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Abstract The displacement of conventional generation

by converter connected resources reduces the available

rotational inertia in the power system, which leads to

faster frequency dynamics and consequently a less stable

frequency behaviour. This study aims at presenting the

current requirements and challenges that transmission

system operators are facing due to the high integration

of inertia-less resources. The manuscript presents a re-

view of the various solutions and technologies that could

potentially compensate for reduction in system inertia.

The solutions are categorized into two groups, namely

synchronous inertia and emulated inertia employing fast

acting reserves (FARs). Meanwhile, FAR are divided

into three groups based on the applied control approach,

namely virtual synchronous machines, synthetic inertia

control and fast frequency control. The analytical inter-
dependency between the applied control approaches and

the frequency gradient is also presented. It highlights the

key parameters that can influence the units’ response

and limit their ability in participating in such services.

The manuscript presents also a trade-off analysis among

the most prominent control approaches and technologies

guiding the reader through benefits and drawbacks of

each solution.
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1 Introduction

Conventional power systems rely on electricity genera-

tion from large rotating synchronous generators (SGs).

Due to the continuous exchange of energy between the

rotating masses of the SGs and the grid, the dynamics

of the grid frequency are limited and the frequency is

maintained within an admissible range. Following a large

disturbance, which causes the frequency to significantly

deviate from its nominal value, the SGs releases the

kinetic energy that is stored in their rotating masses

as an inertia response. Additionally, SGs participate in

primary and secondary frequency control by increas-

ing/decreasing their active power generation [1].

Traditionally, inertia response has not been consid-

ered to be an ancillary service but has instead been

considered as a natural characteristic of the power sys-

tem. Due to the high integration of converter connected

resources, which replace SGs, several transmission sys-

tem operators (TSOs) in different countries have begun

to recognize the value of the inertia response that can be

provided by wind power plants, synchronous condensers,

and emulated inertia [2,3,4,5,6].

To better comprehend the role of system inertia,

Fig 1 shows how the system frequency could change

after a contingency event in high and low inertia cases.

The key parameters involved are: 1) Rate of change of

frequency (RoCoF), 2) frequency nadir, and 3) steady

state frequency.

Because the capacity of the primary frequency re-

serve (PFR) is the same in both inertia cases, the steady

state frequency after the event settles at the same value.
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Fig. 1: Effects of lower inertia on system frequency

performance

However, the lower inertia in the system exhibits a lower

frequency nadir and a faster RoCoF. To maintain and

operate the power system in a secure state, the three pa-

rameters that characterize the system frequency should

be constrained to avoid further implications, such as

load shedding, cascade tripping, and, in the worst case,

system collapse.

The secure operation area for a given operating point

can be represented by considering the previously men-

tioned frequency constraints. The authors in [7] repre-

sent the secure operation area by combining the PFR

and inertia requirements, as shown in Fig 2. The se-

cure area is delimited by the maximum allowed RoCoF

(vertical line), the steady state frequency requirement

(horizontal line), and the frequency nadir (red curve).

The frequency nadir constraint is determined through

the swing equation presented in (2) which depends on

the PFR and the system inertia.
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Fig. 2: Frequency response requirements adopted

from [7]

Fig 2 shows that for high inertia cases, the PFR

requirement is prevalent on the frequency nadir. In fact,

due to the high inertia and the PFR reserve that is

required to satisfy the steady state limit, the frequency

nadir constraint will automatically be respected. This

is also shown by the blue curve in Fig 1, where the

steady state frequency is lower than the frequency nadir.

In other words, due to the high inertia, the frequency

declines at a slower rate allowing the activation of PFR

before the nadir constraint is reached.

Nevertheless, moving towards low inertia system,

the frequency nadir requirement starts to dominate on

the steady state requirement. This requirement can be

respected by acting on both PFR and/or system inertia,

as shown by the dashed curves in Fig 1. Indeed, the
frequency nadir can be improved by adding PFR (purple

dashed curve) and/or by augmenting system inertia

(green dashed curve). The lower the system inertia, the

faster the frequency will decline following an event (e.g.

the loss of a generator). Hence, a faster primary reserve

response is needed. In contrast, in high inertia grids,

slower-acting primary reserves are adequate to cope

with the imbalance. Fig 2 also shows that for low inertia

cases, the RoCoF requirement starts to dominate on the

frequency nadir. This is an indicator of how the grid

requirements are evolving towards a new paradigm due

to the high penetration of inertia-less resources.

TSOs with limited AC interconnection and high

share of converter connected renewable energy sources

(RES) have identified these issues to be of critical signifi-

cance. For example, EirGrid, the Irish TSO has initiated

the ”Delivering a Secure Sustainable Electricity System

(DS3)” program to address those challenges [8]. From
TSO perspective, the reduction of system inertia has

mainly two implications on system frequency stabil-

ity, namely: 1) larger RoCoF, which results in possible

tripping of grid components, especially embedded re-

newable generation; and 2) higher frequency deviations

(nadirs/zeniths), potentially leading to load shedding

and, in the worst case, system collapse. Moreover, con-

ventional SGs are put to higher risk of instability as

they are accelerating faster, thus reaching the maximal

rotor angle earlier. Once the maximal rotor angle is

exceeded pole slipping of the SG is very likely and pro-
tection will trip the generator putting even more strain

on the system which eventually could lead to a cascade

tripping [6].

This manuscript presents the analytical background

of frequency variations and the capability of emulated

inertia control (EIC) in mitigating the RoCoF and im-

proving the frequency response. Challenges and solutions

regarding the large-scale integration of converter-based

units are discussed. In addition, the state-of-the-art of
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possible solutions and devices to improve the frequency

response are discussed.

This study is part of the EU project ELECTRA1, in

which novel frequency and voltage control concepts to

maintain and operate the power system in secure state

are proposed. ELECTRA considers the grid inertia (i.e.

synchronous and emulated inertia) as an active part of

the frequency control process [9,10].

