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ABSTRACT 19 

The effects of processing by autoclaving (AC), soaking (SK), short-term fermentation (S-TF, 4 d) 20 

and long-term fermentation (L-TF, 14 d) on the nutritional composition, amino acid profile and 21 

some antinutrients were determined for cottonseed meal (CSM), groundnut meal (GNM) and 22 

groundnut husk (GH) in this study. After processing, crude protein content improved by 11% after 23 

L-TF, and crude lipid content 25% after SK for CSM; crude protein content improved by 27% after 24 

S-TF and L-TF, and crude lipid content 13% after SK for GNM. Soaking and fermentation were 25 

shown to significantly increase essential amino acid contents by 44% (SK, methionine) in CSM and 26 

46% in GNM (L-TF, histidine). Phosphorus content was reduced by 59% in CSM and 57% in GNM 27 

by L-TF. All processing techniques, with the exception of AC, reduced phytic acid and gossypol 28 

contents in CSM and GNM. It was concluded that SK and fermentation were simple, cost-effective, 29 

and efficient ways to improve the nutritional value of the selected oilseed by-products.  30 

Keywords: Amino acid; Autoclaving; Fermentation; Proximate composition; Soaking 31 

 32 

  33 
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1. Introduction 34 

As the production volume of fish meal has leveled off in recent years, the commodity price has 35 

risen, driving research to focus on more sustainable, non-marine alternatives of dietary protein 36 

sources (Schipp, 2008; Cocker, 2014) to satisfy rising demands from the animal production sector. 37 

Most often, agro-industrial by-products that are used in animal feeds are of modest economic value, 38 

but of reliable quantity (Agbo, 2008). Many plant-based feed resources that could be of 39 

considerable nutritional and financial value in animal production remain unexploited, undeveloped 40 

or poorly utilized (Agbo and Prah, 2014). Under-utilization and disposal of these resources are 41 

likely due to a lack of adequate information on how their nutritional quality could be improved. 42 

Considering the expected increase in world population and the high demand for animal products 43 

due to growth in most world economies, the prospect of feeding millions and safeguarding their 44 

food security will depend on the better utilization of non-conventional feed resources and 45 

implementation of circular bio-economy (NoRest, 2016).  46 

Agro-industrial by-products, especially residual oilseed cakes and meals from oil extraction, are 47 

available in large quantities. Global production reached 317,000,000 t in 2016 and is forecasted to 48 

rise to 386,000,000 t by 2025 (OECD/FAO, 2016). Most of these protein meals have been explored 49 

as feed ingredients in their unrefined state to replace fish meal as alternative protein sources, 50 

especially for poultry, pigs and aquatic animals. Previous studies on oilseed meal-based diets fed to 51 

various animals have reported negative, although highly variable, effects on production 52 

performance. For instance, studies that shea nut meal based diets were fed to broiler chickens 53 

(Atuahene et al., 1998) and Nile tilapia (Agbo et al., 2014), observed low growth performance 54 

caused by poor digestibility, and possibly reduced feed intake (Elemo et al., 2011). Dabrowski and 55 

Kozak (1979) observed a lower growth performance in grass carp fry fed with different levels of 56 

commercial soybean meal compared to fishmeal. Weaning pigs fed increasing levels (5% to 15%) 57 
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of copra and palm kernel expeller meals showed a linear reduction in final body weight, while no 58 

difference in growth performance was recorded with palm kernel meal compared to a control diet 59 

containing soybean meal and 4% of fish meal (Jaworski et al., 2014).  60 

The usefulness of these by-products are either partly caused by, or further restricted by, the 61 

presence of antinutrients  such as trypsin (protease) inhibitors, tannins and lectins, phytate, 62 

gossypol, oxalates and glucosinolates, saponins, antivitamins, and mycotoxins (Francis et al., 2001). 63 

These compounds affect protein and mineral utilization (Francis et al., 2001; Pashwar, 2005) by 64 

decreasing palatability, digestibility, or metabolism, and may even exert a toxic effect resulting in 65 

liver damage (Pashwar, 2005).  66 

There is a need to increase the nutritional value of oilseed by-products, and to offset certain 67 

antinutrients  and toxins, in order to realize their full potential as animal feed ingredients (Annongu 68 

et al., 1996; Pashwar, 2005). Techniques such as fermentation (Lopez et al., 2001), boiling and 69 

sodium hydroxide (NaOH) treatment (Annongu et al., 1996), heating and/or autoclaving (AC) 70 

(Clatterbuck et al., 1980), and sprouting or germination (Asiedu et al., 1993) have been proposed as 71 

ways of detoxifying and improving the nutritional value of these feed ingredients. The current study 72 

was designed to assess the effect of processing cottonseed meal (CSM), groundnut meal (GNM) 73 

and groundnut husk (GH) by AC, soaking (SK), short-term fermentation (S-TF) or long-term 74 

fermentation (L-TF) on the proximate composition, amino acid profile and some antinutrients .  75 

 76 

2. Materials and methods 77 

2.1. Sources and preparation of raw materials 78 

Groundnut husk was purchased from a groundnut paste processing factory, mechanically 79 

extracted GNM from a local producer, and screw-pressed CSM was purchased from a commercial 80 

agro-feed seller, all in Kumasi, Ghana. Prior to powdering with a hammer mill, the GNM was dried 81 
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in an oven (Gallenkamp Hotbox Oven) at 100 ºC for 24 h, and cooled in a desiccator at room 82 

temperature. The other ingredients were also finely ground using a commercial hammer mill. All 83 

ingredients were then sealed in airtight bags and shipped to the Technical University of Denmark 84 

