

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Mar 29, 2019

Structured Bayesian Approximate Inference

Bonnevie, Rasmus

Publication date:
2018

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Bonnevie, R. (2018). Structured Bayesian Approximate Inference. Technical University of Denmark. DTU
Compute PHD-2018, Vol.. 481

http://orbit.dtu.dk/en/publications/structured-bayesian-approximate-inference(bc93bff4-3be5-4b85-a083-b9e7f7912dcb).html

Structured Bayesian Approximate
Inference

Rasmus Bonnevie

Kongens Lyngby 2018

Technical University of Denmark
Department of Applied Mathematics and Computer Science
Richard Petersens Plads, building 324,
2800 Kongens Lyngby, Denmark
Phone +45 4525 3031
compute@compute.dtu.dk
www.compute.dtu.dk

Summary (English)

This thesis seeks to investigate different facets of the class of Bayesian prob-
abilistic models where the random variables exhibit strong dependencies and
simultaneously lack any conditional independence structure, preventing the
distribution from being factorized.

Without a tractable factorization, a lot of standard inference algorithms become
unavailable. We consider the application of variational inference from two
different perspectives. In the first scenario we start with an extended model with
conditional independence structure, and try to take the auxiliary parameters out
of the equation in an optimal manner in a process emulating marginalization.
In the second scenario, we tackle the variational problem directly, trying to
find a suitable way to represent unfactorized models in an efficient manner,
by introducing a separate form of structure. For discrete models, we find
good approximations in the tensor literature that can model structure without
sacrificing tractability.

Finally, we consider a problem involving Gaussian processes that take random
variables as input, leading to an inefficient inference problem. We develop a
procedure that allows the stochastic component of the random input to be
integrated into the kernel of the Gaussian process.

ii

Summary (Danish)

Denne afhandling ønsker at undersøge forskellige facetter af en klasse af Bayesi-
anske probabilistiske modeller, hvor at de stokastiske variable har indbyrdes høj
afhængighed, mens at modellen samtidig mangler konditioneret uafhængigheds-
struktur, hvilket forhindrer fordelingen i at blive faktoriseret.

Uden en beregningsvenlig faktorisering kommer de fleste almindelige inferensal-
goritmer til kort. Vi overvejer, hvordan variationel inferens kan bruges ud fra to
forskellige perspektiver. I det første scenarie benytter vi en udvidet model med
konditioneret uafhængighedsstruktur og prøver at fjerne de overflødige variable
på en optimal måde, sådan at processen emulerer marginalisering. I det andet
scenarie håndterer vi det variationelle problem direkte og prøver at finde en
effektiv måde at repræsentere ufaktoriserede modeller ved at introducere en
helt tredje form for struktur for at øge effektiviteten. I tilfældet med diskrete
modeller finder vi meget effektive approksimationer i tensor-litteraturen, som
kan modellere struktur uden at gå på kompromis med den beregningsmæssige
effektivitet.

Endelig undersøger vi et problem med gaussiske processer som tager stokastiske
variable som input, hvilket leder til et tungt inferensproblem. Vi udvikler en
procedure der tillader den stokastiske komponent i inputtet at blive integreret
ind i den gaussiske proces’ kerne.

iv

List of Publications

The following papers constitute contributions included in this thesis. See ap-
pendix A for attached copies of each.

1. R Bonnevie, M N Schmidt, and M Mørup (2017). “Difference-of-Convex
optimization for variational kl-corrected inference in dirichlet process mix-
tures”. In: 2017 IEEE 27th International Workshop on Machine Learning
for Signal Processing (MLSP), pages 1–6

2. R Bonnevie, M N Schmidt (2018). “Joint expectation kernels”. Submitted
to: 2018 Neural Information Processing Systems (NIPS).

3. R Bonnevie, M N Schmidt (2018). “Matrix Product states for inference in
discrete probabilistic models”. Submitted to: Journal of Machine Learning
Research.

vi

Preface

This PhD thesis was prepared at the Department of Applied Mathematics and
Computer Science at the Technical University of Denmark, in partial fulfillment
of the requirements for acquiring a PhD degree at the Technical University of
Denmark.

This PhD project was financed by a DTU Compute PhD Scholarship and carried
out at the ITMAN Graduate school at DTU Compute.

The PhD has involved the authoring of three papers, one published and two
under review. The three articles are collected in the appendices of this thesis.
The main chapters of the thesis will introduce the topics that these three papers
are concerned with and note our contributions to each.

