were 

sanitized twice weekly. Food (Altromin no. 1324, Altromin, Lage, Germany) and municipal tap water were 

available ad libitum. The mice were randomly assigned to cages, 3-4 mice per cage, and acclimatized for a 

minimum of one week. Mice from the same cage were used in the same experiment.  

2.5.2 Ethical statement 

Treatment of the animals followed procedures approved by The Animal Experiment Inspectorate, Denmark 

(Permissions No. 2014-15-2934-01042-C2). All experiments were performed by trained personnel and 

conformed to the Danish Regulations on Animal Experiments (LBK nr. 474 af 15/05/2014 and BEK nr. 1589 

af 11/12/2015), which include guidelines for care and use of animals in research. Anesthesia was not used 

during the experiments, because the bioassay depends on the animals being fully awake with uncompromised 

breathing. The exposure was stopped if the tidal volume (VT) was reduced by >30% compared to baseline or 

after 1h of exposure. The exact number of animals used to test the toxicity of each bile salt can be found in 

Supplementary table 1. 

2.5.3 Generation of bile salt aerosols for mouse bioassay 

Dry powder aerosol exposure was initially tried using a Rotating brush generator (Seipenbusch particle 

engineering, Kuppenheim, Germany), but the generator could not deliver stable aerosols (Supplementary fig. 

1). Therefore the salts were dissolved in deionized water at a concentration of 10 mM (except NaDCA that 

was tested at 5 mM), droplets were generated by a jet nebulizer (Wong and Alarie, 1982) and the water 

content was reduced by passage through a diffusion drier (Diffusion Dryer 3062, TSI Inc., Shoreview, MN, 
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USA), before entering the 20 L mouse exposure chamber (Clausen et al., 2003) (see Supplementary fig. 2 for 

drying of aerosols). The drying of the bile salt droplets produced stable aerosols, and the exposure 

concentration could be increased stepwise in a reproducible manner (the relationship between the infusion 

rate into the nebulizer and the particle concentration in the exposure chamber and reproducibility between 2 

exposures can be seen in Supplementary fig. 3). As the bile salts were diluted in water no vehicle control was 

included in the experiments to limit the number of mice used for the assessment. Outlet air was passed 

through a series of particle- and active coal-filters before the exhaust to the atmosphere.  

2.5.4 Aerosol exposure monitoring 

The bile salt concentrations in the exposure chamber were monitored by gravimetric filter sampling and by 

measurement of the aerosol particle size distribution. Gravimetric filter sampling was done essentially as 

described in the standard DS/EN 481 (Dansk Standard, 1994). Shortly, aerosols were collected on pre-

weighed Teflon filters (Flouropore™ Membrane filters, pore size 0.45 µm, Millipore A/S, Denmark) placed 

in a closed-face 25-mm cassette. Filter sampling was done at the same time as the mice were exposed and for 

the whole duration of the exposure period (45-60 min). The aerosols were drawn through the filter by an 

Apex2™ personal sampling pump (Casella, Buffalo, USA) at a flow rate of 2 L/min. The particle size 

distributions were measured by NanoScan (TSI Inc., Shoreview, MN, USA; particles ranging from 0.01 to 

0.36 µm) and optical particle sizer (OPS, TSI Inc., Shoreview, MN, USA; particles from 0.32 to 10 µm). The 

aerodynamic diameter of the majority of the generated particles was <0.7 µm according to the particle 

number size distribution. The relationship between the concentrations measured by aerosol sampling by 

Nanoscan and OPS compared to the concentration calculated from filter sampling can be found in 

Supplementary fig. 4. In 3 cases, the concentration in the chamber exceeded the upper capacity of the OPS 

(marked in Fig. 2 as “not applicable”, NA). These points were at the 4
th
 and highest exposure level for the 

study of NaGCA, NaTCA and NaTDCA.  

The chamber concentrations calculated from bile salts collected on filters were in most cases higher than 

estimated by the aerosol measurements (Supplementary fig. 4). This is likely because the concentrations 
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became too high to be measured by the OPS at the highest level of exposure. The aerosol concentration 

measured by NanoScan and OPS were used to estimate the deposited dose at each exposure level.  

2.5.5. Calculation of deposited dose from aerosol concentrations 

The estimated deposited doses in Fig. 2 are calculated by using the following assumptions. Firstly, that all of 

the particles at each aerosol concentration level could be inhaled deeply into the lungs, this is likely as 

measurements made by NanoScan and OPS showed that the majority of the particles were <0.7 µm in 

aerodynamic diameter. Secondly, that 10% of the inhaled particles deposited in the lungs of the mice, and 

finally, that the deposited dose accumulated over the time of the exposure. The estimated deposited dose was 

divided by the body weight of the mouse resulting in a dose of x µg deposited bile salt per kg body weight of 

the mouse (Fig. 2 and Table 4). To estimate the deposited dose at each exposure level the aerosol 

concentration was multiplied with the tidal volume, breathing frequency and duration of exposure. This 

number was multiplied by 0.1, as a deposition of 10% was assumed, and divided by the weight of the mouse. 

