
 
 
General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright 
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 

 You may not further distribute the material or use it for any profit-making activity or commercial gain 

 You may freely distribute the URL identifying the publication in the public portal 
 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 
  
 

   

 

 

Downloaded from orbit.dtu.dk on: Mar 29, 2019

Modelling of glucose-insulin dynamics from low sampled data

Aradóttir, Tinna Björk; Boiroux, Dimitri; Bengtsson, Henrik; Poulsen, Niels Kjølstad

Published in:
Proceedings of 18th IFAC Symposium on System Identification

Link to article, DOI:
10.1016/j.ifacol.2018.09.213

Publication date:
2018

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Aradóttir, T. B., Boiroux, D., Bengtsson, H., & Poulsen, N. K. (2018). Modelling of glucose-insulin dynamics from
low sampled data. In Proceedings of 18th IFAC Symposium on System Identification (pp. 551-56). Elsevier. DOI:
10.1016/j.ifacol.2018.09.213

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Online Research Database In Technology

https://core.ac.uk/display/189887729?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.ifacol.2018.09.213
http://orbit.dtu.dk/en/publications/modelling-of-glucoseinsulin-dynamics-from-low-sampled-data(d90cee2e-c2af-49f1-a711-1ddc485a77a6).html


Modelling of glucose-insulin dynamics from
low sampled data ?
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Abstract: In this paper we focus on modelling the glucose-insulin dynamics in the human
body for the purpose of controlling the glucose level. Due to the fast dynamics in the glucose-
insulin system compared to the natural sampling period (24 h) in a clinical situation, the model
structure has to be adapted adequately. This results in a reduced order model with a non-
linear output relation. The development of the estimation methodology is based on a simulation
study with a continuous time model. The resulting model structure is used for estimating the
parameters of the non-linear system, representing the slow dynamics observed from the slow
and sparse sampled clinical data.

Keywords: System identification, reduced order models, glucose-insulin dynamics, diabetes
control.

1. INTRODUCTION

Diabetes is a chronic condition characterized by raised
levels of glucose in the blood, hyperglycemia. The con-
dition affects more than 425 million people today and
the numbers are expected to rise to 693 million by 2045
[International Diabetes Federation 2017]. Poorly managed
diabetes can lead to cardiovascular diseases, lower limb
amputation, blindness and kidney failure. The American
Diabetes Association estimates that care for people with
diabetes accounts for more than 20% of all health care
expenditure in the U.S. [Petersen 2016]. Type 2 diabetes
accounts for 90% of all diabetes cases. In type 2 diabetes,
the elevated glucose levels are caused by inadequate pro-
duction and response to the hormone insulin. As opposed
to type 1 diabetes, a congenital disease with quick on-
set most commonly in children, type 2 diabetes is most
commonly diagnosed in older adults. But with increased
prevalence of obesity, less physical activity and poor diet,
type 2 diabetes is becoming more common in young adults,
children and adolescents.

When treating type 2 diabetes, a first attempt is through
lifestyle changes. This is followed by oral medication if
increased physical activity and change in diet is not
adequate. When these treatments fail, insulin injections
may be needed. There are two main types of insulins,
long acting insulin to lower fasting glucose levels, and
fast acting insulin to lower glucose levels following food
intake. Standards of Medical Care in Diabetes recommend
starting with long acting insulin treatment, and adding
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the Industrial PhD project 5189-00033B, and the Danish Diabetes
Academy supported by the Novo Nordisk Foundation

fast acting insulin if glucose values are still too high
[American Diabetes Association 2017]. In this paper, we
focus on treatment of type 2 diabetes with long acting
insulin, specifically initiation of the long acting insulin
treatment.

Initiating long acting insulin treatment is an iterative
process since response to insulin is individual. Too large
doses of insulin can cause low blood glucose, hypo-
glycemia, which in severe cases can lead to coma and
even death. Health care professionals prescribe small doses
and increase dose sizes over time, based on self-monitored
blood glucose (SMBG), until a target glucose level is
reached. SMBG measurements are glucose measurements
performed by the patients by finger-pricking. Doses of long
acting insulin are adjusted based on SMBG measurements
performed in a fasting state, typically before breakfast.
The rules by which health care professionals change dose
sizes are typically represented by simple tables that do not
account for the great inter-patient variability. Therefore,
insulin initiation can take months to years, and in the U.S.,
more than 60% of type 2 diabetes patients on insulin treat-
ment do not reach recommended treatment goals [Wong
et al. 2012].