Lyngby, 01-July-2018

Rasmus Bonnevie

viii

Acknowledgements

I have been extremely grateful for the opportunity these last three years to
pursue a PhD degree at the Technical University of Denmark, courtesy of a
scholarship from the institute. It has been a great chance to immerse myself in
many of the exciting fields and to pursue a large variety of research projects;
some fruitful, some not, but all exciting forays into the frontiers of machine
learning.

I would like to thank my two supervisors Mikkel N. Schmidt and Morten Mørup
who have always been there whenever needed, have always been extremely
supportive and welcoming, and with whom I have had many great scientific
discussions.

Also thanks to my two long-term (although only shortly overlapping) office
companions Michael Riis Andersen and Peter Jørgensen for listening to all my
fledgling ideas, for not feeling too pestered by my inquiries into their own work,
and for allowing me to span most of the whiteboard.

More generally, I would like to thank all of my colleagues at the Cognitive
Systems section for their company, the many great discussions we have had, their
good spirits, and their helpfulness. The Cognitive Systems section has been a
tremendous place to work, and I would like to thank Lars Kai Hansen, Wanja
Andersen, and Sine Ingemann for making everything run so smoothly.

Finally, I would like to thank my parents Naja and Finn who have inadvertently
set me on this path and helped keep my spirits high on the way, and my fiancée
Ida who has supported me unwaveringly throughout my PhD, kept me company
along the way, and who has patiently endured many explanations about Bayesian
inference.

x

Notation

A small note on notation might be in order. We will otherwise try to define
most conventions and definitions as they come up. As is customary, we will
generally reserve unformatted characters like a, x, γ for scalars, and boldface
characters like x and v for vectors. Bold will also be used to denote matrices,
which will also often be upper case like X. Random variables will be marked
mostly with lower-case —out of convenience, to distinguish them from matrices,
because of common practice, and because they will often be conflated with their
instantiations when considering densities as functions— but we will occasionally
use upper-case when we want to emphasize that it is a random variable. Finally,
we use calligraphic fonts like T or G for tensors of higher order.

When indexing, we sometimes feel the need to use explicit notation [X]ij to
mean the element in the i’th row and j’th column of matrix X, but most of the
time we will just use Xij or vi. We will generally format the quantity according
to the type of the indexed element, so vi is the i’th scalar element of v, but vi
is the i’th vector instance or subcomponent of v. This comes from a need to
occasionally conflate variables and sets of variables.

We will mostly use p and q for probability densities, and we will rarely feel
the need to explicitly label them with their respective random variables, which
will often be clear from their arguments, i.e. we write p(x) and not px(x).
Expectations will be written in a compact manner without subscript if it is
otherwise clear what the expectation is over and with respect to what distribution.
When necessary we will use a density subscript to denote Eq[·] to denote what
distribution the expectation is with respect to, or a random variable subscript
Ex[·] to denote that the expectation is only over the marginal of that variable.
If we feel the need to be very explicit, we write Eq(x)[·]. Very rarely we will also
use sampling statements x ∼ q, especially if the expectation is with respect to
different densities for different variables. The conditioning bar | will be used to
denote conditional expectations.

xii

Contents

Summary (English) i

Summary (Danish) iii

List of Publications v

Preface vii

Acknowledgements ix

Notation xi

1 Introduction 1
1.1 Structure in Bayesian Probabilistic Models 3

1.1.1 When Conditional Independence Breaks Down 5
1.1.2 Approximations and Dependencies 7

1.2 Papers and Thesis Overview . 7
1.2.1 Structure of the Thesis . 9

2 Variational Inference 11
2.1 KL Divergence and the Lower Bound 11
2.2 Gradients and Local Updates . 14

2.2.1 Gradient Estimators . 14
2.2.2 Local Updates . 20
2.2.3 Variational Message Passing 21

2.3 Exponential Families . 21
2.3.1 Example: The Gaussian Distribution 23
2.3.2 Conjugate Priors . 24
2.3.3 Conjugate Models and Variational Message Passing . . . 25

xiv CONTENTS

2.3.4 Stochastic Variational Inference 27
2.4 Lower Bound Algebra . 29

2.4.1 Variational Approximations with Auxiliary Random Vari-
ables . 30

2.4.2 Collapsed Bounds for Optimization Space Reduction . . . 31
2.5 Biased Bounds for Model Selection 33
2.6 Contribution . 35

3 Gaussian Processes 37
3.1 Kernels . 38
3.2 Reproducing Kernel Hilbert Spaces 42
3.3 Gaussian Process Calculus . 44

3.3.1 Additive Processes and Linear Algebra 45
3.3.2 Bayesian Quadrature . 47

3.4 Variational Inducing Point Methods 50
3.5 Contribution . 52

4 Tensor Networks 55
4.1 Discrete Probabilistic Models as Tensors 56
4.2 Tensor Networks . 57
4.3 Relationship with Graphical Models 58
4.4 Tensor Trains and Rings . 59

