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ABSTRACT

The effects of processing by autoclaving (AC), s0gKSK), short-term fermentation (S-TF, 4 d)
and long-term fermentation (L-TF, 14 d) on the ititnal composition, amino acid profile and
some antinutrients were determined for cottonseea €SM), groundnut meal (GNM) and
groundnut husk (GH) in this study. After processitigide protein content improved by 11% after
L-TF, and crude lipid content 25% after SK for CSiviyde protein content improved by 27% after
S-TF and L-TF, and crude lipid content 13% afterfSKGNM. Soaking and fermentation were
shown to significantly increase essential amind aointents by 44% (SK, methionine) in CSM and
46% in GNM (L-TF, histidine). Phosphorus contensweduced by 59% in CSM and 57% in GNM
by L-TF. All processing techniques, with the exéeptof AC, reduced phytic acid and gossypol
contents in CSM and GNM. It was concluded that 8H fermentation were simple, cost-effective,

and efficient ways to improve the nutritional vahfehe selected oilseed by-products.

Keywords: Amino acid; Autoclaving; Fermentation; Proximatemposition; Soaking
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1. Introduction

As the production volume of fish meal has level#drorecent years, the commodity price has
risen, driving research to focus on more susta@atdn-marine alternatives of dietary protein
sources (Schipp, 2008; Cocker, 2014) to satisfggidemands from the animal production sector.
Most often, agro-industrial by-products that aredush animal feeds are of modest economic value,
but of reliable quantity (Agbo, 2008). Many plarased feed resources that could be of
considerable nutritional and financial value inmaal production remain unexploited, undeveloped
or poorly utilized (Agbo and Prah, 2014). Undetirdition and disposal of these resources are
likely due to a lack of adequate information on htbeir nutritional quality could be improved.
Considering the expected increase in world popatedind the high demand for animal products
due to growth in most world economies, the prospétteding millions and safeguarding their
food security will depend on the better utilizat@imon-conventional feed resources and
implementation of circular bio-economy (NoRest, @01

Agro-industrial by-products, especially residudseed cakes and meals from oil extraction, are
available in large quantities. Global productioaaieed 317,000,000 t in 2016 and is forecasted to
rise to 386,000,000 t by 2025 (OECD/FAOQO, 2016). Midghese protein meals have been explored
as feed ingredients in their unrefined state téa@pfish meal as alternative protein sources,
especially for poultry, pigs and aquatic animalevbus studies on oilseed meal-based diets fed to
various animals have reported negative, althoughlfivariable, effects on production
performance. For instance, studies that shea nait Imased diets were fed to broiler chickens
(Atuahene et al., 1998) and Nile tilapia (Agbolet2014), observed low growth performance
caused by poor digestibility, and possibly reduiesd! intake (Elemo et al., 2011). Dabrowski and
Kozak (1979) observed a lower growth performancgrass carp fry fed with different levels of

commercial soybean meal compared to fishmeal. Wgguigs fed increasing levels (5% to 15%)
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of copra and palm kernel expeller meals showedeatireduction in final body weight, while no
difference in growth performance was recorded wéhm kernel meal compared to a control diet
containing soybean meal and 4% of fish meal (Jawetsal., 2014).

The usefulness of these by-products are eithelypatised by, or further restricted by, the
presence of antinutrients such as trypsin (prefeasibitors, tannins and lectins, phytate,
gossypol, oxalates and glucosinolates, saponitigjtamins, and mycotoxins (Francis et al., 2001).
These compounds affect protein and mineral utibragFrancis et al., 2001; Pashwar, 2005) by
decreasing palatability, digestibility, or metakati, and may even exert a toxic effect resulting in
liver damage (Pashwar, 2005).

There is a need to increase the nutritional vafumlseed by-products, and to offset certain
antinutrients and toxins, in order to realize theil potential as animal feed ingredients (Annong
et al., 1996; Pashwar, 2005). Techniques suchramefeation (Lopez et al., 2001), boiling and
sodium hydroxide (NaOH) treatment (Annongu et®96), heating and/or autoclaving (AC)
(Clatterbuck et al., 1980), and sprouting or geation (Asiedu et al., 1993) have been proposed as
ways of detoxifying and improving the nutritionallue of these feed ingredients. The current study
was designed to assess the effect of processitanseed meal (CSM), groundnut meal (GNM)
and groundnut husk (GH) by AC, soaking (SK), shertn fermentation (S-TF) or long-term

fermentation (L-TF) on the proximate compositiomiao acid profile and some antinutrients .