This paper is structured as follows: Section 2 presents

the grid requirements and some of the grid code mod-

ifications to maintain and operate the power system

in secure state. It also presents the background for fre-

quency variations and the inter-dependency between

EIC and RoCoF. Section 3 presents the Various control

approaches to mitigate the RoCoF and the advantages

and drawbacks of each. The key parameters and chal-

lenges of each control approach are presented in Section

4. Section 5 presents the suitable technologies that can

reduce the frequency gradient as well as the characteris-

tics of each technology. Lastly, Section 6 presents the

conclusion.

2 Grid Requirements & Synchronous Inertia

2.1 Grid Requirements

The increasing share of distributed and inertia-less re-
sources entails an upsurge in the requirements for bal-

ancing and system stabilization services. Various TSOs

have identified these issues to be of critical significance

and they have consequently initiated mitigating mea-

sures and established new requirements. In the following,

an overview of some of the new requirements and grid

code modifications is presented.

EirGrid, the Republic of Ireland’s TSO , has pro-

posed a RoCoF modification in the grid code to facilitate

the delivery of the 2020 renewable targets while main-

taining operational security on the power system. Gener-

ators are required to withstand a RoCoF event of 1 Hz/s

over 500 ms instead of 0.5 Hz/s [11]. Within the DS3

program and the RoCoF alternative studies, EirGrid

and SONI (TSO of Northern Ireland) investigate the de-

ployment of synchronous and non-synchronous inertia to

maintain the RoCoF at 0.5 Hz/s for a non-synchronous

penetration of up to 75 % [12]. EirGrid and SONI have

established a minimum value of rotational kinetic energy

in the system as an operational constraint during the

1 The ELECTRA Integrated Research Program on Smart
Grids brings together the partners of the EERA Joint Program
on Smart Grids to reinforce and accelerate Europe’s medium
to long term research cooperation in this area and to drive a
closer integration of the research programs of the participating
organizations and of the related national programs.

dispatch phase (i.e. 20 GWs) and they refer to it as

inertia floor [13]. It indicates the minimum amount of

inertia that the system must have during all the opera-

tional hours. However, the total rotational energy of the

system is defined as the sum of each machine’s rated

power multiplied with the relative inertia constant as

in (1).

Esyskin =

n∑
i=1

HiSr,i (1)

Hi - inertia constant of the i-th generator (s)

Sr,i - rated apparent power of the i-th generator (VA)

Esyskin - total rotational kinetic energy of the system (Ws)

n - number of generators

Due to the high share of inertia-less resources, UK’s

TSO, National Grid, started to procure fast reserves

to provide the rapid delivery of active power through

either increased output from a generator or the reduction

of the demand to control frequency changes [14]. This

control mechanism is a frequency deviation based control

and is addressed in this manuscript as fast frequency
control (FFC).

The Hydro-Quebec Transenergie’s (HQT) transmis-

sion connection requirement stipulates in detail that

wind power plants must be equipped with an inertia em-

ulation system. HQT is now in the process of procuring
and validating manufacturers’ models integrating inertia

emulation features [15,16]. This control mechanism is a

RoCoF based control and addressed further as synthetic

inertia control (SIC).

This manuscript will demonstrate analytically the

ability of FFC and SIC in limiting the frequency gradient

and improving the frequency response. Advantages and

drawbacks of each controller are also discussed.

2.2 Synchronous Inertia

Inertia is defined as the resistance of a physical object

to a change in its state of motion including changes in

speed and direction [17]. With reference to the power

systems, the inertia refers to the rotating machines

directly connected to the electrical grid without any

power converter (e.g. SGs, induction generators and

motors, etc.). The resistance to change in rotational

speed is expressed by the moment of inertia of the

rotating mass. Traditionally, the total inertia of a power

system is determined by the large rotating masses of

conventional power plants, i.e. the generator and turbine

connected to the same shaft. Due to the synchronous

coupling of the machines with the grid, their rotational

speed (i.e. ωm) is linked with the angular velocity of
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the electromagnetic field (i.e. ωe). During a disturbance

which causes an imbalance between the two opposing

torques, the net torque on the rotor is different from

zero leading to an acceleration or deceleration according

to the electro-mechanical swing equation in (2).

J
dωm
dt

= Tm − Te = Ta (2)

J - combined moment of inertia of the generator and

the turbine (kg·m2)

Tm - mechanical torque (N·m)

Te - electrical torque (N·m)

Ta - acceleration/deceleration torque (N·m)

SGs are characterized by their inertia constant H

which is defined as the kinetic energy Ekin, stored in the

rotating mass at rated speed, divided by the machine

rating power Sr as shown in (3).

H =
Ekin
Sr

=
Jω2

m,0

2Sr
(3)

ωm,0 - rated mechanical angular velocity (rad/s)

ωe = pωm, where p is the number of pole pairs.

Assuming p=1, equation (2) and (3) can be reformulated

as:

Pm − Pe = ωm
2HSr
ω2
m,0

dωm
dt

(4)

Pm - mechanical power (W)

Pe - electrical power (W)

ωe - angular velocity of the electromagnetic field (rad/s)

For limited angular velocity variation, one can as-

sume ωm = ωm,0, thus (4) can be reformulated as:

Pm − Pe =
2HSr
ωm,0

dωm
dt

(5)

Assuming that Pm is constant and that the frequency

regulation is only from the load side, then one can

consider that Pe is composed by: frequency dependent

loads (PD), devices participating in FFC (PFFC) and

devices participating in SIC (PSIC):

Pe = PD + PFFC + PSIC (6)

Where each is composed by a base value and frequency

dependent value:

PD = PD0 +KD(ωe − ωm,0) (7)

PFFC = PFFC0 +KFFC(ωe − ωm,0) (8)

PSIC = PSIC0
+KSIC

dωe
dt

(9)

PD0 , PFFC0 and PSIC0 represent the base electric power

in steady state and addressed further as Pe0 = PD0
+

PFFC0
+PSIC0

. KD is a damping factor, it considers the

electrical loads that change their active power consump-

tion due to frequency changes. KFCC = KFCC(t− t0)

is the FCC proportional control coefficient. KSIC =

KSIC(t− t0) is the SIC proportional control coefficient.