4.4.1 Canonical Cores . 61
4.4.2 Tensor Trains as Graphical Models and Efficient Inference 63

4.5 Contribution . 64

5 Conclusion 65

A Papers 67
A.1 Difference-of-convex optimization for variational KL-corrected

inference in Dirichlet process mixtures 67
A.2 Joint expectation kernels . 74
A.3 Matrix Product states for inference in discrete probabilistic models 84

Bibliography 124

Chapter 1

Introduction

When faced with difficult decisions in complex environments, we rarely have the
luxury of a perfect model, and have to base our decisions on approximations of
this ideal. Even limiting ourselves to theoretically viable models, there would
still be too many possible models to search through, however, and even if there
were not, we would be facing the problem of information deficiency: the more
options we leave ourselves, the more information we need to collect to pick out
the correct one. Making assumptions about the decision and the environment
and the approximation we use to approximate either reduces the problem space
and we can learn more about the system, within the scope of our approximation,
with less information.

The concept of letting collected data inform our beliefs about unknown quantities
is best quantified in terms of probability theory. As demonstrated in e.g. Jaynes
(2003), the calculus of epistemic belief is mathematically equivalent to probability
theory, making it the only sound foundation for inference and learning under the
associated axioms. If D specifies our data, the observations we have made about
the system we want to model, and θ specifies the set of unknown quantities
then the conditional probability p(D|θ) specifies the probability of observing D,
given fixed θ. Implicitly, the distribution describes a random generative process
for the D, with the probability reflecting the likelihood that this hypothetical
simulator recreates the observed data. Conversely, if a certain value of θ has
high probability of generating the observed data D, this lends credence to the

2 Introduction

belief of that value of θ being correct. As a function of the unknown θ, we call
this the likelihood, and the flexibility of the generative model encoded in it is
the first in which we can add structure and implement assumptions.

The second method by which we can introduce prior knowledge and assumptions
is the aptly named prior p(θ) on the unknown quantities. This distribution
reflects our prior belief and assumptions about the scale, domain, and properties
of each random quantity contained in θ, as well as any constraints it might
observe. We might assume positivity for a scalar quantity, or we might restrict a
matrix parameter to the manifold of orthogonal matrices.

To update our prior belief to take the evidence lent by the data into account, we
can apply Bayes’ theorem,

p(θ|D) = p(D|θ)p(θ)
p(D) ∝ p(D|θ)p(θ). (1.1)

which gives us the so-called posterior p(θ|D), our updated belief about the
unknown quantities. The theorem is extremely important, but is actually a
rather straightforward consequence of the probability axioms, being a simple
reordering of the product relation p(D|θ)p(θ) = p(D)p(θ|D). The proportionality
statement from above is to emphasize that the shape of the posterior distribution
is completely determined by the product of the likelihood and the prior; as such,
the posterior is a sort of compromise, which will put high or low mass in a
region if both the likelihood and the prior is high or low, respectively, and in the
regions where they disagree it will level out to the degree that they cancel each
other out. It is the relative value that counts, so it is the peaks and troughs
that matter. Flat likelihoods imply that the observations lend little evidence to
one value of θ over another; this then means that we need a lot of observations
before the likelihood starts to peak, and the posterior concentrates meaningfully.
Flat priors similarly imply that we have no knowledge of what parameter values
are more likely than another, and that we let the likelihood dominate. Some
people advocate flat priors, believing that any type of informed prior introduces
an unjustified subjective bias, but a more sensible perspective is to realize that
any model — both the choice of likelihood and the choice of prior — directly
constitute assumptions about the data-generating process, and that flat priors
can sometimes translate into assumptions that are less justified than informed
priors, such as assuming that the mean of a Gaussian is a priori equally likely to
be 1 or one million.

1.1 Structure in Bayesian Probabilistic Models 3

α

w

z η

e

a b

Figure 1.1: Simple Bayesian network of the stochastic block model.

1.1 Structure in Bayesian Probabilistic Models

It is possible to express many kinds of structure in a Bayesian model, but
independence and conditional independence structure is amongst the most
important, and many intuitive models naturally embody this type of structure.