(DTU Aqua) where they were kept at -20 ºC until needed for further processing. Commercial grade 85 

dried baker’s yeast (Saccharomyces cerevisiae) used in the fermentation process was purchased 86 

from a local supplier in Denmark. 87 

2.2. Processing procedures 88 

The processes of AC, SK, S-TF and L-TF were performed on 100 g samples of CSM, GNM and 89 

GH weighed out on an electronic scale (Mettler Toledo, XS4002S, Switzerland) in triplicate. 90 

Samples of each raw material were treated as unprocessed (UP). 91 

2.2.1. Autoclaving  92 

The samples of CSM, GNM, and GH were transferred to 500 mL Duran glass bottles. Distilled 93 

water was added at a ratio of 7:3 (w/V) and mixed thoroughly before AC at 120 ºC for 20 min. The 94 

samples were then allowed to cool to room temperature (20 °C), after which they were oven dried 95 

(Memmert, UN110) at 40 °C until constant weight, cooled and stored at -20 ºC until analysis.  96 

 97 

2.2.2. Soaking  98 

The samples of CSM, GNM and GH were transferred to 2 L glass jars. Tap water was added at a 99 

ratio of 1:10 (w/V). The samples were allowed to soak at room temperature for 12 h with 100 

intermittent stirring every 4 h after which the water was decanted. The samples were transferred 101 

onto a fine meshed cloth (100 µm) and squeezed, to remove as much of the water as possible. The 102 

residual meal was spread on a tray and oven dried (Memmert, UN110) at 40 ºC to constant weight. 103 

After drying and cooling to room temperature, the samples were finely ground, sealed in polythene 104 

bags, and stored at -20ºC until analysis.  105 
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2.2.3. Fermentation  106 

For S-TF and L-TF, CSM, GNM and GH was transferred to 500 mL Duran glass bottles, and 107 

inoculated with 3.40 mg of dried baker’s yeast (Saccharomyces cerevisiae). Tap water (80 mL) was 108 

added and mixed thoroughly before fermenting for either 4 or 14 d at room temperature in a sealed 109 

bottle. At the end of the fermentation process, the samples were soaked in 300 mL of tap water at 110 

room temperature for 5 min. Water removal, drying and storage followed the procedure described in 111 

section 2.2.2.  112 

2.3. Analytical procedure for proximate composition, amino acid profile and antinutrients   113 

Dry matter, crude protein and ash contents of the unprocessed and processed samples were 114 

determined following the procedures of the Association of Official Analytical Chemists (2005). Dry 115 

matter content was determined after oven drying for 24 h at 105 °C (Memmert UN110). Ash 116 

content was determined by incineration of the samples for 6 h at 550 °C in a muffle furnace 117 

(Hareaus Instruments K1252). Crude protein content was determined by the Kjeldahl method 118 

(FOSS Kjeltec 2200) and crude lipid content by the method described by Bligh and Dyer (1959). 119 

Phosphorus content was determined in accordance with ISO 6491:1998 (1998) standard method. 120 

The amino acid profile of the experimental ingredients were determined in duplicates by High 121 

Performance Liquid Chromatography (HPLC) analyses following the method of Larsen et al. 122 

(2011). Gossypol content analyses followed the procedure described by Pons and Hoffpauir (1954). 123 

Phytic acid content was determined using a commercially available kit (K-PHYT, Megazyme, 124 

Ireland) based on the method described by Fiske and Subarrow (1925).  125 

 126 

2.4. Experimental design and Statistical analysis 127 

The oilseed by-products namely CSM, GNM and GH were subjected to 4 treatment processes by 128 

AC, SK, S-TF, and L-TF in addition to unprocessed samples. Each treatment was replicated 3 times 129 
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per by-product and analysed in duplicates which gave the total number of observation as 3 (oilseed 130 

by-products) × 5 (treatments) × 3 (replicates) = 45 for each variable. The Shapiro-Wilk normality 131 

test was performed on data for each variable before that the averages of the processed samples were 132 

subjected to a one-way ANOVA at P < 0.05. The differences between the means of the unprocessed 133 

and the processed raw materials were determined by the Dunnett’s multiple comparison test using 134 

GraphPad Prism 5.01 statistical software for Windows (San Diego California, USA). Results of the 135 

effect of AC, SK and fermentation against the raw materials are expressed as means with their 136 

standard deviations (SD), and percentage changes in variables are presented in figures.  137 

 138 

3. Results 139 

3.1. Proximate composition  140 

After 12 h of SK, S-TF (4 d) and L-TF (14 d), respectively, the nutritional contents of CSM, 141 

GNM and GH were significantly (P < 0.05) affected (Table 1). Autoclaving did not have any major 142 

effect on nutritional composition of the raw materials tested. Dry matter (DM) content of CSM 143 

appreciably increased by 5.50% (P < 0.0001) after 14 d of fermentation. In CSM, crude protein 144 

content was the highest (463.45 g/kg DM) after L-TF and the lowest (447.15 g/kg) after SK except 145 

AC. Autoclaving however, resulted in approximately 9% reduction in crude protein content of 146 

CSM. Improvement in crude lipid content ranked as follows: SK > L-TF > S-TF. Meanwhile, ash 147 

and phosphorus contents were drastically reduced by approximately 52% and 59%, respectively, 148 

after L-TF. In GNM, dry matter content was reduced by AC (1.72% reduction), whereas S-TF and 149 