In this paper, we wish to understand the behaviour of
fasting glucose in response to long acting insulin, through
a physiological model of the glucose-insulin regulatory sys-
tem. Physiological models of healthy humans and people
with type 1 and type 2 diabetes exist. Most models are
based on the Bergman minimal model [Bergman et al.
1979, Toffolo et al. 1980], but they vary in purpose and
level of complexity. A number of models have been de-
veloped to simulate the regulatory system in type 1 dia-
betes, due to high interest in closed-loop control for this
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patient group [Kanderian et al. 2009, Hovorka et al. 2004,
Dalla Man et al. 2007]. Jauslin et al. [2011] published a
model for 24-hour modelling of insulin and glucose profiles
in type 2 diabetes which Røge et al. [2014] used to further
build a model to simulate effect of a specific type of insulin.
These models are similar in that their purpose is 24-hour
modelling where fast dynamics, such as increase in glucose
due to meals, are well captured. In the current work we
are interested in slower dynamics, as we work with fasting
glucose and long acting insulin. Aradóttir et al. [2017]
published a model for simulating fasting glucose during
long acting insulin treatment. This model is based on a
type 1 diabetes model by Kanderian et al. [2009] with an
endogenous insulin production model by Ruan et al. [2015]
to simulate type 2 diabetes. This model used parameters
from literature, and here we wish to identify parameters
from clinical data.

In Section 2 we outline the problem statement and describe
important features of relevant clinical data. In Section 3 we
adjust a detailed physiological model such that important
parameters are identifiable from available clinical data
with low sampling frequency. In Section 4 we discuss
identifiability and list results from model identification
based on simulated and clinical data.

2. STATEMENT OF THE PROBLEM

In this work we want to create a physiological model of
insulin-glucose dynamics in type 2 diabetes. The purpose
of this model is for control design for dose guidance in
long acting insulin treatment. Such a model should have
a physical interpretation, and parameter estimates based
on data from a group of patients to capture variability in
the patient population.

Clinical trials investigating new drugs are classified into
different phases, and vary in purpose and number of partic-
ipants. The first phases include only a few participants in
the clinic, typically healthy volunteers, primarily aimed at
testing for safety. Phase II and III studies test for efficacy
and effectiveness, include hundreds or a few thousand
patients and data is logged in the clinic or at home.

In Phase II and III studies on long acting insulin, glucose
measuring frequency is typically one per day and sparse.
The low data frequency is insufficient to identify detailed
state-of-the-art models, such as the ones by Hovorka
et al. [2004] or Kanderian et al. [2009]. For illustration,
Figure 1 shows a four day simulation using the Kanderian
et al. [2009] model, and glucose measured pre-breakfast
(fasting).

Furthermore, excitation of the system in clinical trials is
limited due to safety issues. Large doses of insulin can
lead to hypoglycemia (too low blood glucose), a dangerous
state which can lead to death. Therefore data illustrat-
ing insulin-glucose dynamics for glucose levels below 3.9
mmol/L (clinical hypoglycemia, International Hypogly-
caemia Study Group [2016]) are rare.

3. MODEL STRUCTURE

We use the model by Kanderian et al. [2009], augmented in
Aradóttir et al. [2017], as a starting point. We investigate

which parameters are identifiable in long acting insulin
treatment in an in silico setting, and finally consider
whether this is applicable in vivo.