KFCC and KSIC are represented in function of the time

to represent the time required by the devices to be ac-

tivated: t0 represents the delay. KFCC and KSIC are

represented in function of the time to represent the time
required from those devices to get activated (i.e. time

delay), t represent the time while t0 represent the delay..

Therefore the electric power Pe can be expressed as:

Pe = Pe0 +(KD+KFFC)(ωe−ωm,0)+KSIC
dωe
dt

+∆Pe

(10)

Where ∆Pe is the perturbation and in steady state

the Pm is equal to Pe0 . The swing equation can be

formulated as:

2H dωe

dt

ωm,0
= −(KD+KFFC)(ωe−ωm,0)−KSIC

dωe
dt
−∆Pe

(11)

Assuming that KFFC and KSIC are deployed by unit

characterized by a very small time constant (t0), it is

possible to decouple units’ dynamics with frequency

variations. The frequency can be therefore considered

as quasi-constant value while the unit provide either

KFFC or KSIC considering that the variation in power

output will be much faster of the frequency dynamics.

Therefore, the differential equation can be solved as:

ω(t) = ωm,0+

e
− (KD+KFFC )ωm,0

KSICωm,0+2HSr
t

KD +KFFC
− 1

KD +KFFC

∆Pe

(12)

dω(t)

dt
= −ωm,0

e
− (KD+KFFC )ωm,0

KSICωm,0+2HSr
t
∆Pe

kSICωm,0 + 2HSr
(13)

One can notice that both FFC and SIC affect the

RoCoF variation during the transient. One can notice

that due to the response time of FFC and SIC and

the power ramp-rate limitations of the used resource

(e.g. battery ramp-rate), it turns out to be a complex

time-variant term. Nevertheless, the presented swing

equation shows clearly that mitigating the impact of

power imbalances in terms of RoCoF can be achieved

by increasing the system rotational inertia H, employing

fast reserves with RoCoF based control and/or with

frequency deviation based control.
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3 Various Solutions to for EIC

As analytically shown in (13), the system RoCoF can

be mitigated by one of the following actions: increasing

the system rotational inertia H and/or employing fast

reserves with EIC approaches. EIC can be distinguished

in three categories, namely virtual synchronous machines

(VSM), SIC and FFC. Fig 3 presents an overview of the

different solutions. In the following, a qualitative analysis

of EIC approaches is presented.
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Fig. 3: Various Solutions

For machines/units which are connected to the grid

by means of power electronics, the electromagnetic cou-

pling between grid and prime mover does not exist, e.g.
Type 4 wind turbines [18]. Therefore, frequency changes

will not induce a natural power change from the device

and, in principle, they can only provide emulated inertia
response.

Devices which are connected to the grid through

power electronics could provide emulated inertia if the

active power absorbed or generated is achieved through

control strategy based on the frequency variation over

time (∆f∆t ), emulating the synchronous inertia behaviour.
Emulated inertia could also be achieved by extracting

the kinetic energy stored in the rotating parts through

dedicated control scheme as the case with wind turbines

Type 3 and Type 4 [19,20].

Emulated inertia is a combination of control algo-

rithms, renewable energy resources, energy storage sys-

tems and power electronics that emulate the inertia of

a conventional power system [21]. The general concept

of EIC is presented in Fig 4. The core of the system is

the emulated inertia algorithm which varies among the

different solutions, based on the application and the de-

sired level of model sophistication [22]. Some typologies

try to mimic the exact behaviour of the SG through a

detailed mathematical model that represents the SG’s

dynamics, which are generally addressed as VSM. Mean-

while, other approaches have tried to simplify this by

using just the swing equation, which is further indicated

as SIC.
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Fig. 4: Emulated inertia concept

3.1 Virtual Synchronous Machines

The first proposal of a VSM was published by Beck

and Hesse in 2007, who labeled as VISMA [23]. The

underlying idea behind the VSM concept is to emulate

the essential behaviour of a real SG by controlling a

power electronic converter. Thus, any VSM implemen-

tation contains more or less explicitly a mathematical

model of a SG [24]. The inertia emulation is a common

feature for every VSM control scheme and it is based on

the desired degree of accuracy in reproducing the SG

dynamics, while additional aspects can be included or

neglected (e.g transient and sub-transient dynamics).

If the purpose of VSM is to accurately replicate the

dynamic behaviour of a SG, then a full order model

of the SG has to be included in the converter control

system. This includes a 5th order electrical model with

dq-representation of stator windings, damper windings

and the field winding, together with a 2nd order mechan-

ical model resulting in a 7th order model [25,26]. An

example of a VSM type is presented in Fig 5. This type

is used by the European VSYNC research group [27,

28] and has demonstrated the effectiveness of inertia

emulation through real-time simulations [29] and field

test [30].

Various control schemes for VSM, which represents

the interface between the SG models and the power

electronic converter, have been presented and discussed

in the literature [22,24,25,26,23]. The control schemes
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proposed in literature can be categorized into two main

groups based on the nature of the output reference from

the SG model, namely: Voltage Reference and Current

Reference models.

1. Voltage Reference: This control scheme is config-
ured to provide a voltage reference output [31]. If

a reduced order model of the SG is applied, then

the power flow will be mainly related to the inertia
emulation and the phase angle resulting from the

swing equation. However, protections can be imple-

mented at the hardware level or as parallel loops,

over-riding the references from the VSM; however,

their interaction with the inertia emulation and the

resulting behaviour can be difficult to predict [24].

2. Current Reference: This control approach gen-

erates a current reference. This scheme allows the

implementation of high order electrical models for

the SG [23]. Nevertheless, in practical implementa-

tions, this scheme can lead to numerical instability,

especially with high order SG models [32].

