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Abstract
For the inverse source problemwith the two-dimensional Helmholtz equation, the singular values of
the source-to-near-field operator reveal a sharp frequency cut-off in the stably recoverable
information on the source.We prove and numerically validate an explicit, tight lower boundB- for
the spectral locationB of this cut-off.We also conjecture, justify and support numerically a tight
upper boundB+ for the cut-off. The bounds are expressed in terms of zeros of Bessel functions of the
first and second kind. Finally, we propose our near-field upper boundB+ as an improvement of a
commonly used upper bound on the spectral cutoff for the source-to-far-field operator.

1. Introduction

We treat the single-frequency inverse source problem for theHelmholtz equation in the plane, illustrated in
figure 1. Fix a positive constant wavenumber k 2p l= , whereλ is the operatingwavelength, and letD0 andD
be open disks in 2 centered at the origin andwith radiiR0 and R R0 , respectively.Write x x

2 2
1 2

D = ¶ + ¶ for
the Laplacian, and consider theHelmholtz problem
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for some source s L D2
0Î ( ) extended by zero to thewhole plane. The second condition in(1) is the outgoing

Sommerfeld radiation condition in the plane. The inverse source problem, ISP, is now
given a singlemeasurementU L D2Î ¶( ), find a source s L D2

0Î ( ) such that there is a function (‘radiated field’)
u satisfying u UD =¶∣ and satisfying the system(1).

The ISP arises naturally in inverse acoustic and electromagnetic scattering, and has been devoted a
substantial body of literature. The ISP is treated, e.g., in themulti-frequency regime by Bao et al (2010), andwith
far-fieldmeasurement data byGriesmaier et al (2012, 2014), Griesmaier and Sylvester (2016, 2017); see also El
Badia andNara (2011). It occurs in antenna synthesis and diagnostics (Persson andGustafsson 2005, Jørgensen
et al 2010), the analytic continuation of solutions of exterior scattering problems(Sternin and Shatalov 1994,
Zaridze et al 1998, Bliznyuk et al 2005, Karamehmedović 2015), and in linearized inverse obstacle scattering
problems.

In terms of the source-to-near-field forward operator F s U:  , described in detail insection 2, solving
the ISP amounts to solving

Fs U s L Dfor . 22
0= Î ( ) ( )

This problem is ill-posed, since F k H Dker 2 2
0= D +( ) ( ), where H D2

0( ) is the Sobolev space
w L D for with 22

0 0
2 a a¶ Î Îa{ ( ) ∣ ∣ }. Also,measurementsU are typically noisy and sampled over an

only finite set of points. A common regularizingmeasure is to look for theminimum-L2-norm, orminimum-
energy, solution of(2), which is given by s F U ;=† † here, F F F F F FF1 1* * * *= =- -( ) ( )† is theMoore-Penrose
pseudoinverse of F. Another regularization scheme uses a truncated singular value decomposition (TSVD) of the
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forward operator F. Here, s is approximated by afinite sumof the form U ,N
m m m1

1s f yå - ( ) , with , ,m m ms y f( ) a
singular systemof F such as that shown in Bao et al (2010). Our aim is to estimate themaximal amount of
information aboutany source s L D2

0Î ( ) that can be stably recoveredin principle, that is,regardless of the
sampling frequency in themeasurement and of the choice of the regularisation scheme. By ‘stably recoverable
information’wemean ‘information recoverable robustly to noise’, andwe refer tofigures 2 and3 for further
clarification.

Namely, plotting the singular values ms of the forward operator F reveals a seemingly low-pass filter behavior
withwell-defined ‘passband’ and ‘stopband’. A low-pass filter characteristic was earlier proved for the singular
spectrumof the source-to-far-field operator(Griesmaier and Sylvester 2017, Griesmaier et al 2014), also called
the restricted Fourier transform there. However, sincewe are here looking for the limits of the stably recoverable
information under even the ideal conditions, we consider the source-to-near-field operator F, as some
informationmight be lost in the transition to the farfield. Also, as will become clear insection 2, the singular
values ms of the source-to-near-field operator have amore involved dependence on the frequency indexm than
the singular values of the source-to-far-field operator, andwefind that this necessitates a separate analysis.