L-TF increased dry matter content by about 3%. After processing, crude protein content varied 150 

widely in GNM ranging from 416.40 g/kg DM after AC to 528.75 g/kg DM after S-TF, which 151 

corresponded to increments between 0 and 27%, respectively. Crude lipid content was increased by 152 

13%, 5%, and 12% after SK, S-TF, and L-TF, respectively. Ash and phosphorus contents were 153 
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reduced (P < 0.0001) by all treatment processes except AC. Phosphorus reduction was the lowest 154 

(59%) after L-TF and the highest (3%) after AC. At the end of the treatment processes on GH, 155 

marginal increases were recorded; crude protein and crude lipid contents were increased by 3% and 156 

11%, respectively, after SK. Ash content was considerably reduced by up to approximately 22% 157 

after SK. Phosphorus content was reduced between 23% and 30% by SK, S-TF and L-TF (P = 158 

0.0002).  159 

3.2. Amino acid profile  160 

The amino acid profile for the unprocessed and processed by-products are presented in Tables 2 161 

to Table 4. Apart from AC, the other processing techniques (SK, S-TF and L-TF) induced 162 

significant changes (P < 0.05) especially in the essential amino acids (EAA) profile of the selected 163 

oilseed meals. Total amino acids (TAA) as a percentage of the calculated crude protein ranged from 164 

74% to 86%.  165 

3.2.1. Cottonseed meal 166 

Autoclaving CSM improved all EAA except lysine and methionine (Fig. 1A), and resulted in an 167 

overall increase in total essential amino acids  (TEAA) of 11% (Table 2). All of the EAA and non-168 

essential amino acids (NEAA) increased after SK, S-TF and L-TF. For the EAA, the highest 169 

increment was recorded for methionine after L-TF at 44%, while the lowest increment was 170 

observed for isoleucine (5%) also after LT-F. Soaking and S-TF processes increased TEAA by 31% 171 

and 28%, respectively, of which the majority came from methionine, and the minority from lysine 172 

(Fig. 1B to Fig. 1D). Total non-essential amino acids (TNEAA) content was unaffected by AC, but 173 

increased by 16% to 18% after SK, S-TF, and L-TF (Table 2).  174 

3.2.2. Groundnut meal 175 
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The majority of the EAA and NEAA in GNM  at the end of the study increased after SK, S-TF 176 

and L-TF (P < 0.05) (Table 3), whereas the effects from AC treatment were marginal with a 177 

tendency to decrease (Fig. 2A). Increments in EAA in GNM varied widely from 8% in lysine to 178 

26% in phenylalanine after SK; from 18% and 12% in lysine to 40% and 46% in histidine after S-179 

TF and L-TF, respectively (Fig. 2B to Fig.2D). All other EAA were increased by about one-quarter 180 

after SK and about one-third for both S-TF and L-TF. Among NEAA, glutamic acid was essentially 181 

unaffected whereas hydroxyproline increased by 23% after SK. The S-TF and L-TF processes 182 

notably increased the NEAA content; for aspartic acid by 4% and for alanine by 61%. Overall, the 183 

TEAA accounted for 43% to 45% of the measured crude protein after processing, compared to 43% 184 

in the unprocessed sample (Table 3).  185 

3.2.3. Groundnut husk 186 

Groundnut husk had a very low amino acid contents in the unprocessed form ranging from 0.13% 187 

to 1.39%  for the EAA, with methionine being the least and arginine the most abundant (Table 4). 188 

Fermentation and SK of GH appears to lead to an inhibition of the derivatization of amino acids by 189 

the 6-aminoquinolyl-N-hydrosysuccinimidyl carbamate (AQC) used, therefore amino acids analysis 190 

in these treatments was not possible. Autoclaving of GH reduced lysine, methionine, alanine, 191 

aspartic acid, and glutamic acid contents by 25%, 38%, 16%, 31%, and 26% (P < 0.05), 192 

respectively (Fig. 3), whereas cysteine content was improved (31%) (P < 0.05).  193 

 194 

3.3. Nitrogen constituents 195 

The total nitrogen (TN), total amino acid nitrogen (TAA-N) and non-protein nitrogen (NPN) 196 

before and after processing are given in Table 5. Overall, TN increased slightly in GNM, but was 197 

marginally reduced in CSM and GH after AC. Nonetheless, considerable TN gains (up to 27% in 198 
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GNM) were recorded in all SK and fermented samples. Similarly, NPN doubled after SK in GNM, 199 

and reduced by half after AC in CSM. On the other hand, TAA-N increased by approximately 25% 200 

after SK, S-TF and L-TF in CSM, and between 14% and 26% after SK and S-TF in GNM, 201 

respectively.  202 

3.4. Anti-nutritional factors 203 

The results of the effect of processing on the gossypol and phytic acid contents in CSM, GNM 204 

and GH are presented in Table 6. Autoclaving of CSM resulted in the largest degradation of 205 

gossypol, removing 34% (P = 0.0043), followed by SK and fermentation. Short-term fermentation 206 

was the most efficient means of removing gossypol in GNM (45%, P = 0.0041) and GH (67%, P = 207 

0.0005). Long-term fermentation was found to be most efficient in decreasing phytic acid from both 208 

CSM (72%, P < 0.0001) and GNM (69%, P = 0.0003), whereas the lowest degradation was 209 

recorded after AC. 210 

4. Discussion 211 

4.1. Proximate composition 212 

The moderate losses in crude protein content from AC raw materials were not significant in 213 

comparison to unprocessed samples, and do not appear critical. Nonetheless, these losses could be 214 

nutritionally detrimental if specific amino acids were more sensitive to AC treatment than others. 215 