3.2 Synthetic Inertia Control

The inertia response can be also emulated by tracking

the RoCoF and representing the SG only by the swing

equation, as shown in (9). The control structure is shown

in Fig 6-a and is only emulating the inertia effect with

respect to the response to changes in the frequency

gradient. A key parameter in this controller is the RoCoF

measurement, which is further addressed in Section 4.1.

However, this control system does not have the inherent

capability for black-start since it requires the system

frequency as an input.

3.3 Fast Frequency Control

FFC is a frequency deviation based control and is achieved

by a joint action of FFC providing units within the

synchronous area. FFC employs the same control mech-

anism as PFR which is generally achieved using droop

f(t)-f(t-Δt)
Δt KSIC

f KFFCΔf

fref

+
-

a)

b) Pmin≤ P≤PmaxP

Pmin≤ P≤Pmax Psetpoint (t-t0)
1

1+sτ

Fast acting reserve dynamics

Transport 

Delay

First order 

delay

PsetpointP

f

Δf
Δt

Psetpoint (t-t0)
1

1+sτ

Fast acting reserve dynamics

Transport 

Delay

First order 

delay

Psetpoint

Fig. 6: SIC and FFC control diagram

controllers, so that governors operating in parallel can

share the load variation according to their rated power.

The droop constant represents the ratio of frequency

deviation to change in power output [33]. The frequency

variation, ∆f (Hz), which is referred to the nominal

frequency of the system, is therefore given as a function

of the relative power change ∆P (W) reported to the

nominal machine power, as shown in (14) and in Fig 7.

However, governors’ dynamics (e.g. response time and

ramping rate) limit the PFR capability in improving

the RoCoF. On the other hand, FFC is characterized by

employing FAR, for example, energy storage and electric

vehicles [34]. The FFC control diagram is presented in

Fig 6-b.

−1

KFFC
=

∆f/fnom
∆P/Pnom

(14)

fn

f

Pn P

Fig. 7: Frequency control droop characteristic

A summary which highlights the key features and

weaknesses of the various inertia control schemes is

presented in Table 1.

4 Key Parameters & Challenges

Emulated inertia services are mainly characterized by

the controller and the device dynamics. Different param-
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ht]

Table 1: Overview of the Various Control Schemes
Control Schemes Key Features Weaknesses

VSM

• Accurate representation of SG model
• Frequency derivative not required
• Black-start capability

• Can lead to numerical instability
• Protections of the voltages and currents

of the converter cannot be easily in-
cluded

SIC
• Simple implementation compared to

VSM

• Frequency derivative required
• No black-start capability
• System susceptible to noise

FFC

• Control type similar to conventional
droop control in SGs

• Local control (i.e. communication-less)
• Stable performance

• No black-start capability

eters can radically change the controller and the device

response and, therefore, their ability in delivering such

services. The key parameters can be divided into four

groups: 1) Signal measurement parameters, 2) Response

time, 3) Dead-band and 4) Device performance. More-

over, there is a lack of clarity regarding the volume of

FAR that can potentially compensate for reduction in

system inertia and the effects of the previously men-

tioned parameters on the required volume of FAR. In

other words, the quantitative relationship between MW

of reserve and the corresponding MWs of synchronous

inertia that those will be able to replace. In the fol-

lowing an overview of the different key parameters are

presented.

4.1 Signal Measurement and Processing

Conventionally, utilities have used the speed of SGs as

a proxy for the grid frequency because it is relatively

easy and accurate to measure. Generators’ governors

have been using deviations in rotor speed as measure for

frequency deviation from the reference ever since. In con-

trast, converter connected resources delivering frequency

support as well as protection relays (e.g. under-frequency

and RoCoF relays) need to measure the frequency di-

rectly from the grid. In the following, an overview of the

most common methods to measure the system frequency

and the RoCoF, and the associated key challenges are

presented:

• Frequency Measurement:

The system frequency indicates the dynamic balance

between power generation and consumption, and it is

measured from voltage or current signals, which orig-

inate from the synchronous machines whose rotating

speed are proportional to the frequency of the generated

voltage. The system frequency and its rate of change are

used directly in various protections and control schemes

and low measurement accuracy (e.g. due to harmon-

ics, random noise electromagnetic interference, etc.) can

cause false operation leading to system instability.

The zero crossing algorithm which uses a pulse count-

ing between zero crossings of the signal was the mostly

commonly adopted method [35]. Nowadays, with the

technological progress in microprocessors and cheaper

computational power, many numerical method for fre-

quency measurement are applied and proposed:

– Modified Zero-crossing method [36,37,38]

– Digital Fourier Transformation [39,40,41]

– Phase locked loop [42,43,44]

– Orthogonal decomposition [45,46]

– Least square optimization [47,48]

– Taylor approximation [49,50]

– Numerical analysis [51,52]

– Artificial intelligence [53,54,55]

To evaluate the performance of a frequency estima-

tion method, the following three aspects should be con-

sidered: the accuracy, the estimation of latency and the

robustness. The maximum error, the average error and

the estimation delay could be used as the performance

indexes for frequency measurements. The maximum er-

ror is the difference between the actual frequency and

the estimated frequency. The average error is based on

a number of data points in which the average values are

taken for both, the actual and estimated frequency [35].

Most frequency estimation algorithms employs a window

of data to derive the frequency, which causes estima-

tion delay because the frequency is time-varying. On

the one hand, a small window of data will reduce the

estimation delay while, on the other hand, it reduces the
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measurement accuracy due to the presence of noise and

harmonics. One can see that frequency measurement

is quite a challenging task and measurement errors or

latency can lead to malfunction of protection or control

schemes.

• RoCoF Measurement:

A key parameter in delivering synthetic inertia is the

RoCoF measurement. The RoCoF is the time derivative

of the power system frequency (df/dt) which varies

in function of the chosen measurement window. This

quantity was traditionally of minor relevance for systems

with generation mainly based on SGs, because of the

inertia of these generators, which inherently counteract

to power imbalances and thus limiting the RoCoF.

