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Joint CT Reconstruction and Segmentation
with Discriminative Dictionary Learning

Yiqiu Dong, Per Christian Hansen, and Hans Martin Kjer

Abstract—We present a novel algorithm for Computed To-
mography (CT) that simultaneously computes a reconstruction
and a corresponding segmentation. Our algorithm uses learned
dictionaries for both the reconstruction and the segmentation,
constructed via discriminative dictionary learning using a set of
corresponding images and segmentations. We give a detailed de-
scription of the implementation of our algorithm, and computer
simulations demonstrate that our method provides better results
than the other SRS or dictionary-based methods, especially
when there are not sufficient projections. Moreover, due to the
regularization, the segmentations from our method has more
smooth class interfaces.

Index Terms—Tomographic reconstruction, segmentation, reg-
ularization, learned dictionaries, numerical optimization.

I. INTRODUCTION

Image reconstruction problems in Computed Tomography
(CT), and similar inverse problems, cannot be properly solved
without regularization: prior knowledge about the solution
must be incorporated into the reconstruction model [1]. Some-
times these priors are generic in nature, e.g., they express
knowledge of the smoothness of the solution; but such priors
fail to incorporate more specific knowledge about the solution
and how it is further used in the data analysis process. For
example, we often need to perform a segmentation, e.g., to
separate an object from the background [2] or to identify
specific objects or regions [3], and this has many applications
in medical imaging and in non-destructive testing in materials
science.

Traditionally, image reconstruction and segmentation are
performed as two separate steps – even though reconstruction
errors may propagate into misclassifications. More recent
techniques perform the two steps simultaneously through a
joint problem formulation, called Simultaneous Reconstruction
and Segmentation (SRS), see, e.g., [4], [5], [6], [7], [8]. These
methods have a potential advantage because the segmentation
acts as a regularizer of the inverse problem; a potential
disadvantage is that they may need more algorithm parameters.

In this work the regularization of the tomography problem is
achieved through the use of training images that the computed
image must resemble; this approach can handle priors that
cannot be formulated in closed form. The underlying idea is
to express the computed image as a sparse representation in
terms of elements of a dictionary learned from the training
images [9], [10], [11].
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Computer Science, Technical University of Denmark, Kgs. Lyngby, Denmark
(e-mail: yido@dtu.dk, pcha@dtu.dk, hmkj@dtu.dk).

To avoid the computational effort from dealing with full
large-size training images, we work only with patches from the
training images as well as the reconstructed image. We follow
the convention that every p × p image patch with P = p2

pixels is represented by a P × 1 vector, and we collect the
NT training image patch-vectors in a P ×NT matrix Y (an
alternative is to use a tensor formulation [12] but in this work
we use the matrix formalism).

From the training images we computed a learned dictionary,
which is a matrix D whose ND columns, called the dictionary
elements or atoms, are vectorized image patches that form
the basis for our reconstruction. The dictionary is constructed
such that sparse linear combinations of the dictionary elements
represent the training images well. Hence, we compute the
two matrices D ∈ RP×ND and H ∈ RND×NT that solve the
sparse coding problem

min
D,H
‖Y −DH‖2F + γ ‖vec(H)‖1 . (1)

Here, H is a matrix where each column represents the sparse
approximation coefficients for the corresponding training im-
age patch, vec(H) organizes the elements of H into a
vector, and γ controls the degree of sparsity. The matrices D
and H are obviously not uniquely determined, and different
algorithms give different solution; see, e.g., [13], [14] for
details.

Although patch-based methods cannot explore the global
structures, regardless of the size of training data and dictio-
naries, dictionaries especially with small patches are indeed
useful for handling edges and local textures. Dictionaries can
be trained for other purposes such as classification, labelling,
feature representation or artifact removal [15], [16], [17], [18],
[19], and we focus on discriminative dictionaries that are
trained for segmentation; see [20] for an application in image
segmentation. Specifically, we use learned dictionaries for both
the reconstruction and the segmentation in an SRS model.
Our work can be seen as a merge and extension of [10],
[12] and [20], and to our knowledge no-one has yet proposed
to incorporate a discriminative dictionary into a model for
tomographic SRS.