An interesting case study illustrating conditional independence is the stochastic
block model, which is a typical example of a hierarchical model exhibiting both
discrete and continuous random variables. The setup is a partially observed
undirected graph on N vertices, with a set (i, j) ∈ Eobs cataloging the observed
links, with (i, j) indicating an observation of the link between node i and j. We
let eij be the corresponding binary variable revealing whether we observed an
edge (1) or not (0). The stochastic block model tries to cluster the N vertices of
the graph into K communities (clusters), and it can be defined as,

w ∼ Dir(α) (1.2)
ηkl ∼ Beta(ak`, bk`), ∀j ∈ 1, . . . ,K, k ∈ 1, . . . , ` (1.3)

zi|w ∼ Cat(w), ∀i ∈ 1, . . . , N (1.4)
eij |η, zi, zj ∼ Ber(ηzizj), ∀(i, j) ∈ Eobs, (1.5)

where we let ηzizj
correspond to the ηk` indexed by the clusters indicated by

the categorical variables zi and zj , and we let bold indicate sets of variables.
α is a positive vector of length K and ak` and bk` are scalars, which together
constitute the fixed hyperparameters of the model.

4 Introduction

We can read the generative process prescribed by our model from this list: first,
we pick the proportions of nodes belonging to each community w, then we pick
the strengths ηk` of each possible cluster-to-cluster connection, and we assign
nodes to clusters in the assigned proportions. Finally, we connect edges between
two clusters k and ` relative to the strength ηk` of that pairing. Written using
conditional distributions, this gives us the following factorization of the joint
distribution over all of the variables,

p(e|z,η)p(z|w)p(η|a, b)p(w|α) (1.6)

This factorization structure is what we mean by conditional independence struc-
ture. Using just the product relation from probability, we can always trivially
write,

p(e|z,η,w,a, b,α)p(z|η,w,a, b,α)p(η|,w,a, b,α)p(w|a, b,α) (1.7)

no matter our assumptions, so stronger factorizations are a consequence of model
assumptions. Another way to express the same assumptions is by way of a
Bayesian network, a graphical model, where each node corresponds to one of
the conditional probability factors of the factorized joint distribution, with the
conditioning set determined by the parents of each node, as illustrated by the
Bayesian network of the stochastic block model in figure 1.1.

It is worth mentioning that while the graphical model and factorization structure
here follows the generative process, the product rule means that we can factor a
joint model over N variables in N ! ways, so the factorization used here is neither
unique nor necessarily causal. Essentially, looking at the graphical model, we
can invert any of the arrows, at the possible cost of introducing new arrows to
the graph. Since the factorization structure follows from the choice of model,
there is often a particular factorization that is more natural, though.

When a distribution factorizes like this, it eases inference as we can distribute
many operations across the factors, replacing a global computation with several
local ones. Take marginalization as an example. It is a basic fact of proba-
bility theory that given the joint distribution p(x1, x2, x3) over three random
variables, we can find the marginal distribution over just x3 by integrating out,
or marginalizing over, all possible values of x1 and x2

p(x3) =
∫∫

p(x1, x2, x3) dx1 dx2 (1.8)

While this is of course a simple example, it is clear that we are facing a multi-
dimensional integral over a potentially complicated function, and while a two-
dimensional integral might be manageable it is clear that the curse of dimen-
sionality would quickly come into play for even a modest number of random

1.1 Structure in Bayesian Probabilistic Models 5

variables, especially if we have to approximate said integrals. With condi-
tional independence, this can be greatly simplified: if the model factorizes as
p(x3)p(x2|x3)p(x1|x2), then the marginalization operation distributes like∫∫

p(x1)p(x2|x1)p(x3|x2) dx1 dx2 =
∫ (∫

p(x1)p(x2|p(x1)) dx1

)
p(x3|x2) dx2

(1.9)
which boils down to a two-stage procedure of first computing

p(x2) =
∫
p(x1)p(x2|p(x1)) dx1 , (1.10)

and then passing the result on to compute the final marginal

p(x3) =
∫
p(x3|x2)p(x2) dx2 . (1.11)

From a computational point of view, this improves on the original problem as we
now only need to compute two univariate integrals — even if our model involved
more random variables, we would still only have to compute univariate integrals,
if the random variables possessed the same simple chain-like factorization struc-
ture. This basic premise of factorization structure allowing the distribution of
computation is the key to most of the efficient inference algorithms today, from
belief propagation and junction tree algorithms in exact discrete inference (Koller
and Friedman 2009; Wainwright and Jordan 2008), over Kalman filters and Hid-
den Markov models (Chen 2003; Bishop 2006), to approximations capitalizing
on the factorization structure such as Gibbs sampling and variational message
passing, the latter of which we will discuss later (Minka 2005).

