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Abstract

For the inverse source problem with the two-dimensional Helmholtz equation, the singular values of
the source-to-near-field operator reveal a sharp frequency cut-off in the stably recoverable
information on the source. We prove and numerically validate an explicit, tight lower bound Z_ for
the spectral location 4 of this cut-off. We also conjecture, justify and support numerically a tight
upper bound %4, for the cut-off. The bounds are expressed in terms of zeros of Bessel functions of the
first and second kind. Finally, we propose our near-field upper bound %, as an improvement of a
commonly used upper bound on the spectral cutoff for the source-to-far-field operator.

1. Introduction

We treat the single-frequency inverse source problem for the Helmholtz equation in the plane, illustrated in
figure 1. Fix a positive constant wavenumber k = 27/ )\, where A is the operating wavelength, and let Dyand D
be open disks in R? centered at the origin and with radii Ryand R > Ry, respectively. Write A = 9% + 97 for
the Laplacian, and consider the Helmholtz problem

(A+KkH)u = s in R? .

limyy . ooy/Ix] (B — ik)u(x) = 0, uniformly for x/|x| € S, )

for some source s € L?(Dy) extended by zero to the whole plane. The second condition in (1) is the outgoing
Sommerfeld radiation condition in the plane. The inverse source problem, ISP, is now

given asingle measurement U € L*(OD), find a source s € L*(Dy) such that there is a function (‘radiated field’)
u satisfying ulspp = U and satisfying the system (1).

The ISP arises naturally in inverse acoustic and electromagnetic scattering, and has been devoted a
substantial body of literature. The ISP is treated, e.g., in the multi-frequency regime by Bao et al (2010), and with
far-field measurement data by Griesmaier et al (2012, 2014), Griesmaier and Sylvester (2016, 2017); see also El
Badia and Nara (2011). It occurs in antenna synthesis and diagnostics (Persson and Gustafsson 2005, Jargensen
etal2010), the analytic continuation of solutions of exterior scattering problems (Sternin and Shatalov 1994,
Zaridze et al 1998, Bliznyuk et al 2005, Karamehmedovi¢ 2015), and in linearized inverse obstacle scattering
problems.

In terms of the source-to-near-field forward operator F : s — U, described in detail in section 2, solving
the ISP amounts to solving

Fs = U for s & L*(Dy). )

This problem is ill-posed, since ker F = (A + k?)H?(Dy), where H?(Dy) is the Sobolev space

{0°w € [3(Dy) for a € N} with |a| < 2}. Also, measurements Uare typically noisy and sampled over an
only finite set of points. A common regularizing measure is to look for the minimum-L*-norm, or minimum-
energy, solution of (2), whichis givenby s* = F'U; here, Ff = (F*F)"'F* = F*(EF*)'is the Moore-Penrose
pseudoinverse of F. Another regularization scheme uses a truncated singular value decomposition (TSVD) of the

© 2018 The Author(s). Published by IOP Publishing Ltd
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Figure 1. Problem geometry and coordinate systems.
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Figure 2. A schematic of the singular value spectrum o;, and o,,! of the forward operator Fand its pseudoinverse F', respectively, as
function of angular frequency m > 0 of right singular vectors of F. The spectrum amplitude is an even function of m. The lower
bandwidth bound Z_ is given in theorem 1. The upper bandwidth bound 4. is predicted in conjecture 1 and justified in theorem 2.
Both % and #, are validated numerically in section 3.

forward operator F. Here, s is approximated by a finite sum of the form Zf\’ o, (U, ) Um> With (G, Vs B,,) @
singular system of F such as that shown in Bao et al (2010). Our aim is to estimate the maximal amount of
information about anysource s € L?(D,) that can be stably recovered in principle, that is, regardless of the
sampling frequency in the measurement and of the choice of the regularisation scheme. By ‘stably recoverable
information’ we mean ‘information recoverable robustly to noise’, and we refer to figures 2 and 3 for further
clarification.

Namely, plotting the singular values g, of the forward operator Freveals a seemingly low-pass filter behavior
with well-defined ‘passband’ and ‘stopband’. A low-pass filter characteristic was earlier proved for the singular
spectrum of the source-to-far-field operator (Griesmaier and Sylvester 2017, Griesmaier et al 2014), also called
the restricted Fourier transform there. However, since we are here looking for the limits of the stably recoverable
information under even the ideal conditions, we consider the source-to-near-field operator F, as some
information might be lost in the transition to the far field. Also, as will become clear in section 2, the singular
values g, of the source-to-near-field operator have a more involved dependence on the frequency index m than
the singular values of the source-to-far-field operator, and we find that this necessitates a separate analysis.