Numerical investigation indicates that the supposed low-pass filter behavior of the singular spectrumof F
persists alsowhen the singular values ms are ordered according to increasing angular frequency of the right
singular vectors of F, that is, of the singular vectors defined at themeasurement boundary D¶ . In this case, the
singular values within the ‘passband’ generally do not increase or decreasemonotonically (they are uniformly
large there), and the singular values in the ‘stopband’, still ordered according to angular frequencym, are
observed to bemonotonically decreasing withm. It is not a priori clear that themonotonicity properties of the

Figure 1.Problem geometry and coordinate systems.

Figure 2.A schematic of the singular value spectrum ms and m
1s- of the forward operator F and its pseudoinverse F†, respectively, as

function of angular frequency m 0 of right singular vectors of F. The spectrumamplitude is an even function ofm. The lower
bandwidth bound B- is given in theorem1. The upper bandwidth bound B+ is predicted in conjecture 1 and justified in theorem2.
Both B- and B+ are validated numerically in section 3.
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singular spectrum ms{ } should be directly connectedwith significantly different regimes of decay of the singular
values.However,motivated by the numerical studies, and by our theorem 2below, we embark on a non-
asymptotic analysis of the singular spectrumof the forward operator F and call the bandwidthB of F the singular
value index (angular frequencym of a right singular vector of F) at which the singular value spectrumof F
becomes strictly decreasing as function of nonnegativem:

nargmin for all .m m n m n 1 00
B  s s= > ÎÎ + + +{ }

Wenowdefine the stably recoverable information on a source s to be the projection of s onto the singular
subspace of F defined by m B∣ ∣ . Then,finding themaximal amount of stably recoverable information about
any source s, regardless ofmeasurement sampling quality and of regularization scheme, amounts to estimating
the bandwidthB of the forward operator F.

To simplify the notation, write kR0 0k = and kRk = for the size parameters of the source support and of
themeasurement boundary, respectively. Also, for realm and positive integer ν, write jm,n and ym,n for the ν’th
positive zero of the Bessel function Jm of thefirst kind, respectively Bessel functionYm of the second kind, and
orderm. It is well-known that, for all m 0Î , we have j 0m,1 > (Watson 1945, p 479), as well as

y m m 2 0m,1 > +( ) (Watson 1945, p 487). Ourmain result, proved insection 2.2, is

Theorem1.The bandwidthB of the forward operator F s U:  associated with theHelmholtz problem(1) and
measurement at D¶ is bounded from below by

jargmin .m m,1 00
B  k=- Î { }

The general formof the result in theorem1, aswell as numerical experimentation, lead us to conjecture a tight
upper bound on the bandwidthB:

Conjecture 1.

yargmin .m m,1 00
B  k=+ Î { }

To justify both this conjecture and our notion of the bandwidth of the forward operator, we also prove that the
singular spectrum ms{ } ismajored by a quickly decaying sequencewhen m B +:

Theorem2.There is a positive constantC that depends only on κ and 0k and such that, for every m Î with
ym,1 0 k , we have C mm s .

After the proof of theorem2,we indicate oneway to estimatemore precisely amajorant for ms when
R R y, m0 ,1 0k= ³ and m 2³ ; we leave amore detailed treatment to futurework. For convenience,
insection 2.2we also show that the bandwidth bounds of theorem1 and conjecture 1 can be expressed explicitly
in the source size parameter 0k :

Figure 3.Part of the singular value spectrumof the forward operator F for 100k k p= = . Left: the singular values ns , n0 70  ,
ordered in a decreasing sequence. Right: the same singular values ordered according to the angular frequencym of the right singular
vector mf . The notation is explained insection 1.
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Corollary 1. Let a 1.855757=- and a 0.931577=+ . For sufficiently large 0k , we have
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as well as 0B  k+ ⌈ ⌉.