1.1.1 When Conditional Independence Breaks Down

Conditional independence is not a suitable assumption for all models, as random
variables can exhibit mutual co-dependence and high covariance. A very simple
example of this is a standard multivariate Gaussian with a dense precision
(inverse covariance) matrix Σ−1. No matter how we try to factorize it, we cannot
improve on the trivial factorization, as there are no conditional independencies to
exploit. This is a peculiar feature of the Gaussian, that the sparsity pattern of the
precision matrix matches the conditional independence structure exactly (Speed
and Kiiveri 1986).

Gaussian processes are an apt example of this, as there is typically no way around
working with unfactorized Gaussians. As Gaussian processes are effectively
probability measures on function spaces, as we will talk more about in the
chapter on Gaussian processes, this makes some intuitive sense as any one

6 Introduction

instance of the random function will perfectly determine the value of all function
evaluations simultaneously. Smoothness and continuity will likewise force the
function to conform globally to the constraints imposed by local evaluations.
This intuition can be misleading though; Matérn kernels in 1D encode varying
degrees of smoothness and have dense and full-rank covariance matrices, but are
actually Markov processes with an extreme conditional independence structure
where each random variable only depends on the preceding value (Hartikainen
and Särkkä 2010).

Finally, conditional independence can be compromised by marginalizing out
auxiliary parameters. Take the stochastic block model from before; if we integrate
out all the ηkl variables, we get the conditional distribution

p(e|z) =
∏
k,`

B(akl + nkl, bkl + n̄kl)
B(akl, bkl)

(1.12)

where nkl and n̄kl count the edges and non-edges, respectively, between clusters k
and `. Whereas the edges were generated independently previously, marginalizing
out the hierarchical parameters ηk` has led to a new likelihood where all the
edges are generated jointly. This procedure also works in reverse sometimes;
auxiliary variables can be introduced to represent complicated distributions in
terms of larger distributions exhibiting conditional independencies; examples
include general mixtures (Bishop 2006), the skew-normal distribution (Liseo and
Loperfido 2003), and binomial distributions (Polson, Scott, and Windle 2013;
Schein, Wallach, and Zhou 2016).

While marginalization often reduces the degree of factorization, it also offers
advantages. For one, the marginal joint containing just the data and the variables
of interest is the most compact description of the relationship between data and
latent variables; auxiliary variables are by their very nature confounding, or
at best irrelevant, elements to our analysis, and in an ideal setting we would
perform our analyses without them. Reducing the dimensionality of the latent
space is obviously a benefit in and of itself, and is particularly advantageous for
any optimization-based inference procedure like MAP, both due to avoiding the
problematic geometries of higher-dimensional spaces, but also as fewer tunable
parameters could mean fewer local optima. Secondly, while the dependencies
between the random variables are more intricate in the marginalized model, they
are also more representative. With auxiliary variables, we might have that two
variables of interest are weakly correlated under one configuration and strongly
correlated under another. Once we marginalize, the joint influence of both these
paradigms will be taken into account. Samplers have for instance been observed
to navigate marginalized domains more efficiently (Teh, Newman, and Welling
2007).

1.2 Papers and Thesis Overview 7

1.1.2 Approximations and Dependencies

While samplers can move around collapsed spaces more adroitly, they come
with their own shortcomings. The lack of reliable convergence diagnostics is
often cited, but they also often scale poorly and can have trouble with discrete
distributions. Variational methods, where we try to find an optimal surrogate
for the true posterior, as we shall describe in more detail in the chapter on
variational inference, tackle those issues, but face technical challenges during
inference. The classical approaches rely intensely on conjugacy, exponential family
distributions, and mean-field assumptions, which fits poorly with a marginalized
model: marginalization of exponential family distributions almost universally
results in densities outside of that class, and mean-field works best when random
variables are only weakly-dependent.

More modern approaches to variational inference have tried to circumvent these
issues, by making the inference methods more universally applicable and black-
box. The central task is then arguably to find models that can adequately
express the dependencies of the true posterior.

1.2 Papers and Thesis Overview

In this thesis and the accompanying papers, we will target the type of model
detailed above where conditional independence structure is not available to exploit
due to massive mutual interdependence of the random variables of interest. In
particular, we will circle around partition-based models, such as mixtures and
graph clustering models, and Gaussian processes, both of which exhibit this type
of interdependence in a very natural way as briefly described above.

The thesis ties together the three papers authored as part of this PhD. The
papers, and their connection to the main text, are described briefly below, with
the chapters of the mean text followed by more detailed contribution sections.

