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 Abstract 

Consumer oriented chemical based products, including emulsified ones, are structured products 

constituted by numerous chemicals, and they are used every day by millions of people. They are 

still mainly designed through trial-and-error based experimental techniques. A systematic 

approach, integrating model-based as well as experiment-based techniques, for design of these 

products could significantly reduce both time and cost connected to product development by 

doing only the necessary experiments, and ensuring chances for innovation. In this work we 

present an integrated methodology for the design of emulsified formulated products. The 

methodology consists of three stages: the problem definition stage, the model-based design stage, 

and the experiment-based verification stage. In the problem definition stage, the consumer needs 

are translated into a set of target thermo-physical properties and into a list of categories of 

ingredients that are to be included in the formulation via a robust knowledge base. In the model-
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based design stage, structured databases, dedicated algorithms and a property model library are 

employed for designing a candidate base case formulation. Finally, in the experiment-based 

verification stage, the properties and performances of the proposed formulation are measured by 

means of tailor-made experiments. The formulation is then validated or, if necessary, refined 

thanks to a systematic list of actions. All these tools have been implemented as a new template in 

our in-house software called the Virtual Product-Process Design Laboratory and have been 

illustrated via a case study (a hand-wash detergent) where the complete methodology (all three 

stages) is for the first time applied. 

 

Introduction 

Process Systems Engineering (PSE), now a well-established field, has had a remarkable impact on 

the chemical and related industries1, introducing methodologies, which are now employed 

throughout the industry world-wide. Since the 1990’s, however, interest in chemical product 

design and engineering has emerged stimulated by contributions to areas such as selection and 

design of solvent systems and working fluids.  

Background in transport phenomena and thermodynamics has been applied to understand the 

processes characterizing the properties and performances of chemical products. The process 

systems engineering community contributed to this development by introducing mathematical 

modeling, especially in the applications where the product properties and performances can be 

related to the molecular structure of chemicals. Moreover, the process systems engineering 

community satisfied the necessity of capturing the knowledge of product designers, storing it and 

then providing it in terms of explicit knowledge to be manipulated to perform predictions that can 

be used for the design and development of innovative products2. 
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The complexity of chemical product design derives from the recent shift that is observed in the 

chemical industry: from materials valued for their purity, such as, the commodities, to materials 

sold for their performance behavior, such as consumer products3. There are, in fact, limited raw 

materials, which are processed to obtain the commodity products (basic products). Specialty 

chemicals (intermediate products) are then manufactured from the commodities, and finally a 

very large portfolio of higher value products (refined chemicals and consumer products), are 

obtained by processing and/or combining the chemicals of the previous classes. The number of 

products belonging to each category grows exponentially from around 10 for the raw materials, to 

almost 30,000 in the last class of higher value added products4. 

Usually, the last types of chemical products are classified into three categories5: 

 Devices: miniature processes which accomplish a particular chemical transformation at a 

small scale, as an artificial kidney, or a mosquito repellent vaporizer; 

 Molecules: most often exemplified by pharmaceuticals, where the key is not process cost 

or convenience but discovery of the active compound in the first place; 

 Structures: includes various consumer products, such as cosmetic and food products, 

where the key is the product function.  

The class of structures includes the wide sub-class of the formulated products. These consist of 

pharmaceuticals, paints, creams, detergents, pesticides, etc., in which 5 to more than 20 

ingredients are usually present, representing a wide range of chemical compounds, such as, 

polymers, surfactants, solid particles, solvents, pigments, and aromas. 

Irrespectively to the product type, the common practice, in the development of such products, is 

still the experiment-based and trial-and-error approach, as explained in well-known textbooks in 

the field5,6. However, a systematic integrated procedure, where candidate higher added value 
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products are designed through a model-based methodology, and then validated and/or refined by 

means of dedicated experiments, represents an efficient alternative, with respect to time and 

resources, speeding up the product development process. 

An even more complete integrated approach for such complex products would include an 

integration of the product design and manufacturing (production) aspects, including a complete 

simulation analysis of the latter. This is, however, beyond the purpose of this work, but it will be 

discussed further in the manuscript. 

Among the consumer chemical-based products, many are of the formulation type: homogeneous 

liquid formulation where solid active ingredients are kept in solution by a proper solvent mixture; 

suspensions containing insoluble chemicals dispersed in the liquid mixture with the help of proper 

dispersing agents; emulsions where immiscible liquids are kept together through selected 

emulsifying agents; solid products such as pharmaceutical tablets or soap bars. The performances 

of such products are related not only to the presence of active ingredients and additives in the 

formulation, but also to the product’s structural and material properties7. 

Among this category of products, emulsified formulated products, which are the focus of this 

work, are very relevant, with wide application in the food and cosmetic industries. Emulsions are 

defined as mixtures of two normally immiscible liquids, kinetically stabilized by emulsifying agents 

(most often surface active agents, that is, surfactants) that lie at the interface between the two 

liquid phases. Active ingredients and additives are then dissolved in the continuous and/or in the 

dispersed phases, according to the needs of the product. 

With regards to emulsified formulated products, methodologies have been recently proposed to 

simultaneously tackle product and process design, with particular attention to cosmetic 
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emulsions8, and also to integrate multi-disciplinary optimization, by adding the complexity of 

price-competitive markets9. 

However, there is a lack of studies where process systems engineering tools are systematically 

applied for the solution of problems involving the design of emulsified formulated products. In this 

manuscript, we present a systematic methodology for the design of emulsified formulated 

products. 

Prior to presenting this methodology in detail, the general outline is first given.  

As mentioned above, chemical products as mixtures and blends are usually considered when a 

single molecule is unable to provide all the desired product functions, or perform all the desired 

process tasks. Solvent mixtures, tailor-made fuels, lubricants are examples of blended chemical 

products.  

A wide variety of computer-aided methods and tools have been developed for design of chemical 

products represented by the properties of a single molecule. These methods are classified under 

CAMD (Computer Aided Molecular Design) and they follow the same main steps: generate feasible 

chemical structures, estimate the thermo-physical properties through property models, and select 

the molecules that match the desired targets. The main features for these methods and tools are 

that building-blocks based methods are used to represent the molecular structures and their 

contributions are used to estimate the target10. 