Our paper is organized as follows. In Section II we for-
mulate our SRS model, and in Section III we describe the
computational details of our algorithm. Section IV defines
our numerical experiments, and in Section V we present and
discuss the results. Conclusions are made in Section VI.

We assume familiarity with the terminology of CT imaging
and the mathematical basics of tomographic reconstruction
[21]. Throughout the paper we use the following notation:
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NC number of classes in the segmentation
ND number of dictionary elements
NP number of patches in the reconstructed image
NT number of training image patches
np number of CT projection angles
nd number of CT detector pixels

Upper and lower case boldface denote matrices and vectors,
respectively.

II. THE PROPOSED METHOD

Our method consists of two separate stages. In the first
stage, a discriminative dictionary is learnt from problem-
specific training data, using procedures established in other
studies and extending the formulations from [16], [20]. In the
second stage we introduce a new SRS model for CT image re-
construction and segmentation, using the learnt discriminative
dictionary as the prior.

A. Discriminative Dictionary Learning
We assume that we have access to NT high-quality p × p

training image patches that represent the object under study,
and that these images have been segmented such that each
pixel is associated with one of NC classes. In this work, the
training image patches are extracted from random locations of
a much larger training image.

Let yi ∈ RP denote the ith vectorized training image patch.
Each pixel of this patch is associated with a binary label
vector (0, . . . , 0, 1, 0, . . . , 0)T ∈ RNC , where the non-zero
entry identifies the class label. We stack these label vectors
into a single vector and permute the elements, such that the
resulting vector zi ∈ R(PNC) has NC blocks, each of length P ,
corresponding to the NC classes; see Figure 1. (Note that it is
possible to consider other strategies for labelling the patches;
in [16] the entire patch is associated only with a single label.)

Given the NT training image patch-vectors yi and the cor-
responding class-label vectors zi, we organize these training
data into two matrices (as illustrated in Figure 1):
• Y = [y1, . . . ,yNT

] ∈ RP×NT , the matrix of the training
data patches.

• Z = [z1, . . . ,zNT
] ∈ R(PNC)×NT , the matrix of the

corresponding pixel classifications.
The task is then to simultaneously learn the image and class

dictionaries D ∈ RP×ND and W ∈ R(PNC)×ND , through the
joint sparse coding problem:

min
D,W,H

‖Y −DH‖2F + λ2 ‖Z −WH‖2F + γ ‖vec(H)‖1 ,
(2)

where λ defines the weighting of the grouping into classes
and γ controls the sparsity. An illustration of a learned
discriminative dictionary {D,W } is given in Figure 1.

The structure of W follows that of Z, and hence W can
be partitioned into NC blocks of sub-matrices Wk ∈ RP×ND ,
each corresponding to one of the NC classes:

W =


W1

W2

...
WNC

 . (3)

Fig. 1: Left: extraction of patches from a large training image;
intensity patches are arranged as columns yi of Y ;
labels of the same patches are arranged as columns
zi of Z where sub-vector zji ∈ RP corresponds
to training image patch i and class j. Right: the
dictionary elements of D and W are patches.

The discriminative dictionary learning problem (2) is an
extension of the basic dictionary learning problem (1), which
is obvious from a simple rewriting:

min
D,W,H

∥∥∥∥[ YλZ
]
−
[
D
λW

]
H

∥∥∥∥2
F

+ γ ‖vec(H)‖1 . (4)

Standard dictionary learning approaches can also be used for
this problem. We use the K-SVD algorithm [22] as suggested
by Zhang and Li [16], using the efficient implementation
from [23] that avoids forming the matrices explicitly. When
this algorithm is used to solve (4) we must re-normalize the
results to ensure that both D and W have columns of unit 2-
norm. (Alternatively, a constrained nonnegative matrix factor-
ization could be considered, as used by Soltani et al. [11]). In
all cases, the computational work in solving (2) is larger than
that of solving the reconstruction problem; but the dictionary
learning is only needed once for a given class of problems.