As we assumed that the bile salts accumulated during the duration of exposure, the deposited doses 

calculated for any previous exposure levels were added to the calculated deposited dose.  

2.5.6 Bile salt exposure in the mouse bioassay  

To assess the acute effects of bile salts on respiration, groups of mice (n =3-7, Supplementary table 1) were 

placed in individual, head-out plethysmograph tubes and exposed. First, a 15 min baseline period was 

recorded for each mouse while breathing clean air. Then, the mice were exposed to the bile salt aerosol until 

the breathing pattern was affected (≥30% reduction of VT compared to baseline), or for a maximum of 60 

min. If the breathing pattern of the mice was affected by the exposure, the mice were exposed to clean air for 

15 min after end of exposure, to assess for reversibility of the respiratory effects. The lowest observed 

adverse effect dose (LOAED) was found by range-finding experiments. 

The range-finding experiments were done as follows: a group of mice (n=3-7) was exposed to increasing 

aerosol concentrations of the bile salt in question. The start concentration was set based on data from the 

CDS, i.e. NaDCA was tested at a lower start concentration than the 3 other bile salts. This was done to 
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ensure that the first concentration would not cause acute lung effects. The start concentration was used 

during the first 15 minutes of exposure. If no effect was observed at this concentration, the infusion flowrate 

was doubled every 15 min. If no effect was observed after a total of 60 min of exposure, a new group of mice 

was used for a second range-finding experiment until the highest concentration that could be generated in the 

system was reached. If no effect occurred during any of the range-finding experiments, the concentration of 

the bile salt solution was increased, i.e. NaTCA was subsequently tested at a concentration of 30 mM in the 

same dose-increase setup until the LOAED was identified. 

2.5.7 Collection of respiratory parameters  

The Notocord Hem (Notocord Systems SA, Croissy-sur-Seine, France) data acquisition software was used to 

collect and calculate several mouse respiratory parameters. We used the tidal volume (VT, mL), respiratory 

frequency (BPM, breaths/min), time of break (TB, ms), time of pause (TP, ms), time of expiration (TE, ms), 

and time of inspiration (TI, ms). Comprehensive descriptions of the breathing parameters and their 

interpretation have been made elsewhere (Alarie, 1973; Vijayaraghavan et al., 1993; Larsen and Nielsen, 

2000). Data acquisition and calculations were performed as described previously (Larsen et al., 2004).  

2.5.8 Evaluation of acute respiratory effects 

Prior to exposing groups of mice to the bile salt aerosol, the mice breathed clean air, only mice that had a 

stable baseline continued through to the exposure phase of the experiment. To assess effects related to 

exposure, the respiratory parameters during exposure were compared to baseline levels, i.e. each mouse 

served as its own control. For each mouse, the mean values of each minute during the experiment were 

calculated and the change compared to baseline was calculated. To estimate the effect of each bile salt 

concentration the final 10 min of each 15 min period was plotted against the minute of exposure. The 

accumulated deposited dose is indicated above each exposure period (Fig. 2). Adverse effect caused by the 

exposure to an aerosol of a bile salt was defined as a reduction in tidal volume (VT) to ≤90% of baseline 

(Fig. 2). A change of 10% compared to baseline was chosen because this could be distinguished from 

changes to the respiration caused by stress, e.g. induced by handling and restraint in the plethysmograph. 

This reduction in VT coincided with an increase of breathing frequency (BPM) (Fig. 2) and reduction of TE 
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and TI (not shown) compared to baseline, resulting in the characteristic breathing pattern: rapid shallow 

breathing (RSB). After the exposure stopped, respiratory data was collected for 15 min more as the mice 

were breathing clean air to determine if the changes to respiration were reversible.  

2.5.9 Statistical evaluation of respiratory data 

The respiration parameter at each exposure level was graphed and statistically analyzed using R (version 

3.4.3). For each bile salt, changes in tidal volume (VT) and breathing frequency (BPM) were expressed as a 

percentage of the baseline value. Analysis of variance with pairwise comparison and Bonferroni adjustment 

were performed to compare the changes in breathing pattern for each dose compared to baseline. A 

significant difference between the breathing parameter at a specific dose and baseline has been marked with 

1, 2 or 3*, indicating a significant difference from the mean of the baseline of p<0.05, 0.01 and 0.001 

respectively (Fig. 2). Linear regressions of the changes in breathing pattern over time were fitted to the data 

set and plotted as a red line in Fig. 2. 

3. Results 

3.1In vitro determination of LS inhibition in the CDS model 

The bile salts were tested for LS inhibition in vitro using the CDS setup. The minimum surface tension was 

chosen as the endpoint. Inhibition of LS function was defined as an increase in the minimum surface tension 

above 10 mN/m that persisted over time. Each bile salt was tested 5 times with each method (injection or 

spreading). Lactose was included in the experiments as a negative control. The dose for inhibition was 

calculated as µg bile salt per mg LS.  