For the computer-aided mixture-blend design (CAMbD), the properties and algorithms are 

different, even though similar building-block based property models may be used. Here, the 

properties depend on the mixture composition, and the design algorithm needs to identify the 

molecules and their compositions in solution matching the target properties. Systematic 

decomposition based solution approaches are usually employed to manage the complexity of 
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these design problems efficiently, by reducing the search space9. Recently, direct solution 

approaches of the MINLP (mixed integer non-linear programming) problem formulation have been 

reported19,20. 

Three types of solution approaches to product design are usually identified11: 

 Experiment-base (often partially based trial-and-error) approach: this approach is 

employed when mathematical models for the estimation of target properties are not 

available. A large number of consumer products are currently developed through this 

approach, where past knowledge and experience are crucial; 

 Model-based approach: when validated mathematical models for the estimation of the 

target properties are available, a list of feasible candidates is efficiently and quickly 

generated and tested. CAMD and CAMbD enter in this type of solution approach to product 

design; 

 Integrated experiment-modelling approach: this approach is used when mathematical 

models are not available for all the target properties. The design problem is decomposed 

into a hierarchical sequence of sub-problems: as one goes from the outer levels to the 

inner levels, the number of candidate decreases and the inner levels employ experiments 

for the final product refinement and/or validation. 

In general, the first approach is particularly reliable but extremely time expensive and innovative 

solutions are rarely found. The second approach, on the other hand, is characterized by very 

limited development time and consumption of resources, but it is highly uncertain and usually it 

needs external validation.  

The third approach, instead, represents an ideal combination of the two: high chances for 

innovation are guaranteed by the model-based structure, and the development time and the 
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consumption of resources are kept low, as the experiments are carefully designed for final 

refinement.  

The objective of this manuscript is exactly to present a systematic methodology for emulsified 

product design using this third approach as well as present a complete case study where this 

approach is used. 

The proposed methodology is hereafter presented in the next section, followed by the case study 

results. Several detailed aspects are presented in the Supplementary Material. 

 

Methodology and Tools 

The overall framework and integrated methodology proposed in this work for the design of 

emulsified formulations is illustrated in Figure 1. The framework, which includes model-based and 

experiment-based stages interacting with each other, is inspired by the approach proposed by Ng, 

Gani and Dam-Johansen11 and its extension for the solution of problems involving homogeneous 

formulated products by Conte et al.12. 

All three stages play very important roles and crucial in this methodology are also the databases 

and property models used especially in the model-based design stage. While aspects of this 

methodology and some case study applications (limited to stages 1 and 2) have been briefly 

presented previously13-16, a more comprehensive presentation is offered in this study as well as a 

fully worked out case study, which will include all three stages of the product design outlined in 

Figure 1. First of all, in this section, a presentation of all three stages is given, including their 

interrelations.  
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Framework and Methodology 

The systematic methodology, integrating model-based as well as experiment-based techniques, 

requires the definition of the product of interest as the input, and then gives as the output a 

validated emulsified formulation, containing a list of ingredients together with their relative 

concentrations. There is a close interaction between all stages, especially stages 2 and 3, as shown 

in Figure 2. The necessary methods and tools may differ for each of the stages. 

The problem definition stage is very important, as it is first in the hierarchical structure of the 

methodology. In some cases backwards interactions from the other stages may be difficult or time 

consuming, and any decision taken at this level influences the decisions taken in the following 

steps. However, in cases of generation of too few or too many candidates, the problem definition 

should be refined. At this point, a list of target thermo-physical properties (including target values 

and boundaries of acceptance) and a list of necessary categories of ingredient are generated, 

given the type of product of interest as the input. The main tool used in this stage is the 

knowledge base. 

The model-based stage takes the results of the problem definition stage and, through the use of 

property models, structured databases and dedicated algorithms, converts them into a candidate 

emulsified formulated product to be verified in the final stage, that is, a list of candidate 

ingredients and relative concentrations are determined. In order to reliably screen thousands of 

candidates while applying the “reverse design” technique, the model-based stage employs a 

decomposition strategy, so that the solution method is divided into a set of sub-problems to be 

solved individually. A wide range of tools takes part in this stage: property models, structured 

databases and algorithms. 
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Finally, the experiment-based stage is in charge of verifying the formulated product proposed by 

the previous stage, through focused experiments. A list of actions is also generated so that, if the 

results of these experiments do not match with the expected results provided by the previous 

stage, appropriate corrections can be taken.  

As illustrated in Figure 2, the interaction between the model-based stage and the experiment-

based stage is not unilateral, and iterations within the two stages are required if the formulation 

proposed by the model-based stage is not validated in the experiment-based stage. Iterations are 

necessary until a candidate formulated product generated by the model-based stage is verified by 

the experiment-based stage. 

The main objective of the overall integrated methodology is to quickly and efficiently screen 

between many candidates by means of mathematical models and algorithms, so that the valuable 

experimental resources are reserved for the final verification and possible refinement. This, 

however, is possible only if a set of product needs is generated. Such needs include both necessary 

categories of ingredients to be included in the candidate emulsified formulated product, and 

target properties to be satisfied by the above-mentioned components. 

The Problem Definition (Knowledge base) Stage 1 

Description of Stage 1 

The first stage of the integrated methodology for the design of emulsified formulated products 

consists of problem definition and it is illustrated graphically in Figure 3. Based on the knowledge 

base (databases and property tools, see “Knowledge-based of chemical product design” in 

Supplementary Material), this stage defines a set of target properties and ingredients relative to 

the product to be designed. It involves three main tasks, containing different sub-tasks, as shown 

in Figure 3. 
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In this first task, the consumer needs (ψi) relative to the product to be designed are collected from 

the knowledge base and they are divided into main (ψM) and secondary (ψS) needs. The consumer 

needs are defined as those attributes that consumers need and/or want from a product in order 

to buy it. The consumer needs include a wide variety of product attributes, ranging from cosmetic 

properties and sensorial factors, to safety and toxicity related property, to product form and phase 

stability. Data and information relative to the collection of the consumer needs for a range of 

formulated products can be retrieved mostly from customer surveys but also from literature, 

patents, real products, insight, industrial experience and common sense.  