2. Materials and methods

2.1. Sources and preparation of raw materials
Groundnut husk was purchased from a groundnut pastessing factory, mechanically
extracted GNM from a local producer, and screwgedsCSM was purchased from a commercial

agro-feed seller, all in Kumasi, Ghana. Prior tavgering with a hammer mill, the GNM was dried
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in an oven (Gallenkamp Hotbox Oven) at 100 °C #bh2and cooled in a desiccator at room
temperature. The other ingredients were also figetyind using a commercial hammer mill. All
ingredients were then sealed in airtight bags aipped to the Technical University of Denmark
(DTU Agua) where they were kept at -20 °C untilaezbfor further processing. Commercial grade
dried baker’s yeastaccharomyces cerevisiae) used in the fermentation process was purchased

from a local supplier in Denmark.

2.2. Processing procedures
The processes of AC, SK, S-TF and L-TF were peréalion 100 g samples of CSM, GNM and
GH weighed out on an electronic scale (Mettler @olexS4002S, Switzerland) in triplicate.

Samples of each raw material were treated as uegsed (UP).

2.2.1. Autoclaving

The samples of CSM, GNM, and GH were transferréaDd mL Duran glass bottles. Distilled
water was added at a ratio of 7:3 (w/V) and mixemtdughly before AC at 120 °C for 20 min. The
samples were then allowed to cool to room tempexdR0°C), after which they were oven dried

(Memmert, UN110) at 40 °C until constant weightleal and stored at -20 °C until analysis.

2.2.2. Soaking

The samples of CSM, GNM and GH were transferre2lltaglass jars. Tap water was added at a
ratio of 1:10 (w/V). The samples were allowed talsat room temperature for 12 h with
intermittent stirring every 4 h after which the emtas decanted. The samples were transferred
onto a fine meshed cloth (1@@1) and squeezed, to remove as much of the waprsssble. The
residual meal was spread on a tray and oven dvedthfnert, UN110) at 40 °C to constant weight.
After drying and cooling to room temperature, tamples were finely ground, sealed in polythene

bags, and stored at -20°C until analysis.
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2.2.3. Fermentation

For S-TF and L-TF, CSM, GNM and GH was transfetee800 mL Duran glass bottles, and
inoculated with 3.40 mg of dried baker’s ye&&stctharomyces cerevisiae). Tap water (80 mL) was
added and mixed thoroughly before fermenting ftirezi4 or 14 d at room temperature in a sealed
bottle. At the end of the fermentation process stmaples were soaked in 300 mL of tap water at
room temperature for 5 min. Water removal, dryind atorage followed the procedure described in

section 2.2.2.

2.3. Analytical procedurefor proximate composition, amino acid profile and antinutrients

Dry matter, crude protein and ash contents of tigacessed and processed samples were
determined following the procedures of the Assaomnbf Official Analytical Chemists (2005). Dry
matter content was determined after oven dryin@#oh at 105 °C (Memmert UN110). Ash
content was determined by incineration of the sasfdr 6 h at 550 °C in a muffle furnace
(Hareaus Instruments K1252). Crude protein contest determined by the Kjeldahl method
(FOSS Kjeltec 2200) and crude lipid content byrttethod described by Bligh and Dyer (1959).
Phosphorus content was determined in accordanbe 8@ 6491:1998 (1998) standard method.
The amino acid profile of the experimental ingretisewvere determined in duplicates by High
Performance Liquid Chromatography (HPLC) analyséiewing the method of Larsen et al.
(2011). Gossypol content analyses followed the gutace described by Pons and Hoffpauir (1954).
Phytic acid content was determined using a commakyavailable kit (K-PHYT, Megazyme,

Ireland) based on the method described by Fiskesabdrrow (1925).

2.4. Experimental design and Statistical analysis
The oilseed by-products namely CSM, GNM and GH vgeitgected to 4 treatment processes by

AC, SK, S-TF, and L-TF in addition to unprocessanhples. Each treatment was replicated 3 times
6
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per by-product and analysed in duplicates whicteghe total number of observation as 3 (oilseed
by-products) x 5 (treatments) x 3 (replicates) fatmeach variable. The Shapiro-Wilk normality

test was performed on data for each variable befatethe averages of the processed samples were
subjected to a one-way ANOVA Bt< 0.05. The differences between the means of theogessed

and the processed raw materials were determingdebunnett’s multiple comparison test using
GraphPad Prism 5.01 statistical software for Winsi¢8an Diego California, USA). Results of the
effect of AC, SK and fermentation against the raaterials are expressed as means with their

standard deviations (SD), and percentage changesiables are presented in figures.