Numerical investigation indicates that the supposed low-pass filter behavior of the singular spectrum of F
persists also when the singular values o;, are ordered according to increasing angular frequency of the right
singular vectors of F, that is, of the singular vectors defined at the measurement boundary 9D. In this case, the
singular values within the ‘passband’ generally do not increase or decrease monotonically (they are uniformly
large there), and the singular values in the ‘stopband’, still ordered according to angular frequency m, are
observed to be monotonically decreasing with m. It is not a priori clear that the monotonicity properties of the

2
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Figure 3. Part of the singular value spectrum of the forward operator Ffor k = ko = 107. Left: the singular values ¢, 0 < n < 70,
ordered in a decreasing sequence. Right: the same singular values ordered according to the angular frequency m of the right singular
vector ¢,,. The notation is explained in section 1.

singular spectrum {o,,} should be directly connected with significantly different regimes of decay of the singular
values. However, motivated by the numerical studies, and by our theorem 2 below, we embark on a non-
asymptotic analysis of the singular spectrum of the forward operator Fand call the bandwidth % of F the singular
value index (angular frequency m of a right singular vector of F) at which the singular value spectrum of F
becomes strictly decreasing as function of nonnegative m:

B = argminmeNU{Jm+n > Opane foralln € Ny}

We now define the stably recoverable information on a source s to be the projection of s onto the singular
subspace of F defined by |m| < #. Then, finding the maximal amount of stably recoverable information about
any source s, regardless of measurement sampling quality and of regularization scheme, amounts to estimating
the bandwidth % of the forward operator F.

To simplify the notation, write K9 = kRpand x = kR for the size parameters of the source support and of
the measurement boundary, respectively. Also, for real m and positive integer v, write j, ,and y,  forther’th
positive zero of the Bessel function J,,, of the first kind, respectively Bessel function Y, of the second kind, and
order m. Itis well-known that, forall m € N, we have Jma > 0(Watson 1945, p 479), as well as

Y1 > Jm(m + 2) > 0(Watson 1945, p 487). Our main result, proved in section 2.2, is

Theorem 1. The bandwidth % of the forward operator F: s — U associated with the Helmholtz problem (1) and
measurement at 0D is bounded from below by

A = argmin, y {],.; = Ko}

The general form of the result in theorem 1, as well as numerical experimentation, lead us to conjecture a tight
upper bound on the bandwidth %:

Conjecture 1.

A = argmin, .y {y,,, = Ko}

To justify both this conjecture and our notion of the bandwidth of the forward operator, we also prove that the
singular spectrum {g,,} is majored by a quickly decaying sequence when m > %,:

Theorem 2. There is a positive constant C that depends only on k. and ko and such that, for every m € N with
Y1 = Ko, wehave o, < C/m.

After the proof of theorem 2, we indicate one way to estimate more precisely a majorant for o,,, when
R =Ry, ), = Koand m > 2;weleaveamore detailed treatment to future work. For convenience,
in section 2.2 we also show that the bandwidth bounds of theorem 1 and conjecture 1 can be expressed explicitly
in the source size parameter x:
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Corollary 1. Let a_ = 1.855757 and a, = 0.931577. For sufficiently large k., we have

~ 1
By o~ B = E(IOSHO + 124/ 12a3 + 81K5)1/3 —

3

Zai
(108K + 124/12a3 + 81k§)'/?

aswellas B, < [k

Finally, as announced, we can use our analysis in the near field to improve a commonly used bound for the
far-field spectral cutoff. The singular values of the source-to-far-field operator are given by Griesmaier et al.

(2014)
Ry
Ofar,m = 2T f*() ]m(kT)ZT.

Griesmaier et al 2014 and Griesmaier and Sylvester (2017) show that these singular values decay rapidly when the
index m satisfies |m| > kR, = k. Thelast inequality in corollary 1 aligns well with the upper bound |m| > kg
of the far-field spectral cut-off. A tighter upper bound for this cut-off is given in the following:

Theorem 3. The singular values 0fr,m of the source-to-far-field operator are bounded from above by

2)m 2)2 ) .
W\/ER()%\/E_%/Z("H'D + %E—Hé/ﬂm+2) when m = ﬂ+ = argmlnﬂeNo{yN,l > K/O}-

Since forany m € Nowehave y, | > m (Pdlmaiand Apagyi, 2011), an index m satisfying m > £, will also
satisfy m > 4., so proving theorem 3 may indeed improve the upper bound on the spectral cutoff in the far
field. We demonstrate numerically in section 3 that 4, is an improvement of the upper bound |m| > k.