The main needs (ψm) are defined as the main reasons for which consumers would buy the 

product, while the secondary needs (ψs) are defined as accessory product attributes, which can 

drive consumers to prefer a product, as compared to another, but the absence of which does not 

influence the minimum product performances. For example, the main need of an insect repellent 

product is to repel mosquitos, while the main need of a UV sunscreen is to provide protection 

from the UV radiations. The secondary needs are usually related to the form of the formulated 

product (liquid, solid, emulsion, spray…), safety, toxicity, cosmetic properties (odor, color…), and 

so on. For example, between the secondary needs of an insect repellent product, one can identify 

a pleasant odor and the ease of spreading or spraying, while in relation to a UV sunscreen, a 

pleasant skin feeling and the prevention of skin ageing are among the secondary needs. 

In the second task, first those consumer needs which cannot be translated into a set of thermo-

physical properties are identified e.g. color, odor or even ability to repel mosquitos for insect 

repellent lotions. These needs are translated into properties that directly link to categories of 

ingredients (ξi) that are known to be able to satisfy these needs. Then, the distinction between 

main and secondary consumer needs is used to distinguish between the active ingredients (ξAI) 

and the additives (ξADD). The active ingredients (ξAI) are defined as those ingredients that are able 
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to satisfy the properties connected to the main product needs (ψm), while the additives (ξADD) are 

defined as those ingredients that are able to satisfy the target properties connected to the 

secondary product needs (ψs). 

Indeed, despite the difficulties with these needs, there are categories of ingredients that may be 

able to satisfy them e.g. coloring agents (dyes or pigments), in relation to the main need of a paint. 

There are cases, however, where more classes of ingredients correspond to a single consumer 

need, such as in relation to the protection from UV radiations. In fact, there are very few 

chemicals which have been proven to be effective in screening the skin from both UV-A and UV-B 

radiations, therefore UV-A as well as UV-B absorbers and/or filters are necessary. 

In the design methodology, then, these consumer needs are translated into target properties, 

even though no quantitative models are available. These properties are defined in this work as 

target properties I, in order to distinguish them from those properties (target properties II) for 

which models are available. For the application of such a sub-task, a reliable knowledge base is 

necessary, discussed in the next section.  

In this third task of Stage 1, those consumer needs, e.g. toxicity, which can be translated into a set 

of thermo-physical properties (ζi), that is, target properties are identified. Then, they are divided 

between those relative to the active ingredients (ζAI), those relative to the additives (ζADD), those 

relative to the final product (ζPROD), and those relative to all the ingredients (ζALL). Finally, target 

values and boundaries of acceptance are set for each target property. Examples of target 

properties are the surface tension and the critical micelle concentration in relation to the foam-

ability of a hand-wash (ζAI); the solubility in the solvent mixture, quantified by means of the 

solubility parameters (ζADD), the flash point and the toxicity parameter, that are fundamental 

properties, in relation to safety and toxicity issues (ζALL) and finally bulk mixture properties such as 
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density, viscosity and surface tension, derived from consumer needs like spread-ability, spray-

ability are related to the overall product (ζPROD).  

For the set of target properties ζi the target value (ζi,T) and the boundaries of acceptance(ζi,L, ζi,U) 

are defined. The target values are the numerical values that certain properties are desired to 

match, while the boundaries of acceptance are the lower and upper numerical values that certain 

properties are required not to go beyond. The boundaries of acceptance are usually applied for 

screening purposes, while the target values are commonly used as performance index for 

ingredient selection. Target values are not always required, while two boundaries of acceptance 

are necessary for each target property. In case only a lower or an upper boundary can be set, the 

second is set to a very large positive value, or to a very large negative value, respectively.  

 

Stage 2: Model-based stage including algorithm (Methods and Tools) 

The work-flow of this model-based is shown in figure 4, together with the various sub-tasks. 

The mixture design problem addressed by this algorithm is a typical reverse design problem 

where, the design of solvent mixtures satisfying a set of constraints representing the target 

properties are determined and ranked according to a specific objective function, or performance 

index. 

Task 2.1 

The objective of task 2.1 is to select the most advantageous active ingredients (ξAI) and retrieve 

their properties using databases and property models. For the relevant thermo-physical properties 

of the candidate AIs, if data are not available in the database, they are calculated through 

dedicated property models. 
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Prior to performing Task 2.1, the relative databases to the necessary categories of active 

ingredients (ξAI) are retrieved from the database library or, if not available, are generated with 

information from literature, patents, real products and experience. The database needs to be filled 

with all the relevant properties for the selection task, that is, at least all the target properties 

relative to the active ingredients (ζ1) and to all the ingredients (ζ3). If these properties are not 

available, property models are applied to fill the gap in the property table. The screening process 

is carried out by screening out all the ingredients of the database whose numerical value of any of 

the target properties is lower than the lower boundary of acceptance (ζi,L), or higher than the 

upper boundary of acceptance (ζi,U). Those ingredients for which it has not been possible to 

retrieve either to calculate all the necessary target properties are excluded from the selection 

process. 

From the short-list of candidate active ingredients generated, the most appropriate ingredient to 

be added to the formulation is selected, based on a performance index, that is typically one or 

combinations of the following criteria: effectiveness, safety and health, environment, and/or cost. 

The target properties usually employed in this sub-task are ζ1 for the effectiveness, the flash-point 

for the safety, the toxicity parameter for the environment, and the market price for the cost. 

Finally, all properties for the active ingredients are retrieved either via databases or via property 

models. It is also important to collect information about the solubility of each active ingredient 

(usually quantified by means of the Hildebrand and/or Hansen solubility parameters), density, 

viscosity, and any other thermo-physical properties that can influence the bulk properties ζ4. 

Finally, as most often models able to relate the active ingredients performances (ζ1) to their 

concentration in the solvent mixture are not available, this information needs to be added to the 

database so that during problem solution it can be retrieved in terms of recommended 

concentrations of each of the selected active ingredients. Such concentrations are eventually 
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refined during the experiment-based stage, in order to find the optimal solution, which 

corresponds to the minimum amount of the active ingredients needed and thereby satisfying the 

desired performances (ζ1). 