The extent of protein change or destruction has been correlated with duration and temperature of 216 

AC treatment, as well as moisture content (Goh et al., 1979; McNaughton and Reece, 1980; 217 

Papadopoulos, 1989). This effect was demonstrated by Chrenkova et al. (1986) who found that 218 

lengthy exposure time (60 to 130 min) coupled with high hydrothermic temperatures (110 to 130 219 

°C) significantly decreased soluble crude protein content in soybean meal, alfalfa meal, wheat meal 220 

and field pea. Although the samples in the present study were autoclaved at high temperature (121 221 

°C), the relatively short time of exposure (20 min) could account for the moderate losses observed. 222 
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Nonetheless, these losses are not regarded as critical especially as the nitrogen contents in the 223 

samples were not limited.    224 

Soaking and fermentation (S-TF and L-TF) positively affected the crude protein and crude lipid 225 

contents of the CSM and GNM tested. These are comparable to the report of Mukhopadhyay and 226 

Ray (1999), in which marginal increases in protein (3.28%) and lipid (17.54%) contents of sesame 227 

seed meal were found after combined SK and fermenting with lactic acid bacteria (Lactobacillus 228 

acidophilus). They indicated that although, small nutrient losses occur during fermentation and SK 229 

through microbial utilization or leaching, while increases occur through microbial synthesis. 230 

Similarly, Sun et al. (2015) reported a net protein increment of 7.6% in CSM after fermentation 231 

with Bacillus subtilis. In the current study, fermentation increased crude protein contents in the 232 

fermented oilseed meals and by-product between 1% in GH to 27% in GNM. The higher protein 233 

levels in this study were likely due to longer duration of fermentation which allowed the yeast to 234 

convert NPN into amino acids. Single cell proteins (SCP) such as yeast, contain 45% to 65% crude 235 

protein, and 2% to 6% crude lipid on a dry weight basis (Nasseri et al., 2011). In all likelihood, the 236 

increased protein content after fermentation resulted from yeast cells mixed with the fermented 237 

samples at termination of experiment. After 12 h of SK mungbean, Sattar et al. (1989) reported 238 

approximately 5% and 9% increases in protein content, with a positive temperature correlation. The 239 

increase in protein after SK in their work is somewhat similar to our observations for CSM (6.71%), 240 

while our results for GNM were considerably higher (22.30%). These positive changes in protein 241 

content in the oilseed by-products may be attributed to the breakdown of soluble starch and losses 242 

of fine solids, which increased the relative contribution from protein.  243 

The increased contentof crude lipid after SK of oilseed meals in the present study contradicts 244 

previous reports (Siddhuraju et al., 2000; Nwaoguikpe et al., 2011). However, the lipid increment 245 

observed in this study could be the result of the leaching of soluble components that caused that the 246 
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content of lipid in the oilseed meals (Agume et al., 2017), and the destruction of cell structure 247 

causing the efficient release of oil reserve (Cuevas-Rodriguez, 2004), which were probably retained 248 

in the meals by the fine mesh cloth during removal of excess water. 249 

Fermentation has only previously been shown to moderately alter ash content (Plaipetch and 250 

Yakupitiyage, 2012; Sun et al., 2015). In the current study fermentation resulted in large reductions 251 

in ash content, corresponding to 52% in CSM, 61% in GNM and 18% in GH. The loss in ash was 252 

accompanied by decreases in phosphorus content for all samples. This could be due to the 253 

hydrolysis of phytate by endogenous phytases which might have possibly transformed the free 254 

phosphorus as a result of phytate degradation into other phosphorus compounds such as inorganic 255 

phosphoric acids, orthophosphates and lower inositol phosphates (Türk et al., 2000; Shunmugam et 256 

al., 2015). The reductive effect of SK on ash in all samples is likely due to the solubilisation of 257 

some vitamins and minerals like phosphorus in the SK media (water) (Agume et al., 2017). In 258 

general, some reductions could also be consequences of changes in other constituents such as 259 

increases in crude protein and lipid contents.  260 

4.2. Amino acid composition 261 

Soaking, S-TF and L-TF improved the amino acid profile of CSM and GNM compared to 262 

unprocessed samples. Generally, water-soluble amino acids are expected to be lost through SK yet, 263 

the non-deleterious effect of SK on the amino acid profile could be linked to the plant by-products’ 264 

composition of higher proportions of insoluble amino acids that may primarily function as structural 265 

parts of the plant (Wade, 2009). A possible explanation for the significant increases in most of the 266 

amino acids observed for the fermented and soaked samples could be that the oilseed by-products in 267 

their raw state contained sufficient quantities of NPN to meet the yeast’s nitrogen requirements. 268 

Alternatively, the amino acid contents of the raw samples were protein bound, and not available for 269 

the yeast to assimilate (Vinquiry, 2014; Howell, 2011). Therefore, any amino acid synthesized by 270 
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the yeast ended up as an add-on contributing to the increase contents of amino acids in the 271 

processed samples.  272 

The heat treatment (AC) applied in this study had little incremental effect on the TAA content of 273 