3. Reaults

3.1. Proximate composition

After 12 h of SK, S-TF (4 d) and L-TF (14 d), resipeely, the nutritional contents of CSM,
GNM and GH were significantly< 0.05) affected (Table 1). Autoclaving did not bany major
effect on nutritional composition of the raw matdsitested. Dry matter (DM) content of CSM
appreciably increased by 5.50% < 0.0001) after 14 d of fermentation. In CSM, @ymtotein
content was the highest (463.45 g/kg DM) after Lafi the lowest (447.15 g/kg) after SK except
AC. Autoclaving however, resulted in approximat@®p reduction in crude protein content of
CSM. Improvement in crude lipid content rankeda®ivs: SK > L-TF > S-TF. Meanwhile, ash
and phosphorus contents were drastically reduceappgoximately 52% and 59%, respectively,
after L-TF. In GNM, dry matter content was redubgdAC (1.72% reduction), whereas S-TF and
L-TF increased dry matter content by about 3%. Aftecessing, crude protein content varied
widely in GNM ranging from 416.40 g/kg DM after AG 528.75 g/kg DM after S-TF, which
corresponded to increments between 0 and 27%,ateagyg. Crude lipid content was increased by

13%, 5%, and 12% after SK, S-TF, and L-TF, respebti Ash and phosphorus contents were
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reduced P < 0.0001) by all treatment processes except ACsptarus reduction was the lowest
(59%) after L-TF and the highest (3%) after AC.th&¢ end of the treatment processes on GH,
marginal increases were recorded; crude proteirceudk lipid contents were increased by 3% and
11%, respectively, after SK. Ash content was carsibly reduced by up to approximately 22%
after SK. Phosphorus content was reduced betwe¥na28l 30% by SK, S-TF and L-TP €

0.0002).

3.2. Amino acid profile

The amino acid profile for the unprocessed andgssed by-products are presented in Tables 2
to Table 4. Apart from AC, the other processinghtegues (SK, S-TF and L-TF) induced
significant changes?(< 0.05) especially in the essential amino acidsAEprofile of the selected
oilseed meals. Total amino acids (TAA) as a peagnbf the calculated crude protein ranged from

74% to 86%.

3.2.1. Cottonseed meal

Autoclaving CSM improved all EAA except lysine ameethionine (Fig. 1A), and resulted in an
overall increase in total essential amino acidEAA) of 11% (Table 2). All of the EAA and non-
essential amino acids (NEAA) increased after SKIFSand L-TF. For the EAA, the highest
increment was recorded for methionine after L-TF4486, while the lowest increment was
observed for isoleucine (5%) also after LT-F. Sngkand S-TF processes increased TEAA by 31%
and 28%, respectively, of which the majority camaf methionine, and the minority from lysine
(Fig. 1B to Fig. 1D). Total non-essential aminodac{TNEAA) content was unaffected by AC, but

increased by 16% to 18% after SK, S-TF, and L-T&b{& 2).

3.2.2. Groundnut meal
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The majority of the EAA and NEAA in GNM at the enfithe study increased after SK, S-TF
and L-TF P < 0.05) (Table 3), whereas the effects from AGatireent were marginal with a
tendency to decrease (Fig. 2A). Increments in EAAGNM varied widely from 8% in lysine to
26% in phenylalanine after SK; from 18% and 12%ysine to 40% and 46% in histidine after S-
TF and L-TF, respectively (Fig. 2B to Fig.2D). Allher EAA were increased by about one-quarter
after SK and about one-third for both S-TF and L-Among NEAA, glutamic acid was essentially
unaffected whereas hydroxyproline increased by 288%r SK. The S-TF and L-TF processes
notably increased the NEAA content; for aspartid &y 4% and for alanine by 61%. Overall, the
TEAA accounted for 43% to 45% of the measured cproéein after processing, compared to 43%

in the unprocessed sample (Table 3).

3.2.3. Groundnut husk

Groundnut husk had a very low amino acid contamthié unprocessed form ranging from 0.13%
to 1.39% for the EAA, with methionine being thadeand arginine the most abundant (Table 4).
Fermentation and SK of GH appears to lead to amitndn of the derivatization of amino acids by
the 6-aminoquinolyl-N-hydrosysuccinimidyl carbam@&)C) used, therefore amino acids analysis
in these treatments was not possible. AutoclavihgsBl reduced lysine, methionine, alanine,
aspartic acid, and glutamic acid contents by 25%£0,316%, 31%, and 26%P(< 0.05),

respectively (Fig. 3), whereas cysteine contentiwgsoved (31%)R < 0.05).

3.3. Nitrogen constituents
The total nitrogen (TN), total amino acid nitrog€PAA-N) and non-protein nitrogen (NPN)
before and after processing are given in Tablever&l, TN increased slightly in GNM, but was

marginally reduced in CSM and GH after AC. Nonetks| considerable TN gains (up to 27% in
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GNM) were recorded in all SK and fermented sam@asilarly, NPN doubled after SK in GNM,
and reduced by half after AC in CSM. On the othemnd) TAA-N increased by approximately 25%
after SK, S-TF and L-TF in CSM, and between 14% a6&b6 after SK and S-TF in GNM,

respectively.

3.4. Anti-nutritional factors

The results of the effect of processing on the ywslsand phytic acid contents in CSM, GNM
and GH are presented in Table 6. Autoclaving of C&gulted in the largest degradation of
gossypol, removing 34%°(= 0.0043), followed by SK and fermentation. Sherixst fermentation
was the most efficient means of removing gossyp@NM (45%,P = 0.0041) and GH (67%, =
0.0005). Long-term fermentation was found to betrefftcient in decreasing phytic acid from both
CSM (72%,P < 0.0001) and GNM (69%P = 0.0003), whereas the lowest degradation was
recorded after AC.

