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Abstract

Nonlinear plasma ocsillations in a cylindrical plasma re-
sulting from a short localized external excitation are examined
by means of a particle-in-cell simulation scheme. Computer cal-
culatiuns are performed for describing the experimental results
obtained in a single-ended Q-machine plasma in a cylindrical
waveguide. We assume that there is a strong magnetic field in
the direction of the column axis. When the amplitude of the ex-
citation potential is close to the kinetic energy of electrons
having a phase velocity of the electron plasma wave, the forma-
tion is observed of solitons and holes in phase space. After
formation, the solitons and holes move with constant velocities.
The velocities of solitons are close to the wave-phase velocity,
while holes move with smaller velocities. When the external po-
tential amplitude is increased, there is a tendency that the
number of holes grows. The potential amplitude of the self-con-
sistent field in the soliton region damps in time with increas-
ing soliton width. The potential profile of the hole does not

change after its formation.
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l. INTRODUCTION

In this study nonlinear Langmuir oscillations in a col-
lisionless plasma undergoing short localized excitation were in-
vestigated by means of the particle simulation method. The in-
vestigation was made in order to analyze the experiments in a
single-ended Q-machine with a plasma in a cylindrical waveguide

1)

in a strong magnetic field ' . The localized external excitation

in these experiments was achieved by applying a short (about one
electron plasma period) impulse of external potentiai in the

space between the waveguide and a conducting cylinder of the
same radiusz).
Electron plasma oscillations in a cylindrical plasma with

J)

a strong magnetic field have a dispersion relation similar to

that of ion-acoustic waves. Thus, under such conditions, it is

possible to expect the formation of solitons"s)

during excita-
tions in the axial direction. In particular, electron plasma

shock waves and solitons propagating in the Q-machine column
2,6)

1)

have been observed experimentally . It has been pointed out

in the experiments of Saeki et al. that with an excitation
energy value close to the kinetic energy of electrons having the
phase velocity of the plasma wave, holes occur in phase space
in addition to solitons. These holes, which correspond to the
positive humps of the electrostatic potential, move with con-
stant velocities like solitons., After their formation, the holes

7)

apparently represent Bernstein-Green-Kruskal modes which occur,

for example, in the development of the two-stream instabilitya).
Such a study is important for the investigation of the

properties of a collisionless plasma of strong nonlinearity.

2, THE PHYSICAL PROBLEM

The numerical simulation presented here describes exper-
iments with a Q-machine plasma in a cylindrical waveguide with
a strong axial magnetic field. Space-charge waves can propagate
in such a plasma in an axial direction. It is assumed that there
is an infinite magnetic field so that the electrons are only
able to move in the longitudinal direction (x-direction). The

ions are assumed to form a stationary positive background.



The dispersion relation for the longitudinal Langmuir waves

with phase velocities w/k << c¢ in such a plasma can be given the

form3):
kZ
w? = 0! —— ikzvz (1)
pe k2 +ki 2 th
where k, = 2.404 r 1is a radius of plasma column, w is the
4 r "o P " “pe

electron plasga frequency, and v is the electron thermal vel-

th
ocity.

This dispersion relation takes into account only azimuthal-
ly symmetric modes of the electric field components.

Unlike the Langmuir oscillations in an infinite plasma, the
oscillations described by the relation (1) have the maximum

phase velocity for small wavenumbers k » 0

w
Jrax _ _pe
ph k,
For the azimuthally symmetric modes, the electrostatic po-

tential can be obtained from the Poisson eguation

%ﬁg-ki¢=-4‘np. (2)
The term -ki¢ in eq. (2) describes the radial part of the
Laplacian. Only one-dimensional electron movement is investigated
and it is assumed that the charge density only varies in the x-
direction too. It is clear that in a real plasma such an assump-
tion is valid near the system axis. However, even with these
limitations, we cannot neglect the term % %; (rEr) in the Poisson
equation because the boundary condition on the waveguide surface
Ex(r=ro) = 0 must be fulfi'led. As boundary conditions in x-
space, we use the assumption of a zero electric field at the ends

of the plasma column
-
X

where L is the column length.