3.1 Base model

The following model, from Kanderian et al. [2009], de-
scribes insulin-glucose dynamics in type 1 diabetes in
four re-named compartments, where the two-compartment
meal model has been excluded,

dx1
dt

=
1

p1

u

p2
− 1

p1
x1 (1a)

dx2
dt

=
1

p1
x1 −

1

p1
x2 (1b)

dx3
dt

= p3p4x2 − p3x3 (1c)

dx4
dt

= −(p5 + x3)x4 + p6 (1d)

After changing units to L, U, days and mmol (respec-
tively from mL and dL, µU, min and mg), u is exoge-
nous insulin [U/day], x1 and x2 denote subcutaneous and
plasma insulin concentrations [U/L], respectively, x3 is
insulin effect [1/day] and x4 is glucose concentration in
plasma [mmol/L]. p1 is a time constant describing transfer
of insulin from the insulin delivery site, subcutaneous
compartment, to plasma [day], p2 is a gain describing
insulin clearance [L/day], p3 is an inverse time constant
describing delay in insulin action following increased in-
sulin concentration in plasma [1/day], p4 is a gain de-
scribing insulin sensitivity [L/U·day], p5 is an inverse time
constant describing the effect of glucose at zero insulin to
eliminate glucose from plasma [1/day] and p6 is a contant
input describing rate of endogenous glucose production
[mmol/L·day].

Ruan et al. [2015] suggested a number of models for
endogenous insulin production in type 2 diabetes, as a
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Fig. 1. Four days of simulated glucose data where car-
bohydrates (CHO) are ingested during the day and
long acting insulin is injected bre-breakfast. The blue
glucose curve indicates a full evolution of glucose con-
centration during the period, while the red markers
indicate pre-breakfast measured glucose. The dashed
lines indicate target range for fasting glucose.
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Table 1. Parameter values for the base model
(2). Mean (sd) for p2 − p6 as presented in
Kanderian et al. [2009], and chosen or derived

parameter values for p1 and p7.

Parameter Unit Mean (Standard deviation)

p1 ∗ [day] 0.5
p2 [L/day] 1800 (760)
p3 [1/day] 15.8 (6.2)
p4 [L/U·day] 792 (560)
p5 [1/day] 3.31 (3.17)
p6 [mmol/L·day] 96.7 (63.1)
p7 † [U/mmol] 1.4×10−3

function of glucose concentration. The simplest model
consists of two parts, a basal rate and a linear increase in
production with elevated glucose levels. In this work, we
assume a linear relationship between glucose and insulin
production, so (1) becomes

dx1
dt

=
1

p1

u

p2
− 1

p1
x1 (2a)

dx2
dt

=
1

p1
x1 −

1

p1
x2 (2b)

dx3
dt

= p3p4(x2 + p7x4)− p3x3 (2c)

dx4
dt

= −(p5 + x3)x4 + p6 (2d)

where p7 is a parameter describing glucose sensitivity
of the insulin producing cells in the pancreas [U/mmol]
and insulin production is assumed to increase linearly with
fasting glucose. We refer to this model as the Base model.

To determine which parameters are identifiable, and for in
silico data generation, we use parameter values published
by Kanderian et al. [2009]. The time constant p1 in this
paper describes fast acting insulin, and can therefore not
be used here. We choose a value for p1 to roughly describe
long acting insulin-glucose dynamics. The parameter de-
scribing glucose sensitivity of insulin production is a result
of the other parameters, chosen such that fasting glucose
has a specific value, x4(t = 0) = x4,0. Setting the last two
equations of (2) equal to zero, x1 = x2 = 0 and rewriting,
we get

p7 =
1

p4x4,0

(
p6
x4,0
− p5

)
(3)

which is used to determine the value for p7 based on the
mean values of the other parameters.

3.2 Modification for identifyability

The area of greatest interest is around the target glucose
values, ranging from approximately 4 to 6 mmol/L. Values
for x3 in this area are of order 10. Typical values for p5
range from an order of 10−5 to 1. We therefore neglect
this inverse time constant as it is small relative to the
dynamic inverse time constant x3. The Base model (2) has
two gains, insulin clearance rate p2 and insulin sensitivity
p4. Considering the assumptions in Section 2, data from
∗ p1 is roughly assessed based on knowledge about long acting

insulin, e.g. Heise et al. [2017] describe a half-life of approximately
24 hours.
† p7 is an estimated parameter from mean parameter values. In

this work we set x4(0) = 8 mmol/L. This may however be chosen to
fit the actual fasting glucose level at zero insulin input.

clinical trials will only contain insulin input, u, and glucose
measurements, x4. Therefore only one gain is identifiable.