CSM, whereas no changes were recorded in GNM. However, major depletion occurred especially in 274 

lysine and methionine in GH. These losses could be nutritionally detrimental since these EAA 275 

cannot be synthesized by fed animals. This is in support of Papadopoulos (1989) and Bellagamba et 276 

al. (2015) who concluded that heat processing of feedstuff causes the racemization of amino acids 277 

and the formation of cross-linkages with resultant reduction in amino acid digestibility. Certain 278 

amino acids like cystine and lysine are reported to be heat-sensitive even during limited exposure. 279 

Many authors have also reported significant reductions in lysine, serine, arginine, and threonine 280 

among others in CSM (Craig and Broderick, 1981), soybean meal (McNaughton and Reece, 1980) 281 

and rapeseed meal (Goh et al., 1979) by AC.  Fermentation, on the other hand, has been shown to 282 

increase glutamic and aspartic acid contents in cocoa bean, groundnut, garbanzo bean and soybean 283 

(Adeyeye et al., 2010; Bujang and Taib, 2014). These authors further reported significant increases 284 

in lysine, histidine, arginine, serine, glycine, alanine, valine, isoleucine, tyrosine and phenylalanine 285 

with a conclusion that fermentation particularly improves the EAA content of oilseed by-products. 286 

Comparatively, similar increments were obtained in the current study. Furthermore, Bujang and 287 

Taib (2014) recorded 71%, 63% and 53% enhancements in total amino acids in groundnut, 288 

garbanzo bean and soybean, respectively, after 24 h of fermenting with Rhizopus oligosporus. 289 

Transamination, has been proposed as a responsible mechanism for these increases (Baumann and 290 

Bisping, 1995). In the current study, SK the oilseed by-products in water for 24 h resulted in 291 

appreciable improvements in the majority of EAA. This agrees with Adeyeye (2008), Abu-Salem 292 

and Abou-Arab (2011), and Bujang and Taib (2014) who recorded higher EAA contents in 293 

Sorghum bicolour grains, chickpea seeds and groundnut, garbanzo bean and soybean, respectively. 294 
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Based on the present data on amino acids, SK and fermentation are very important processing 295 

techniques that could be adopted by feed manufacturers to improve the nutritional quality of oilseed 296 

by-products intended for use in animal feed at low cost.         297 

 298 

4.3. Changes in nitrogen constituents 299 

From a nutritional perspective, the increase in TN especially after SK and fermentation in GNM 300 

is positive since it directly reflects an increase in crude protein. However, the elevated contents of 301 

NPN compared to the TAA-N constituents is not ideal, since most fish possess simple stomachs that 302 

lacks the mechanisms to effectively utilize NPN. The increase in NPN content is reported to be 303 

partially influenced by the types of microorganism and endogenous proteolytic activity present 304 

during fermentation (Demasi et al., 1990).      305 

4.4. Anti-nutritional factors 306 

The application of heat is widely accepted as a superior way of removing antinutrients  that 307 

affect nutrient digestibility. Autoclaving has proven efficient in reducing gossypol contents, 308 

especially in CSM, but cooking has also been shown to be an efficient approach (Nagalakshmi et 309 

al., 2002). Gossypol reduction in CSM by yeast fermentation in the current study was 310 

approximately 17% for S-TF. This reduction for the fermented CSM is less than reported by Sun et 311 

al. (2015) after solid state fermentation. Zhang et al. (2007) fermented CSM with 3 different yeast 312 

strains (Candida capsuligena, Candida tropicalis, and Saccharomyces cerevisae) and 3 different 313 

fungi strains (Aspergillus terricola, Aspergillus oryzae, and Aspergillus niger) for 48 h. Their 314 

results showed a reduction of free gossypol as high as 94.6% when CSM was fermented with 315 

Candida tropicalis followed by Saccharomyces cerevisae (88.5%), Aspergillus niger (85.2%) and 316 

Aspergillus terricola (82.9%). These reductions in free gossypol were attributed to microbial or 317 
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enzymatic degradation of gossypol, or possibly the incorporation of free gossypol into gossypol-318 

protein complexes or gossypol-lipid complexes.  319 

The content of phytic acid after 20 min of AC the oilseed by-products at a temperature of 121 °C 320 

were reduced the most in GNM (approximately 15%). Similar observations were reported by 321 

Embaby (2010), who recorded degradation in peanut seeds by 9.5% and 24.7% after AC at 121 °C 322 

for 10 and 20 min, respectively. Agbo (2008) only reported marginal decreases in PA after AC at 323 

121 °C for 30 min. Studies investigating SK times and temperatures show that phytate reduction is 324 

somewhat dependent on pH and highly dependent on temperature (Sattar et al., 1989; Gustafsson 325 

and Sandberg, 1995). This assertion is also supported by Lopez et al. (2001) who reported that in 326 

addition to pH and temperature, water and duration are of importance. Furthermore, Abou-Arab and 327 

Abu-Salem (2010) reported a 29% phytic acid reduction in whole seeds of Jatropha curcas after SK 328 

in water for 12 h at room temperature, which is in line with results from the present study where 329 

phytic acid was reduced by 40%, 39% and 31% for CSM, GNM and GH, respectively, after SK for 330 

12 h at room temperature. Fermentation has been reported by many authors to reduce phytic acid 331 

content in plant products irrespective of the type of fermenting agent used. The significant reduction 332 

of phytic acid as a result of yeast fermentation in this study showed reductions to tolerable levels. 333 

However, the differences in the extent of degradation (S-TF and L-TF) can be associated with the 334 

length of time for fermentation. Likewise, significant depletion (52% to 70%) of phytic acid in 335 