In section 2 we analyze the singular value spectrum of the forward operator F. In particular, we prove
theorem 1, theorem 2, corollary 1 and theorem 3 in section 2.2. We validate the bounds #_ and %, on the
bandwidth % numericallyin Section 3, and discuss some implications of theorem 1 in section 4. A conclusion
and suggestions for further work are given in section 5.

2. Spectral analysis of the forward operator

The function (i/ 4)H(§1) (k|x]), x € R?, is the radial outgoing fundamental solution of the Helmholtz operator in
the plane, with singularity at the origin. Recall that H" = J, + iY; is the Hankel function of zero order and of
the first kind. As in Bao et al (2010), introduce the forward operator

Fs(x) = HV(kolx — yDs(y), x € 9D, s € [*(Dy),

y€Dy

that maps sources s to the traces at 9D of the corresponding radiated fields. It is well-known (Bao et al2010) that
F: [2(Dy) — L*(OD) is compact. The adjoint F* is defined by

FUG) = [ H{Kx—yDU), y €Dy, U € L@D),

xe

where H{® = J, — iY, is the Hankel function of zero order and of the second kind.

2.1. A singular system of F
Bao etal (2010) derived a singular system of the forward operator F. We here slightly improve a part of their
proposition 2.1:

Lemma 1. The forward operator F admits the singular value decomposition

F= 0000 2m@o + Y omlGm)rm G + Gomzo @l

meN

where

Om = 2RTRH (K)|A (o),  m € Ny, 3)
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and

Yu(y) = (ﬁROAm(HO))_IJm(klyDeim argy

¢m(x) E (ZWR)fl/ZeiargH}”')(n)eim argx’

form € Z, x € OD and y € D,. Here

An(50) = \T(K0)? — J—1(Ko) Tt 1(ri0) = \/]m(/io)z + Tws1(k)? — i—mfmmonmﬂ(no)
0
form € Z.

Our slight improvement of proposition 2.1 of Bao et al (2010) consists in explicitly evaluating the integral
f “0 oJ2(ko), occurring in o;, and 1,,,, in terms of A,,,(#,). This explicit evaluation is crucial to our proof of
o=

theorem 1. We also note that our expressions for the singular vectors ¢,,, as well as the singular values o, differ
from Bao et al (2010) in that they are only proportional to those given in that reference.

Proofoflemma 1. For s € [*(Dy) and y € Dywehave

F*Fs(y) = f s f _ H Gkl — 2D HE (K = ). )

z
A special case of the Graf addition theorem (Abramowitz and Stegun 1972, equation (9)) reads
H (klx — yl) = >° HY (k) Ju(kly)em@sx=asn, x € 9D, y € D,

mez
Similar to Bao et al (2010), inserting this in (4) we get

FFs()= Y HYWHP®LkyDe ™ x [ s(2)]u(klz)e sz [ eitmmares
z 0 X

€0D
m,ne”Z

= 27R Z IHr(nl)(“)|2]m(k|}/|)eimargyL€D0 $(2)J(K|z|) e imarez,

mez

since J_,, = (—1)"J,and Y_,,, = (—1)"Y,, for all integer m. This gives an eigendecomposition of the operator
F*F; to normalize the eigenvectors, we note that Gradsteyn and Ryzhik (2007, equation (5).54.2, p 629) gives

2
Jomtkoy = Z-0utkor — Jusko)i(ko),  m € Z,

and the recursion formula for cylinder functions (Gradsteyn and Ryzhik 2007, equation (8).471.1, p 926) implies
2
Jn—1(K) + Jns1(k) = Tm]m(m), m € Z. (5)

Thus,

: R}
Ly ohntko = B [ 0Ju(00)* = ZLUn(0)* — Ja(io) 1 (50)

R} 2 RZA,, 2
(]m(/go)Z + Jns1(k0)* — —mfm(lio)]mﬂ(l‘do)) - 07('%0),

_ Ko
2 Ko 2

and F*F admits the spectral decomposition

F*F = 0302wy + Y Omlm) 200 Um + C¥om) 120y Veml.-

meN

Evidently, o has multiplicity one and all the other eigenvalues o2, m € N, have multiplicity two. The lemma
now follows from theorem 4.7 on p 100 of Colton and Kress (2013); it here just remains to compute

‘[)’GDO H(gl)(k|x - yl)]m(klyl)eimargy
\/ﬁﬂ—s/zR(ﬂHr(nl)(ﬁ?) |Am(,‘<{,0)2
(1) ivargx Ry 2m iO(m—v)
Z H]/ (H)e g L:O Q]u(kg)]m(kg) J;:Oe

_ VvEZ

G (x) = 0, Fiby(x) =

2R ?RIHY (k) 1A (o)
Ry~ V2l asHy Weimargx ¢ D m € N,
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Figure 4. The zeros of the function 0 <y +— J, (ko) diverge, seelemma 2.