B. Simultaneous Reconstruction and Segmentation

Our reconstruction model uses the following concepts and
techniques, as illustrated in Figure 2.

a) Tomographic Image Reconstruction: Let x ∈ Rn

represent the unknown attenuation coefficients of the object,
which has been discretized into a square domain of

√
n×
√
n

pixels. The data vector b represents the attenuation of the X-
rays that penetrate the object at np different projection angles
and recorded in nd detector pixels, hence b has m = npnd
elements. The relation between image pixels and data is
described by the sparse system matrix A ∈ Rm×n. The
“naive” tomographic reconstruction problem is the process of
computing x given b by solving the linear system Ax = b.

b) Segmentation: Classification of each pixel xj assigns
this pixel to one of the NC classes, and we do this via pixel-
wise class probabilities. Let ∆ = [δ1, δ2, . . . , δNC

] ∈ Rn×NC
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Fig. 2: Illustration of the concepts involved in the proposed al-
gorithm. Left: tomographic image reconstruction from
projection data. Middle: segmentation based on pixel-
wise class probabilities. Right: division of the image
domain into overlapping patches.

be a matrix where each element δjk represents the probability
of pixel xj belonging to class k, with the constraints

NC∑
k=1

δjk = 1 , δjk ≥ 0. (5)

Given ∆, the segmentation l ∈ Nn is computed by evaluating
which of the classes that has the greatest probability for each
pixel:

lj = argmax
k

(δjk) , j = 1, 2, . . . , n. (6)

c) Working with Overlapping Image Patches: As the
dictionary elements represent small p × p image patches,
a terminology for dividing the image into such patches is
required. Let Ei ∈ RP×n be a binary matrix, such that Eix
extracts patch i of the image. The first extractor E1 picks the
top left corner of the image. The location of the neighboring
patches is controlled with the stride parameter τ , i.e., the
number of pixels shifted horizontally or vertically; if τ = p
there is no overlap between the patches. The total number of
image patches (and hence the number of extractors) is denoted
by NP.

Given the learned discriminative dictionary {D,W } from
Section II-A, we can now introduce the model for simultane-
ous reconstruction and segmentation:

min
x,α,∆

λ2data ‖Ax− b‖
2
2 + λclass

NC∑
k=1

RTV(δk)− ‖∆‖2F +

NP∑
i=1

(
‖Eix−Dαi‖22 +

NC∑
k=1

‖Eiδk −Wkαi‖22

)
+ γsc ‖α‖1 ,

(7)

subject to the constraints in (5). Here, δk are the columns of
the matrix ∆, the vectors αi ∈ RND are the sparse coding
coefficients for image patch i, the vector α ∈ RNPND is
obtained by stacking these vectors, and ‖α‖1 =

∑NP

i=1 ‖αi‖1.
We incorporate the term −‖∆‖2F in order to enforce sparsity
in the computed segmentation [24].

When using a forward finite-difference approximation, the
Total Variation (TV) function is given by

RTV(δk) =
∑
j∈J

√
(δjk − δj′k)2 + (δjk − δj′′k)2 + ε2, (8)

where J represent the pixel indices of the image domain,
while j′ and j′′ denote neighbor pixels in the horizontal and
vertical directions, respectively. In order to make the function
differentiable at all points, a small constant ε = 10−3 is added.

The first term in the model (7) is a least-squares data fitting
term. The next two terms enforce regularization on the class
probabilities ∆: the TV of δk ensures that neighboring pixels
should have similar labelling, i.e., piecewise constant class
probabilities; the Frobenius norm forces ∆ towards a state
where each pixel has a probability of 1 for a particular class.
The last terms (the sum over image patches and the 1-norm)
enforce joint sparse representation of the reconstruction and
the class probabilities using the discriminative dictionaries.

The model contains the following parameters:
• λdata represents the amount of trust in the measured data.
• λclass controls the amount of TV regularization.
• γsc controls the degree of sparsity.

III. THE OPTIMIZATION ALGORITHM

The nonconvex minimization problem in Eq. (7) is solved by
a standard iterative algorithm which alternates between three
separate subproblems, where one variable is updated and the
other two are fixed.

Subproblem 1: The subproblem for computing the sparse
coding α has the form

min
α

NP∑
i=1

(
‖Eix−Dαi‖22 +

NC∑
k=1

‖Eiδk −Wkαi‖22

)
+ γsc ‖α‖1 .