4. Discussion

4.1. Proximate composition

The moderate losses in crude protein content fr@raw materials were not significant in
comparison to unprocessed samples, and do notragitézal. Nonetheless, these losses could be
nutritionally detrimental if specific amino acidewe more sensitive to AC treatment than others.
The extent of protein change or destruction has lbeeelated with duration and temperature of
AC treatment, as well as moisture content (Goh.e1879; McNaughton and Reece, 1980;
Papadopoulos, 1989). This effect was demonstratéthbenkova et al. (1986) who found that
lengthy exposure time (60 to 130 min) coupled kitih hydrothermic temperatures (110 to 130
°C) significantly decreased soluble crude prot@intent in soybean meal, alfalfa meal, wheat meal
and field pea. Although the samples in the presemty were autoclaved at high temperature (121

°C), the relatively short time of exposure (20 ngould account for the moderate losses observed.
10



223  Nonetheless, these losses are not regarded asicespecially as the nitrogen contents in the

224  samples were not limited.

225 Soaking and fermentation (S-TF and L-TF) positivafgcted the crude protein and crude lipid
226  contents of the CSM and GNM tested. These are cahlgato the report of Mukhopadhyay and
227  Ray (1999), in which marginal increases in pro{8i28%) and lipid (17.54%) contents of sesame
228 seed meal were found after combined SK and fermgntith lactic acid bacterid_éctobacillus

229 acidophilus). They indicated that although, small nutriensksoccur during fermentation and SK
230 through microbial utilization or leaching, whilecieases occur through microbial synthesis.

231 Similarly, Sun et al. (2015) reported a net protesrement of 7.6% in CSM after fermentation

232 with Bacillus subtilis. In the current study, fermentation increased enuetein contents in the

233 fermented oilseed meals and by-product betweeml@ to 27% in GNM. The higher protein

234  levels in this study were likely due to longer dioa of fermentation which allowed the yeast to
235  convert NPN into amino acids. Single cell protgf8€P) such as yeast, contain 45% to 65% crude
236  protein, and 2% to 6% crude lipid on a dry weigasib (Nasseri et al., 2011). In all likelihood, the
237  increased protein content after fermentation reduitom yeast cells mixed with the fermented

238 samples at termination of experiment. After 12 IsE&fmungbean, Sattar et al. (1989) reported
239  approximately 5% and 9% increases in protein canveth a positive temperature correlation. The
240 increase in protein after SK in their work is sorhetsimilar to our observations for CSM (6.71%),
241 while our results for GNM were considerably hig(e2.30%). These positive changes in protein
242  content in the oilseed by-products may be attrithtioethe breakdown of soluble starch and losses
243 of fine solids, which increased the relative cdnition from protein.

244 The increased contentof crude lipid after SK of@#ld meals in the present study contradicts
245  previous reports (Siddhuraju et al., 2000; Nwaopgeikt al., 2011). However, the lipid increment

246 observed in this study could be the result of daehing of soluble components that caused that the

11
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content of lipid in the oilseed meals (Agume et2017), and the destruction of cell structure
causing the efficient release of oil reserve (Cadradriguez, 2004), which were probably retained
in the meals by the fine mesh cloth during remafaxcess water.

Fermentation has only previously been shown to matdky alter ash content (Plaipetch and
Yakupitiyage, 2012; Sun et al., 2015). In the cotrsgudy fermentation resulted in large reductions
in ash content, corresponding to 52% in CSM, 61%MNM and 18% in GH. The loss in ash was
accompanied by decreases in phosphorus conteall &amples. This could be due to the
hydrolysis of phytate by endogenous phytases wimicfint have possibly transformed the free
phosphorus as a result of phytate degradatioroifiter phosphorus compounds such as inorganic
phosphoric acids, orthophosphates and lower irlgsitosphates (Turk et al., 2000; Shunmugam et
al., 2015). The reductive effect of SK on ash Irsamples is likely due to the solubilisation of
some vitamins and minerals like phosphorus in tker@dia (water) (Agume et al., 2017). In
general, some reductions could also be consequehceanges in other constituents such as

increases in crude protein and lipid contents.

4.2. Amino acid composition

Soaking, S-TF and L-TF improved the amino acid ifgalf CSM and GNM compared to
unprocessed samples. Generally, water-soluble aauitls are expected to be lost through SK yet,
the non-deleterious effect of SK on the amino g@cafile could be linked to the plant by-products’
composition of higher proportions of insoluble amarcids that may primarily function as structural
parts of the plant (Wade, 2009). A possible exglandor the significant increases in most of the
amino acids observed for the fermented and soak®gles could be that the oilseed by-products in
their raw state contained sufficient quantitieN&N to meet the yeast’s nitrogen requirements.
Alternatively, the amino acid contents of the ramngles were protein bound, and not available for

the yeast to assimilate (Vinquiry, 2014; Howell12D Therefore, any amino acid synthesized by

12
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the yeast ended up as an add-on contributing totinease contents of amino acids in the
processed samples.