Figure 3 shows the first 71 nonnegative-index singular values of the forward operator F with size parameters
Kk = Ko = 107. It seems the forward operator is a low-pass filter with respect to the singular values o;,,, with
bandwidth 4 = 27. We quantify the frequency response of this filter in section 2.2.

2.2.Proof of theorem 1, theorem 2, corollary 1 and theorem 3

To arrive at the lower bound % of the bandwidth %, we first prove that the distance between the nonnegative
zeros of the function ji — J,, (k) is greater than 1. To this end, we use three fundamental and well-known
properties of the positive zeros j, , of the Bessel function J, (2):

1. P1For any positive integer 7, the function yu — j,  is strictly increasing over real y.
2. P2 Forany real y1and any positive integer v, wehave j, , <j, ;.

3. P3 For any positive integer n, we have j, < j, ...

Property P1 is shown, e.g., in Watson (1945, p 508) while properties P2 and P3 follow from Palmai and Apagyi
(2011, theorem 1.1, interlacing property (2) of zeros of Bessel functions).

Lemma2.If ji, > p, > 0and J,, (ko) = Ju,(ko) = Othen i, — pi; > 1.

Proof. Firstlet y1;, = 0. Under the assumption of the Lemma, there are numbers n;, n, € Nand 1, > 0such

thatn; > mand Ko = j, , = Ty The number #; is necessarily greater that 1: due to P2 and P1 in conjunction

with the assumption p, > 0, we have Jiw Z Ju1 > Jop and hence j, | = Ty for any positive integer v. Also,

n, is necessarily smaller than n,: by P1 and the assumption 4, > 0, itholds that j, , < T and by P2 we have

Jupm Sy, Whenv = m,s0j, = j,  foranyinteger v > n. Having established the conditions on 7 and n,
» 2 s »

in the assumption j, of the Lemma, we now use P2and P3 tosee that j, , >j, , | = Jj, S0

- jﬂz)”z
necessarily juzmz > j; ,,- Thisimplies, due to P1, that y1, > 1, thatis, y, — p1; > 1. Thesituation corresponds to
the numerical value of k being equal to, e.g., the height (along the second axis) of the linear piece a in figure 4.
To generalize this argument to the case 1, > 0, that is, to the case of the numerical value of x( being equal to,

e.g., the height of the linear piece b in figure 4, it now suffices to show that

dj dj
Fn . Hpont forall 4t >0, n € N. (6)
du du

To see why (6) suffices, assume = j/tz,n with p, > p; > 0and n € N, and consider the inverse

= j/zl,anl
functions f: Jun > pand foi1: Jun+1 — #- These functions are well-defined due to the abovementioned
property P1. Also, let /i be areal satistying j, ., = j; ,- By the first part of this proof, addressing the case
fty > ft; = 0, weknow that necessarily zi > 1. Now if (6) holds, then (df, /dx)(x) > (df, ,/dx)(x) forall

positive x whereboth f, and f, 4pare defined, and we have

6
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g o df ' df,
_ =~ Jupn “In — Jupn+1 In > T ZIntl
o=t ‘/;C:fﬁ,n dx ) et ‘/;:jo,yIJrl dx ) pt ‘/"‘:jo,rr+1 dx *)

= [ +fn+1(j/11,n+1) - fn+1(j0,n+1) =0+

thatis, 1, — p; > i > 1. Wenow turn to proving the inequality (6). For nonnegative order 1, the n’th zero jﬂ’ ;
of the Bessel function J), satisfies (Watson 1945, pp 508-510)

Gy

dp
Substituting g = 2j, , sinh # and using that Jun > 0,exp(arcsinh 7) = 7 + V1 + 72,as well as that
cosharcsinh 7 = /1 + 72, we get

dj N
D _ . —— s
du j;:o Ko@)(a/2j,, + |1+ 4 /4J,1,n) "1 +q /4Ju,n) . 7

Let us consider the right-hand side of (7). Setting

o0
=2, ftzo Ky (2j,, sinh f)e 2,

—2p

gx) = j;:) Ko(q)(q/Zx + 1 + g%/4x? (1 + q2/4x>)7 172, x>0,

we find

% K 2404/ 4x2 2
d_g(x)zzzwlxzf*f @Gy +4 + ) >0 forx>0
q

dx =0 (4x2 + gD (4 + @ + )

since the modified Bessel function K of the second kind is positive-valued for positive-valued arguments. Thus,
the right-hand side of (7) is monotonically increasing with increasing value of j, . Finally, recall the property
P2:forany > 0andn € N,wehave j, < j, . Thus, (6)indeed holds. 0

We can now link the variation of the function m — A,, (k) with that of the Bessel function of the first kind.
Fixm € N().