Jatropha curcas kernel cake was reported by Belewu and Sam (2010) after a 7 d solid-state 336 

fermentation with 5 different types of fungi (Aspergillus niger, Penicillium chrysogenum, Rhizopus 337 

oligosporus, Rhizopus nigricans and Trichoderma longibrachitum). Phytic acid content in yeast 338 

fermented canola meal was reduced by approximately 8% after 24 h of fermentation according to 339 

Plaipetch and Yakupitiyage (2012). According to a study by Fardiaz and Markakis (1981), phytic 340 

acid reduction of up to 96% was recorded after fermenting peanut press cake for 72 h at 30 °C and 341 
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they attributed the decrease to the release of phytase by the moulds (Neurospora sitophila ATCC 342 

14151, Rhizopus oligosporus ATCC 22959, and Neurospora sp.) isolated from Indonesian 343 

fermented peanut press cake used. However, in this study, phytase activity in the fermented samples 344 

might have originated from the yeast and the phytase inherent in the GNM.   345 

5. Conclusion 346 

Soaking and fermentation (S-TF or L-TF) were better tools for enhancing the nutritional 347 

composition of GNM and CSM by improving the crude protein, crude lipid contents and amino acid 348 

profile. Effective reduction of gossypol was achieved by AC while SK and L-TF were found to 349 

efficiently reduce phytic acid content from CSM and GNM. However, further studies should 350 

investigate combined processing techniques to completely remove gossypol and phytic acid in the 351 

tested oilseed by-products.  352 
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Tables 519 

Table 1. 520 

Proximate composition (g/kg DM, n=3) of unprocessed and processed cottonseed meal (CSM), 521 

groundnut meal (GNM) and groundnut husk (GH). 522 

Item                            Processing technique 

 UP AC SK S-TF L-TF 
SEM 

P-value 
CSM        

Dry matter 903.90a 906.80b 927.25b 946.05b 953.65b 0.04 <0.0001 

Crude protein 418.95a 380.80a 447.15a 457.20a 463.45b 1.44 0.0033 

Crude lipid 105.35a 110.00a 131.45b 120.25b 127.70b 0.29 0.0003 

Ash 80.50a 80.45a 53.50b 54.55b 38.90b 0.05 <0.0001 

Phosphorous 13.45a 13.00b 8.90b 9.15b 5.50b 0.01 <0.0001 

GNM        

Dry matter 937.25a 921.10b 940.20b 960.85b 970.15b 0.05 <0.0001 

Crude protein 415.35a 416.40a 507.95b 528.75b 526.50b 0.29 <0.0001 

Crude lipid 276.50a 279.30a 311.60b 291.00b 308.95b 0.08 <0.0001 

Ash 120.95a 119.25b 45.85b 50.50b 46.70b 0.02 <0.0001 

Phosphorous 5.15a 5.00a 3.35b 2.95b 2.20b 0.01 <0.0001 

GH        
Dry matter 929.70a 930.75a 936.40b 952.40b 962.15b 0.05 <0.0001 

Crude protein 193.35a 192.65a 198.50b 195.95a 195.70a 0.12 0.0099 

Crude lipid 295.15a 298.20a 328.75b 321.95b 316.50b 0.27 <0.0001 

Ash 38.95a 39.20a 30.35b 32.40b 31.90b 0.01 <0.0001 

Phosphorous 2.20a 2.15a 1.55b 1.70b 1.65b 0.01 0.0002 

UP = unprocessed; AC = autoclaving; SK = soaking; S-TF = short-term fermentation; L-TF = long-523 

term fermentation; SEM = Pooled standard error of means. 524 

a, bMean values within a row without a common lowercase superscript differ (P < 0.05).525 
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Table 2. 526 

 Amino acid profile of cottonseed meal (CSM) before and after autoclaving (AC), soaking (SK), 527 

short-term fermentation (S-TF) and long-term fermentation (L-TF) processes. 528 

Item 
Processing technique   

UP AC SK S-TF L-TF SEM P-value 

EAA, g/100 g DM         
Arginine 3.64a 3.97a 4.67b 4.44b 4.22b 0.20 0.0071 
Histidine 0.85 1.00 1.14 1.14 1.11 0.11 0.0646 
Isoleucine 1.04a 1.27a 1.46b 1.40a 1.09a 0.14 0.0444 
Leucine 2.09a 2.36a 2.74b 2.65b 2.64b 0.15 0.0127 
Lysine 1.30a 1.25a 1.49b 1.56b 1.53b 0.11 0.0002 
Methionine 0.45a 0.40a 0.64b 0.61b 0.65b 0.04 0.0019 
Phenylalanine 1.81a 2.08a 2.40b 2.43b 2.31b 0.16 0.0150 
Threonine  1.22a 1.31a 1.55b 1.56b 1.59b 0.05 0.0004 
Valine 1.42 a 1.71b 1.97b 1.88b 1.61a 0.09 0.0027 

TEAA 13.8a 15.35 18.05 17.65 16.75   

NEAA, g/100 g DM         

Alanine 1.92a 2.11a 2.49a 2.56b 2.91b 0.23 0.0142 
Aspartic acid 2.79 2.59 2.92 2.95 3.07 0.20 0.1379 
Cysteine 0.76a 0.65a 1.01b 0.94a 1.03b 0.09 0.0109 
Glutamic acid 6.46 6.24 7.03 7.01 7.07 0.54 0.2905 
Glycine 1.45a 1.60a 1.78b 1.77b 1.84b 0.07 0.0034 
Hydroxyproline 0.07 0.07 0.07 0.08 0.07 0.01 0.5673 
Proline 1.30a 1.38a 1.61b 1.53a 1.67b 0.09 0.0217 
Serine 1.41a 1.64a 1.97b 1.77b 2.13b 0.10 0.0028 
Tyrosine 1.03a 1.15a 1.41b 1.39b 1.39b 0.07 0.0036 
TNEAA 17.19 17.43 20.29 20.01 21.23   
TAA, g/100 g DM 31.03 32.76 38.34 37.66 36.21   