A key issue in the measurement of RoCoF across

the system is that the frequency measured at differ-

ent points in the system can vary significantly under

transient conditions. During transient events generator
rotor speeds may also differ from each other due to

local and inter-area interactions [56]. To obtain a consis-

tent system wide measurement of RoCoF, the electrical

transients need to be removed from the analysis and

only the mechanical transients on the system should

be considered [13]. By extending the measurement win-

dow, the electrical transients can be removed from the

RoCoF measurement, allowing for a more consistent

system RoCoF to be determined [57]. Meanwhile, rela-

tively large measurement windows might also eliminate

the mechanical transients leading to false RoCoF values.

Fig 8 illustrate the effect of using different measuring

windows on the RoCoF value. For example, considering

a certain system with certain dynamics and employing

a measuring window of 100 ms, the calculated RoCoF is

2.1 Hz/s versus 0.9 Hz/s for a 500 ms measuring window.

Therefore, the chosen measuring window, over which the

RoCoF is calculated, is just as important as the RoCoF

value itself.
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Fig. 8: Illustration of frequency change and the effect of

using different measuring windows

This issue is also of concern for various TSOs be-

cause the distributed energy resourcess (DERs) employ

protection schemes for loss-of-mains. Generally these

schemes utilize under- and over-frequency relays as well

as RoCoF relays. These schemes aim to ensure that,

should a part of the distribution network become is-

landed from the rest of the distribution system, that

there is no generation left operating on that local sys-

tem, keeping it live [58]. From the TSO perspective,

”false” RoCoF values that are influenced by the electri-

cal transients might lead to unintended cascade tripping
of distributed energy resources connected by means of

RoCoF relays [59,60]. Moreover, different studies have

shown that commercially available RoCoF relays from

different manufacturers respond differently to the same

event, even when they are configured with the same

settings [61,62,63]. This phenomenon is most likely due

to the different measurements techniques employed by

those relays. On the other hand, from the rotary elec-

trical machine perspective, the use of a relatively large

measurement window might lead to neglecting the me-

chanical transient and thus increasing the mechanical

stress on the rotating machines [64,65].

Generally, the grid code establishes the required

RoCoF relays’ characteristics (e.g. measurement win-

dow and threshold), which varies among countries. For
example, the Irish grid code defines 1 Hz/s the RoCoF

relays’ threshold measured over 500 ms moving window.

EirGrid determined that 1 Hz/s would be sufficient to

cover for the loss of the current largest single infeed

(i.e. East-West interconnector exporting 500 MW) [58].

This choice is to guarantee the triggering of the reserves

only for events which can threat the system stability by

triggering RoCoF relays.

4.2 FAR Device Response Time

The response time is defined as the total time required

from the FAR device to actively supply the grid with

its service. For power electronic connected technologies,

delivering synthetic inertia and/or fast frequency con-

trol, there is a delay between the event the device’s

response [66]. The response time can be represented by
a combination of the following four different parameters:

– Measurement time, which is the time needed to

detect and measure the RoCoF (or frequency in case

of FFC)

– Signal time, which is the time required to get the

activation signal from the measurement device to

the FAR device.
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– Activation time, which is the time required from

the FAR device to deliver the initial power response

once it received the activation signal.

– Ramping time, which is the time required from

the FAR to ramp up to the required active power

setpoint.

However, an adequate response time depends on the

system dynamics and requirements such as system iner-

tia and RoCoF limits. For example, a unit with a certain

response time adequate for high inertia systems might

lead to frequency oscillation in a low inertia system.

Generally, for low inertia system, the response time

is of more importance than for high inertia systems.

The authors in [67] present a sensitivity analysis of the

response time and highlight its importance and impacts

on the system stability.

4.3 Deadband

Deadbands are generally categorized into unintentional

and intentional deadbands.

Unintentional deadband terminology is used to de-

scribe the inherent effect of a unit; for example, to

describe the mechanical effect of a turbine-governor sys-
tem, such as sticky valves, loose gears, and hydraulic

system non-linearity, which are unavoidable and unad-

justable [68].

In contrast, an intentional deadband is commonly

applied for control purposes. For example, in the case of

primary frequency control (PFC), an intentional dead-

band is applied to the governor control systems to reduce

excessive controller activities for acceptable frequency

fluctuations. For the governor control system, deadband

values are established by the grid code [69]. For example,

Republic of Ireland’s grid code requires that a frequency

deadband of no greater than ±15 mHz maybe applied to

the operation of the governor control system [58]. In the

Continental Europe a frequency deadband of ±20 mHz

is permitted. On the other hand, some grid codes such

as in the Nordic area, require that primary frequency

support must be made without deadband [70]. However,

one should differentiate between contingency based and

regulation based service. When employing FAR for reg-

ulation based services, the controller should employ the

same deadband established by the grid code for the gov-

ernors control system. In the case of contingency based

services, defining a deadband is a more complicated task,

In fact it depends on the system characteristics such as

the system inertia.

4.4 Device performance

As previously mentioned, the FAR response is highly

influenced by the controller as well as the device dy-

namics. In the following the key parameters that can

influence the FAR response are presented:

– Response time: The time required by the device to
react to frequency fluctuation.

– Active power ramp: The rate at which the active

power will ramp after a frequency changes.

– Active power amplitude: The amount of active power

delivered from the device in function of frequency

changes.

– Active power duration: The time period for which

the device will provide active power before its energy

has been depleted. In case of employing FAR for syn-

thetic inertia, this parameter has a lower importance

compared to FFC since SIC focuses on very small

time frame post event.