Lemma 3. If J¢ (ko) = 0 forsome § € [m, m + 1]then A, (ko) < Amy1(Ko).

Proof. The recursion formula (5) implies

2
Apm(k0)* — Api1(k0)* = Jn(K0)* + Jmg1(Ko)?* — H_m]m(HO)Jerl(HO)
0

B0 — TG + 2D

Ko

T 1(50) Jms-2(Ko)

= M]mﬂ(ﬁo)(fm(ﬂo) = Jm+2(K0))

Ko

- _m]m(K’O)]nH»l(KJ()) + 2(m+ 1
) Ko

2
= —Ju(ko)Jmr1(Ko)-
Ko

Jm+1(50) Jm+-2(Ko)

For any fixed positive argument x, the function R > p +— J,(x) is differentiable and not identically zero. Thus,
by the assumption of the current Lemma, and by lemma 2, this function has the value zero at 4 = morat
1 = m + 1, or the function changes sign precisely once in the interval [m, m + 1],s0

2
Apm(Ko)? — Apmii1(ko)? = H—]m(lfo)fmﬂ(/fo) <0.
0

O

Remark 1. Clearly, the function Ny > m — |[H (k) is positive-valued. It is also strictly increasing, as can be
seen from Nicholson’s integral for [H\} (x)[? (Watson 1945, pp 441-444)

(o)
HP (r)]> = %f Ky(2k sinht)cosh2mt, m € Z, k > 0,
w2 Ji=o
where K is the modified Bessel function of the second kind. This namely implies
) 2N 16m e . .
On(|H,,(K)]?) = — Ko(2k sinh t)sinh2mt > 0, m > 0,
% Ji=0

since both K, and the hyperbolic sine are positive over positive reals.

7
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The above discussion suffices for a proof of the lower bound 4.

Proofoftheorem 1. Let m € Ny. If j, | < £ then, due to the continuity and the strictly increasing nature of the
function p — j, |, the value £ is the first positive zero of some Bessel function J with { > m; thatis, there are

n € Nyand § € [m + n, m + n + 1]satisfying J¢ (ko) = 0,and, bylemma 3, A, 1, (ko) < Aptnt1(so). Since
Ny pu— |H I(LI)(H) | is strictly increasing, and the singular value o, from (3) is proportional to |H, fll)(li) |A, (ko)
for i € Ny, we have 0, , < 651,11, hence m < . In conclusion,

B > argmaxmel\b{jm1 < Ko} +1= argminmel\b{jm1 > Ko} O]

We can also justify the conjectured upper bound 4, :

Proof of theorem 2. Let m € N. Using the standard series representation (Watson 1945, p 40) of the Bessel
function of the first kind, we have, for fixed positive z, that

B FSUNC I g P i) S EN T
(@) E)u!(mw)! : - ;)W —
and thus
2m
B <62 ®)
m!

for some constant C; dependent only on z. Since m is a positive integer, we also have, for fixed positive z,
that (NIST 2017)

m m—1
|Y(2)| = @/2) Z(m*“f 1)'( ) ~25@nhZ
0 w! 4 0 2
m 00 _ 2
+ S it )+ o 1)
1=0 wlim + p)!
2" = DI 1 (2Y 2 z
<(z) s l;, /J!(4) M ’/T]m(Z) lrl2
m X 2 1
+ E20 S @t )+ e+ ) E L
=0 pulim + p)!

The digamma function ¢ satisfies' (Abramowitz and Stegun 1972, p 258)

pn—1

Y =—y+ > 1/k

k=1
)
n m
Y+ D +pm+p+1)=-2y+2> 1/k+ >, 1/k<2u+(m—p)=p+m
k=1 k=p+1
Hence
m _ ' m
1Y, (2)| < (3) = D!z 22| GDT 2 (G20 S
z ™ ™ 2 m T (m—1)!
m _ | )
<C2 + (%) uez /4
z T
and
2 2m
7@ < Gt G 2) o - v ©)
z

for some constants C,, C; and C, dependent only on z. Recall from (3) that 02, o< |[H'V (k) PA2 (ko) =
J2(k) + Y2(k))Az (ko). By assumption, Y1 = Ko, 80, again using the inequality y, | < j, | from Watson
(1945, p487) wehave g < j, | < j,. - Therefore J,, (ko) Ju+1(ko) > 0,and hence

! Here v & 0.577 is the Euler-Mascheroni constant.
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2
Al(ko) = JE(Ko) + Jai1 (ko) — H—m]m(/io)fmﬂ(fio) < J2 (ko) + T2 41 (Ko),
0