Table 3: Lung surfactant was exposed to 4 bile salts and lactose either by injection or spreading to determine 

the dose that inhibited LS function (i.e. a persistent change in minimum surface tension above 10 mN/m). 

 Injection Spreading 

Substance Inhibitory dose (µg/mg LS)  

NaDCA 220±45 300±122 
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NaTDCA 360±55 440±207 

NaGCA 360±55 1140±270 

NaTCA 1100±200 No inhibition* 

Lactose No inhibition No inhibition 

Data is given as (mean ± sd). *in 1 of the 5 repeats, LS was inhibited by the highest dose of NaTCA (2500 

µg/mg LS). 

The bile salts were ranked according to the dose where a persistent inhibition occurred.  

3.2 3D human airway in vitro model  

The barrier integrity as measured by TEER of the human lung epithelial cell layer did not change after 

exposure (2 exposures over 48 hours, at 1, 10 or 100 µM) to NaTDCA, NaGCA or NaTCA. Moreover, the 

bile salts did not alter the cell viability as measured by ATP in cell lysates.  

3.3 Breathing pattern analysis in the in vivo mouse bioassay 

Overall, the breathing patterns of the mice used for these experiments were similar during baseline to those 

measured by other research groups using the same setup and the same or other strains of mice 

(Supplementary table 2). 

An adverse effect of the exposure to an aerosol of a bile salt was defined as the onset of rapid shallow 

breathing (RSB). RSB was defined as reduction in tidal volume (VT) to ≤90% of baseline (Fig. 2). This 

change coincided with an increase compared to baseline in breathing frequency (BPM) (Fig. 2), time of 

expiration (TE), and time of inspiration (TI) (not shown). The accumulated deposited dose has been 

indicated above each exposure level (µg/kg bw) in Fig. 2. With increasing bile salt aerosol concentrations, 

the effect on the breathing parameters became larger, reaching a maximum of approximately 40% reduction 

in VT and 40% increase in breathing frequency (Fig. 2). After end of exposure the change to the breathing 

parameters reverted towards baseline rapidly, however the baseline values were not reached within the 15 

min recovery period (Fig. 2). 
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Table 4: Assuming that all particles of the aerosol were inhaled, that 10% deposited in the lungs and that the 

bile salts accumulated during the duration of the exposure, the lowest dose causing onset of rapid shallow 

breathing (RSB) was calculated as µg/kg body weight. Using the same assumptions the dose was also 

estimated in relation to the lung surfactant pool (µg/ mg of LS). The estimation of dose/amount of LS was 

based on the assumption that the mouse lung contains approximately 0.15 mg of LS. 

 LOAED, accumulated deposited lung dose 

Substance Related to mouse weight (µg/kg bw)* Related to LS pool (µg/mg LS) ¤ 

NaDCA 0.88 0.12  

NaTDCA 3.65 0.49 

NaGCA 6.07 1.30 

NaTCA 9.34 2.23 

* based on 10% deposition, ¤ based on 10% deposition and that a mouse has 0.15 mg LS. LOAED: lowest 

observed adverse effect dose, LS: lung surfactant, NaDCA: sodium deoxycholate, NaGCA: sodium 

glycocholate, NaTCA: sodium taurocholate, NaTDCA: sodium taurodeoxycholate, 

The dose that induced RSB in exposed mice was used to rank the bile salts in vivo.  

4. Discussion 

The lungs have potential as route of delivery for systemically acting biomolecules, but supplementation with 

absorption enhancers may be needed. To our knowledge, there are currently no enhancers applied in inhaled 

formulations and the intended interaction with the air-blood barrier is associated with risks for adverse 

effects. This could include harmful impact on surfactant function and/or direct epithelial toxicity. When 

identifying novel excipients and enhancers, it is highly desirable to introduce model systems that can address 

some of these risks and thereby enable exclusion of harmful substances at an early stage. In vitro tests 

followed by acute in vivo tests addressing direct respiratory responses may identify the most harmful 
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substances before they proceed into more comprehensive in vivo assessment. In this investigation we used 

two in vitro techniques that mimic two different compartments and toxicological targets in the lung that 

potentially could be affected by absorption enhancers, followed by assessment of acute effects on respiratory 

function in vivo. Firstly, we simulated the LS layer in the alveolar region by assessing how the LS function 

was affected by our test substances, four different bile salt enhancers. Secondly, we recreated the conductive 

airways by applying air-liquid interphase cultures and exposed ciliated and mucus producing epithelial cells. 

Thirdly, we studied in vivo whether acute airway responses in mice following inhalation of enhancers 

correlated with the in vitro response and ranking. 

We found that all the tested bile salts inhibited the LS function in vitro. This allowed the bile salts to be 

ranked according to toxicity, and this ranking was the same as for the in vivo effects as assessed by the dose 

that induced rapid shallow breathing (RSB). None of the bile salts affected the barrier integrity or viability of 

the air-liquid interphase grown cells at the tested doses.  