We rewrite the model by setting x̃1 = x1p2 [U/day],
x̃2 = x2p2 [U/day], x̃3 = x3p2/p4 [U/day], p̃7 = p7p2
[U·L/mmol·day] and the modified model becomes

dx̃1
dt

=
1

p1
u− 1

p1
x̃1 (4a)

dx̃2
dt

=
1

p1
x̃1 −

1

p1
x̃2 (4b)

dx̃3
dt

= p3(x̃2 + p̃7x4)− p3x̃3 (4c)

dx4
dt

= −p̃4x̃3x4 + p6 (4d)

where we have reduced to one gain, a ratio between the
two original gains, p̃4 = p4/p2 [1/U].

3.3 Discretization and model reduction

In order to determine whether the model can be reduced,
we linearize the system and investigate properties of a
discretization of the system. We linearize the modified
model (4) such that

ẋ(t) = Ax(t) +Bu(t), x(t0) = x0

y(t) = Cx(t)

where

A =


− 1

p1
0 0 0

1

p1
− 1

p1
0 0

0 p3 −p3 p3p̃7
0 0 −p̃4x4,ss −p̃4x3,ss


B =

[
1

p1
0 0 0

]T
, C = [0 0 0 1]

and x4,ss and x3,ss are steady state values. In this work
we linearize around x4,ss = 5 mmol/L. All eigenvalues of
the matrix A have negative real parts, and the system is
asymptotically stable.

Discretizing this system yields

xk+1 = Adxk +Buk
yk = Cdxk

where [
Ad Bd

0 I

]
= exp

([
A B
0 0

]
Ts

)
, Cd = C

and Ts is the sampling frequency. Since in Section 2
we assume that the sampling frequency is 1/day, we
investigate eigenvalues of Ad for Ts = 1 day for the mean
parameter values in Table 1. We observe that the real
part of two eigenvalues are close to zero. This means
that some time constants are not identifiable, and we
may want to assume that two compartments reach steady
state immediately. In the next section we residualize the
modified model (4).

3.4 Residualized model

From Table 1 we observe that 1/p3 = 0.06 [day] which is
of an order lower than p1 and small compared to Ts = 1
day. We perform residualization for model reduction as
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presented by Skogestad and Postlethwaite [1996], and start
by assuming that the compartment x̃3 reaches steady state
immediately following change in x̃1, x̃2 and x4. Setting (4c)
to zero yields

x̃3,ss = x̃2 + p̃7x4 (5)

Inserting (5) into (4d) gives

dx4
dt

= −p̃4p̃7x24 − p̃4x̃2x4 + p6

= −(p̃4p̃7x4 + p̃4x̃2)x4 + p6

(6)

The value for x2,ss around the area of interest, x4 ∈ [4, 6]
mmol/L, is x2 ∈ [21.5, 44.8] U/day.

Now we define a time constant in (6) such that

dx4
dt

= −x4
τ

+ p6, τ =
1

p̃4p̃7x4 + p̃4x̃2
We find that τ ∈ [0.05, 0.1] day which is small compared
to p1, the time constant in the first two compartments.
Therefore we assume that x4 reaches steady state imme-
diately following change in x̃1 and x̃2. Setting (6) to zero
gives a steady state expression for x4 (after eliminating the
conjugate root due to x4 is a concentration and therefore
x4 > 0),

x4,ss = − p̃4x̃2 −
√

4p̃4p̃7p6 + p̃24x̃
2
2

2p̃4p̃7
(7)

and the residualized model becomes
dx̃1
dt

=
1

p1
u− 1

p1
x̃1 (8a)

dx̃2
dt

=
1

p1
x̃1 −

1

p1
x̃2 (8b)

y = h(x̃2) = − p̃4x̃2 −
√

4p̃4p̃7p6 + p̃24x̃
2
2

2p̃4p̃7
(8c)

where y is the measured glucose concentration in plasma.
We refer to this model as the Residualized model. Figure 2
illustrates the output function in the area of interest (blue
markers).