Finally, as announced, we can use our analysis in the nearfield to improve a commonly used bound for the
far-field spectral cutoff. The singular values of the source-to-far-field operator are given byGriesmaier et al.
(2014)

J kr r2 .far m
r

R

m,
0

2
0

òs p=
=

( )

Griesmaier et al 2014 andGriesmaier and Sylvester (2017) show that these singular values decay rapidly when the
indexm satisfies m kR0 0 k=∣ ∣ . The last inequality in corollary 1 alignswell with the upper bound m 0 k∣ ∣
of the far-field spectral cut-off. A tighter upper bound for this cut-off is given in the following:

Theorem3.The singular values far m,s of the source-to-far-field operator are bounded from above by

R
m

e
m

e2
2 2

1

m
m m

0
0 2 1 0

2

2
2 20

2
0
2

p
k k

+
+

k k- + - +( )
!

( )
( )

( ) ( )/ // / when m yargmin ,1 00
B  k= m m+ Î { }.

Since for any m 0Î wehave y mm,1 > (Pálmai andApagyi, 2011), an indexm satisfying m 0 k will also
satisfy m B +, so proving theorem3may indeed improve the upper bound on the spectral cutoff in the far
field.We demonstrate numerically insection 3 thatB+ is an improvement of the upper bound m 0 k∣ ∣ .

Insection 2we analyze the singular value spectrumof the forward operator F. In particular, we prove
theorem1, theorem2, corollary 1 and theorem 3 insection 2.2.We validate the boundsB- andB+ on the
bandwidthB numerically inSection 3, and discuss some implications of theorem1 insection 4. A conclusion
and suggestions for further work are given insection 5.

2. Spectral analysis of the forward operator

The function H k xi 4 0
1( ) ( ∣ ∣)( ) , x 2Î , is the radial outgoing fundamental solution of theHelmholtz operator in

the plane, with singularity at the origin. Recall that H J Yi0
1

0 0= +( ) is theHankel function of zero order and of
thefirst kind. As in Bao et al (2010), introduce the forward operator

Fs x H k x y s y x D s L D, , ,
y D

0
1

0
2

0
0

ò= - Î ¶ Î
Î

( ) ( ∣ ∣) ( ) ( )( )

thatmaps sources s to the traces at D¶ of the corresponding radiatedfields. It is well-known(Bao et al 2010) that
F L D L D: 2

0
2 ¶( ) ( ) is compact. The adjoint F* is defined by

F U y H k x y U y y D U L D, , ,
x D

0
2

0
2* ò= - Î Î ¶

Î¶
( ) ( ∣ ∣) ( ) ( )( )

where H J Yi0
2

0 0= -( ) is theHankel function of zero order and of the second kind.

2.1. A singular systemof F
Bao et al (2010)derived a singular systemof the forward operator F.We here slightly improve a part of their
proposition 2.1:

Lemma1.The forward operator F admits the singular value decomposition

F , , , ,L D
m

m m L D m m L D m0 0 02 2 2


ås y f s y f y f= + +
Î

- -(· ) [(· ) (· ) ]( ) ( ) ( )

where

R R H A m2 , , 3m m m0
1

0 0s p k k= Î∣ ( )∣ ( ) ( )( )
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and

y R A J k y

x R

e ,

2 e e ,

m m m
m y

m
H m x

0 0
1 i arg

1 2 i arg i argm
1

y p k

f p

=

= k
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( ) ( ( )) ( ∣ ∣)
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for m Î , x DÎ ¶ and y D0Î . Here

A J J J J J
m

J J
2

m m m m m m m m0 0
2

1 0 1 0 0
2

1 0
2

0
0 1 0k k k k k k

k
k k= - = + -- + + +( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

for m Î .

Our slight improvement of proposition 2.1 of Bao et al (2010) consists in explicitly evaluating the integral

J k
R

m0

20  
ò =

( ), occurring in ms and my , in terms of Am 0k( ). This explicit evaluation is crucial to our proof of
theorem1.We also note that our expressions for the singular vectors mf , as well as the singular values ms , differ
fromBao et al (2010) in that they are only proportional to those given in that reference.