Difference-of-convex optimization for variational KL-corrected infer-
ence in Dirichlet process mixtures by Rasmus Bonnevie, Morten Mørup,
and Mikkel N. Schmidt, published as

R Bonnevie, M N Schmidt, and M Mørup (2017). “Difference-of-
Convex optimization for variational kl-corrected inference in dirichlet

8 Introduction

process mixtures”. In: 2017 IEEE 27th International Workshop on
Machine Learning for Signal Processing (MLSP), pages 1–6

The paper is concerned with inferring the cluster indicators of a Dirichlet process
mixture model, leading to a partition-based model similar to the graph community
model we described earlier once the continuous variables are marginalized out.
Seeking a variational approximation, the paper uses conjugacy to arrive at
the classical solution to the problem, and then the KL-corrected variational
bound to approximately marginalize out the nuisance parameters. The central
contribution is the discovery that the resulting bound has a difference-of-convex
property amenable to structure-exploiting optimization algorithms. The resulting
update steps turn out to be analytical, and we find a novel fixed-point formula.
This result is diminished by finding that the fixed-point procedure matches the
classical coordinate-ascent algorithm for variational Bayes exactly.

Joint Expectation Kernels by Rasmus Bonnevie and Mikkel N. Schmidt.
Submitted to NIPS 2018. This paper explores the application of kernel methods
to spaces of covariant random variables, with the original intent of finding ways
to apply Bayesian quadrature to functions evaluated at unknown locations, as
well as finding a more efficient method for Gaussian process regression with
noisy input. This paper deviates from the full Bayesian approach that we
otherwise advocate by proposing a kernel space embedding of the lower level
of the probabilistic hierarchy, e.g. the noisy input points. This allows the
direct application of kernel methods, and Gaussian processes in particular, to
sets of covariant random variables. We contrast the proposed kernel with the
existing kernel mean embedding methodology, noting conceptual and practical
differences. Application examples include censored data and the embedding of
entire Gaussian processes.

Matrix product states for inference in discrete probabilistic models
by Rasmus Bonnevie and Mikkel N. Schmidt. Submitted to JMLR. The final
paper tackles the previously detailed problem head-on by confronting the issue
that most variational approximations to discrete distributions fail to take mutual
dependency into account in any way, often using complete mean-field approxima-
tions where all random variables are assumed independent. For partition-based
models we conjecture that this can potentially be very harmful, as it will prevent
detection of alternative modes and obfuscate the true uncertainty. In this paper
we argue that matrix product states generalize the existing mean-field methods
while modeling dependencies much more explicitly. We also show how many
probabilistic operations such as marginalization and conditioning can be carried

1.2 Papers and Thesis Overview 9

out efficiently, and how inference can be performed using Monte Carlo gradient
estimators.

1.2.1 Structure of the Thesis

The thesis chapters are written with the intention of providing background on
the topics covered in the papers, as well as illustrating and showcasing novel
perspectives and recent innovations within each topic. We have divided the
material into three distinct topics, with some overlapping content, and we briefly
detail how each chapter relates back to one or more of the attached papers,

Chapter 1 on Variational Inference details an approximate inference method-
ology that has become pivotal over the last decade, namely that of varia-
tional inference, where the posterior is sought approximated by minimizing
a divergence with respect to a surrogate. Chapter 1 will focus on the many
developments over the last few years that has allowed the methodology
to be extended to models of arbitrary complexity, and contrasts it with
the classical approach based on conjugate models. This chapter relates
to papers Difference-of-convex optimization for variational KL-corrected
inference in Dirichlet process mixtures and Matrix Product states for in-
ference in discrete probabilistic models, where the former embodies the
classical approach and contrasts with the latter that tries to apply the
modern innovations in the field.

Chapter 2 on Gaussian Processes covers the basics, as well as details on
what assumptions are encoded in the choice of covariance kernel. We also
describe how to extend the Gaussian process to larger Gaussian ensembles.
For continuity, we will also explain how variational inference can be applied
to Gaussian processes. This chapter relates to the Joint expectation kernels
which describes a novel kernel that can be applied to spaces of covariant
random variables.

Chapter 3 on Tensor Networks details a novel type of model from quantum
mechanics and tensor factorization which can be used to model groups of
highly interdependent discrete random variables. We focus on its relation-
ship with probabilistic graphical models. The paper Matrix Product states
for inference in discrete probabilistic models covers this topic in greater
detail.

10 Introduction

Chapter 2

Variational Inference

Variational inference (Jordan et al. 1999) has quickly become the workhorse of ap-
proximate Bayesian inference. While Markov Chain Monte Carlo (MCMC) (Bishop
2006; Gelman et al. 2014) continues to see widespread use in problems where
accurate uncertainty quantification is essential, it is often charged with suffering
from poor diagnostics, slow convergence, and poor mixing. While there has been
significant progress on all of these points (Hoffman and Gelman 2014; Nemeth et
al. 2017), and probabilistic programming languages like Stan have made MCMC
a viable and dependable tool for the general research community (Carpenter
et al. 2017), scalability continues to be a real issue for sampling-based algorithms.
Aside from being convenient and occasionally elegant, scalability is really the
main selling point of variational inference.