(9)

The combination of a least squares term with 1-norm reg-
ularization can be solved efficiently with proximal forward-
backward algorithms, and we use the Fast Iterative Shrinkage-
Thresholding Algorithm (FISTA) [25]. Each extracted patch
is treated independently, which provides a potential for paral-
lelization in the implementation.

Subproblem 2: The subproblem for computing the recon-
struction x has the form

min
x
λ2data ‖Ax− b‖

2
2 +

NP∑
i=1

‖Eix−Dαi‖22 . (10)

A bit of rewriting displays the least squares nature of this
problem:

min
x

∥∥∥∥∥∥∥∥∥∥∥


λdataA
E1

E2

...
ENP

x−

λdatab
Dα1

Dα2

...
DαNP



∥∥∥∥∥∥∥∥∥∥∥

2

2

. (11)

This can be efficiently solved with the CGLS algorithm [26],
which does not require the stacked coefficient matrix to be
explicitly formed.



IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING 4

Subproblem 3: The subproblem for computing the class
probabilities ∆ has the form

min
∆

λclass

NC∑
k=1

RTV(δk)− ‖∆‖2F

+

NP∑
i=1

NC∑
k=1

‖Eiδk −Wkαi‖22

(12)

with the constraints in (5). This problem is solved with the
Frank-Wolfe algorithm [27].

An initialization of two of the three variables is required. It
is difficult to assign an initial sparse coding, and we therefore
need to initialise x and ∆.

Initial Reconstruction: xinit can be estimated with any
classic reconstruction technique; preferably a fast method
that requires few parameters to tune and does not amplify
noise. In this work, we use Tikhonov regularization which is
implemented using CGLS:

xinit = argmin
x
λ2data ‖Ax− b‖

2
2 + λ2Tik ‖∇x‖

2
2 . (13)

Here, we use the short-hand notation ∇x to denote a vector
of length n whose jth element is the gradient magniture√
(xj − xj′)2 + (xj − xj′′)2, using the notation from (8).

Initial Class Probability: We first estimate a sparse rep-
resentation of the initial reconstruction using the dictionaryD:

αinit = argmin
α

NP∑
i=1

∥∥Eix
init −Dαi

∥∥2
2
+ γsc ‖α‖1 . (14)

This is a simplified version of (9) and it is solved in the same
manner. Note that this result is not considered as an initial-
ization of the sparse coding, since the sparse representation
is only based on the intensity image, and not on the class
probability (which is not estimated yet).

In order to initialize ∆, sparse coding is then directly
applied with W , similarly to what we did in Subproblem 3,
and solved in the same way:

∆init =argmin
∆

NP∑
i=1

NC∑
k=1

∥∥Eiδk −Wkα
init
i

∥∥2
2

+ λclass

NC∑
k=1

RTV(δk),

(15)

with the constraint in (5).

IV. NUMERICAL EXPERIMENTS

The focus of these experiments is primarily on explor-
ing and understanding the tomographic reconstruction and
segmentation abilities of the proposed method. Hence, the
dictionary learning problem is downplayed here.

For the experiments, we generate phantom images with
textures taken from the Brodatz database [28]. Textured images
are interesting to study, as they represent problems where it
is difficult to manually select and formulate the appropriate
features to describe the prior information. With these texture
phantoms we intend to study
• how our method compares against similar methods, and

Fig. 3: The textured phantoms used in our experiments. Due
to the close similarity between the training data and
target image 1, this particular case represents a sce-
nario where the learned prior is close to being ideal.
Target images 2 and 3 represent scenarios where the
learned prior is incomplete.

• how our method generalizes, i.e., how it behaves when
applied to data beyond what was seen in the training set.

The phantoms used in our numerical experiments are shown
in Figure 3. We first generate a large training image from
which we extract randomly placed patches to compute the dic-
tionaries. For the reconstruction experiments we generate three
smaller target phantoms, all of them with similar textures.

Target image 1 has class interface placements that are very
similar to the training image, only with small variations. This
case can therefore be considered as “inverse crime.” With this
test problem we study how our method behaves when the class
interfaces are well represented in the dictionary.