4.5 Quantitative relationship between MW and MWs

The high integration of converter connected resources is

resulting in the reduction of the system inertia and con-

sequently deterioration of frequency stability. FAR units

controlled through SIC or/and FFC is seen as a possi-

ble solution and various control approaches have been

previously proposed in different studies. Nevertheless,
there is a lack of clarity regarding the volume of FAR in

terms of MW that can potentially compensate for the

reduction of a certain MWs of synchronous inertia.

5 Suitable Technologies for mitigating the

RoCoF

This section provides a high level assessment of the

different technologies that may be used to mitigate

the RoCoF. Two groups can be distinguished: 1) syn-

chronous inertia, and 2) emulated inertia employing

FARs. On the one hand, synchronous inertia reserves are

characterized by their inherent inertia response, which
does not require any measurement or control schemes.

On the other hand, FARs enhanced by FFC controllers

are able to mitigate the RoCoF and frequency nadir.

The assessment is based on the following criteria:

1) Geographic limitation, 2) Additional system services

(e.g. voltage control and black start), 3) Type of the

provided inertia service, 4) Inertia constant H (s) and

the typical power capacity (MW), and 5) Capital cost.

1. AC Interconnection
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An AC interconnection between two power systems,

by means of overhead lines or cables, will lead to a

single synchronous network. In case of loss of gener-

ation, the inertia of both power systems will start to

supply the power imbalance, leading to lower RoCoF

and better frequency performance [71,13].

• Geographic limitation

Geographical flexibility and large distance play

a significant role regarding AC interconnectors

installation. For example, if an interconnector

was to be built between the Island of Ireland
and United Kingdom, the distance would be

one of the world’s longest sub-marine AC ca-

bles, which is likely to challenge current tech-

nology.

• Additional system services

The power system will be strengthened due to

the connection of the two subsystems. To be

noted, in case of AC interconnection through

long high voltage cables, the charging current

limits the power transfer capability [72].

• Type of the inertia response

Inherent inertia response improving the overall

frequency performance.

• Inertia constant and power capacity range

For AC inerterconnectors, the inertia constant

depends on the inertia of the two intercon-

nected systems. The power capacity depends

on the interconnecting link.

• Capital cost

AC interconnection depends on the distance
of the two connected systems as well as the

geography and on the geography, which deter-

mines the possibility of using overhead lines or

cables.

2. Compressed Air Energy Storage

Energy storage systems are effective for support-

ing the integration of renewable energy and deliver-

ing system services. Compressed air energy storage

(CAES) is a promising energy storage technology

due to its high efficiency, cleanness and long service

life [73]. CAES makes use of underground caverns

where air is compressed for storage and decompressed

in order to release the stored energy. A CAES plant

consists of a large volume that can store the com-

pressed air (the battery) and, what is in principle,
a gas turbine. The plant store the compressed air

underground in caverns or rock formations [74].

• Geographic limitation

One can notice that the geology plays a signifi-

cant role for this technology since it requires an

underground cavern limiting its applicability.

• Additional system services

CAES is capable of providing multiple system

services as frequency and voltage support.

• Type of the inertia response

CAES is characterized by its synchronous in-

ertia response.

• Inertia constant and power capacity range
Inertia constant in the range of H = {3− 9} s

and power capacity that range between {15−
600} MW [64,75,13].

• Capital cost

Based on the analysis on 2nd generation CAES,

estimated capital costs range between {750−
1000} EUR/kW [76].

3. Power Plant Technical Minimum Reduction

One possible solution for maintaining the same in-

ertia level while allowing greater headroom for non-

synchronous generation is by operating SGs at low

power setpoints. Most conventional power plants are

designed to run in the upper capacity range closer to

the rated power with a minimum low power setpoint.

Reducing the minimum setpoint value is another

option with the same benefits. However, the power

plant type plays a fundamental role for the provision

of this service. For example, thermal power plants

operating in the lower output range are characterized

by high CO2 emissions [77].

• Geographic limitation

There are no location restrictions because it

uses existing power plants.

• Additional system services

The same system services of a conventional

plant operating in normal conditions but re-

duced down-regulation reserves.

• Type of the inertia response

Synchronous inertia response.

• Inertia constant and power capacity range

The inertia time constant is not alterated and

it is the same as for conventional plants which

is in the range of H = {2 − 9} s and power

capacity of {0.1− 1} GW [13,78,64,75].

• Capital cost
This depends on the type of plant and if a

refurbishment is needed.

4. Pumped Storage Hydro

Although utility-sized energy storage systems are a

small percentage of the total generating capability of

the power system, they are increasingly gaining at-

tention for their role in enabling higher penetrations

of variable renewable resources into the grid [79].

Currently, pumped hydroelectric storage (PHS) is

the most common type of utility-scale storage [80].
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The authors of a 2012 white paper by the National

Hydro-power Association’s Pumped Storage Devel-

opment Council indicated that development of new

PHS, particularly in areas with increased wind and

solar capacity, would significantly improve system

reliability while reducing the need to construct new

fossil-fuel generation [81]. Simultaneously, the power

range of pumped storage devices are suitable for

delivering sufficient synchronous inertia, although

significantly lower than that of a gas or coal fired

power plant [80]. However, this technology requires
the construction of an upper and a lower basin, which

delimits its application in some countries due to ge-

ographical limitations.

• Geographic limitation

The geographical circumstance is a key require-

ment to be able to employ this technology. It

requires the construction of an upper and a

lower basin, which delimits its application to

areas which fulfill these requirements.

• Additional system services

PHS is able to provide various system services

as conventional power plants. . Additionally,
pumped hydro power plants can also consume

active power from the grid to pump water from

the lower basin to the higher basin.

• Type of the inertia response

Synchronous inertia response due to direct grid

connection.

• Inertia constant and power capacity range

Inertia constant in the range of H = {2− 4} s

and power capacity of {1− 3000} MW [78,82].

• Capital cost

Capital costs for PHS differ widely. Reliable,
experimentally confirmed numbers are only

available for traditional geographically deter-

mined installations and reported to be in the

range of {800− 1000} EUR/kW [76].