SO
oy < const. X (Jo (k) + Yo (k) Un(ko) + Joi1(Ko)). (10)

Multiplying out the right-hand side of (10), and using the derived estimates (8) and (9) for J2(z) and Y2 (z),
yields terms that are each bounded from above by const. x (k¢ /x)>" /m?. Finally, since by assumption kg < &,
we have g, < const./ m. O

We next briefly describe one way to obtain a tighter majorant of ¢,, than what is presented in theorem 2, for the case
R = Ry, thatis, kK = K. Using the standard series representation of J,,(z) we readily find that, for t € 10, 1[, we
have | t="],,(tko)| < (ko/2)" exp((tro/2)%) /m!. Furthermore, since Jm1 > Ym.1» We have by the inequality (2.4)
onp. 77 of Laforgia (1986) that y, | > roimplies| Ju(ko)| < t7"| Jn(tro)| exp(— KE(1 — t2) /4(m + 1)) for
anyt € 10, 1[, henceitimplies| J,,(ko)| < (r0/2)" exp(—r§/4(m + 1)) /m!. To find an improved upper
bound on| Y,,(k)|, we can use the well-known estimates (11/¢)"e < m! < ((m + 1) /e)""'e. We get

Z (m - ,LL'_ 1)'( ) < Z (/‘50/4)#(1’7’1 — M)m H < Z (KJO/4)L 1 m+/tmm jz
1=0 e =0 ¢

< m Z (H0€/4m)
pn=0 ,UJ

2
4
mlero e/ m

aswell as, for m > 2,

é(w(u )+t 1))% < i %
<3 <n0/4>ﬂ( e )’”*“ ' _ S (eny/40m — 1)
im0 ke \m—+p—1 (m — 2)!
Thus, assuming
Va1 = Ko
and
m > 2,

and using the above estimates, we find the dominant term (with respect to the order m) in the bound to be

o5 = 2R3 HP (50) PAm(r0)? < 2R3 T2 (J(K0)* + Yin(50)2) Un(K0)? + T 1(K0)?)

2 2m 2 2 _ _ 2
2R exp H_O(i 1 ) + 4R (Ko/2) exp Ky @m* + m — e — 2m” + 2m ‘
2\m m+1 (m — 1P 4 m(m? — 1)

Proof of corollary 1.To get estimates on the bandwidth 4 that are explicit in ¢, we use that (Watson 1945)
g = m + a_m'/? + O(m~1/3)and Ypp = m + a,m'? 4+ O(m~'/3),with a_ = 1.855757 and

ay = 0.931577. Assuming j,, | = ko > 1,3, | = ko > 1,andsettingny = m2/3leads us to solve the
equation n® + ain — kg = 0 for n.. We find

ny = 1(108,%0 + 1241242 + 81K2)/ — 20+ .
6 (108kg + 124/12a3 + 81k3)'/3
In particular, Z. ~ [n]]for sufficientlylarge . Finally, we have m < (m — 2) + a,(m — 2)!/3 for integer

m > 12, so, for sufficiently large ro, m > woimplies y, _,, = (m — 2) 4+ a,(m — )3 > m > kgand hence
A S (Kol O

Proof of theorem 3. We can here start with the same argument as seen in our proof of theorem 2: since
ko < Y, pwehave ko < J, 1 <1190 Jn(Ko) my1(ko) > Oand

2m
An(ro) = (ko) + Ty r(K0) = ——Jn(K0) s 1(k0) < T (0) + T4 (Ro):
0
Itis now readily checked that the mth singular value 07ar, of the source-to-far-field operator satisfies

Ry
Ofurm = (27)? f B 1 (kr) = 2(7R0)*Ap(r0)* < 2(R0)? U (K0) + Ty 1(Ko)).

Using the estimate |J,, (ko) | < (ko/2)" exp(— ki /4(m + 1)) /m), obtained just after the proof of theorem 2,

9
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Figure 5. Errors (top) and relative errors (bottom) in the lower and upper bounds on the bandwidth % of theorem 1 and conjecture 1,
over the range of the source size parameter corresponding to R/ A = Ry /A € [1/m, 50].

we find that
2 2 (“O/Z)Zm —k2/2(m+1) ("%/2)2 —k2/2(m+2)
O far,m < 2(wRy) T e~ fo/slm + me fio/ 2lm . U
The following technical result is useful in conjunction with theorem 3.

Lemma4.If j, | > Koandm > 1thenm > Kko/2 — 1.