4. MODEL IDENTIFICATION

We investigate the identifiability of p̃4, p6 and p̃7 in (8c)
through the Fisher Information matrix. For values of x̃2 in
the area of interest, we observe that the Fisher information
matrix is nearly singular, so we can not estimate all three
parameters simultaneously.

The goal is to make a model of fasting glucose in response
to long acting insulin in an area of interest, where param-
eters and states have a physiological meaning. Inspired by
the expression in (8c), we suggest estimating y = h(x̃2)
with a model of the form

ŷ = α+ βx̃2 + γ
√

1 + x̃2 (9)

where we might interpret α as fasting glucose at baseline
[mmol/L], β as a form of insulin sensitivity [mmol·day/U·L],
and γ contributes to describing glucose sensitivity of the
insulin producing beta cells [day1/2·mmol/L·U1/2]. Figure
2 illustrates the output function h(x̃2) for the mean pa-
rameter values in Table 1 where h(0) = 8 mmol/L (blue
markers). Fitting the model (9) to these points with a least
squares method gives

α = 8.89, β = −0.003, γ = −0.71 (10)

The fit is illustrated with a red line in Figure 2.
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Fig. 2. Output function of the Residualized model in blue,
a least squares fit of the model (9) and a fit to the
data generated by Base Model in (2).

4.1 Parameter estimation in CTSM-R

For model identification we use CTSM-R, Continuous
Time Stochastic Modelling for R, an open source platform
for identifying parameters of linear and non-linear grey-
box models. Given discrete time series data, CTSM-R
can identify parameters of stochastic differential equations.
The general model structure is a state space model on the
form

dxt = f(xt,ut, t,θ)dt+ σ(ut, t,θ)dwt (11a)

yk = h(xk,uk, tk,θ) + ek (11b)

where θ is an l-dimensional set of parameters to estimate,
θ is the set of parameters to identify, ut is the input at
time t, σ(ut, t,θ)2 is process noise covariance matrix and
wt is a Brownian motion path. yk is discrete observations
and ek is the measurement error (assumed to be white
Gaussian noise). The model identification is based on
maximum likelihood, where the likelihood function is the
joint probability density

L(θ;YN ) =

(
N∏

k=1

p(yk|Yk−1,θ)

)
p(y0,θ) (12)

where Yk = [yk,yk−1, . . . ,y1,y0] is a sequence of mea-
surements yk. CTSM-R considers stochastic differential
equations that are driven by Wiener processes and so the
conditional densities are approximated by Gaussian densi-
ties. A continuous-discrete extended Kalman filter is used
for smoothing to determine an estimate for the measure-
ments, ŷk|k−1 = E[yk|Yk−1,θ], its covariance Rk|k−1 =

V [yk|Yk−1,θ], and the innovation where εk = yk− ŷk|k−1.
The density is then

p(yk|Yk−1,θ) =
exp

(
− 1

2ε
T
k R−1k|k−1εk

)
√

det(Rk|k−1)
(√

2π
)l (13)

The software allows missing observations. CTSM-R out-
puts estimates for the parameters, initial conditions and
noise, standard deviance of the estimates and the t-
statistic, to name a few. The methods and software are
described in more detail in [CTSM-R 2015].
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Fig. 3. Simulated glucose data. The blue diamonds indicate
a simulation using the Base model, and the red stars
indicate data from the Residualized model. The blue
line shows the model fit estimated by CTSM-R to the
Base model data.

Table 2. Parameter estimation from simulated
data by the Base model.

θ θ∗ θ̂ 95% confidence interval ∗ p(> |t|)
p1 0.5 0.55 [0.52, 0.59] < 0.05
α 8.9 9.09 [8.98, 9.22] < 0.05
β -0.003 0.013 [0.008, 0.018] < 0.05
γ -0.71 -0.88 [-0.93, -0.83] < 0.05

5. RESULTS

5.1 Simulated data

We use CTSM-R to identify p1, α, β and γ from series of
simulated data, generated from the Base model. We excite
the system with a range of insulin injections such that
fasting glucose levels span clinically relevant glucose con-
centrations; hyperglycemia (> 6 mmol/L), normoglycemia
(< 6 mmol/L and > 3.9 mmol/L) and hypoglycemia
(< 3.9 mmol/L). This is illustrated in Figure 3.