The heat treatment (AC) applied in this study htile incremental effect on the TAA content of
CSM, whereas no changes were recorded in GNM. Hemvevajor depletion occurred especially in
lysine and methionine in GH. These losses couldutgtionally detrimental since these EAA
cannot be synthesized by fed animals. This is ppett of Papadopoulos (1989) and Bellagariba
al. (2015) who concluded that heat processingedgtuff causes the racemization of amino acids
and the formation of cross-linkages with resultaciuction in amino acid digestibility. Certain
amino acids like cystine and lysine are reporteldetdeat-sensitive even during limited exposure.
Many authors have also reported significant rednstin lysine, serine, arginine, and threonine
among others in CSM (Craig and Broderick, 1981ypsan meal (McNaughton and Reece, 1980)
and rapeseed meal (Goh et al., 1979) by AC. Feratien, on the other hand, has been shown to
increase glutamic and aspartic acid contents ina&bdean, groundnut, garbanzo bean and soybean
(Adeyeye et al., 2010; Bujang and Taib, 2014). €reghors further reported significant increases
in lysine, histidine, arginine, serine, glycinagrdhe, valine, isoleucine, tyrosine and phenylalani
with a conclusion that fermentation particularlypiraves the EAA content of oilseed by-products.
Comparatively, similar increments were obtainethancurrent study. Furthermore, Bujang and
Taib (2014) recorded 71%, 63% and 53% enhancenretdtal amino acids in groundnut,
garbanzo bean and soybean, respectively, aftera?4enmenting withRhizopus oligospor us.
Transamination, has been proposed as a responstieleanism for these increases (Baumann and
Bisping, 1995). In the current study, SK the oitseg-products in water for 24 h resulted in
appreciable improvements in the majority of EAAiSTagrees with Adeyeye (2008), Abu-Salem
and Abou-Arab (2011), and Bujang and Taib (20149 wdtorded higher EAA contents in

Sorghum bicolour grains, chickpea seeds and groundnut, garbanzodmehsoybean, respectively.

13



295 Based on the present data on amino acids, SK amefieation are very important processing
296 techniques that could be adopted by feed manufastto improve the nutritional quality of oilseed
297  by-products intended for use in animal feed at ¢ost.

298

299  4.3. Changesin nitrogen constituents

300 From a nutritional perspective, the increase ineBdecially after SK and fermentation in GNM
301 is positive since it directly reflects an increaserude protein. However, the elevated contents of
302 NPN compared to the TAA-N constituents is not igdeadce most fish possess simple stomachs that
303 lacks the mechanisms to effectively utilize NPNeTincrease in NPN content is reported to be

304 partially influenced by the types of microorganiand endogenous proteolytic activity present

305 during fermentation (Demasi et al., 1990).

306  4.4. Anti-nutritional factors

307 The application of heat is widely accepted as @&sapway of removing antinutrients that

308 affect nutrient digestibility. Autoclaving has pev efficient in reducing gossypol contents,

309 especially in CSM, but cooking has also been shimAse an efficient approach (Nagalakshmi et
310 al., 2002). Gossypol reduction in CSM by yeast famtation in the current study was

311  approximately 17% for S-TF. This reduction for tkemented CSM is less than reported by Sun et
312  al. (2015) after solid state fermentation. Zhangle2007) fermented CSM with 3 different yeast
313  strains Candida capsuligena, Candida tropicalis, andSaccharomyces cerevisae) and 3 different
314  fungi strains Aspergillus terricola, Aspergillus oryzae, andAspergillus niger) for 48 h. Their

315 results showed a reduction of free gossypol as &asgd4.6% when CSM was fermented with

316 Candidatropicalis followed bySaccharomyces cerevisae (88.5%),Aspergillus niger (85.2%)and

317  Aspergillusterricola (82.9%). These reductions in free gossypol weréated to microbial or
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332

333

334

335

336

337

338

339

340

341

enzymatic degradation of gossypol, or possiblyitiserporation of free gossypol into gossypol-
protein complexes or gossypol-lipid complexes.