Proof. Since m>1, the result follows immediately for <o < 4. Assume in the following that ko > 4.In Watson
(1945, p 487) itis shown that j,,, < y4(m + 1)(m + 5)/3.Thus,if ko < j,,  then

Ky < 4(m + 1)(m + 5)/3,

and hence

1
m > ?/3% + 16 — 3.

It is now a straightforward matter to verify that
1
E«/3m(2)+16—3252—0—1. O
The sequence ((k¢/2)"™/m!), occurring in the estimate of theorem 3, is decaying when m > k¢/2 — 1. By
lemma 4, this last inequality is satisfied under the assumption y, | > ko of theorem 3, since j,, ; > 3, ;-

3. Numerical validation

We here compute the bandwidth %, as well as the bandwidth bounds #_ and %, of theorem 1 and conjecture 1,
respectively, for 300 values of the size parameters x = £ uniformly distributed over the interval x € [2, 1007].
Recallthat K = kR = 27R/)\ and kg = kRy = 27R/ A\, where R is the radius of the sampling circle 9D, Ry is the
radius of the source domain, and A is the operating wavelength. Thus, we consider 300 values of the relative

10
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Figure 6. Errors (top) and relative errors (bottom) in the approximate lower and upper bounds 9. on the bandwidth % of corollary
1, over the range of the source size parameter correspondingto R/A = Ry /A € [1/m, 50].

Table 1. Linear regression of the computed bandwidth %, and the lower
(#4-) and upper (%4, ) bandwidth bounds. We have here held equal the size
parameters £ and K.

Mean absolute Standard

linear interpolant error deviation
i 0.9793k — 3.9569 0.4813 3.9-107*
B 0.9736x — 4.7394 0.5715 4.8 - 107
B 0.9861x — 2.0083 0.4052 3.4-107*

wavelength A\/R = \/R distributed nonuniformly over the interval \/R € [1/50, x]. Figure 5 shows the errors
er = H+ — A andtherelativeerrors e + = |B — H| /A in the estimated bandwidth as function of the
problem size parameter .

For the two lowest considered values of k, we find that # = 0 and %_ = 0; there, weset £, — = 0.Both %
and 4_ are positive for higher considered values of . In particular, there is zero bandwidth for x smaller than some
threshold value between approx. 1.7 and approx. 2.7, and for such size parameters « the inverse source problem is,
from the viewpoint of the bandwidth of the singular values, similar to the inverse heat conduction problem. Over
the considered interval for x, the mean errorsare €. = —1.68, 2, = 3.02, and the maximum absolute errors are
max|e_| = 3, max|e;| = 4. Therelative errorin #_ is below 5% for k > 24.7461,i.e.,for R/\ > 3.94,and %,
isbelow 5% for xk > 45.7181,i.e.,for \/R > 7.28.

We find both 4, 4 and %, to be approximately linear functions of  in the given interval, with least-
squares fits summarized in table 1.

Figure 6 shows errors in the approximations By of corollary 1, where we choose the simpler form %+ ~ [Ko]
for the estimate of the upper bound. The approximate expression for the lower bound shows almost the same small
error as the lower bound itself, and the approximate expression §+ ~~ [k ] for the upper bound, while simple, has
error below 5% only for problem size parameters of approx. 175 or higher when k = & is maintained.

Our bounds %, are independent of the radius of the measurement surface, and we next validate this
property numerically. Figure 7 shows the first 71 nonnegative-index singular values of the forward operator F

11
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0 < n < 70, ordered in a decreasing sequence. Right: the same singular values ordered according to the angular frequency m of the
right singular vector ¢,,.
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Figure 8. The difference [m] — 2, in upper bounds on the spectral cutoff of the source-to-far-field operator for the source support
size parameter k¢ € [1, 314].

with size parameters k = 1007, ko = 107. The bandwidth is unchanged at # = 27 (compare with figure 3), as
predicted by our bounds. The decrease in the numerical stability of the ISP due to the measurement boundary
being farther away from the source is instead expressed in terms of the overall lower level of the singular values.

Let us finally compare numerically our proposed upper bound %, = argmin,, . {),,, = fo} for the
spectral cutoff of the source-to-far-field-operator (theorem 3) with the bound |m| > kg givenin, e.g.,
Griesmaier et al (2014) and Griesmaier and Sylvester (2017). Figure 8 shows, for ¢ € [1, 314] the difference
[ko] — .. Over the considered range of source sizes K¢, our bound gets progressively tighter, and estimates
the spectral cutoff at the order 1 up to 7 lower than suggested by the alternative bound.