5. Synchronous Condensers

synchronous condenserss (SCs) are machines that

are synchronized with the power system and oper-

ate as free spinning motors. SCs have played an

important role in reactive power compensation and

they have contributed to voltage stability in power

systems for more than 50 years [83,84]. Currently,

several TSOs have started to investigate SCs effect in

mitigating the RoCoF and enhancing the frequency

stability [85]. Nevertheless, SCs are characterized

by a lower inertia compared to conventional plants

because the prime mover’s mass is missing. However,

in some cases, SCs can be equipped with additional

masses to increase the inertia.

• Geographic limitation

SCs are not influenced by the geographic lo-

cation and, in principle, are flexible to install.

Moreover, existing power plants can be con-

verted to synchronous condensers.

• Additional system services

As previously mentioned, SCs have been used
for many years for reactive power compensa-

tion to improve voltage stability.

• Type of the inertia response
Due to grid connection without power convert-

ers, they are able to provide an inherent inertia

response without the need for measurements

and controls.

• Inertia constant and power capacity range
Typical inertia constant H = {2 − 3} s and

power capacity range of {50− 250} MVA [13].

• Capital cost

SCs have a large cost range, which depends

on the installation of new SC or converting

exiting power plants into SC. However, an

average cost for an SCs varies between {9 −
35} EUR/kVAr [86].

6. Wind Turbines

Wind Turbines are generally classified into Type 1,

Type 2, Type 3 and Type 4 [18,87]. Early wind

turbines of Type 1 and Type 2 were used with a

constant speed asynchronous generator, which is

directly connected to the power system and, thus,

capable of providing synchronous inertia. Modern

wind turbines (i.e. Type 3 and Type 4) are designed

to operate at a wider range of rotor speeds. Their ro-

tor speed varies with the wind speed or other system

variables, based on the design employed. Additional
speed and power controls allow variable-speed tur-

bines to extract more energy from a wind regime

than fixed-speed turbines. Nevertheless, for Type 3

and Type 4 turbines, power converters are required

to interface the wind turbine with the grid and, thus,

do not provide any inherent inertia response [88].

However, several wind turbines manufactures offer

synthetic inertia response control for the Type 3

and Type 4 wind turbines (e.g. ENERCON inertia

emulation control and General Electric WindINER-

TIA) [89,90]. In this case, the attainable response

from wind turbines is dependent on their operating

condition prior to the imbalance. However, the en-

ergy extracted from the blades needs to be recovered

to restore optimal operation and aerodynamic effi-

ciency. The energy is generally recovered from the

grid unless the wind speed increases favorably [91].

• Geographic limitation
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Location plays a significant role for the pres-

ence of the wind turbine itself. However, for

existing wind turbines the geographic location

should not present any limitation for providing

these services.

• Additional system services

Wind turbines of Type 3 and Type 4 are capa-

ble of providing a wide range of system services

due to their controllability. Nevertheless, they

can only provide system services if sufficient

wind is present.

• Type of the inertia response

Wind turbines of Type 1 and Type 2 provide

inherent inertia response while Type 3 and

Type 4, in principal, can only provide emulated

inertia.

• Inertia constant and power capacity range

Wind turbines of Type 1 and Type 2 with rated

power more than 1 MW have values of inertia

constant in the range of H = {3 − 5} s [92].

On the other hand, in Type 3 and Type 4 the

mechanical inertia is decoupled from the grid.

The machine power capacity spans between
{1− 10} MW [78].

• Capital cost

Wind turbines capital cost varies among tech-

nologies. However, for onshore installation capi-

tal cost varies between {1100−1950} EUR/kW

while for offshore wind turbines, the capital

cost varies between {2300−4300} EUR/kW [93].

7. Demand Side Management

In theory, demand and generation can participate

in frequency control. In the current control schemes,

adopted by the majority of TSOs, demand is used

to restore severe power imbalance that cannot be

alleviated by fast acting generators (i.e. load shed-

ding). Nevertheless, demand capability to contribute

to frequency control has been underestimated in

the past due to the complexity involved in the real-

time monitoring and control of aggregated loads [94].

In contrast, with the advancements in measuring

and monitoring techniques, demand side manage-

ments (DSMs) have started to gain more considera-

tion and application from various TSOs in managing

the power system efficiently and in accommodating

a higher share of renewable energy generation [95].

Simultaneously, different projects and studies are in-

vestigating DSM technology in providing additional

system services as fast primary frequency control

and SIC from aggregated loads. Various studies have

conducted simulations and field tests to analyze the

ability of electric vehicles to deliver frequency sup-

port and system services [34,66].

• Geographic limitation

Location plays a crucial role to allow the aggre-

gation of a number of loads to provide adequate

response power.

• Additional system services

DSM is able to provide multiple system ser-
vices such as frequency and voltage control.

However, the voltage control capability is gen-

erally within the distribution networks due to

the resistive feature of low voltage (LV) net-

works. In fact, active power curtailment in LV

networks becomes an effective solution to cope

with voltage variations [96,97].

• Type of the inertia response

DSM is able to provide regulating power in

terms of emulated inertia. By controlling the

active power consumption of a unit, it is possi-

ble to support the system frequency in terms

of emulated inertia, namely by adding fast fre-

quency control or synthetic inertia control [34].

• Inertia constant and power capacity range

DSM does not provide inherent inertia response

and, therefore, an inertia constant can not be
provided. Similarly, a power capacity range

can not be provided because it depends on the

number of the aggregated electrical loads.

• Capital cost

DSMs have a large range of cost depending on

the applied technology and infrastructure

8. Flywheel

Flywheels store kinetic energy in the rotation of a

wheel. The moving mass is accelerated and deceler-

ated by a motor/generator and, therefore, can charge
or discharge the system [13]. High speed flywheels

are interfaced with the grid through power electron-

ics, thus, are only capable of delivering synthetic

inertia. Flywheels energy storage systems are charac-

terized by their fast ramping ability and long-term

durability. Due to their fast response time (i.e. in or-

der of milliseconds), flywheels can provide ancillary

services, including synthetic inertia and frequency

response to power grids [98].