4.1 In vitro determination of lung surfactant inhibition in the CDS model 

A drop of LS was exposed to bile salt solutions either by injecting bile salt into the cycling drop or by 

spreading the solution onto the cycling drop. The bile salts were ranked from the least to the most inhibitory 

in almost the same order by both means of administration; NaTCA<NaTDCA<NaGCA<NaDCA (by 

injection NaTDCA=NaGCA), leaving NaDCA as the most potent inhibitor of LS function. However, when 

the bile salt solution was spread onto the cycling drop, inhibition generally occurred at higher doses than for 

injection. For the least inhibitory bile salt, NaTCA, only 1 of 5 experiments yielded an inhibition when it was 

spread onto the LS drop (Table 3). These results suggest that the method of mixing affects the interaction of 

bile salt with the LS components and structures that exert the surface tension lowering effect. Also, 

structurally very similar compounds (Table 1) had different effects on the surfactant function, hence small 

changes in structure may have large effects on the LS. Further elucidation of these mechanisms would 

however require methods that specifically study the interaction between the LS components and bile salt, 

such as a CDS coupled to an atomic force microscopy (Valle et al., 2015). The pH of the dissolved salts was 

measured to exclude the possibility that the reaction was a result of different pH of the bile salts; it was 
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shown that all the bile salt had similar pH in solution. Lactose was used as a control for both the injection 

and spreading experiments as it is known to be extensively used in marketed inhaled formulations (Sørli et 

al., 2015a). Lactose did not inhibit the LS function by either mixing method, showing that the inhibition was 

not an effect of injecting or spreading a foreign substance into the cycling drop.  

The interaction between bile salts and LS has been the focus on several publications, because of the severe 

disease meconium aspiration syndrome (MAS), which can affect newborns aspirating stained amniotic fluid 

during birth. The initial phase of MAS is characterized by obstructed airways and LS inhibition, followed by 

a phase dominated by airway inflammation (Lindenskov et al., 2015; Herting et al., 2001). Meconium is the 

first pass through the newborns digestive tract, and among many other components it contains bile salts, 

approximately 0.005 mg/mg meconium (Lopez-Rodriguez et al., 2011). Several groups have investigated the 

effect of meconium on LS function in vitro and found the inhibitory bile salt dose to be between 0.07 to 20 

µg/mg LS (using the estimate of 0.005 mg/mg meconium)(Bae et al., 1998; Moses et al., 1991; Sun et al., 

1993), i.e. much lower than the inhibitory doses of pure bile salts found in this study (220-1100 µg/mg LS). 

Possibly, components in the complex mixture of meconium work in synergy to inhibit LS function, but the 

high variance in inhibitory dose may also reflect the diversity in methods of detection, differences in LS 

preparation, and meconium sampling. The mechanisms underlying inhibition of LS by meconium are not 

clear. Bae et al (Bae et al., 1998) observed that meconium changed the ultrastructure of the LS from loosely 

stacked layers to spherical lamellar structures. Lopez-Rodriguez et al (Lopez-Rodriguez et al., 2011) suggest 

that bile salts can mobilize cholesterol into the air-liquid interphase and thereby alters LS function. The 

surfactant preparation used in the present study (Curosurf®) does however not contain cholesterol and thus 

this is likely not the explanation for loss of function in the present study.  

4.2 3D human airway in vitro model 

The bile salts (NaTCA, NaGCA or NaTDCA) did not affect the TEER of human airway epithelial cells after 

2 consecutive dosings over 48 hours with concentrations of up to 100 µM. These doses were selected in 

relation to previous knowledge regarding measured lung concentrations of inhaled agents in inhalation 

toxicology studies at doses causing lung pathology (Balogh Sivars et al., 2018).  
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NaTCA has previously been used to enhance the transport of insulin (approximately 6 kDa) across cells in 

vitro using Caco-2 cells grown on trans-well inserts (Johansson et al., 2002). The authors found that when 

the cells were exposed to concentrations between 20 and 30 mM NaTCA the TEER was low compared to 

cells exposed to lower concentrations, but the cells survived and the insulin was transported across the cell 

layer. Morimoto et al (Morimoto et al., 2000) used 10 mM NaGCA to enhance the permeation of insulin and 

thyrotropin-releasing hormone across excised rabbit trachea. Both research groups used much higher 

concentrations than those applied in the present setup. 

Compared to the approximately 0.1µm thick barrier between the air and blood in the alveoli, the mucus 

covered ciliated cells of the upper airways would be expected to present a much thicker and relatively robust 

barrier to bile salts. Alveolar epithelial cells therefore would be a more physiological relevant model for 

testing potential hazardous interactions, however these cells are difficult to obtain and to maintain the 

alveolar epithelium phenotypes in vitro.  