TEAA:TNEAA ratio 45:55 47:53 47:53 47:53 44:56   
TAA, % of crude 
protein 74.03 86.03 85.74 82.38 82.02   

UP = unprocessed; EAA = essential amino acids; TEAA = total essential amino acids; NEAA = 529 

non-essential amino acids; TNEAA = total non-essential amino acids; TAA = total amino acids; 530 

SEM = Pooled standard error of means.  531 

a, bMean values within a row without a common lowercase superscript differ (P < 0.05). 532 
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 535 

 536 

 537 

Table 3. 538 

Amino acid profile (g/100 g DM) of groundnut meal (GNM) before and after autoclaving (AC), 539 

soaking (SK), short-term fermentation (S-TF) and long-term fermentation (L-TF) processes. 540 

Item 
Processing technique   

UP AC SK S-TF L-TF SEM P-value 

EAA, g/100 g DM        
Arginine 4.44a 4.27a 5.43b 5.57b 5.71b 0.36 0.0089 
Histidine 0.84a 0.81a 1.02b 1.18b 1.23b 0.06 0.0006 
Isoleucine 1.37a 1.36a 1.68b 1.79b 1.76b 0.09 0.0036 
Leucine 2.63a 2.62a 3.22b 3.44b 3.39b 0.14 0.0012 
Lysine 0.98 0.92 1.06 1.15 1.11 0.08 0.0772 
Methionine 0.33a 0.32a 0.39a 0.43b 0.45b 0.04 0.0191 
Phenylalanine 2.07a 2.04a 2.60b 2.70b 2.78b 0.19 0.0094 
Threonine  1.11a 1.09a 1.37b 1.36b 1.49b 0.08 0.0046 
Valine 1.64a 1.73a 2.00a 2.18b 2.14b 0.14 0.0124 

TEAA 15.41 15.16 18.77 19.81 20.05   

NEAA, g/100 g DM         
Alanine 2.30a 2.32a 2.74b 3.17b 3.71b 0.16 0.0003 
Aspartic acid 4.21 4.18 4.29 5.08 4.39 0.51 0.2584 
Cysteine 0.68a 0.63a 0.79b 0.87b 0.90b 0.04 0.0012 
Glutamic acid 7.42a 7.33a 7.52a 8.95b 7.94a 0.53 0.0490 
Glycine 2.10a 2.04a 2.38a 2.43a 2.47b 0.15 0.0192 
Hydroxyproline 0.13a 0.13a 0.16a 0.17b 0.20b 0.01 0.0020 
Proline 1.75a 1.72a 2.07b 2.23b 2.19b 0.07 0.0006 
Serine 1.98a 1.89a 2.14a 2.52b 2.57b 0.08 0.0003 
Tyrosine 1.70a 1.66a 2.09a 2.17b 2.26b 0.15 0.0110 
TNEAA 22.27 21.90 24.18 27.59 26.63   
TAA,  g/100 g DM 37.68 37.06 42.95 47.40 46.68   
TEAA:TNEAA ratio 41:59 41:59 44:56 42:58 43:57   
TAA, % of crude protein 90.74 88.98 84.62 89.61 88.63   
UP = unprocessed; EAA = essential amino acids; TEAA = total essential amino acids; NEAA = 541 

non-essential amino acids; TNEAA = total non-essential amino acids; TAA = total amino acids; 542 

SEM = Pooled standard error of means.  543 

a, bMean values within a row without a common lowercase superscript differ (P < 0.05). 544 
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 548 

Table 4. 549 

Amino acid profile of unprocessed and processed groundnut husk (GH). 550 

Parameter 
Processing technique   

UP AC SEM P-value 

EAA, g/100 g DM     
Arginine 1.39 1.43 0.07 0.5160 
Histidine 0.41 0.46 0.04 0.0891 
Isoleucine 0.53a 0.56b 0.01 0.0069 
Leucine 0.96 0.96 0.01 0.6626 
Lysine 0.60a 0.45b 0.05 0.0128 
Methionine 0.13a 0.08b 0.00 <0.0001 
Phenylalanine 0.69 0.78 0.05 0.0796 
Threonine  0.51 0.50 0.02 0.6555 
Valine 0.62 0.64 0.01 0.3235 
TEAA 5.84 5.86   
NEAA, g/100 g DM     
Alanine 1.37a 1.15b 0.06 0.0062 
Aspartic acid 1.37a 0.94b 0.21 0.0431 
Cysteine 0.26a 0.34b 0.01 0.0039 
Glutamic acid 2.23a 1.65b 0.29 0.0492 
Glycine 2.15 2.26 0.08 0.1000 
Hydroxyproline 0.37 0.39 0.02 0.4704 
Proline 0.68 0.66 0.02 0.1069 
Serine 1.06 1.09 0.05 0.5253 
Tyrosine 0.68 0.72 0.04 0.2649 
TNEAA 10.17 9.21   
TAA,  g/100 g DM 16.01 15.07   
TEAA:TNEAA 
ratio 