=9-Q‘ =0' (3)
x=0 dx x=L
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The energy of the electric field described by =q. (2) can
be calculated as

ﬂrz

We = g J(EZ + kie%ax . (4

We suppose that the external potential that creates the
localized excitation in the rlasma between the cylinder and the

waveguide can be presented in the form:

| * n(x)-a(t)

oext(x't) = |e max

ext

where n(x),o(t) are functions describing the space and time

variations of the potential. In this study we use the following

approximation:
-1, 0 <x<x -d ,
m{x=-x_) P P
nix) = | - X[1l+cos dp 1, xp-dp < x < X o
0o, X5 <x <L,
[ %(1-cos§“Tt) , 0 <t <At ,
P
P
o(t) =
o, t > Atp .

where xp, dp and Atp are external potential parameters (see
Fig. 1),
It is natural to choose the kinetic energy of the electron

with phase velocity vph = /K, as a scale for the maximum

w
pe
value of the external potential
2
I°ext|max = p'7e (k‘ ) = Ap wph !
where parameters AP defines the external potential in such a

scale.

3. SIMULATION MODEL

In the present study the particle-in-cell method (PIC
method) is employed for simulation of the nonlinear processes in



a plasma column under external excitation. The particle-in-cell
method and related cloud-in-cell (CIC) method® 11!

used by many authors to investigate nonlinear phenomena in col-
12)

have been

lisionless plasmas. Using the PIC method, Mason investigated
ion-acoustic shock waves. There the movemen* of the jions was
simulated and the electrons were treated as a massless fluid.
Because we are interested in electron Langmuir oscillations, we
simulated the electron component and considered the ions as a
positive stationary background.

In the particle-in-cell method it is convenient to use

dimensionless variables defined by the following relationsls):

At
x=F., v=vit,

- 4(8t)% e _,.2(0t) e
E=-E, =% o+ F=¢—Fr g
e e
= - <P = 2 2
Q = -G en_ , G 2wpe(At) R

where A is the space step, At is the time step, and n, is the
initial plasma density.

We use the leap frog schemels) for moving all simulation
particles the time step 2At:

k+l _ k-1 k, k k k
vm = vm + E (xm) + Eext(xm) ’ (5)
xKt2 o xk o, Rl , m=1,2,...N,

m m m

where k is the number of the points at the time grid, N is the
total number of simulation particles, and Eext(x) is the exter-
nal electric field.

The first time step is realized by the Euler methodls)

1 o o]
xm xm + vm/z . (6)

Having the co-ordinates of all particles at moment tk, we
can obtain the values of the charge density Qt in the nodes of
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the space grid. We calculate the charge density by distributing
the charge of each particle between the two nearest grid points
according to a reverse linear intcrpolation'). This method pro-
vides the reduction of shot noise inherent to the PIC model.
Therefore we can express the values Qt in the form:

k k
Q1 = G[Ni(t )/Nc -1) ., (7N

where Ni(tk) is the number of charges in e units in grid point i
at time moment tk. and "c is the initial number of particles in
each cell.

The value Ni(tk) is defined by reverse linear interpolation

N
N %) = § sanexi-1p-a-pxt-1y (8)
=]l = -

where Int(z) is a truncation from real value to integer, and

1, m=20,

§({m) =

0, m¥ O,

It is easily shown that the charge distribution defined by
eqs. (7) and (8) is equivalent to that in the cloud-in-cell
method for homogeneous clouds with size A.

After calculating the charge density distribution Q:, we
can obtain new values of the self-consistent electric field in
eqs. (5) for moving all particles the next time step. Por this
purpose, we have to solve the Poisson equation (2) with boundary
conditions (3) using new charge density values. A simple three-

point finite difference scheme is e-ployedla)
K _a_vip2 kK _ ok
Py, -(2-k1aH)Ps + Pr_ = af . (9)

The parabolic interpolation of potential values is used after
solving eqg. (9) to calculate the electric field E(x) in arbi-
trary points of the interval 0 < X < J (J = L/4, see Appendix
Al).