4.3 Breathing pattern analysis in the in vivo mouse bioassay 

The mouse model explored in the present study has previously been used to assess the acute sensory airway 

irritation potential of industrial chemicals (Alarie, 1973; Nielsen et al., 2005) and is a standardized method 

(ASTM International, 2012). The test assesses whether test substances induce specific changes in the 

breathing pattern of mice upon inhalation (Alarie, 1973). As the bile salts are dissolved in water that is 

subsequently removed in the diffusion drier, there is no vehicle control group of mice for these experiments, 

and the mice served as their own controls. An adverse effect of the exposure to an aerosol of a bile salt was 

defined as the onset of rapid shallow breathing (RSB), an indicator of pulmonary sensory irritation. 

Pulmonary sensory irritation is divided into 2 phases. The first phase, P1, is characterized by rapid shallow 

breathing and can be identified by an increase in breathing frequency (BPM), in combination with a 

reduction of time of expiration and inspiration (TE and TI, respectively) and tidal volume (VT) (Nielsen et 

al., 1999). It can be followed by a second phase, P, which is characterized by an increase in time of pause 

(TP). All the bile salts caused signs of pulmonary sensory irritation, evident as induction of RSB, but the 
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effect occurred at different exposure levels. Elongation of TP was seen rarely and only at the highest doses 

(not shown).  

Pulmonary irritation has been studied with the same setup and strain of mice for several chemicals, e.g. 

ozone (Nielsen et al., 1999; Currie et al., 1998) and propranolol (Vijayaraghavan et al., 1993). Ozone caused 

both P1 (RSB) and P (elongated TP) sensory irritation in the same strain of mice used in this study (Nielsen 

et al., 1999). Currie et al (Currie et al., 1998) found that RSB persisted 24h after ozone inhalation, and that 

ozone inhalation impaired LS function, caused by water soluble proteins in the LS. Of note, ozone induces 

vascular leakage and pulmonary edema (Nielsen et al., 1999). We did not perform histopathological 

evaluation of lungs from mice exposed to the bile salts, however there was no persistent effects on 

respiratory parameters (Fig. 2). The response to propranolol, on the other hand, is more similar to that of the 

bile salts. Propranolol causes RSB in mice and Guinea pigs (P phase) at lower doses and elongated TP (P1) 

at higher doses, and the breathing pattern rapidly reverses to normal during the recovery phase 

(Vijayaraghavan et al., 1993). The bile salts caused RSB but only occasionally elongated TP at the highest 

dose level and after 45 min exposure. As for propranolol, the breathing pattern rapidly returned towards 

baseline during the recovery phase (Fig. 2). 

Bile salts (an unspecified mix) have been studied as an enhancer for inhaled insulin in humans. The human 

subjects inhaled a total of 1028 µg bile salt. There were no adverse events after the inhalation and the 

mixture was well tolerated (Heinemann et al., 2000). Assuming that 30% of the inhaled powder reached the 

alveoli (Hirst et al., 2001; Thorsson et al., 2001) and that the average person has 1000 mg LS in the lungs 

(Sørli et al., 2015a) this would result in a calculated dose of 0.31 µg bile salt/mg LS. At this dose, 1 bile salt 

(NaDCA) induced RSB in our experiments when the dose was related to the amount of LS in mice (Table 4). 

As we do not know which bile salts were in the inhaled mixture it is difficult to make further comparison. 

NaGCA has been studied as an enhancer for macromolecules (insulin or calcitonin), in rats (Yamamoto et 

al., 1994; Yamamoto et al., 1997; Okumura et al., 1992; Bäckström et al., 1996; Morita et al., 1994). In all 

cases the bile salt enhanced bioavailability. No adverse advents were observed, however, as the rats were 

anesthetized during the exposure, effects on the breathing pattern would not have been possible to observe.   
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We have used LS function assessment in the CDS in combination with mouse breathing pattern analysis 

while studying lung toxicity of 21 impregnation products (IP). The in vitro method could predict IP toxicity 

in mice with 100% sensitivity and 63% specificity. However, the toxicological profile of the IPs in mice was 

qualitatively different from that of the bile salts. Toxic IPs induced a very rapid and steep reduction in VT 

(Sørli et al., 2017) that has been shown to cause spontaneous death if the mice are not immediately killed 

(Nørgaard et al., 2010; Nørgaard et al., 2014; Duch et al., 2014; Sørli et al., 2015b). In comparison the mice 

exposed to bile salts rapidly recovered from the RSB when the exposure was stopped, and they were allowed 

to breathe clean air for 15 min (Fig. 2), after which they were killed. We can therefore not exclude that there 

were long term effects of the inhaled bile salts, however, the immediate reversibility of the RSB supports that 

the sensory irritation was transient and caused by interaction with LS. 

4.4 Ranking and dose considerations 

When the bile salts were ranked by their ability to inhibit LS function in vitro and their ability to induce RSB 

in exposed mice, the in vitro and in vivo ranking was the same. Notably the assessment of LS function in the 

CDS is cell-free, indicating that there may be a component of LS interaction in the induction of RSB.  