36:64 39:61   

TAA, % of crude 
protein 

82.89 78.23   

UP = unprocessed; AC = autoclaving; EAA = essential amino acids; TEAA = total essential amino 551 

acids; NEAA = non-essential amino acids; TNEAA = total non-essential amino acids; TAA = total 552 

amino acids; SEM = Pooled standard error of means.  553 

a, bMean values within a row without a common lowercase superscript differ (P < 0.05). 554 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

28 

 

 555 

 556 

 557 

 558 

 559 

 560 

 561 

Table 5. 562 

Nitrogen contents (g/kg DM) and their changes (%, in brackets) of unprocessed and processed 563 

cottonseed meal (CSM), groundnut meal (GNM) and groundnut husk (GH). 564 

Item 
Processing technique SEM P-value 

UP AC SK S-TF L-TF 
CSM        

TN 67.00 
60.95 
(-9.02) 

71.55 
(6.79) 

73.15 
(9.18) 

74.15 
(10.67) 

0.23 < 0.0001 

TAA-N 49.70 
52.40 
(5.43) 

61.35 
(23.44) 

60.25 
(21.22) 

60.75 
(22.23) 

0.27 < 0.0001 

NPN 17.40 
8.55 

(-50.86) 
10.20 

(-41.38) 
12.90 

(-25.86) 
13.40 

(-22.99) 
0.45 0.0124 

        
GNM        

TN 66.40 
66.60 
(0.30) 

81.30 
(22.44) 

84.60 
(27.41) 

84.20 
(26.81) 

0.05 < 0.0001 

TAA-N 60.30 
59.30 
(-1.66) 

68.80 
(14.10) 

75.80 
(25.71) 

74.70 
(23.88) 

0.24 < 0.0001 

NPN 6.20 
7.40 

(19.35) 
12.50 

(101.61) 
8.80 

(41.94) 
9.50 

(53.23) 
0.28 0.0047 

        
GH        

TN 30.90 
30.80 
(-0.32) 

31.80 
(2.91) 

31.40 
(1.62) 

31.40 
(1.62) 

0.06 < 0.0001 

TAA-N 25.70 
24.10 
(-6.23) 

- - - 1.39 0.0013 

NPN 5.30 
6.70 

(26.42) 
- - - 0.03 0.0025 

UP = unprocessed; AC = autoclaving; SK = soaking; S-TF = short-term fermentation; L-TF = long-565 

term fermentation; SEM = Pooled standard error of means; TN = total nitrogen; TAA-N = total amino 566 

acid nitrogen; NPN = non-protein nitrogen. 567 

a, bMean values within a row without a common lowercase superscript differ (P < 0.05).568 
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Table 6. 569 

Gossypol content (mg/g DM), Phytic acid content (g/100 g) and loss (%, in bracket) of unprocessed 570 

and processed cottonseed meal (CSM), groundnut meal (GNM) and groundnut husk (GH). 571 

Item Processing technique  

 UP AC SK S-TF L-TF SEM P-value 

Gossypol        

CSM 0.29a 
0.19b 

(34.48) 
0.21b 

(27.59) 
0.24b 

(17.24) 
0.25a 

(13.79) 
0.02 0.0043 

GNM 0.31a 
0.28a  
(9.68) 

0.21b 
(32.26) 

0.17b 
(45.16) 

0.20b 
(35.48) 

0.03 0.0041 

GH 1.75a 
0.93b 

(46.86) 
0.67b 

(61.71) 
0.58b 

(66.86) 
0.61b 

(65.14) 
0.14 0.0005 

Phytic acid        

CSM 3.84a 
3.53a  
(8.07) 

2.23b 
(41.93) 

2.25b  
(41.1) 

1.08b 
(71.86) 

0.13 < 0.0001 

GNM 1.40a 
1.19a 

(15.00) 
0.85b 

(39.29) 
0.73b 

(47.86) 
0.43b 

(69.29) 
0.10 0.0003 

GH 0.41a 
0.41a  
(0.00) 

0.28b 
(31.71) 

0.35a 
(14.63) 

0.29b 
(29.27) 

0.03 0.0085 

UP = unprocessed; AC = autoclaving; SK = soaking; S-TF = short-term fermentation; L-TF = long-572 

term fermentation; SEM = Pooled standard error of means. 573 

a, bMean values within a row without a common lowercase superscript differ (P < 0.05).574 
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Figures 575 

 576 

Fig. 1. Changes in essential amino acid contents in cottonseed meal after autoclaving (AC, A), 577 

soaking (SK, B), short-term fermentation (S-TF, C) and long-term fermentation (L-TF, D). Arg = 578 

arginine; His = histidine; Ile = isoleucine; Leu = leucine; Lys = lysine; Met = methionine; Phe = 579 

phenylalanine; Thr = threonine; Val = valine.  580 

 581 

Fig. 2. Changes in essential amino acid contents in groundnut meal after autoclaving (AC, A), 582 

soaking (SK, B), short-term fermentation (S-TF, C) and long-term fermentation (L-TF, D). Arg = 583 

arginine; His = histidine; Ile = isoleucine; Leu = leucine; Lys = lysine; Met = methionine; Phe = 584 

phenylalanine; Thr = threonine; Val = valine.  585 

  586 

 587 

Fig. 3. Changes in essential amino acid contents in groundnut husk after autoclaving (AC). Arg = 588 

arginine; His = histidine; Ile = isoleucine; Leu = leucine; Lys = lysine; Met = methionine; Phe = 589 

phenylalanine; Thr = threonine; Val = valine. 590 
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