Proof of lemma 1. For s L D2
0Î ( ) and y D0Î wehave

F Fs y s z H k x z H k x y . 4
z D x D

0
1

0
2

0

* ò ò= - -
Î Î¶

( ) ( ) ( ∣ ∣) ( ∣ ∣) ( )( ) ( )

A special case of theGraf addition theorem (Abramowitz and Stegun 1972, equation (9)) reads

H k x y H J k y x D y De , , .
m

m m
m x y

0
1 1 i arg arg

0


å k- = Î ¶ Î
Î

-( ∣ ∣) ( ) ( ∣ ∣)( ) ( ) ( )

Similar to Bao et al (2010), inserting this in(4)we get
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since J J1m
m

m= -- ( ) and Y Y1m
m

m= -- ( ) for all integerm. This gives an eigendecomposition of the operator
F F;* to normalize the eigenvectors, we note thatGradsteyn andRyzhik (2007, equation (5).54.2, p 629) gives

J k J k J k J k m
2
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2

2
2

1 1 


   ò = - Î- +( ) ( ( ) ( ) ( ))

and the recursion formula for cylinder functions (Gradsteyn andRyzhik 2007, equation (8).471.1, p 926) implies
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and F F* admits the spectral decomposition
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Evidently, 0
2s hasmultiplicity one and all the other eigenvalues m

2s , m Î , havemultiplicity two. The lemma
now follows from theorem 4.7 on p 100 of Colton andKress (2013); it here just remains to compute
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Figure 3 shows thefirst 71 nonnegative-index singular values of the forward operator Fwith size parameters
100k k p= = . It seems the forward operator is a low-pass filter with respect to the singular values ms , with

bandwidth 27B = .We quantify the frequency response of this filter insection 2.2.

2.2. Proof of theorem1, theorem2, corollary 1 and theorem3
To arrive at the lower boundB- of the bandwidthB, wefirst prove that the distance between the nonnegative
zeros of the function J 0m km ( ) is greater than 1. To this end, we use three fundamental andwell-known
properties of the positive zeros j ,m n of the Bessel function J zm ( ):

1.P1 For any positive integer n, the function j n,m m is strictly increasing over realμ.

2.P2 For any realμ and any positive integer ν, we have j j, , 1<m n m n+ .

3.P3 For any positive integer n, we have j jn n1, 0, 1< + .

Property P1 is shown, e.g., inWatson (1945, p 508)while properties P2 and P3 follow fromPálmai andApagyi
(2011, theorem1.1, interlacing property (2) of zeros of Bessel functions).

Lemma2. If 02 1 m m> and J J 00 01 2
k k= =m m( ) ( ) then 12 1m m- > .

Proof. First let 01m = . Under the assumption of the Lemma, there are numbers n n,1 2 Î and 02m > such
that n n1 2> and j jn n0 0, ,1 2 2

k = = m . The number n1 is necessarily greater that 1: due to P2 and P1 in conjunction

with the assumption 02m > , we have j j j, ,1 0,12 2
 >m n m , and hence j j0,1 ,2

¹ m n for any positive integer ν. Also,

n2 is necessarily smaller than n1: by P1 and the assumption 02m > , it holds that j jn n0, ,1 2 1
< m , and by P2we have

j jn, ,2 1 2
m m n when n1n , so j jn0, ,1 2

¹ m n for any integer n1n . Having established the conditions on n1 and n2
in the assumption j jn n0, ,1 2 2

= m of the Lemma,we nowuse P2 and P3 to see that j j jn n n0, 1, 1 1,1 1 2
> - , so

necessarily j jn n, 1,2 2 2
>m . This implies, due to P1, that 12m > , that is, 12 1m m- > . The situation corresponds to

the numerical value of 0k being equal to, e.g., the height (along the second axis) of the linear piece a infigure 4.
To generalize this argument to the case 01m > , that is, to the case of the numerical value of 0k being equal to,
e.g., the height of the linear piece b infigure 4, it now suffices to show that

dj

d

dj

d
nfor all 0, . 6

n n, , 1  
m m

m< Îm m + ( )

To seewhy(6) suffices, assume j jn n0 , 1 ,1 2
k = =m m+ with 02 1m m> > and n Î , and consider the inverse

functions f j:n n, mm  and f j:n n1 , 1 mm+ +  . These functions arewell-defined due to the abovementioned
property P1. Also, let m be a real satisfying j jn n0, 1 ,= m+  . By thefirst part of this proof, addressing the case

02 1m m> = , we know that necessarily 1m > . Now if(6) holds, then df dx x df dx xn n 1> +( )( ) ( )( ) for all
positive xwhere both fn and fn 1+ are defined, andwe have