Task 2.2 

Task 2.2 is very crucial, as the optimal solvent mixture in the emulsified form is designed, that is, 

the most advantageous aqueous solvents, organic solvents, surfactant system and their 

composition are determined. First, the relative structured databases are selected, then the 

necessary property models are chosen from the property model library, and finally the emulsified 

solvent mixture design (EMUD) algorithm is applied, together with the information generated in 

Stage 1 relative to the overall product (ζ4) and to all the ingredients (ζ3). Every chemical in the 

database for which any of the above mentioned target properties is missing, is screened out from 

the design process. 

In a mixture design calculation, pure component property models and mixture property models 

are simultaneously applied to solve the reverse problem, that is, given a set of constraints (ζ i,T, ζi,L, 

ζi,U) on a set of target properties (ζ4, ζ3), determine the solvent mixture that match the constraints. 

For some target properties, different property models can be applied. This is often true, for 

example, for mixture properties, where a linear mixing rule or rigorous models (non-linear mixing 

rule) may be applied. It is necessary here to choose which property models are to be applied by 

the EMUD algorithm for the solution of this reverse problem. It is a common practice, however, to 

use linear mixing rule models (during candidate generation) since the rigorous models are 

computationally expensive and it is tedious to apply them to several candidate solvent mixtures. 

On the contrary, in the verification step, where the thermo-physical properties of the chosen 

solvent mixture are calculated, rigorous models must be applied.  
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The complete EMUD algorithm is shown in Figure 5. 

The emulsified solvent mixture design (EMUD) algorithm is applied using all the aforementioned 

information (databases, relevant target properties with target values and boundaries of 

acceptance). It has to be underlined that applying the constraints on the target properties relative 

to the product (ζ4) to the solvent mixture design, corresponds to assuming that the bulk properties 

of the product are identified with those of the solvent mixture. Such an assumption is necessary, 

in order to reduce the complexity of the problem, but for most of the consumer oriented 

products, the solvent mixture represents 70-90% (in mole percentage) of the whole product, 

therefore this assumption is very close to reality. The output of this sub-task is a candidate 

emulsified solvent mixture, with its optimal composition, as defined by the EMUD algorithm. 

Finally, rigorous mixture property models are applied to the candidate emulsified solvent mixture, 

in order to calculate and collect all its relevant properties. In this sub-task, it is possible to compare 

the results obtained with the application of the linear mixing rule to a certain set of target 

properties with those obtained with the rigorous models. More important, here it is necessary to 

check that, by applying the rigorous models, the target properties (ζ4, ζ3) are still matching the 

given constraints (ζi,T, ζi,L, ζi,U). If this is not true, then the candidate solvent mixture is rejected, and 

the EMUD algorithm is run again, without the solvent mixture which has just been excluded. 

Task 2.3 

In task 2.3, the most suitable chemicals necessary to satisfy the secondary consumer needs (ψs) 

are selected. First, the necessary databases relative to the categories of ingredients identified with 

ξ2, are retrieved. Then, the most advantageous chemicals for each category of ingredients are 

selected by means of an appropriate performance index (same as in task 2.1) and finally, all the 

relevant thermo-physical properties of the candidate additives are retrieved from the databases, 

or if not available, they are calculated through dedicated property models. 
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These databases need to contain all the relevant properties for the selection task, that is: the 

target properties relative to the additives (ζ2), those relative to all the ingredients (ζ3), and 

solubility information, usually quantified by Hansen and Hildebrand solubility parameters. 

Differently than with active ingredients, in fact, the additives are selected after the solvent 

mixture, therefore appropriate constraints on the solubility parameter are needed.  

Finally, all the thermo-physical properties that are required in the next steps of this model-based 

stage are retrieved, including properties like density, viscosity, surface tension, etc., as they 

influence the overall product properties ζ4. Even for additives, there are very few cases for which it 

is possible to relate the performances of the different ingredients ζ2 with their concentrations in 

the product. Therefore, it is necessary in this sub-task to define a recommended concentration, 

that can be eventually further optimized in the experiment-base stage. 

Task 2.4 

The fourth task is a model-based stability check on the overall candidate formulation. At the same 

time, the relevant thermo-physical properties of the overall product are calculated and compared 

with the constraints: ζPROD. In this task, all the formulation ingredients are included in the mixture 

property calculations. In fact, the addition to the formulation of certain categories of additives can 

dramatically change both the overall product properties, and the product stability. If this is the 

case, another additive may need to be selected. 

The additives, as it can be understood, are necessary in the formulation, so that some of the 

secondary consumer needs are satisfied. There are categories of additives that are responsible for 

extreme effects on some overall thermo-physical product properties, even if added in very low 

concentrations. Therefore, it is necessary to check, after all the ingredients of the formulation 

have been chosen, if the overall product target properties (ζ4) are still in agreement with the 
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boundaries of acceptance previously set, i.e., if the assumption that the solvent mixture is 

responsible for the overall product properties is verified. 

Common examples of such a category of additives are the thickeners. Thickeners are substances, 

which increase the viscosity of a liquid mixture without substantially modifying any other 

properties. They usually consist of synthetic as well as natural polymers, and they are used in the 

range of 0.2-2% in mole percentage. 

In this sub-task, all the necessary product target properties (ζ4) are calculated using rigorous 

mixture property models and, if the calculated properties are found to be out of the boundaries of 

acceptance, the candidate formulation is rejected. It is then necessary to identify the reason for 

this discrepancy and find the source. Corrective actions are taken going backward in the model-

based stage. That is, apply again task 2.3. If no possible corrections can alter the product target 

properties enough to match the given boundaries of acceptance, then task 2.2 is applied again, 

and the rigorous models need to be used in the EMUD algorithm.    

Some categories of additives may contain polar and/or ionic species. These chemicals, particularly 

if the designed surfactant system contains one or more ionic surfactants, can be responsible of 

extreme changes in the stability of the product as an emulsion. Therefore, in this sub-task, the 

product stability as an emulsion is checked. Compared to the stability check performed in the 

EMUD algorithm, here all the ingredients are considered, while the model applied is the same. 