Target images 2 and 3 have different class interface com-
paring with the training image, such that the images are
not completely identical. In these cases, we test how well
our method handles phantoms containing class interfaces that
are not part of the training data. In a real scenario, one
should ideally have enough training data to learn all possible
combinations and orientations of the class interfaces.

A. Four Competing Methods

The proposed method provides both a reconstruction and
segmentation of the object, and so should the methods we
want to compare it against. We choose one of the latest SRS
methods, from [8], as method 1; most other techniques provide
only a solution to one of the two unknowns. While we, in prin-
ciple, could combine separate reconstruction and segmentation
methods, many of them are not suited for textured images
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which would result in an unfair comparison. For the remaining
competing methods we therefore use dictionary-based methods
that have access to the same prior information as ours.

In methods 2 and 3 we use Discriminative Dictionary Seg-
mentation (DDS), a stand-alone segmentation method based
on a known discriminative dictionary {D,W } that can be
applied to any reconstruction. It is a modified version of
the segmentation method proposed in [20]. The reconstructed
image x is first split into overlapping patches, and the sparse
representation of each patch is found in the dictionary D
by solving (14). Then we use the resulting α with the
discriminative part W of the dictionary. For each class k the
“evidence” from the estimated sparse codes is accumulated:

vk =

NT∑
i=1

ET
i Wkαi, k = 1, 2, . . . , NC. (16)

The segmentation is then obtained by assigning the kth label
with the most evidence, similar to (6).

Method 1: This method is from [8] and it represents a
non-dictionary based approach. It is a simplified version of
the algorithm from [6], and the required prior information
is the mean attenuation coefficient for each of the classes.
The underlying assumption is that the relationship between
the reconstructed intensities and the class probabilities can be
modelled using Gaussian distributions with joint variance. See
[8] for details.

Method 2: This method uses a basic reconstruction
technique followed by a dictionary-based post-processing seg-
mentation.
• Reconstruction: Tikhonov regularization solved with

CGLS, cf. (13).
• Segmentation: DDS as presented above.

Method 3: This method uses the intensity dictionary D
to make an improved reconstruction from the projection data,
and then it performs a post-processing segmentation of the
reconstruction.
• Reconstruction: uses the method proposed by Xu et

al. [10] with slight modifications,

min
x,α

λdata ‖Ax− b‖22 +

NT∑
i=1

(
‖Eix−Dαi‖22

)
+ γsc ‖α‖1 .

(17)

The initial reconstruction xinit is the Tikhonov solution
from method 1. The optimization is done with the same
algorithms as presented for subproblems 1 and 2, cf.
Section III.

• Segmentation: DDS as presented above. Note that α
is found as a part of the reconstruction stage, and the
segmentation is done by directly applying (16).
Method 4: This is our new method, where segmentation

and reconstruction and performed as a part of a combined
model.

Methods 2–4 are increasingly complex, seeking to harness
more of the available prior information presented by discrim-
inative dictionary. Method 2 uses the prior only to perform

Fig. 4: Left to right: small subsets of the dictionary elements
of D and W , target image 1, and the representation
of this image using {D,W }.

a stand-alone segmentation. Method 3 uses part of the prior
information to improve the reconstruction before performing
a stand-alone segmentation. Finally, method 4 which uses the
information in a combined reconstruction and segmentation
model.

B. Discriminative Dictionary Learning

The first stage of the proposed method is the training of
the dictionary. The following values for the parameters of the
learning problem were set manually, such that we obtain a
qualitatively good representation of the target image and its
segmentation.
• Patch size: p = 23.
• Number of training patches: NT = 30,000.
• Dictionary size: ND = 1225.
• Learning sparsity weight: γ = 10.
• Discriminative weighting: λ2 = 0.5.

Figure 4 illustrates a subset of the learned dictionary elements
and the corresponding representation, using the dictionary, of
target image 1. While it is qualitatively good, it is not perfect
due to the finite size of the dictionary; e.g., it has 2 pixel
misclassifications.