Figure 4.The zeros of the function J0 0 m km ( ) diverge, see lemma 2.
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that is, 12 1m m m- > > .We now turn to proving the inequality(6). For nonnegative orderμ, the n’th zero j n,m
of the Bessel function Jm satisfies (Watson 1945, pp 508–510)

dj

d
j K j t2 2 sinh e .

n
n

t
n

t,
,

0
0 ,

2òm
=m

m m
m

=

¥
-( )

Substituting q j t2 sinhn,= m and using that j 0n, >m , exp arcsinh 1 2t t t= + +( ) , as well as that

cosharcsinh 1 2t t= + , we get

dj

d
K q q j q j q j2 1 4 1 4 . 7

n

q
n n n

,

0
0 ,

2
,

2 2 2
,

2 1 2òm
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¥
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Let us consider the right-hand side of(7). Setting

g x K q q x q x q x x2 1 4 1 4 , 0,
q 0

0
2 2

2

2 2 1 2ò= + + + >
m

=

¥
-

-
⎛
⎝⎜

⎞
⎠
⎟⎟( ) ( ) ( )

wefind

dg

dx
x x

qK q x q q

x q x q q
x2

2 4

4 4
0 for 0

q

2 1 2

0

0
2 2

2 2 3 2 2 2 2ò
m

=
+ +

+ + +
> >m m

m
+

=

¥
( )

( )( )

( ) ( )

since themodified Bessel function K0 of the second kind is positive-valued for positive-valued arguments. Thus,
the right-hand side of(7) ismonotonically increasing with increasing value of j n,m . Finally, recall the property
P2: for any 0m and n Î , we have j jn n, , 1<m m + . Thus, (6) indeed holds. ,

Wecan now link the variation of the function m Am 0k ( )with that of the Bessel function of thefirst kind.
Fix m 0Î .

Lemma3. If J 00k =x ( ) for some m m, 1x Î +[ ] then A Am m0 1 0k k+( ) ( ).

Proof.The recursion formula(5) implies
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For any fixed positive argument x, the function J x  m m ( ) is differentiable and not identically zero. Thus,
by the assumption of the current Lemma, and by lemma 2, this function has the value zero at mm = or at

m 1m = + , or the function changes sign precisely once in the interval m m, 1+[ ], so

A A J J
2

0.m m m m0
2

1 0
2

0
0 1 0 k k

k
k k- =+ +( ) ( ) ( ) ( )

,

Remark 1.Clearly, the function m Hm0
1 2  k ∣ ( )∣( ) is positive-valued. It is also strictly increasing, as can be

seen fromNicholson’s integral for Hm
1 2k∣ ( )∣( ) (Watson 1945, pp 441–444)

H K t mt m
8

2 sinh cosh 2 , , 0,m
t

1 2
2 0

0 òk
p

k k= Î >
=

¥
∣ ( )∣ ( )( )

where K0 is themodified Bessel function of the second kind. This namely implies

H
m

K t mt m
16

2 sinh sinh 2 0, 0,m m
t

1 2
2 0

0òk
p

k¶ = > >
=

¥
(∣ ( )∣ ) ( )( )

since both K0 and the hyperbolic sine are positive over positive reals.

7

J. Phys. Commun. 2 (2018) 095021 MKaramehmedović



The above discussion suffices for a proof of the lower boundB-.

Proof of theorem1. Let m 0Î . If jm,1 0k< then, due to the continuity and the strictly increasing nature of the
function j ,1m m , the value 0k is thefirst positive zero of someBessel function Jx with m;x > that is, there are
n 0Î and m n m n, 1x Î + + +[ ] satisfying J 00k =x ( ) , and, by lemma 3, A Am n m n0 1 0k k+ + +( ) ( ). Since

H0
1  m km ∣ ( )∣( ) is strictly increasing, and the singular value sm from(3) is proportional to H A1

0k km m∣ ( )∣ ( )( )

for 0m Î , we have m n m n 1s s+ + + , hence m B< . In conclusion,
j jargmax 1 argminm m m m,1 0 ,1 00 0

B   k k< + =Î Î{ } { }. ,

Wecan also justify the conjectured upper boundB+:

Proof of theorem2. Let m Î . Using the standard series representation (Watson 1945, p 40) of the Bessel
function of thefirst kind, we have, forfixed positive z, that
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for some constantC1 dependent only on z. Sincem is a positive integer, we also have, forfixed positive z,
that(NIST 2017)
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The digamma functionψ satisfies1 (Abramowitz and Stegun 1972, p 258)
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for some constantsC2,C3 andC4 dependent only on z. Recall from(3) that H Am m m
2 1 2 2

0s k kµ =∣ ( )∣ ( )( )

J Y Am m m
2 2 2

0k k k+( ( ) ( )) ( ). By assumption, ym,1 0 k , so, again using the inequality y jm m,1 ,1< fromWatson
(1945, p 487)wehave j jm m0 ,1 1,1k < < + . Therefore J J 0m m0 1 0k k >+( ) ( ) , and hence

1
Here 0.577g » is the Euler-Mascheroni constant.
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Multiplying out the right-hand side of(10), and using the derived estimates(8) and(9) for J zm
2 ( ) and Y zm

2 ( ),
yields terms that are each bounded from above by mconst. m

0
2 2k k´( ) . Finally, since by assumption 0 k k,

we have mconst .m s / . ,

Wenext brieflydescribe oneway to obtain a tightermajorant of ms thanwhat is presented in theorem2, for the case
R R0= , that is, 0k k= .Using the standard series representationof J zm( )we readilyfind that, for t 0, 1Î ] [, we
have t J t t m2 exp 2m
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aswell as, for m 2³ ,
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Thus, assuming

ym,1 0k³

and

m 2,³

and using the above estimates, wefind the dominant term (with respect to the orderm) in the bound to be
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Proof of corollary 1.To get estimates on the bandwidthB that are explicit in 0k , we use that (Watson 1945)
j m a m O mm,1

1 3 1 3= + +-
-( ) and y m a m O mm,1

1 3 1 3= + ++
-( ), with a 1.855757=- and

a 0.931577=+ . Assuming j 1m ,1 0k=
-

 , y 1m ,1 0k=
+

 , and setting n m1 3=  leads us to solve the

equation n a n 03
0k+ - = for n.Wefind
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In particular, n 3B » ⌈ ⌉for sufficiently large 0k . Finally, we have m m a m2 2 1 3< - + -+( ) ( ) for integer
m 12 , so, for sufficiently large 0k , m 0 k implies y m a m m2 2m 2,1

1 3
0 k» - + - >- +( ) ( ) and hence

0B  k+ ⌈ ⌉. ,

Proof of theorem3.Wecan here start with the same argument as seen in our proof of theorem 2: since
ym0 ,1k £ , we have j jm m0 ,1 1,1k < < + so J J 0m m0 1 0k k >+( ) ( ) and
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It is now readily checked that themth singular value far m,s of the source-to-far-field operator satisfies

rJ kr R A R J J2 2 2 .far m
r

R

m m m m,
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2
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Using the estimate J m m2 exp 4 1m
m

0 0 0
2k k k£ - +∣ ( )∣ ( ) ( ( )) !/ / / , obtained just after the proof of theorem2,
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wefind that
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The following technical result is useful in conjunctionwith theorem3.

Lemma4. If jm,1 0k³ and m 1³ then m 2 10k> -/ .

Proof. Sincem�1, the result follows immediately for 40k < . Assume in the following that 40k ³ . InWatson
(1945, p 487) it is shown that j m m4 1 5 3m,1 < + +( )( )/ . Thus, if jm0 ,1k £ then

m m4 1 5 3,0
2k < + +( )( )/

and hence

m
1

2
3 16 3.0

2k> + -

It is now a straightforwardmatter to verify that

1

2
3 16 3

2
1.0

2 0 k
k

+ - ³ -

The sequence m2 m
0k(( ) !)/ / , occurring in the estimate of theorem3, is decayingwhen m 2 10k> -/ . By

lemma 4, this last inequality is satisfied under the assumption ym,1 0k³ of theorem 3, since j ym m,1 ,1> .