The content of phytic acid after 20 min of AC thiseed by-products at a temperature of 121 °C
were reduced the most in GNM (approximately 15%jil&r observations were reported by
Embaby (2010), who recorded degradation in peaedsby 9.5% and 24.7% after AC at 121 °C
for 10 and 20 min, respectively. Agbo (2008) ordparted marginal decreases in PA after AC at
121 °C for 30 min. Studies investigating SK timas éemperatures show that phytate reduction is
somewhat dependent on pH and highly dependentnopei@ture (Sattar et al., 1989; Gustafsson
and Sandberg, 1995). This assertion is also sughbst Lopez et al. (2001) who reported that in
addition to pH and temperature, water and duradrenof importance. Furthermore, Abou-Arab and
Abu-Salem (2010) reported a 29% phytic acid reduciin whole seeds dbtropha curcas after SK
in water for 12 h at room temperature, which iine with results from the present study where
phytic acid was reduced by 40%, 39% and 31% for CSMM and GH, respectively, after SK for
12 h at room temperature. Fermentation has beamtegpby many authors to reduce phytic acid
content in plant products irrespective of the tgpé&ermenting agent used. The significant reduction
of phytic acid as a result of yeast fermentatiothia study showed reductions to tolerable levels.
However, the differences in the extent of degradats-TF and L-TF) can be associated with the
length of time for fermentation. Likewise, signdiat depletion (52% to 70%) of phytic acid in
Jatropha curcas kernel cake was reported by Belewu and Sam (201€) a7 d solid-state
fermentation with 5 different types of fundigpergillus niger, Penicillium chrysogenum, Rhizopus
oligosporus, Rhizopus nigricans and Trichoderma longibrachitum). Phytic acid content in yeast
fermented canola meal was reduced by approxim@gélhafter 24 h of fermentation according to
Plaipetch and Yakupitiyage (2012). According tdwadg by Fardiaz and Markakis (1981), phytic

acid reduction of up to 96% was recorded after &rimg peanut press cake for 72 h at 30 °C and
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362

363

they attributed the decrease to the release obphyty the moulddNeurospora sitophila ATCC
14151,Rhizopus oligosporus ATCC 22959, andNeurospora sp.) isolated from Indonesian

fermented peanut press cake used. However, istilnity, phytase activity in the fermented samples
might have originated from the yeast and the pleytalserent in the GNM.

5. Conclusion

Soaking and fermentation (S-TF or L-TF) were betteis for enhancing the nutritional
composition of GNM and CSM by improving the crudetpin, crude lipid contents and amino acid
profile. Effective reduction of gossypol was acl@d\by AC while SK and L-TF were found to
efficiently reduce phytic acid content from CSM &NM. However, further studies should
investigate combined processing techniques to cetelglremove gossypol and phytic acid in the
tested oilseed by-products.
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519 Tables

520 Tablel.
521  Proximate composition (g/kg DMn=3) of unprocessed and processed cottonseed Ge&i)(

522  groundnut meal (GNM) and groundnut husk (GH).

Item Processing technique
SEM

uP AC SK S-TF L-TF P-value
CSM
Dry matter 903.90 906.86 927.2% 946.08 953.685 0.04 <0.0001
Crude protein 418.95 380.8 447.18 457.20 463.4%  1.44  0.0033
Crude lipid 105.35 110.0§ 131.4% 12028 1277  0.29  0.0003
Ash 80.56 8045 5350 5455  38.9¢ 0.05 <0.0001
Phosphorous 13.45 13.00 8.9C 9.18 5.50 0.01 <0.0001
GNM
Dry matter 937.25 921.16 94020 960.88 970.13 0.05 <0.0001
Crude protein 41535 416.4§ 507.98 52878 52650 0.29 <0.0001
Crude lipid 27650 279.30 31160 291.06 308.9% 0.08 <0.0001
Ash 120.98 119.28 458% 5050  46.7¢ 0.02  <0.0001
Phosphorous 515 5.00 3.39 2.95 2.20 0.01 <0.0001
GH
Dry matter 929.70 930.78 936.40 952.46 962.13  0.05 <0.0001
Crude protein 193.35 19268 19850 19595 19576 0.12  0.0099
Crude lipid 205.1% 298.20 328.78 321.98 31650 0.27 <0.0001
Ash 38.95 39.26 30.3% 3240  31.9¢ 0.01 <0.0001
Phosphorous 230 2.1% 1.59 1.70 1.65 0.01  0.0002

523  UP =unprocessed; AC = autoclaving; SK = soakinr@FS= short-term fermentation; L-TF = long-
524  term fermentation; SEM Pooled standard error of means.

525 @ Mean values within a row without a common lowercasgerscript differ B < 0.05).
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527

528

529

530

531

532

Table 2.