If the product stability is not confirmed, corrective actions are taking by changing the selection of 

the additives, as those ingredients that are considered responsible of the product instability are 

rejected. If the product stability is confirmed, then a candidate emulsified formulated product has 

been generated by the model-based stage, and it needs to be validated in the experiment-based 

stage, outlined in the Experiment-based Stage 3 (presented in Supplementary Material). The 
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Supplementary Material also presents the software tool used in this work as well a comparison of 

this methodology to other well-documented approaches for product design. 

The case-study of hand-wash detergent  

Two case studies involving the design of consumer products in the emulsified form have been 

previously developed and presented; a UV-sunscreen15 and a tank cleaning detergent16. The 

methodology we have illustrated has been applied in all cases, but no experimental validation has 

been made; only tasks 3.1 and 3.2 of stage 3 (see Supplementary Material) have been considered, 

as the actual experimental work has not been performed. In this paper, we consider the case study 

of the design of a hand-wash detergent, in the emulsified form, with emollient action. This is a 

complete case study, meaning that the whole methodology has been applied and that the 

experimental work has been planned and performed accordingly. 

Stage 1: Problem Definition 

Commercial hand-washes, as well as industrial detergents, are nowadays tailor-made designed in 

order to satisfy a wide variety of consumer assessments. That is, the ingredients of the 

formulation are carefully selected in order to provide highly focused performances. Based on 

different surveys and other sources, the consumer needs that have been identified are listed in 

Table 1. The consumer need for cleaning performances is here divided in terms of three main 

constituents (wetting of the substrate/skin, dissolution of the dirt, suspension of the dirt) for a 

better identification of the relative target properties. In this table the main consumer needs (ψm) 

as well as the secondary consumer needs (ψs) are listed.  

Then, for Target Properties I (not modelled), eight classes of ingredients (ξi) are required for the 

satisfaction of the consumer needs of Table 1. They are listed in Table 2. Two surfactants are 

chosen because ionic surfactants are recognized to produce higher amounts of foam, as opposed 
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to non-ionic surfactants, while non-ionic surfactants are usually milder on the skin. Therefore, 

both are selected. 

Active ingredients and additives are defined by following the distinction between main (ψm) and 

secondary (ψs) consumer needs, respectively. According to such a classification (see Table 1), ionic 

and non-ionic surfactants are defined as the active ingredients of this product, while an anti-

bacterial agent, an aroma, a colorant, a preservative and a softener are defined as additives. Table 

3 gives the relationships between consumer needs, target properties and categories of target 

properties. Among the thirteen target properties (ζi), seven are relative to the active ingredients 

(ζ1), two are relative to the overall product (ζ4), two are relative to all the formulation ingredients 

(ζ3) and the remaining are related to the additives (ζ2). 

Besides the list of necessary classes of chemicals, also a set of target thermo-physical properties is 

collected from the consumer needs listed in Table 1. Thirteen target properties (that is, target 

properties II, ζi) are necessary for this case study and they are given in Table 4, together with the 

boundary values. 

For each of the target property, a target value and/or boundary of acceptance have been set, for 

ingredient screening and selection reasons (see Table 4).  

It needs to be noticed that the boundaries of acceptance of the Hansen solubility parameters are 

defined through the Hansen solubility parameters of the proteins of the skin. Moreover, two 

different boundaries of acceptance are set for the surface tension, as they refer to different active 

ingredients (i.e. different consumer needs, and hence target properties). 

In summary, the output (results) of Stage 1 as described above in relation to an emulsified hand-

wash is given in Table 5. 

Some explanations of the values given in Table 5 are provided below: 
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1. Foam-ability. The modelling of the formation of foam is fairly complex. Several works have 

been conducted in the recent years, developing a variety of models needing a very large 

number of properties to be initialized. Moreover, some of these properties are extremely hard 

to be calculated and even measured. For these reasons, it has been decided to apply a 

qualitative method for the foam-ability. Most of the above mentioned works, in fact, agreed 

that the lower the surface tension, the higher the foam-ability. But the role of the surfactant 

has also been recognized in the fact that the higher the number of micelles of the emulsion, 

the higher its foam-ability. In fact, the foam-ability has been found to be related to the number 

of stable micelles in the product, as a large number of micelles is assumed to oppose to the 

diffusion of air bubbles in the liquid, thus leading to a larger amount of foam produced. 

Therefore, arbitrary boundaries have been set on the surface tension of the overall product 

and on the critical micelle concentration of the surfactant (the lower the CMC, the higher the 

number of micelles, at the same concentration of surfactant), as a qualitative translation of the 

foam-ability into target properties and numerical constraints. 

2. Skin irritability. The irritability of the skin is hard to be modelled and it has been decided that 

the pH and solubility properties play the main role here. The pH of the overall product needs 

to be fairly close to the pH of the skin, in order to be mild when spread, and it is necessary that 

every ingredient of the formulation (in particular the surfactants) cannot dissolve the proteins 

of the skin. This last constraint is translated into specific boundaries on the Hansen solubility 

parameters, which need to be “far” from those characterizing the proteins of the skin. 

3. Cleaning performance. The cleaning performances have also been modelled with some 

assumptions. The complex process of the detergency has been divided into its three main 

phenomena: wetting, removal and suspension. The first phenomena can occur only when the 

surface tension of the product is below the critical surface tension of the surface to be 
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cleaned, therefore a boundary on the surface tension can be set. In relation to the removal of 

the dirt from a surface, instead, the work of adhesion is considered the driving force. This can 

be calculated from the surface tension of the product and the interfacial tension between the 

aqueous and the organic phases of the product. This last property can be estimated itself from 

the surface tension values of the two phases, therefore boundaries on the surface tension can 

be set. Finally, the suspension is assumed to be driven only by the surfactant. That is, the 

prevention of the re-deposition of the dirt on the skin is assumed to be connected to the 

stability of the emulsion formed by the surfactant, where the dirt is expected to represent the 

dispersed organic phase. As a consequence, an adequate numerical constraint on the 

hydrophilic-lipophilic balance is set. 

4. Stability. The assessment of the stability of the product as an emulsion also consists of several 

factors. Critical properties of the surfactants (such as the cloud point and the Krafft 

temperature) need to be “far” from those of standard use of the product. Moreover, the 

overall composition of the formulation can also influence the stability of the product, 

therefore the hydrophilic-lipophilic deviation needs to be well above (or below) zero. 