C. SRS Experiments

A 2D parallel-beam CT scenario is simulated using the func-
tion paralleltomo from the AIR TOOLS package [29].
Each phantom is generated in a square domain of 254× 254
pixels, i.e., there are n = 2542 = 64, 516 unknowns.

The detector has full coverage of the object at any projection
angle, the number of detectors is nd = 360, and we use
a constant angular spacing of the rays in the interval of
[0◦, 180◦], using either np = 180, 90, 60 and 30 projection
angles. These settings correspond to scenarios with even- and
under-determined problems of m/n = 1.00, 0.50, 0.33 and
0.17, respectively.
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TABLE I: Settings of the parameters in Methods 2–4 for our
experiments.

Projections λ2
data λ2

class γsc τ λ2
Tik

180 7 · 10−5 0.3 0.175 7 205

90 9 · 10−5 0.4 0.150 7 205

60 9 · 10−5 0.5 0.125 7 205

30 9 · 10−5 0.6 0.125 7 205
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Fig. 5: Reconstruction and segmentation errors (18) for the
four methods as a function of the number np of
projection angles. The results are averaged over 7
random realizations of the noise, and we also show
±2 standard deviations on either side.

The simulated projection data is given by b = AxGT + e,
where xGT denotes the ground truth (the true object) and e is
a vector of Gaussian noise scaled such that ‖e‖2/‖AxGT‖2 =
0.05,

The parameters for the different reconstruction methods are
set manually by tuning them to yield approximately optimal
results. For Method 1 we use λdata = 0.075, λclass = 2.0,
µ1 = 0.1 and µ2 = 0.85 (see [8] for explanations). For
Methods 2–4 we use the parameters listed in Table I, and
we use the same settings when applicable to make the results
comparable.

Given the ground truth image xGT and the corresponding
segmentation lGT, we define error measures for the computed
reconstruction x and segmentation l as

‖xGT − x‖22
‖xGT‖22

and
1

N

N∑
j=1

I(lGT
j 6= lj), (18)

where I is a logical indicator function.

V. RESULTS AND DISCUSSION

A. Comparison of the Methods

Each of the four methods are applied to the same prob-
lems with 7 random noise realizations, and with 4 different
numbers of projection angles. The resulting reconstruction and
segmentation errors of these 28 experiments are summarized
in Figure 5. The qualitative difference between the methods
is illustrated in Figure 6 which shows the results for one
particular noise realization using np = 180 and 30.

Re. the reconstructions: Methods 1 lacks sharpness in
the reconstructed image even with np = 180 projections,
which is expected since Tikhonov regularization is unsuited
for the high frequency textures in the phantom. Methods 2

and 3 are able to use the prior information to improve the
reconstruction significantly. The reconstructions from methods
3 and 4 are equally good with sufficient projection data;
however, with fewer projections the advantage of our method
becomes increasingly evident. The issue with method 3 is that
its choice of dictionary elements does not utilize information
about the classes, and hence it tends to fit the reconstruction
to the noise. Method 4 (our method), on the other hand,
takes advantage of the segmentation to restrict the choice of
dictionary elements to also match the class probability.

Re. the segmentations: With enough projections, all four
methods are able to provide good segmentations. Method 1
provides surprisingly good segmentations, due to the simple
structure of the phantom (but note that the method lacks sharp-
ness at the class interfaces). Part of segmentation errors that
are present for method 2 are corrected with method 3, because
the sparse coding is obtained together with the reconstruction
in method 3, which avoids the error propagation from the
reconstruction. The small and spurious misclassifications that
are seen with method 3 are handled nicely by the TV in
method 4 (our method), in particular when the amount of data
is reduced.

B. Limitations of the Prior

In this experiment we consider the proposed method for
some cases that challenges the learned prior. Difficulties can
arise from having less projection data, or from using data
containing features that were not available from the dictionary.