3.Numerical validation

Wehere compute the bandwidthB, aswell as the bandwidthboundsB- andB+ of theorem1and conjecture 1,
respectively, for 300 values of the size parameters 0k k= uniformly distributedover the interval 2, 100k pÎ [ ].
Recall that kR R2k p l= = and kR R20 0 0k p l= = , whereR is the radius of the sampling circle D¶ ,R0 is the
radius of the source domain, andλ is theoperatingwavelength.Thus,we consider 300 values of the relative

Figure 5.Errors (top) and relative errors (bottom) in the lower and upper bounds on the bandwidth B of theorem1 and conjecture 1,
over the range of the source size parameter corresponding to R R 1 , 500l l p= Î [ ]/ / / .
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wavelength R R0l l= distributednonuniformlyover the interval R 1 50,l pÎ [ ]. Figure 5 shows the errors
B Be = -  and the relative errors rel, B B Be = - ∣ ∣ in the estimatedbandwidth as functionof the

problemsize parameterκ.
For the two lowest considered values ofκ, wefind that 0B = and 0;B =- there,we set 0rel,e =- . BothB

andB- are positive for higher considered values ofκ. Inparticular, there is zero bandwidth forκ smaller than some
threshold valuebetween approx. 1.7 and approx. 2.7, and for such size parametersκ the inverse source problem is,
from the viewpoint of thebandwidth of the singular values, similar to the inverse heat conductionproblem.Over
the considered interval forκ, themean errors are 1.68e = -- , 3.02e =+ , and themaximumabsolute errors are
max 3e =-∣ ∣ , max 4e =+∣ ∣ . The relative error inB- is below 5% for 24.7461k , i.e., for R 3.94l , andB+

is below 5% for 45.7181k , i.e., for R 7.28l .
Wefind bothB,B- andB+ to be approximately linear functions ofκ in the given interval, with least-

squares fits summarized in table 1.

Figure 6 shows errors in the approximationsB
~

 of corollary 1,wherewe choose the simpler form 0B k»
~

+ ⌈ ⌉
for the estimate of theupperbound.The approximate expression for the lower bound shows almost the same small

error as the lower bound itself, and the approximate expression 0B k»
~

+ ⌈ ⌉for theupper bound,while simple, has
errorbelow 5% only forproblem size parameters of approx. 175orhigherwhen 0k k= ismaintained.

Our boundsB are independent of the radius of themeasurement surface, andwe next validate this
property numerically. Figure 7 shows thefirst 71 nonnegative-index singular values of the forward operator F

Table 1. Linear regression of the computed bandwidth B, and the lower
(B-) and upper (B+) bandwidth bounds.We have here held equal the size
parametersκ and 0k .

linear interpolant

Mean absolute

error

Standard

deviation

B 0.9793κ−3.9569 0.4813 3.9 10 4-·
B- 0.9736κ−4.7394 0.5715 4.8 10 4-·
B+ 0.9861κ−2.0083 0.4052 3.4 10 4-·

Figure 6.Errors (top) and relative errors (bottom) in the approximate lower and upper bounds B
~

 on the bandwidth B of corollary
1, over the range of the source size parameter corresponding to R R 1 , 500l l p= Î [ ]/ / / .
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with size parameters 100k p= , 100k p= . The bandwidth is unchanged at 27B = (compare withfigure 3), as
predicted by our bounds. The decrease in the numerical stability of the ISP due to themeasurement boundary
being farther away from the source is instead expressed in terms of the overall lower level of the singular values.

Let usfinally compare numerically our proposed upper bound yargminm m,1 00
B  k=+ Î { } for the

spectral cutoff of the source-to-far-field-operator (theorem 3)with the bound m 0 k∣ ∣ given in, e.g.,
Griesmaier et al (2014) andGriesmaier and Sylvester (2017). Figure 8 shows, for 1, 3140k Î [ ] the difference

0 Bk - +⌈ ⌉ . Over the considered range of source sizes 0k , our bound gets progressively tighter, and estimates
the spectral cutoff at the ordermup to 7 lower than suggested by the alternative bound.

4.Discussion

The bandwidth estimatesB are directly applicable as optimal filter estimates in the numerical solution of the
inverse source problem in terms of a truncated singular value decomposition (TSVD) of the forward operator.
Next, it has been amply observed in the literature concerning the single-frequency inverse source problem that

Figure 7.Part of the singular value spectrumof the forward operator F for 100k p= , 100k p= . Left: the singular values ns ,
n0 70  , ordered in a decreasing sequence. Right: the same singular values ordered according to the angular frequencym of the

right singular vector mf .