2.1 KL Divergence and the Lower Bound

The name of variational inference references the calculus of variations which
is the study of optimization problems over spaces of functions. The central
premise of variational inference is that if we have a divergence measure between
distributions D(·‖·), then we can formulate inference as the optimization problem,

12 Variational Inference

p(z|x) ≈ argmin
q∈F

D(q(z), p(z|x)), (2.1)

for a posterior p(z|x) and some class of probability density functions F , where
we use x to denote a set of observed quantities (the “data”) and where z is the
latent quantity of interest. In other words, an approximation to the posterior is
found by minimizing the divergence between an approximate surrogate and the
true posterior. While the above expression describes the problem in all generality,
variational inference has largely become synonymous with minimizing the reverse
Kullback-Leibler divergence (Kullback and Leibler 1951; Minka 2005),

KL (q(z)‖p(z|x)) = Eq(z)
[
ln q(z)
p(z|x)

]
. (2.2)

The Kullback-Leibler divergence is notably not a distance in the metric sense as
it is neither symmetric nor obeys the triangle inequality, but it does possess the
two other properties of a metric, namely positivity KL (·‖·) ≥ 0 and discernibility
KL (p‖q) = 0⇔ p = q. It is also only well-defined if the p is absolutely continuous
with respect to q for KL (p‖q), making it challenging to apply to degenerate
distributions. It makes up for these lacks by being a Bregman divergence
and intimately tied to information geometry (Amari and Nagaoka 2007), and
also for generally being more amenable to analysis and application than more
general f -divergences and α-divergences. It also has the quality of being zero-
forcing, encouraging the approximate posterior to not put mass in low-density
regions (Minka 2005). This last property means that when the approximation
does not have the capacity to fit the true model, it would rather over-estimate
the mode rather than the tails of the true posterior, leading to the often cited
claims of underestimation of variance. As a result of its general tractability, the
divergence also breaks down neatly into well-known components from information
theory,

KL (p(z)‖q(z)) =
(
−Eq(z)[ln p(z)]

)︸ ︷︷ ︸
cross-entropy

−
(
−Eq(z)[ln q(z)]

)︸ ︷︷ ︸
entropy

(2.3)

A central issue with the divergence in equation (2.2) is that it requires prior
knowledge of p(z|x) to even evaluate. Getting around this turns out to be fairly
straightforward, if we start by defining the so-called Evidence Lower Bound.

Definition 2.1 The Evidence Lower Bound (ELBO) for a distribution p(x, z)
is

L(q) = Eq(z)[ln p(x, z)]− Eq(z)[ln q(z)] (2.4)

The definition of the ELBO follows from a particular relationship existing between
the KL divergence, the ELBO and the evidence ln p(x).

2.1 KL Divergence and the Lower Bound 13

Lemma 2.2 For a distribution p(x, z) with ELBO L(q) the following relationship
holds,

L(q) = ln p(x)−KL (q(z)‖p(z|x)) . (2.5)

Proof. We start with the KL divergence and multiply and divide by the
evidence in the fraction.

KL (q(z)‖p(z|x)) =
∫
q(z) ln q(z)

p(z|x) dz =
∫
q(z) ln q(z)p(x)

p(z, x) dz .

We can now pull out the evidence as it’s constant under the integral. Rearranging
then gives us the result. �

The above result explains why the ELBO is a lower bound on the evidence:
since the divergence is positive, it must hold that L(q) ≤ ln p(x). In fact,
since ln p(x) is constant, the above equality describes a much more powerful
relationship between the divergence and the bound as they are only ever off by
a constant. This is of particular interest as it implies that the ELBO and the
KL-divergence share gradients, critical points, and optima — as such we lose
nothing by substituting one for the other in an optimization problem. Due to
this, the variational inference problem of equation (2.1) using a Kullback-Leibler
divergence is often presented simply as,

min
q
L(q). (2.6)

Similarly to the way we could decompose the proper KL-divergence, we can also
decompose the ELBO in at least two informative ways:

Prior-likelihood decomposition By expanding the joint distribution, the
bound can be restated in terms of expected likelihood and the KL divergence
between approximation and prior.

L(q) = Eq[ln p(x|z)]−KL (q(z)‖p(z)) . (2.7)

The first term is then clearly a data-fit term, while the latter constrains
the optimal q to be close to the prior in the KL sense.