Projection data for target images 2 and 3 (cf. Figure 3)
were simulated using np = 90 projection angles. The re-
construction results are shown in Figure 7, along with an
additional reconstruction example using target image 1 with
only 30 projections and a different noise realization from the
one in Figure 6. We see that in the segmentation sharp and
narrow class interfaces tend to be smoothed, while curved
interfaces tend to be more straight. The reason is that curved
or sharp interfaces are not represented in the training image
as well as the dictionary, see the training image shown in
Figure 3. Therefore, it is very important to choose training
data that preferably include all possible combinations and
orientations of the class interfaces. Furthermore, the higher
accuracy the learnt dictionary is, the better performance our
joint method will provide. In addition, the third example
illustrates what happens in the reconstruction when regions
of the segmentation are incorrect, e.g., the top-right corner.

C. Multi-Class Phantoms

In this experiment we apply the proposed method to a
phantom with 4 classes, which is shown in the left part of
Figure 8. The discriminative dictionary was trained using a
large image that includes all class interfaces in the phantom.
In method 1 we used µ1 = 0.2, µ2 = 0.4, µ3 = 0.45 and
µ4 = 0.3, and for method 2–4 we use the same parameter
setting. We computed the reconstruction and segmentation of
the target phantom from the data with 90 projection angles
and 5% Gaussian noise, the results are shown and compared
to the ground truth in Figure 8. It is obvious that method
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Fig. 6: Visual comparison of the results from the four methods with np = 180 (top) and np = 30 (bottom).

Fig. 7: Reconstructions and segmentations of the three phan-
toms (top to bottom) using 90, 90 and 30 projections,
respectively. The ground truth image and correspond-
ing segmentation are shown in the left parts of the
images, while the results from method 4 are shown in
the right parts.

3 and 4 provide the best results, and quantitatively they are
equally good. Comparing the segmentation, we can see that
with method 4 the class interfaces are more straight, which is
due to the TV regularization.

D. Test on Fibrous Samples
In the final experiment we study the performance when

our method is applied to real fibrous samples. We simulated
2D X-ray data with inspiration from cross-sections of fibrous
samples. These structures could represent nerves or muscles in
biological tissues, or pipe- or cable-like structures in material
samples. The challenge in this experiment is to differentiate
between the fiber interior and the background, both of which
have very similar intensity and variation. The test images and
results are shown in Figure 9.

The size of the fibers in the test images is approximately
5–25 pixels in diameter. The setting in the discriminative
dictionary learning are: patch size p = 17, number of train-
ing patches NT = 60, 000, dictionary size ND = 1225,
learning sparsity weight γ = 3, and discriminative weighting
λ2 = 3. In the SRS experiment we use np = 90 projection
angles, and the Gaussian noise in the sinogram is scaled as
‖e‖2/‖AxGT‖2 = 0.025. The parameters in method 1 are
λdata = 0.3, λclass = 0.8, µ1 = 0.6, µ2 = 0.27, and
µ3 = 0.6. In methods 2–4 we use λ2data = 10−4, λ2class = 0.175,
γsc = 0.01, τ = 3, and λ2Tik = 20. All parameters are tuned
manually and provide the optimal visual results.
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Fig. 8: Comparison of method 1–4 applied to a 4-class phantom with np = 90 projection angels. The values of (reconstruction
error, segmentation error) for the four methods are (0.42, 0.22), (0.35, 0.30), (0.28, 0.12) and (0.28, 0.12), respectively.

Comparing the reconstruction results, we see that there are
less artefacts from method 4 (our method), and its background
is smoother. For segmentation, method 1 cannot distinguish the
interior of the fibers from the background, since incorporating
a prior on image smoothness by adding a Tikhonov regular-
ization term is unsuited for segmenting classes with similar
intensity. Compared with methods 2 and 3, method 4 is able
to correctly capture more interior of the fibers. Method 4 also
outperforms the other methods quantitatively according to the
reconstruction error and segmentation error.

VI. CONCLUSION

In this paper, we propose a new simultaneous reconstruction
and segmentation (SRS) model incorporating a discriminative
dictionary for computed tomography. In our SRS formulation,
through a joint sparse coding the segmentation acts as a regu-
larizer and brings more prior knowledge for the reconstruction.
In addition, because of using the discriminative dictionary,
our method is able to segment different textures, which are
usually difficult to be formulated in closed form. In order to
deal with dictionary more efficiently, in the future we intend to
introduce more advanced techniques, e.g. nonnegative matrix
factorization or tensor dictionary, into our method.
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