Amino acid profile of cottonseed meal (CSM) befaral after autoclaving (AC), soaking (SK),

short-term fermentation (S-TF) and long-term fertagan (L-TF) processes.

ltem

Processing technique

uP AC Sk STF LTF SEM  pyae

EAA, g/100 g DM
Arginine 3.64 397 467 444 422 020 0.0071
Histidine 0.85 1.00 114 114 111 0.11  0.0646
Isoleucine 1.04 1.27 1468 140 109 0.14 0.0444
Leucine 2.09 236 274 268 264 015 0.0127
Lysine 1.36 1.28 149 156 153 0.11  0.0002
Methionine 0.45 040 064 06 068 004 0.0019
Phenylalanine 1.81 208 240 243 237 016  0.0150
Threonine 1.22 13F 158 158 159 0.05 0.0004
Valine 1.47 1.7° 197 18% 1.6F 0.09 0.0027
TEAA 13.8 15.35 18.05 17.65 16.75
NEAA, g/100 g DM
Alanine 1.92 21F 249 2568 29 0.23 0.0142
Aspartic acid 2.79 259 292 295 307 020 0.1379
Cysteine 076 065 1.0° 094 1.0 0.09 0.0109
Glutamic acid 6.46 6.24 7.03 7.01 7.07 054  0.2905
Glycine 1.48 1.60 178 177 184 0.07 0.0034
Hydroxyproline 0.07 0.07 0.07r 0.08 0.07 0.01 0.5673
Proline 1.30 1.38 1.6 153 1.67 0.09 0.0217
Serine 1.41 1.64 1.97 177 213 010 0.0028
Tyrosine 1.03 1.18 1.4 139 139 0.07 0.0036
TNEAA 17.19 17.43 20.29 20.01 21.23
TAA, 9/100 g DM 31.03 3276 3834 37.66 36.21
TEAA:TNEAA ratio 45:55 47:53 47:53 47:53 44:56
TAA, % of crude

74.03 86.03 85.74 82.38 82.02

protein

UP = unprocessed; EAA = essential amino acids; TEA®tal essential amino acids; NEAA =

non-essential amino acids; TNEAA = total non-edak@mino acids; TAA = total amino acids;

SEM =Pooled standard error of means.

2 B\vlean values within a row without a common lowercasgerscript differ® < 0.05).
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543

544

Table3.
Amino acid profile (9g/100 g DM) of groundnut me&NM) before and after autoclaving (AC),

soaking (SK), short-term fermentation (S-TF) amigkberm fermentation (L-TF) processes.

Processing technique

Iltem

UP AC SK STF LTE SEM pyae
EAA, g/100 g DM
Arginine 4.44 427 543% 557 57FP 036  0.0089
Histidine 084 08F 102 118 123 0.06 0.0006
Isoleucine 137 136 168 179 1768 0.09 0.0036
Leucine 263 267 322 344 339 0.14 0.0012
Lysine 098 092 106 1.15 111 0.08 0.0772
Methionine 0.33 037 039 043 048 0.04 0.0191
Phenylalanine 2.7 204 260 270 2748 019  0.0094
Threonine 111 1.09 1.37 136 149 0.08 0.0046
Valine 164 173 200 218 214 014 0.0124
TEAA 15.41 15.16 18.77 19.81 20.05
NEAA, g/100 g DM
Alanine 230 237 274 317 37 0.16 0.0003
Aspartic acid 421 418 429 508 439 051 0.2584
Cysteine 068 063 079 087 090 0.04 0.0012
Glutamic acid 742 733 757 898 794 053  0.0490
Glycine 216 204 238 243 247 015 0.0192
Hydroxyproline 013 0.13 0.16 0.17 0.2¢ 0.01  0.0020
Proline 1.78 172 207 223 219 0.07 0.0006
Serine 198 189 214 252 257 0.08 0.0003
Tyrosine 1.76 1.66 2.09 217 226 015 0.0110
TNEAA 22.27 21.90 24.18 27.59 26.63
TAA, g/100 g DM 37.68 37.0642.95 47.40 46.68
TEAA:TNEAA ratio 41:59 41:59 44:56 42:58 43:57

TAA, % of crude protein 90.74 88.9884.62 89.61 88.63

UP = unprocessed; EAA = essential amino acids; TEA®tal essential amino acids; NEAA =
non-essential amino acids; TNEAA = total non-esaém@mino acids; TAA = total amino acids;
SEM =Pooled standard error of means.

2 B\vlean values within a row without a common lowercasgerscript differ® < 0.05).
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Table4.

Amino acid profile of unprocessed and processedrginout husk (GH).

Processing technique

Parameter uP AC SEM " pyalue
EAA, g/100 g DM

Arginine 1.39 1.43 0.07 0.5160
Histidine 0.41 0.46 0.04  0.0891
Isoleucine 0.53 0.56 0.01  0.0069
Leucine 0.96 0.96 0.01  0.6626
Lysine 0.66 0.4% 0.05 0.0128
Methionine 0.13 0.08 0.00 <0.0001
Phenylalanine 0.69 0.78 0.05 0.0796
Threonine 0.51 0.50 0.02 0.6555
Valine 0.62 0.64 0.01  0.3235
TEAA 5.84 5.86

NEAA, g/100 g DM

Alanine 1.37 1.18 0.06  0.0062
Aspartic acid 1.37 0.94 0.21  0.0431
Cysteine 0.26 0.34 0.01  0.0039
Glutamic acid 2.23 1.69 0.29  0.0492
Glycine 2.15 2.26 0.08  0.1000
Hydroxyproline 0.37 0.39 0.02 0.4704
Proline 0.68 0.66 0.02  0.1069
Serine 1.06 1.09 0.05  0.5253
Tyrosine 0.68 0.72 0.04 0.2649
TNEAA 10.17 9.21

TAA, g/100 g DM 16.01 15.07

TEAATTNEAA 36:64 39:61

ratio

TAA,_% of crude 82 89 78.23

protein

UP = unprocessed; AC = autoclaving; EAA = esseratmaino acids; TEAA = total essential amino
acids; NEAA = non-essential amino acids; TNEAA tatoon-essential amino acids; TAA = total
amino acids; SEM ®ooled standard error of means.