Equations (5)-(9) define the total time loop of the PIC
method and are solved in each time step. The way in which the
Poisson equation is solved is described in Appendix A2,
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If a simulation particle is outside the interval 0 < X < J
in some time step, the coordinate and the velocity of this par-
ticle are altered using reflecting boundary conditions,

k k
xk - { Xy o X € 0.
m,refl {23 - x: , x: >,

k == -
Vi, refl = v: :
We assume the initial distribution of the simulation par-
ticles is homogeneous in x-space and random in v-space according
to the Maxwellian distribution

f,(V) + exp(- v’/Véh) '
where vth = Ven * 25t/4.

The initial distributfon in phase space and the velocity
distribution obtained from it by a simple histogram is given in
Fig. 2 (N = 2-10%).

The electric field energy (4) and the total plasma enerqgy

calculated per one particle are computed during the simulation

process

J
=1 2 .
We = 3a5 | [(E*E, )" + axl:?P1dx,
° (10)

"total = "E *

z|~

N
tovi.
m=1

The procedure of calculating "B is described in Appendix Al.
The total energy calculation is used for checking the accuracy of
the simulation method. It appeared during the computations that
after t > Atp, the total energy conserves with an error of about
1-2%. Such a conservation can be considered as a confirmation of

a rather good accuracy of the model.

4. Computational Results and Discussion

The numerical computations were performed with typical para-

8)

meters of the one-dimensional PIC simulation™ ' . A space step &4
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was put equal to the Debye length AD and a time step was equal
tc 0.25/wpe (= 0.04 Tpe' where Tpe is a plasma period). The
initial number of simulation particles in each cell Nc was equal
to 50, with the total length of the space interval varying from
200 XD to 1000 AD, s0 the maximum number of particles used was
N = 5-10*,

Runs were made with a radius of the plasma column of r, =
20 XD and a length of the space interval between the cylinder
and the wave guide (see Fig. 1) of dp = 20 AD. These values
correspond to the experimental parametersl) for density, n, =
107 cm-3, and for thermal energy, EO = 0,2 ev. As the right
boundary value of the external potential jump (see Fig. 1), we
used xp = 410 AD for L = 800 XD and L = 1000 XD' The external
impulse duration Atp was chosen equal to 2Tpe.

Some of the computer simulation results are presented in
Figs. 3-11. The plasma dispersion described by the relation (1)
leads in a case of external excitation to the appearance of
solitons moving with constant velocities in accordance with the

4’5). Soliton velocities are close to the

theoretical treatments
phase velocity of space-charge waves vph = ”pe/kl for initial
excitation energies of the order of th. Increasing the external
potential amplitude, increases the soliton velocities to the
value 1.3 vph for Ap = 5.0 (see Fig. 9).

For potential amplitudes eMextlmax = th, the appearance
of a hole in phase space was observed (Figs. 3,4). The hole
moves with a constant velocity that is less than the soliton
velocity. As shown in Fig. 9, its velocity also increases with
Ap increasing up to a value of about 0.5 vph’ changing the sign
for some excitation amplitude.

For a larger potential jump amplitude (Ap 2 3.0), two holes
appear in phase space (Figs. 5,6). With a further increase of
the external excitation, there is a tendensy that the number of
holes will increase (Figs. 7,8). They move with different vel-
ocities, moving behind the soliton and separated from each other.

From the potential space variations in equidistant time
moments presented in Figs. 10, 11, some important facts can be
derived. There are three regions, separated in space, of the

disturbed potential arising from the different physical phenom-
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ena. After their formation, all three regions move with constant
- but different velocities, moving away from each other.

The region on the right side with negative potential (posi-
tive in Figs. 10, 11 as we plotted - ¢) represents a soliton

moving approximately with a phase velocity v In the case

ph’
vph >> vth (Fig. 10), this part of the disturbed potential has a
fluid nature and can be described by the Korteveg-de Vries equa-

6)

tion for Landmuir waves in cylindrical plasma ‘. In such con-
ditions a soliton moves practically without damping. When vph is
close to thermal velocity (Fig. 11), the interaction between
waves and particles becomes stronger and soliton damping with
increasing of its width takes placel4'15).

The left, non-stationary region of the positively disturbed
potential is a region of electron deficit caused by the large
amount of particles contributed to the soliton part. This posi-

tive pulse moves with a velocity close to v and can also be

described by the fluid model. Both of thesepgluid-type regions
have a train of waves behind them with space-charge dispersion
(1).