Therefore, numerical constraints on the above mentioned properties are set, and the need for 

a preservative in the formulation is also added to improve its stability.  

5. Remaining properties. Finally, the translation of spread-ability in terms of overall density and 

viscosity, of safety in terms of flash point, and of toxicity in terms of lethal concentration is 

quite common and it has been already discussed in many previous works4,5,10,11,16,17. All the 

remaining consumer assessment cannot be directly translated into target properties, and they 

are then connected to the need for specific classes of ingredients, as seen from Tables 2 and 5. 
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Stage 2: Model-based Stage 

Model-based techniques are adopted in this stage for generating a candidate emulsified 

formulated product to be further verified in the experiment-based stage.  

Task 2.1 

The candidate Active Ingredients have been first screened using two databases; the ionic 

surfactants database, and the non-ionic surfactants database.  

In order to provide foam-ability and cleaning performances, surfactants are necessary. From the 

knowledge base, however, it is known that ionic surfactants are usually more efficient for the 

production of foam, while non-ionic surfactants are usually preferred for their mildness on the 

skin. For these reasons, a mix of one ionic surfactant and one non-ionic surfactant is desired, 

where both chemicals are expected to satisfy the same numerical boundaries set for both the 

foam-ability and the non-irritability of the skin.  

In relation to the ionic surfactants, constraints on the surface tension (σ < 25 mN/m), on the 

critical micelle concentration and on the Krafft temperature are applied, while for the non-ionic 

surfactants, constraints on the surface tension (σ < 55 mN/m), on the Hildebrand solubility 

parameter, on the hydrophilic-lipophilic balance and on the cloud points are considered. For both 

active ingredients, in addition, the constraints on the toxicity parameter and on the flash point are 

also set. A short-list of candidate ionic and non-ionic surfactants is then generated via ICAS-

ProCAMD. 

The effectiveness is chosen as the selection criteria for the active ingredient. In relation to the 

ionic surfactant, the lower the surface tension and the critical micelle concentration, the higher 

the performance; while for the non-ionic surfactants, the effectiveness is identified with the target 

values set for the Hildebrand solubility parameter. In both cases, when two or more candidate 
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ingredients have comparable effectiveness, the cheapest solution is selected, also based on 

market availability. As a result, sodium dodecyl sulfate and tween 60 are selected as the best ionic 

and non-ionic surfactants, respectively.  

Of course, using somewhat different ranges for the key properties, alternative choices for 

surfactants may be obtained (e.g., as shown in reference 16). Sodium laureth sulfate and octyl 

esaethylene oxide could be alternatively obtained as the two AI. The same is true also for the 

other components of the finally emulsified product, especially the diverse additives. 

The retrieved/predicted thermo-physical properties of the two (finally chosen) active ingredients 

are given in Table S1, calculated by means of pure component property models, if necessary. 

Hand-wash products are usually oil-in-water emulsions, therefore it is necessary to retrieve one 

database for the aqueous solvent phase, and one for the organic solvent phase. As the aqueous 

solvent phase, water is chosen as the product is directly applied on the skin, and the non-

irritability of the skin is one of the requirements. In relation to the organic solvent phase, 

vegetable oils are often used in the cosmetic products for their moisturizing properties as well as 

their pleasant aroma. The relative database is then retrieved for this case study. 

Task 2.2 

The EMUD (CAMD) algorithm is employed for the selection of the appropriate solvent mixture. 

The constraints that have been set in the problem definition stage are employed, in relation to the 

databases selected and the property models chosen. The list of constraints on the pure and 

mixture properties is as follows: 

 Pure component properties 

Aqueous solvent phase:  -Log(LC50) > 3.16 mol/m3 and Tf > 70°C 
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Organic solvent phase: -Log(LC50) > 3.16 mol/m3 and Tf > 70°C 

 Mixture properties with linear mixing rule 

30 < Vm < 150 l/kmol 

δD < 20.4 and δD > 24.4 MPa1/2 

δP < 7.8 and δP > 11.8 MPa1/2 

δH < 9.9 and δH > 13.9 MPa1/2  

Csurf ≥ 10·CMCsurf 

 Mixture properties with non-linear mixing rule 

5 < μ < 2500 cP 

 Stability check 

HLD ≠ 0 

For the list of constraints given above, the optimal emulsified solvent mixture generated through 

the EMUD algorithm is as follows: 

 Water (aqueous solvent phase): 57 % in weight;  

 Jojoba oil (organic solvent phase): 27% in weight (see Table S2 for its properties); 

 Sodium dodecyl sulfate (ionic surfactant): 8% in weight; 

 Tween 60 (non-ionic surfactant): 8% in weight. 

Rigorous models are used to verify that the solvent mixture properties satisfy the constraints 

previously set. The results are summarized below: 

 Dynamic viscosity: 7.03 cP (lower boundary: 5; upper boundary: 2500 cP);  

 Molar volume: 30.2 L/kmol (lower boundary: 30; upper boundary: 150 L/kmol); 

 Hansen solubility parameters:  dispersion: 27.4 MPa1/2, polar: 14.5 MPa1/2 and

 hydrogen-bonding 16.2 MPa1/2 

 Hydrophilic-lipophilic deviation: -3.1 (lower boundary: 0). 
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These results satisfy the constraints set for the solvent mixture. 

Task 2.3 

Table 2 lists the need for six additives to be included in the emulsified formulated hand-wash, to 

fulfill the secondary consumer needs: an anti-bacterial agent, an aroma, a colorant, a co-

surfactant, an emollient, and a preservative. However, the Food and Drug Administration (FDA) 

has recently expressed concerns over anti-microbial agents, as they are currently under 

investigation for potential carcinogen effects. For this reason, the anti-microbial agent is excluded 

from the list of the necessary additives. 

Four additives databases are then retrieved: the aroma database, the colorant database, the co-

surfactant database, the emollient database, and the preservative database. Constraints on the 

pure component properties in terms of solubility parameters, flash point and toxicity parameters 

are set (Stage 1): 

 Solubility parameter 14.4 < δT < 20.4 MPa1/2 (organic phase) and  

                                                     27.1 < δT < 33.1 MPa1/2 (aqueous phase) 

 Flash point  Tf > 70°C 

 Toxicity parameter -Log(LC50) > 3.16 mol/m3 

Four short-lists of candidate additives are then generated accordingly. 