Table 2 shows the results from identifying the model (8a)-
(8b) and (9) in CTSM-R using simulated data generated
using the Base model. We observe that all parameter
estimates are significant, although θ∗ is not inside the
confidence interval in all cases. Figure 3 illustrates the
identified model in red compared to the least squares fit
to the output function (8c).

5.2 Clinical data

In a Phase III clinical trial published by Zinman et al.
[2012], 773 adult type 2 diabetes patients were initi-
ated on insulin degludec, once daily injections. During
the following months, the treatment was intensified until
pre-breakfast (fasting) glucose was at a clinically recom-
mended level. Dose sizes were adjusted once per week,
based on home-logged SMPG measurements.

As mentioned in Section 2, clinical data are prone to
practical issues regarding data capture and excitation. In
∗ Confidence intervals calculated as mean ± 1.96 · SD.
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Fig. 4. A cut-out from measured clinical data for one
patient in the study by Zinman et al. [2012].

the study by Zinman et al. [2012], pre-breakfast glucose
was measured and logged the last three days of the week,
along with the corresponding insulin dose. Figure 4 shows
a 3 week cut-out from measured data for one patient in the
study. This figure illustrates the sparsity of glucose data
compared to the insulin data. The full data set for the
patient is illustrated in Figure 5. Focus in the clinical trials
that we consider relevant is not on system identification
but rather on efficacy and safety of the drug. Therefore
many data sets do not contain all the appropriate data
for model identification. Notice that none of the measured
data are lower than 4 mmol/L. The reason is that glucose
levels below this value are clinically considered too low,
and are therefore not frequently seen in clinical trials. This
means that we can expect to only have data for y ≥ 3.9
mmol/L.

We use CTSM-R to estimate α, β and γ from the measured
data in Figure 5. Since p1 is not identifiable from the data
we set p1 = 0.5 days. The resulting parameter estimates,
confidence intervals and p-values are listed in Table 3 and
Figure 5 illustrates the model fit. We observe that all three
parameter estimates are significant.

Table 3. Parameter estimation using measured
clinical data from one patient.

θ θ̂ 95% confidence interval ∗ p(> |t|)
α 14.6 [12.4, 16.7] < 0.05
β 0.06 [0.0003, 0.12] < 0.05
γ -1.52 [-2.25, -0.79] < 0.05

6. DISCUSSION

We have identified parameters of a non-linear output
function using clinical data. The sampling frequency and
range of values in the data are representative for what may
be expected from clinical data in relevant clinical studies.
This restricted us in estimating the time constant.

The interpretation of the parameters in Section 4 remains
open for discussion. We mentioned that β could be inter-
preted as insulin sensitivity, and that γ could contribute
to glucose sensitivity of the insulin producing beta cells.
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Fig. 5. Measured clinical data from Zinman et al. [2012]
and model fit.

We would expect that endogenous insulin production de-
creases for lower values of glucose. Therefore the total
glucose lowering effect of an insulin injection is lower for
low values of glucose, and the output function should level
off. We might therefore consider β and γ as a combination
of insulin sensitivity of the glucose elimination and glucose
sensitivity of the insulin production.

7. CONCLUSION

This paper suggests a model of glucose-insulin dynamics in
type 2 diabetes using data of low frequency. The purpose
of such a model is to simulate fasting glucose levels in long
acting insulin treatment, to enable control algorithm devel-
opment for dose guidance. As a starting point we used the
four-compartmental physiological model for 24-hour simu-
lations of glucose concentration following meal intake and
injection of fast and long acting insulin. We investigated
identifiability of parameters when the sampling period is 1
day, and reduced the model to a two-compartmental model
with a non-linear output function. We use the open source
software CTSM-R for model identification. All parameter
estimates are significant when fitting to data simulated by
the six-compartmental physiological model, as well as for
the chosen set of clinical data.

Design of experiment in clinical trials remains a challenge
for model identification. This work is one step of many
in an iterative process to making a dynamical system of
insulin-glucose dynamics in long acting insulin treatment
of type 2 diabetes.
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