4. Discussion
The bandwidth estimates %, are directly applicable as optimal filter estimates in the numerical solution of the

inverse source problem in terms of a truncated singular value decomposition (TSVD) of the forward operator.
Next, it has been amply observed in the literature concerning the single-frequency inverse source problem that

12
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the numerical stability of the solution increases with the operating frequency. Theorem 1 confirms and explicitly
quantifies this increase in numerical stability, also for non-asymptotic frequencies.

Theorem 1 of course has direct implications for the maximum achievable stable resolution of the
reconstruction in the inverse source problem. Detailed analysis of this resolution requires an investigation of the
pointwise behavior of the left singular vectors of the forward operator. While we here do not perform such
analysis, we do note that the left singular vectors tend to be supported near the origin for low values of index m,
and near the measurement boundary for high index values. This means the amplified noise produces is a ‘wall of
non-information’ near the measurement boundary and blocks faithful reconstruction of the source inside D.

As shown in Bao et al (2010) and in section 2 here, the right singular vectors (defined over the measurement
boundary) of the forward operator are proportional to exp(imf), m € Z. This means that the bandwidth index
4 is approximately the angular frequency of the highest-frequency data component that can be stably inverted.
Thus, the sampling theorem (Shannon 1949) is directly applicable with theorem 1 to give the following: in case
the radiated field u is sampled equidistantly at the boundary 0D, any angular sampling rate greater than
approximately A0 ~ 7 /% < w /% = 7 /argmin,  {j,,, = Ko} is excessive due to the limited bandwidth of
the forward operator.

Bandwidth bounds in theorem 1 and conjecture 1 involve the size parameter of only the source support, and
in light of the successful numerical validation of these bounds, we find it justified to propose that the bandwidth
may generally be independent of the radius R of the measurement boundary relative to the radius R, of the
source support (aslongas R > Ry). Asillustrated in section 3, the decrease in the robustness of the inversion (in
the presence of noise) as R, /R decreases seems instead to be expressed by alower overall level of the singular
values. We therefore briefly analyze the asymptotic behavior of the singular spectrum (3)as m — 0,and as
m — 00. The standard large-argument approximation of the Bessel functions of the first and second kind, valid
for ko > m? — 1/4,yields

T (ko) ~ 2z COS(HO - % - I), Y, (ko) ~ 2z sin(fio SR E),

SO

and, since k > K¢, wealso have H,,(k)> ~ 2/7k.Thus
2
Oy ™~ £A\/R0
T

for Ry/ X > (m? — 1/4) /27. Forward operators mapping from source spaces with larger supports thus have
higher-valued singular values in the bandpass region, regardless of the size R of the measurement boundary
relative to the size R, of source support. However, we also see that the height of the bandpass decreases when the
operating wavelength lambda decreases (equivalently, when the operating frequency increases), which may
counteract the increase in stably recoverable information gained due to the increase in bandwidth. In the small-
argument limit (0 < k2 < m + 1) the standard approximation is

1 (ko)" m—D2Y\"
) = (L), 0 _g(_) ,
m!\ 2 77 Ko
so(since kg < K) Ay (ko) ~ (ko/2)""m!2(m + 1) 'and H,,(k)? ~ (k/2)*"m!2 + mPm 27 2(k/2)"2™,
resulting in
1

5 X N &)2”[7
Ap(Ko) Hpy(K) ( R 7r2m2(m n 1)>

and thus

Oy ™~ L 2 (&)m1/2R3/2.
m\m+1\R
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Evidently, the ratio Ry /R of the source support radius to the measurement boundary radius strongly affects the
rate of decay of the singular values, the robustness of the inversion to noise generally improving as the source
support approaches the measurement boundary.

5. Conclusion and further work

We analyzed the singular values of the source-to-near-field operator associated with the single-frequency
inverse source problem for the Helmholtz equation in the plane. In particular, we considered bounds on the
information content that is preserved by the forward operator, proving a tight lower bound and conjecturing
and rigorously justifying a tight upper bound on the singular value index of the highest-frequency data
component that is stably recoverable. The bounds were expressed in terms of the zeros of Bessel functions of the
first and the second kind. We validated both bounds numerically, establishing concrete estimates on the stably
recoverable information in the inverse source problem regardless of the data sampling rate and the choice of
regularization. The result can be used directly, e.g., to estimate optimal TSVD filters and data sampling rates. We
also showed that our upper bound constitutes an improvement of a widely used upper bound on the spectral
cut-off of the source-to-far-field operator.

Proving the statement in conjecture 1 is a natural next step. Also, it would complete the picture to
supplement the results on the bandwidth with a more precise description of the general levels and decay rates of
the singular values as function of the size parameters of the source support and of the measurement boundary,
individually or in relation to one another. Finally, a spectral analysis of the forward operator in dimension
greater than 2 will be interesting.
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