The criteria chosen for the selection of the best candidate additives is the cost. The cheapest 

ingredients satisfying the constraints set above is selected. The four candidate additives are then: 

 Aroma: Orange sweet oil 

 Colorant: Orange colorant 

 Co-surfactant: Propylene glycol 

 Emollient: Polyquaterium-7 
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 Preservative: Sodium benzoate 

The target properties of the selected additives are retrieved from the databases, or estimated with 

property models and they are given in Table S3. 

The above results need verification through rigorous mixture property model based calculations 

for the target mixture properties. In fact, the addition of active ingredients and additives to the 

emulsified solvent mixture may have altered the emulsion properties, therefore it is necessary to 

verify that the product properties still match the constraints. 

The results of the calculations are summarized below: 

 Viscosity: 14.11 cP (lower boundary: 5; upper boundary: 2500 cP);  

 Molar volume: 32.7 L/kmol (lower boundary: 30; upper boundary: 150 L/kmol); 

The results obtained are in agreement with the constraints previously set. 

Task 2.4 

Finally, the product stability should be evaluated. The HLD value of the product is calculated, to 

check if the addition of active ingredients and additives has influenced the stability of the product 

as an emulsion. The new calculated HLD value is -3.8, showing a decrease compared to the solvent 

mixture, indicating that the stability of the product has not been compromised. The final 

candidate emulsified formulated product details obtained in the model-based design stage is given 

in Table 6. The experiment-based stage results, presented in Supplementary Material, result in a 

slightly different formulation, also presented in the Supplementary Material. 
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Conclusions and outlook for the future 

An integrated methodology for emulsified formulated product design has been proposed in this 

work. It consists of three stages: a problem definition stage, a model-based design stage, and an 

experiment-based verification stage. In the first stage, thanks to the knowledge-base, the 

consumer needs are collected and translated into a set of necessary classes of ingredients and of 

target thermo-physical properties, with target values and/or boundaries of acceptance. The 

second stage applies computer-aided techniques, structured databases, property models and the 

EMUD algorithm to generate a candidate formulation to be verified by means of experiments, 

from the information obtained in the previous stage. The third stage employs experimental 

techniques for verification of the candidate product. The properties and performances of the 

proposed formulation are assessed and, in case there is no match between any of the measured 

property or performance and its prediction, a list of actions is generated with the knowledge-base 

and applied for refining the proposed formulation. 

Moreover, a new algorithm for the design of emulsified solvent mixtures (EMUD) has been 

developed. The EMUD algorithm is a multi-level algorithm, based on the reverse approach: given 

the desired set of target property values, the algorithm identifies the emulsified solvent mixtures 

(that is, an aqueous solvent, an organic solvent, and a surfactant system) matching the constraints. 

The constraints are applied at four different levels: first, constraints on pure component 

properties are applied, and the candidate ingredients are screened on this basis; then, constraints 

on mixture properties described by the linear mixing rule are employed and the compositions 

minimizing the cost are identified. Then, constraints on mixture properties described by non-linear 

mixing rules are applied, and finally, the stability of the candidate solvent mixture in the emulsified 

form is assessed by means of a correlation.  
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A systematic framework for the design and analysis of emulsified formulated products has been 

included as a new template to the existing in-house software; the virtual Product-Process Design 

Laboratory, thus extending its application range. The framework is based on the problem 

definition and model-based design stage of the methodology for emulsified formulated product 

design, and it collects the knowledge-base, the databases, the models and the algorithm 

developed in this work. 

The systematic methodology for emulsified formulated product design and the corresponding 

framework, have been tested for a specific case study (detergent hand-wash) of a consumer 

product. For the first time, the whole methodology has been applied and a final prototype has also 

been manufactured. The results confirm that the integrated methodology developed in this work 

can be successfully employed for the screening of thousands of alternatives, and for the 

generation of a short-list of promising candidates. Some changes have been proposed in relation 

to some property models that should be improved for a more reliable estimation of the product 

properties. 

While the proposed framework is overall satisfactory, future studies which could further improve 

the framework should focus on the knowledge-base associated to the crucial stages of problem 

definition, development of quantitative models for cosmetic and sensorial properties and relating 

them to thermo-physical properties, need for accurate and predictive thermodynamic models for 

surfactant solutions. The latter could be regarded as an advance in the understanding and 

modeling of emulsified products, replacing some of the heuristics and correlations currently used. 

Finally, when designing structured products as emulsified formulations, it is recommended that 

the product and the manufacturing process are designed simultaneously19. Structured products, in 

fact, achieve their properties through an internal structure that is determined by the interaction of 

its component and the manufacturing process. The recent advances achieved by the process 
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systems engineering community in the area of the super-structure optimization can be applied to 

the solution of such a complex problem, as long as the necessary product and process models are 

available. The latter is often a great challenge as, for many processing steps, the needed 

simulation models do not exist to optimize the process or improve the known processing routes22. 

Still, the integration of computer-aided product design, product verification and its manufacturing 

process should be the ultimate target, thus including also process design and commercial 

feasibility evaluation. These last two steps have not been part of the scope of the current work 

and to our knowledge, essentially no published work has included all the above mentioned steps 

of complex product development. Thus, there is room for both improvements and further 

developments. 
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Figure 1. The general framework of the methodology for emulsified formulated product design. 
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Figure 2. The work-flow of the overall integrated methodology for the design of emulsified 

formulated products. 
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Figure 3. The work-flow of the problem definition stage for the design of emulsified formulated 

products. 
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Figure 4. The work-flow of the model-based stage 2 for the design of emulsified formulated 

products. 
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Figure 5. Flow-diagram of the EMUD algorithm, developed for the design of emulsified solvent 

mixtures. 
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Table 1. Distinction between Main and Secondary Consumer Needs for a Hand-Wash in the 

Emulsified Form 

Consumer Needs (ψi) 
Main Consumer  

Needs (ψM) 

Secondary Consumer 

Needs (ψS) 