 

The dose per mg LS in the CDS in vitro system and per body weight and in relation to the LS pool in the in 

vivo bioassay are presented in Table 3 and 4 respectively. It is apparent that the estimated dose causing 

effects on RSB is considerably lower than the dose estimate from the in vitro CDS setup. However, caution 

should be taken in over interpreting this difference; the CDS experiment is limited to in vitro application and 

a selective measurement of surface tension, while animals demonstrate a physiological response upon 

aerosol exposure. There are aspects of exposure conditions, dose estimates, distribution and concentration at 

site of action, which could contribute to this difference. In addition, in the lung, bile salts will interact with 

components not represented in vitro, such as vagal nerve endings in the alveoli region. Atelectasis can 

activate the pulmonary stretch receptors (Alarie, 1973) and this presents a likely link between LS inhibition 

and RSB onset in the animals. Nevertheless, the in vitro LS inhibition experiment has the potential to rank 

the bile salts in the same order as the in vivo experiment.  
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5. Conclusion 

The ranking of the bile salts was the same when tested in vitro for LS function in the CDS and the in vivo 

mouse bioassay. Even if the bile salts did not affect the barrier integrity or viability of human airway 

epithelial cells at the tested doses, it has earlier been proved to be a strong tool for identifying hazardous 

substances, hence suggesting no overt toxicity of bile salts on this cell type. The correlation between the 

ranking by LS inhibition and the ranking of induction of RSB in vivo strongly suggests that the physiological 

response is dependent upon LS function in vivo.  

These types of models can be applied to address plausible respiratory liabilities with molecules like 

absorption enhancers, APIs or other chemicals, with a potential to grade responses, but also to separate direct 

and transient effects on surfactant function from toxicity to epithelial cells. Staging of the in vitro approaches 

can reduce the need for experiments on animals and enhance selection of agents without respiratory 

liabilities. Future research could include inclusion of molecules for which absorption enhancement is 

confirmed to enable assessment of potential separation between enhancing effect and any adverse 

consequence. Morphological evaluation of respiratory tissue could also broaden the understanding of any 

consequence related to the interaction with surfactant function.   

Acknowledgments 

Michael Guldbrandsen, Eva Terrida, and Signe Hjortkjær Nielsen are thanked for technical assistance. 

References 

Alarie, Y. (1973). Sensory irritation by airborne chemicals. CRC Crit Rev. Toxicol 2, 299-363. 
doi:10.3109/10408447309082020 

Amirkhanian, J. D. and Merritt, T. A. (1995). The influence of pH on surface properties of lung surfactants. 
Lung 173, 243-254.  

Bae, C. W., Takahashi, A., Chida, S. et al. (1998). Morphology and function of pulmonary surfactant inhibited 
by meconium. Pediatr. Res 44, 187-191. doi:10.1203/00006450-199808000-00008 

Balogh Sivars, K., Sivars, U., Hornberg, E. et al. (2018). A 3D Human Airway Model Enables Prediction of 
Respiratory Toxicity of Inhaled Drugs In Vitro. Toxicol Sci 162, 301-308. doi:10.1093/toxsci/kfx255 

Clausen, S. K., Bergqvist, M., Poulsen, L. K. et al. (2003). Development of sensitisation or tolerance following 
repeated OVA inhalation in BALB/cJ mice. Dose-dependency and modulation by the Al(OH)3 
adjuvant. Toxicology 184, 51-68.  

Cook, D., Brown, D., Alexander, R. et al. (2014). Lessons learned from the fate of AstraZeneca's drug 
pipeline: a five-dimensional framework. Nat Rev Drug Discov 13, 419-431. doi:10.1038/nrd4309 



  

 

23 

 

Currie, W. D., van, S. S., Vargas, I. et al. (1998). Breathing and pulmonary surfactant function in mice 24 h 
after ozone exposure. Eur. Respir. J 12, 288-293.  

Duch, P., Nørgaard, A. W., Hansen, J. S. et al. (2014). Pulmonary toxicity following exposure to a tile coating 
product containing alkylsiloxanes. A clinical and toxicological evaluation. Clin. Toxicol. (Phila) 52, 
498-505. doi:10.3109/15563650.2014.915412 

Griese, M., Schams, A. and Lohmeier, K. P. (1998). Amphotericin B and pulmonary surfactant. Eur. J. Med. 
Res 3, 383-386.  

Gross, T., Zmora, E., Levi-Kalisman, Y. et al. (2006). Lung-surfactant-meconium interaction: in vitro study in 
bulk and at the air-solution interface. Langmuir 22, 3243-3250. doi:10.1021/la0521241 

Hastings, R. H., Folkesson, H. G. and Matthay, M. A. (2004). Mechanisms of alveolar protein clearance in the 
intact lung. Am. J. Physiol Lung Cell Mol. Physiol 286, L679-L689.  

Heinemann, L., Klappoth, W., Rave, K. et al. (2000). Intra-individual variability of the metabolic effect of 
inhaled insulin together with an absorption enhancer. Diabetes Care 23, 1343-1347.  