• Geographic limitation

Flywheels do not have location restrictions and

can easily be installed.

• Additional system services

Flywheels are able to provide frequency sup-

port in terms of regulating power.

• Type of the inertia response

Due to the connection to the grid through

power electronics, flywheels are only able to

provide emulated inertia.
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• Inertia constant and power capacity range

Flywheels are not characterized by an inertia

constant due to the connection to the grid

through power electronics. Their typical power

capacity range between {0.1 − 20} MW [78,

82].

• Capital cost

Flywheels have a capital cost that ranges be-

tween {210− 300} EUR/kW [82].

9. HVDC Interconnectors

High-voltage DC (HVDC) transmission links provide

a means of non-synchronously connecting two (or

more) AC power systems whilst maintaining control

of the power flow over the HVDC-link. An HVDC-

link is an economical way of transferring electrical

power over long distances [99]. Due to the asyn-

chronous interconnection between the interconnected

power systems, no inherent inertia response is avail-

able because the DC connection fully decouples the

two areas. Nevertheless, several studies have investi-

gated the ability of HVDC to provide frequency con-

trol services, including inertia emulation and primary

frequency control [100,101,102]. Frequency control

can be achieved by including frequency control loop,

either in the active power controller or the DC volt-

age controller [103].

• Geographic limitation
The location of the HVDC interconectors plays

a fundamental role in its applicability. Gener-

ally, the main challenge is related to the long

distance and high costs.

• Additional system services

HVDC interconnectors are able to provide a

large number of system services, depending on

the employed converter technology. [104,105].

In [106], the following ancillary services are

identified: reactive power/voltage control, fre-

quency control and rotor angle stability related

control. Moreover, the European Network of

Transmission System Operators for Electric-

ity (ENTSO-E) has started the development

of a network code on high voltage direct cur-

rent connections in which power oscillation

damping capability and black start capability

are included [105]. Assuming for example fre-

quency support from Area 1 to Area 2 (i.e. the

two terminals of the HVDC connections), the

power has to pass through the DC grid. Thus,

a DC transmission reserve must be guaranteed,

so that in the case of activation, the frequency

reserve can deliver the power at a defined point

in the AC system. Similarly, by controlling the

power flows in the interconnected power sys-

tems, the HVDC has the ability to re-energize

the AC system, which has been de-energized

(i.e. black start capability).

• Type of the inertia response

Due to the decoupling between the two subsys-

tems, only emulated inertia can be provided.

• Inertia constant and power capacity range

HVDC interconnectors do not provide an in-

herent inertia response. HVDC power capac-

ity depends from the employed technology.

The current installed HVDC links are char-

acterized by a power capacity in the range of

{3− 8000} MW [78].

• Capital cost

HVDC capital cost depends on the applied

technology and the distance over which the

two areas are connected.

10. Various Energy Storage Technologies

Energy storage systems are units that store electrical
energy and generally operate at direct current, thus,

power electronic converters are needed to interface

the units with the grid. Energy storage can provide

multiple benefits to the power system in terms of

ancillary services and RoCoF enhancement. Never-

theless, the unit’s technology plays a fundamental
role in deciding the suitability in providing such ser-

vices. For example, Sodium-Sulfur batteries (NaS)

are characterized by their fast response time and as

claimed by certain manufactures, the response time

is within 1 ms [107] allowing the provision of syn-

thetic inertia services and/or fast frequency control

services. On the other hand, hydrogen storage sys-

tem and synthetic natural gas do have a relatively

slow response time (i.e. in the range of seconds)

which limits their capabilities for synthetic inertia

services [108,109].

• Geographic limitation

Generally, batteries technologies do not have

locational restrictions and are flexible to install.

However, some minor exceptions might occur

for flow batteries due to the additional space

required for the auxiliary services and for the

more complex technology.

• Additional system services

Due to their controllability batteries are able

to offer multiple system services.

• Type of the inertia response

In principal, they can provide only emulated

inertia.

• Inertia constant and power capacity range

Batteries do not have any inherent inertia re-

sponse. Batteries’ power capacity depends on
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the applied technology, however, typical power

capacity is generally up to several MW.

• Capital cost

Batteries’ capital cost vary among the applied

technologies. However, it can range between

{250− 2600} EUR/kW [82].

6 Conclusion

The paper presented an overview of the various chal-

lenges which TSOs and distribution system operators

(DSOs) are facing due to the increasing share of inertia-

less resources. It focuses generally on the frequency

performance and in particular on the RoCoF. The ef-

fects of the system inertia and the primary frequency

response on the RoCoF, frequency nadir and steady

state value are presented graphically and analytically.

The study presented also the various methods that can

be employed to improve the frequency gradient, cate-

gorized into two groups, namely synchronous inertia

and emulated inertia. The emulated inertia methods are

divided into three groups, based on the applied control

scheme, namely VSM, SIC and FFC.

The manuscript presented the key features and weak-

nesses of each control schemes detailing also the key

parameters and challenges in applying those methods.

However, as previously mentioned and shown by differ-

ent publications, while both control schemes (i.e. FFC

and SIC) are able to mitigate the RoCoF, better per-

formance in terms of frequency nadir and steady state

frequency is achieved when the FFC is applied [34,67].

Moreover, a qualitative investigation of the most
prominent technologies that can be used to mitigate the

RoCoF is presented. Each technology is assessed based

on five criteria, namely, 1) Geographic limitation, 2) Ad-

ditional system services (e.g. voltage control and black

start), 3) Type of the provided inertia service, 4) Inertia

constant H (s) and the typical power capacity (MW)

and 5) Capital cost. The assessment showed that the

adequate solution will depend mainly from the system

requirement and the geographic restriction which can

limit the applicability of certain technologies.
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