2 B\vlean values within a row without a common lowercasgerscript differ® < 0.05).
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557
558
559
560
561
562

563

564

565

566

567

568

Tableb.
Nitrogen contents (g/kg DM) and their changes (fbprackets) of unprocessed and processed

cottonseed meal (CSM), groundnut meal (GNM) andigdout husk (GH).

Processing technique SEM
UP AC SK S-TF L-TF

ltem P-value

CSM
60.95 71.55 73.15 74.15
TN 67.00 (-9.02) (6.79) (9.18) (10.67) 0.23 <0.0001

5240 6135 6025  60.75
TAAN 4970 g a3)  (23.44) (2122) (2223) O%7 <0.0001

855 1020  12.90  13.40
NPN 1740 (5086) (41.38) (-25.86) (-22.99) O-4° 00124

GNM
66.60 81.30 84.60 84.20
TN 66.40 (0.30) (22.44) (27.41) (26.81) 0.05 <0.0001

59.30 68.80 75.80 74.70

TAAN 6030 o0 410y oD (oseg) 024 <0.0001
NPN 6.20 (1795%3?5) (11021'?51) (fi?904) (593;?203) 028 0.0047
GH

N 30.90 (?’g.'gg) (321.988 ?11.642? (311.642(; 0.06 < 0.0001
TAAN 2570 (?g '2139) : : - 139 0.0013
NPN 5.30 (266.722) i i i 0.03  0.0025

UP = unprocessed; AC = autoclaving; SK = soakin@FS= short-term fermentation; L-TF = long-
term fermentation; SEM Rooled standard error of means; TN = total nitrogen; TAA-N = total amino
acid nitrogen; NPN = non-protein nitrogen.

2 Bviean values within a row without a common lowercasgerscript differ B < 0.05).
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570

571

572

573

574

Table6.
Gossypol content (mg/g DM), Phytic acid conteni(§f g) and loss (%, in bracket) of unprocessed

and processed cottonseed meal (CSM), groundnut(@&d1) and groundnut husk (GH).

Item Processing technique
UpP AC SK S-TE L-TE - SEM pae
Gossypol
0.19 0.2P 0.24 0.258
CSM 029 3448  (2759) (1724)  (1379) 002 00043
a 0.28 0.27 0.17 0.20
GNM 03 (9.68) (32.26)  (45.16)  (35.48) 003 00041
0.92 0.67 0.58 0.61
GH 178  4s86)  (61.71)  (66.86)  (65.14) O-14 0.0005
Phytic acid
3.53 223 2.28 1.08
CSM 384 507) (41.93) (41.1) (71.86) 013 <0.0001
1.19 0.89 0.72 0.42
GNM 140 1500)  (39.29)  (47.86)  (69.29) ©O-10  0.0003
0.47 0.28 0.358 0.29
GH 0.4 5 00) (3171)  (1463)  (29.27) 203 0.0085

UP = unprocessed; AC = autoclaving; SK = soakin@FS= short-term fermentation; L-TF = long-
term fermentation; SEM Pooled standard error of means.

& Bviean values within a row without a common lowercasgerscript differ B < 0.05).
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575  Figures

576

577 Fig. 1. Changes in essential amino acid contents in ce¢th meal after autoclaving (AC, A),
578  soaking (SK, B), short-term fermentation (S-TF,a@yl long-term fermentation (L-TF, D). Arg =
579 arginine; His = histidine; lle = isoleucine; Leueucine; Lys = lysine; Met = methionine; Phe =
580 phenylalanine; Thr = threonine; Val = valine.

581

582  Fig. 2. Changes in essential amino acid contents in grawin@eal after autoclaving (AC, A),
583  soaking (SK, B), short-term fermentation (S-TF,a@yl long-term fermentation (L-TF, D). Arg =
584 arginine; His = histidine; lle = isoleucine; Leueucine; Lys = lysine; Met = methionine; Phe =
585 phenylalanine; Thr = threonine; Val = valine.

586

587

588 Fig. 3. Changes in essential amino acid contents in growirttusk after autoclaving (AC). Arg =
589 arginine; His = histidine; lle = isoleucine; Leueucine; Lys = lysine; Met = methionine; Phe =

590 phenylalanine; Thr = threonine; Val = valine.
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