Herting, E., Rauprich, P., Stichtenoth, G. et al. (2001). Resistance of different surfactant preparations to 
inactivation by meconium. Pediatr. Res 50, 44-49. doi:10.1203/00006450-200107000-00010 

Hirst, P. H., Bacon, R. E., Pitcairn, G. R. et al. (2001). A comparison of the lung deposition of budesonide 
from Easyhaler, Turbuhaler and pMDI plus spacer in asthmatic patients. Respir. Med 95, 720-727.  

Hussain, A., Arnold, J. J., Khan, M. A. et al. (2004). Absorption enhancers in pulmonary protein delivery. J. 
Control Release 94, 15-24.  

Johansson, F., Hjertberg, E., Eirefelt, S. et al. (2002). Mechanisms for absorption enhancement of inhaled 
insulin by sodium taurocholate. Eur. J. Pharm. Sci 17, 63-71.  

Komada, F., Iwakawa, S., Yamamoto, N. et al. (1994). Intratracheal delivery of peptide and protein agents: 
absorption from solution and dry powder by rat lung. J. Pharm. Sci 83, 863-867.  

Larsen, S. T. and Nielsen, G. D. (2000). Effects of methacrolein on the respiratory tract in mice. Toxicol. Lett 
114, 197-202.  

Larsen, S. T., Hansen, J. S., Hammer, M. et al. (2004). Effects of mono-2-ethylhexyl phthalate on the 
respiratory tract in BALB/c mice. Hum. Exp. Toxicol 23, 537-545. doi:10.1191/0960327104ht486oa 

Lindenskov, P. H., Castellheim, A., Saugstad, O. D. et al. (2015). Meconium aspiration syndrome: possible 
pathophysiological mechanisms and future potential therapies. Neonatology 107, 225-230. 
doi:10.1159/000369373 

Lopez-Rodriguez, E., Echaide, M., Cruz, A. et al. (2011). Meconium impairs pulmonary surfactant by a 
combined action of cholesterol and bile acids. Biophys. J 100, 646-655. 
doi:10.1016/j.bpj.2010.12.3715 

Monte, M. J., Marin, J. J. G., Antelo, A. et al. (2009). Bile acids: Chemistry, physiology, and pathophysiology. 
World Journal of Gastroenterology 15, 804-816. doi:10.3748/wjg.15.804 

Morimoto, K., Uehara, Y., Iwanaga, K. et al. (2000). Effects of sodium glycocholate and protease inhibitors 
on permeability of TRH and insulin across rabbit trachea. Pharm Acta Helv 74, 411-415.  

Morita, T., Yamamoto, A., Takakura, Y. et al. (1994). Improvement of the pulmonary absorption of (Asu1,7)-
eel calcitonin by various protease inhibitors in rats. Pharm Res 11, 909-913.  

Moses, D., Holm, B. A., Spitale, P. et al. (1991). Inhibition of pulmonary surfactant function by meconium. 
Am. J. Obstet. Gynecol 164, 477-481.  

Nielsen, G. D., Hougaard, K. S., Larsen, S. T. et al. (1999). Acute airway effects of formaldehyde and ozone in 
BALB/c mice. Hum. Exp. Toxicol 18, 400-409. doi:10.1191/096032799678840246 

Nielsen, G. D., Larsen, S. T., Hougaard, K. S. et al. (2005). Mechanisms of acute inhalation effects of (+) and 
(-)-alpha-pinene in BALB/c mice. Basic Clin. Pharmacol. Toxicol 96, 420-428. doi:10.1111/j.1742-
7843.2005.pto_04.x 

Nørgaard, A. W., Larsen, S. T., Hammer, M. et al. (2010). Lung damage in mice after inhalation of nanofilm 
spray products: the role of perfluorination and free hydroxyl groups. Toxicol. Sci 116, 216-224. 
doi:10.1093/toxsci/kfq094 



  

 

24 

 

Nørgaard, A. W., Hansen, J. S., Sørli, J. B. et al. (2014). Pulmonary toxicity of perfluorinated silane-based 
nanofilm spray products: solvent dependency. Toxicol. Sci 137, 179-188. doi:10.1093/toxsci/kft225 

Okumura, K., Iwakawa, S., Yoshida, T. et al. (1992). Intratracheal Delivery of Insulin Absorption from 
Solution and Aerosol by Rat Lung. International Journal of Pharmaceutics 88, 63-73.  

Pfister, T., Dolan, D., Bercu, J. et al. (2014). Bioavailability of therapeutic proteins by inhalation--worker 
safety aspects. Ann. Occup. Hyg 58, 899-911.  

Reis, S., Moutinho, C. G., Matos, C. et al. (2004). Noninvasive methods to determine the critical micelle 
concentration of some bile acid salts. Analytical Biochemistry 334, 117-126. 
doi:10.1016/j.ab.2004.07.017 

Sun, B., Curstedt, T. and Robertson, B. (1993). Surfactant inhibition in experimental meconium aspiration. 
Acta Paediatr 82, 182-189.  