Figure 8.The difference m B- +⌈ ⌉ in upper bounds on the spectral cutoff of the source-to-far-field operator for the source support
size parameter 1, 3140k Î [ ].
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the numerical stability of the solution increases with the operating frequency. Theorem1 confirms and explicitly
quantifies this increase in numerical stability, also for non-asymptotic frequencies.

Theorem 1of course has direct implications for themaximumachievable stable resolution of the
reconstruction in the inverse source problem.Detailed analysis of this resolution requires an investigation of the
pointwise behavior of the left singular vectors of the forward operator.While we here do not perform such
analysis, we do note that the left singular vectors tend to be supported near the origin for low values of indexm,
and near themeasurement boundary for high index values. Thismeans the amplified noise produces is a ‘wall of
non-information’near themeasurement boundary and blocks faithful reconstruction of the source insideD.

As shown in Bao et al (2010) and in section 2 here, the right singular vectors (defined over themeasurement
boundary) of the forward operator are proportional to mexp i q( ), m Î . Thismeans that the bandwidth index
B is approximately the angular frequency of the highest-frequency data component that can be stably inverted.
Thus, the sampling theorem (Shannon 1949) is directly applicable with theorem 1 to give the following: in case
the radiatedfield u is sampled equidistantly at the boundary D¶ , any angular sampling rate greater than
approximately jargminm m,1 00

B B q p p p kD » =- Î { } is excessive due to the limited bandwidth of
the forward operator.

Bandwidth bounds in theorem 1 and conjecture 1 involve the size parameter of only the source support, and
in light of the successful numerical validation of these bounds, wefind it justified to propose that the bandwidth
may generally be independent of the radiusR of themeasurement boundary relative to the radiusR0 of the
source support (as long as R R0 ). As illustrated in section 3, the decrease in the robustness of the inversion (in
the presence of noise) as R R0 decreases seems instead to be expressed by a lower overall level of the singular
values.We therefore briefly analyze the asymptotic behavior of the singular spectrum(3) as m 0 , and as
m  ¥. The standard large-argument approximation of the Bessel functions of the first and second kind, valid
for m 1 40

2k - , yields
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and, since 0k k , we also have H 2m
2k pk~( ) . Thus
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for R m 1 4 20
2l p- ( ) . Forward operatorsmapping from source spaces with larger supports thus have

higher-valued singular values in the bandpass region, regardless of the sizeR of themeasurement boundary
relative to the sizeR0 of source support. However, we also see that the height of the bandpass decreases when the
operatingwavelength lambda decreases (equivalently, when the operating frequency increases), whichmay
counteract the increase in stably recoverable information gained due to the increase in bandwidth. In the small-
argument limit ( m0 12k< + ) the standard approximation is
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Evidently, the ratio R R0 of the source support radius to themeasurement boundary radius strongly affects the
rate of decay of the singular values, the robustness of the inversion to noise generally improving as the source
support approaches themeasurement boundary.

5. Conclusion and furtherwork

Weanalyzed the singular values of the source-to-near-field operator associatedwith the single-frequency
inverse source problem for theHelmholtz equation in the plane. In particular, we considered bounds on the
information content that is preserved by the forward operator, proving a tight lower bound and conjecturing
and rigorously justifying a tight upper bound on the singular value index of the highest-frequency data
component that is stably recoverable. The boundswere expressed in terms of the zeros of Bessel functions of the
first and the second kind.We validated both bounds numerically, establishing concrete estimates on the stably
recoverable information in the inverse source problem regardless of the data sampling rate and the choice of
regularization. The result can be used directly, e.g., to estimate optimal TSVDfilters and data sampling rates.We
also showed that our upper bound constitutes an improvement of awidely used upper bound on the spectral
cut-off of the source-to-far-field operator.

Proving the statement in conjecture 1 is a natural next step. Also, it would complete the picture to
supplement the results on the bandwidthwith amore precise description of the general levels and decay rates of
the singular values as function of the size parameters of the source support and of themeasurement boundary,
individually or in relation to one another. Finally, a spectral analysis of the forward operator in dimension
greater than 2will be interesting.
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