High foam-ability   

Non irritability of the skin   

Wetting of the substrate   

Dissolution of the dirt   

Suspension of the dirt   

Spread-ability   

Good stability   

Anti-bacterial performances   

Pleasant color   

Pleasant odor   

Pleasant skin feeling   

Low toxicity   

High safety 
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Table 2. Collection of the Classes of Ingredients and Distinction between  

Active Ingredients and Additives for a Hand-Wash in the Emulsified Form 

Consumer Needs (ψi) 
Class of 

Ingredients (ξi) 

Active Ingredients (ξAI) 

or Additives (ξADD) 

High foam-ability Ionic Surfactant ξAI 

Non irritability of the skin 

Non-Ionic 

Surfactant 
ξAI 

Wetting of the substrate 

Dissolution of the dirt 

Suspension of the dirt 

Spread-ability - - 

Good stability 
Co-surfactant 

Preservative 

ξADD 

ξADD 

Anti-bacterial 

performances 

Anti-bacterial 

Agent 
ξADD 

Pleasant color Colorant ξADD 

Pleasant odor Aroma ξADD 

Pleasant skin feeling Emollient ξADD 

Low toxicity - - 

High safety - - 
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Table 3. Collection and Classification of the Target Properties, for a Hand-Wash in the Emulsified 

Form 

Consumer Needs (ψi) 

Target  

Properties (ζi) 

Categories 

of Target  

Properties (ζi) 

High foam-ability 
Surface Tension ζ1 

Critical Micelle Concentration ζ1 

Non irritability of the skin 
Solubility Parameters ζ4 

pH ζ4 

Wetting of the substrate Surface Tension ζ1 

Dissolution of the dirt Solubility Parameters ζ1 

Suspension of the dirt 
Hydrophilic-Lipophilic 

Balance 
ζ1 

Spread-ability 
Molar Volume ζ4 

Viscosity ζ4 

Good stability 

Cloud Point ζ1 

Krafft Temperature ζ1 

Hydrophilic-Lipophilic 

Deviation 
ζ4 

Anti-bacterial 

performances 
- ζ2 

Pleasant color - ζ2 

Pleasant odor - ζ2 
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Pleasant skin feeling - ζ2 

Low toxicity Toxicity Parameter ζ3 

High safety Flash point ζ3 
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Table 4. Collection of the Target Values and of the Boundaries of Acceptance of the Target 

Properties, for a Hand-Wash Detergent in the Emulsified Form 

Target Properties  

(ζi) 

Target Value 

(ζi,T) 

Boundaries of  

Acceptance ζi,L, ζi,U 

Unit of 

Measure 

Surface Tension 

Critical Micelle Concentration 

- 

- 

σ < 25 

CMC < 0.01 

mN/m 

mol/L 

 

Solubility Parameters 

 

pH 

- 

- 

- 

 

pH = 5.5 

δD < 20.4 and δD > 

24.4 

δP < 7.8 and δP > 11.8 

δH < 9.9 and δH > 13.9 

4.5 < pH < 8 

MPa1/2 

MPa1/2 

MPa1/2 

[-] 

Surface tension - σ < 55 mN/m 

Solubility Parameters δT = 17.7 14.7 < δT < 20.7 MPa1/2 

Hydrophilic-Lipophilic 

Balance 

- HLB > 12 [-] 

Molar Volume 

Viscosity 

- 

- 

30 < Vm < 150 

5 < μ < 2500 

L/kmol 

cP 

Cloud Point 

Krafft temperature 

Hydrophilic-Lipophilic 

Deviation 

- 

- 

- 

CP > 70 

TK < 20 

HLD ≠ 0 

°C 

°C 

[-] 

Toxicity Parameter - -log(LC50)> 3.16 mol/m3 

Flash Point - Tf > 70 °C 
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Table 5. Summary of the Results of Stage 1 for the Hand-Wash Cream 

  

 Consumer 

assessments 
Properties considered Constraints 

M
A

IN
 N

EE
D

S 

Foam-ability 

Surface tension σ < 22 mN/m 

Critical micelle 

concentration  
CMC < 0.01 mol/L 

Non-irritability of 

the skin 

Hansen solubility 

parameters 

δD < 20.4 & > 

24.4 MPa0.5 

δP <7.8 & > 11.8 

MPa0.5 

δH < 9.9 & >13.9 

MPa0.5 

pH 4.5 < pH < 8 

Cleaning 

performances 

Surface tension σ < 55 mN/m 

Solubility parameter 
14.7 < δT < 20.7 

MPa0.5 

Hydrophilic-lipophilic  

balance 
HLB > 10 

SE
C

O
N

D
A

R
Y 

N
EE

D
S 

Spreadability 
Molar Volume 

30<Vm<150 

L/kmol 

Viscosity 5 < μ < 2500 cP 

Emulsion stability Cloud point CP > 70˚C 
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Krafft temperature TK < 20˚C 

Hydrophilic-lipophilic 

deviation 
HLD ≠ 0 

Presence of a 

preservative 
- 

Anti-bacterial 

performances 

Presence of an anti-

bacterial agent 
- 

Pleasant colour Presence of a pigment - 

Pleasant odour Presence of an aroma - 

Pleasant skin feeling Presence of a softener - 

Safety Flash point Tf > 70 ˚C 

Non-toxicity Toxicity parameter 
-log(LC50) > 3.16 

mol/m3 

 

 

 

 

 

 

 

 

 

This article is protected by copyright. All rights reserved.

A
cc

ep
te

d 
A

rti
cl

e



Table 6. Candidate Formulation for a Hand-Wash in the Emulsified Form 

 Class of Ingredient Commercial Name Weight Percentage 
A

ct
iv

e
  

In
gr

e
d

ie
n

ts
 Ionic Surfactant Sodium dodecyl sulfate 7.5 

Non-Ionic Surfactant Tween 60 7.5 

So
lv

e
n

t 

M
ix

tu
re

 

Aqueous solvent Water 54 

Organic solvent Jojoba oil 25 

A
d

d
it

iv
e

s 

Aroma Orange Sweet Oil 1.5 

Colorant Orange Colorant 1 

Co-surfactant Propylene Glycol 2.5 

Emollient Polyquaternium-7 0.5 

Preservative Sodium Benzoate 0.5 
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