Sørli, J. B., Da Silva, E., Backman, P. et al. (2015a). A Proposed in vitro Method to Assess Effects of Inhaled 
Particles on Lung Surfactant Function. Am. J. Respir. Cell Mol. Biol 54, 306-311. 
doi:10.1165/rcmb.2015-0294MA 

Sørli, J. B., Hansen, J. S., Nørgaard, A. W. et al. (2015b). An in vitro method for predicting inhalation toxicity 
of impregnation spray products. ALTEX 32, 101-111. doi:10.1165/rcmb.2015-0294MA 

Sørli, J. B., Huang, Y., Da Silva, E. et al. (2017). Prediction of acute inhalation toxicity using in vitro lung 
surfactant inhibition. ALTEX doi:10.14573/altex.1705181 

Thorsson, L., Edsbacker, S., Kallen, A. et al. (2001). Pharmacokinetics and systemic activity of fluticasone via 
Diskus and pMDI, and of budesonide via Turbuhaler. Br. J. Clin. Pharmacol 52, 529-538.  

Valle, R. P., Huang, C. L., Loo, J. S. C. et al. (2014). Increasing hydrophobicity of nanoparticles intensifies lung 
surfactant film inhibition and particle retention. Acs Sustainable Chemistry & Engineering 2, 1574-
1580. doi:10.1021/sc500100b 

Valle, R. P., Wu, T. and Zuo, Y. Y. (2015). Biophysical influence of airborne carbon nanomaterials on natural 
pulmonary surfactant. ACS Nano 9, 5413-5421. doi:10.1021/acsnano.5b01181 

Vijayaraghavan, R., Schaper, M., Thompson, R. et al. (1993). Characteristic modifications of the breathing 
pattern of mice to evaluate the effects of airborne chemicals on the respiratory tract. Arch. Toxicol 
67, 478-490.  

Wong, K. L. and Alarie, Y. (1982). A method for repeated evaluation of pulmonary performance in 
unanesthetized, unrestrained guinea pigs and its application to detect effects of sulfuric acid mist 
inhalation. Toxicol. Appl. Pharmacol 63, 72-90.  

World Health Organization (2001). World Medical Association Declaration of Helsinki - Ethical principles for 
medical research involving human subjects. Bulletin of the World Health Organization 79, 373-374.  

Yamamoto, A., Umemori, S. and Muranishi, S. (1994). Absorption Enhancement of Intrapulmonary 
Administered Insulin by Various Absorption Enhancers and Protease Inhibitors in Rats. Journal of 
Pharmacy and Pharmacology 46, 14-18.  

Yamamoto, A., Okumura, S., Fukuda, Y. et al. (1997). Improvement of the pulmonary absorption of 
(Asu(1,7))-eel calcitonin by various absorption enhancers and their pulmonary toxicity in rats. 
Journal of Pharmaceutical Sciences 86, 1144-1147.  

Yu, K., Yang, J. and Zuo, Y. Y. (2016). Automated Droplet Manipulation Using Closed-Loop Axisymmetric 
Drop Shape Analysis. Langmuir 32, 4820-4826. doi:10.1021/acs.langmuir.6b01215 

Zhang, H., Wang, Y. E., Fan, Q. et al. (2011). On the low surface tension of lung surfactant. Langmuir 27, 
8351-8358. doi:10.1021/la201482n 

Zuo, Y. Y., Veldhuizen, R. A., Neumann, A. W. et al. (2008). Current perspectives in pulmonary surfactant - 
inhibition, enhancement and evaluation. Biochim. Biophys. Acta 1778, 1947-1977. 
doi:10.1016/j.bbamem.2008.03.021 

 



  

 

25 

 

Figure 1: Examples of injection of bile salt solution into (left) and spreading of bile salt solution on to (right) 

a drop of LS.  

 

Figure 2: The average minute breathing pattern for tidal volume (VT, top row) and frequency (BPM, bottom 

row) plotted against the minute of the experiment for each mouse in the experiment. During the first 15 

minutes of an experiment the mice were breathing clean air. At 15 minutes the bile salt exposure started and 

the flow into the aerosol generator was doubled every 15 minutes. The calculated accumulated deposited 

dose in µg/kg bw (assuming 10% deposition and no clearance during the exposure period) has been indicated 

above (top panel) or below (bottom panel) each exposure level, except when the aerosol concentration 

exceeded the measuring range of the aerosol instrument (OPS) and the deposited dose could not be 

calculated (marked by NA). After exposure the mice breathed clean air for 15 minutes before the experiment 

was stopped. In the panels for NaDCA, one mouse reacted differently from the rest, it has been included in 

the analysis, but has been colored gray for identification. *, ** and *** indicate that the average mean is 

significantly different from the mean of the baseline with p<0.05, 0.01 and 0.001 respectively. Linear 

regression of the changes in breathing pattern over time were fitted to the data sets and plotted as a red line. 
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