The central region of the potential disturbance is a

stationary Bernstein-Green-Kruskal mode7'6)

, being itself an
esentially kinetic phenomenon caused by an electron distribution
function disturbance under external field impulse.

Thus we can conclude that the simulation scheme used is
good enough to describe the nonlinear Langmuir oscillations in
a cylindrical plasma. The corputer calculations confirmed the
1)

experimental results of studying the formation of solitons
and holes in a single-ended Q-machine under external excitation.
It would be of interest in future to investigate the more
complicated effects of the interactions between holes and soli-
tons for different external impulse profiles.
The simulation code was written in FORTRAN and run on a
Burroughs 6700 at the Risg Computer Installation, A typical

computing time for one time step and N = 5-104 was about 15 sec.
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APPENDIX

Al. Electric Field and Energy Calculation

We calculate the potential values between the space grid
nodes by means of the gquadratic interpolation

X) = A.X? + B.X + C. , 11
F(X) 3 3 CJ (11)

where index j is defined as j = Int(X) + 1, and Ai' Bi’ Ci are
the coefficients of the parabola crossing three points (i-1,

F,_y)e (4, F), (43, F )¢
A, = X(F, . - 2F, +F, ,)
i 2V4-1 i i+1’
By = F, ., - F; - Aj(2i+]) , (12)
C, =F, - By-i- Ai-iz , i=1,2,...,3-1.

For i = J, we assume

g =21 By T By G 7 G
We can obtain a value of the dimensionless electric field
E(X) in an arbitrary point X from expression (11) by simple
differentiation
= o SF _
E(X) = 2 ax - 2(2ij + Bj) .
For an electric field energy calculation, it is necessary
to calculate two integrals
J J
f E*ax , [ Flax .
o o
We can obtain the first by means of direct integration in

each space step
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J J i J x? x? i
[fEax = | [ E'd =4 7] (4R} 3~ + 2a;B, = + BIX)| .

o i=l i-1 i=1 3 1712 14

To calculate the second integral, we use parabolic inter-

polation for values F;,

wherz2 the coefficients ii, 51, Ei are defined by egs. (12), re-

placing Fj by F;. Therefore we can write

J J " _ i
JFIxiax = ] (3= X' + = X? + Cy0)| .
o i=1 i-1

ul [
-~

A2. Solving of the Poisson Equation

The general boundary conditions for the Poisson equation

(9) can be written in the form:

o33

L v BF)y_-o = Cy (13)
4aF
(A == + B F)! = C_, (14)
r dX r X =3 r

where Al' Bl' Cl' Ar’ Br and Cr are prescribed constants.

For solving the Poisson equation (9) with boundary con-

13)

ditions (13), (14), we use the double recursive procedure with

the parabolic interpolation of potential for computing g% at the
ends of the interval 0 ¢ X < J. The values of the potential in

this procedure are defined by the recurrence formula:

Fj = chj-l + sj r J=1,2,...,3,

where the coefficients cj and sj are also defined by the recur-

rence relations:
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1

¢ = cj-kia’-z .

-1

Q. 1°S

) cj-kLA -2 ’ 3= J'J-1'°°-'2 -

The initial values cJ, S5 for these relations can be ob-

tained from the boundary condition (14) for the right boundary

sj‘l

of the interval

A _+1-k3a?/2
i B W
r r

(15)

s, = cr-ArQJ—ll2
J A_+B
r r

The value F, can be found using the boundary condition (13)
for the left boundary of the interval

Cl+Al(czsl-sz—4sl)/2

= = - , (16)
o A"(zc1 clcz/z 3/2)!»3'.

F

Expressions (15) and (16) are obtained from eqgs. (13) and
(14) by means of quadratic interpolation of the potential values

for calculating g%.
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Space and time variations of the excitation potential

oo.x‘ = Apﬂphn(x)u(t).
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rig. 5. Aj = 3.0, t = 1.55
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Pig. 6. A = 2.0, ¢t = 4]



Fig. 7. A ¢ 4.0, ¢t = 1.5%
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