Energy-entropy decomposition If we view the joint as a Gibbs distribution
p(x, z) = eE(x,z), then we can write

L(q) = E[E(x, z)] +H(q), (2.8)

where H(q) = −Eq(z)[ln q(z)] is the differential Shannon entropy. The
entropy is the interesting part here, as maximum entropy is a common
principle for determining non-informative distributions.

14 Variational Inference

In both of these decompositions, we see a trade-off between q allocating proba-
bility mass to intervals with a high likelihood, and a regularizing effect: either
due to minimizing the divergence from the prior, or due to a maximization of
the entropy of the approximation.

Tractability now comes down to whether the two expectations can be computed.
We will contrast two paradigms: the case of conjugate exponential family mean-
field models where everything is tractable, and the more recent black-box setup
which can be applied to any model.

2.2 Gradients and Local Updates

Variational inference boils down to solving an optimization problem, which
is both a key advantage, but also a significant challenge. Most optimization
algorithms use gradients to change parameters incrementally in a gradient ascent
procedure, but we can also consider solving the complete problem in an iterative
fashion by solving a sequence of tractable subproblems. We will detail these two
variational inference designs below, starting with the more generally applicable
method.

2.2.1 Gradient Estimators

The most general optimization strategy for variational inference is also one of the
most recent. For expectations over distributions q(z;η) that are differentiably
parameterized with parameters η, it turns out we can take derivatives through
the expectation operator using the simple result (Ranganath, Gerrish, and Blei
2013),

Lemma 2.3 For a function f(z,η), differentiable in η, and a distribution
q(z;η) which is likewise differentiable in η, the following result holds

∇η Eq(z;η)[f(z,η)] = Eq(z;η)[(∇η ln q(z;η)) f(z,η) + ∇ηf(z,η)] . (2.9)

Proof. Expanding the expectation integral and moving the gradient inside,
which is allowed under some weak regularity conditions discussed in Ranganath,
Gerrish, and Blei (2013), we can apply the product rule

∇η

∫
q(z;η)f(z,η) dz =

∫
(∇ηq(z;η)) f(z,η) + q(z;η)∇ηf(z,η) dz .

(2.10)

2.2 Gradients and Local Updates 15

Now, we can simply apply the log-derivative trick ∇ηq(z;η) = q(z;η)∇η ln q(z;η)
to reintroduce q(z;η) as a factor, allowing us to write the whole thing as an
expectation, proving the relation. �

With the above result in hand, it’s straightforward to rewrite the gradient of the
ELBO as

∇ηL(q(z;η)) = Eq
[
(∇η ln q(z;η)) ln p(x, z)

q(z;η) −∇η ln q(x;η)
]
. (2.11)

A further simplification is possible as the last term, the so-called score function
∇η ln q(x;η) of q, has expectation 0 under q. Having moved the derivative
operator inside the expectation, we can now use Monte Carlo to construct
unbiased estimators of the gradients:

∇ηL(q(z;η)) ≈ 1
K

K∑
k=1

∇η ln q(x;η) ln p(x, zk)
q(zk;η) , zk ∼ q(z;η) (2.12)

Plugging this estimator directly into a stochastic gradient algorithm, we can
perform stochastic optimization on the ELBO. This particular estimator is
known variously as the black box estimator, the score function estimator, or the
REINFORCE estimator (R. J. Williams 1992; Ranganath, Gerrish, and Blei
2013). This general idea is arguably what has led to the current popularity
of variational inference, as it can be applied to arbitrary differentiable models.
The recurring problem is that although the estimator is unbiased, it can have
tremendously high variance. Soon after the above estimator was proposed,
another estimator grew into prominence (Salimans and Knowles 2013; Kingma
and Welling 2013; Rezende and Mohamed 2014), building on the simple Law of
the Unconscious Statistician,

x
(D)= h(ε)⇒ Ex[f(x)] = Eε[f(h(ε))] (2.13)

where (D)= denotes equality in distribution between two random variables. The
so-called reparametrization estimator constructs a gradient estimator simply by
moving the parameter out of the expectation, and then moving the gradient
operator inside the expectation,

∇η Eq(z)[f(z,η)] = Eq0(ε)[∇ηf(h(ε;η),η)] , z
(D)= h(ε;η), ε ∼ q0(ε).

(2.14)
Empirically, this has much lower variance, intuitively since we get to factor in
the dependence of the objective function f and apply the chain rule, as opposed
to the product rule used for the black-box estimator.

16 Variational Inference

The problem with reparameterization is that we need to find a new transform
for every distribution. All distributions with tractable CDFs are easy, as we
can simply use the inverse transform sampler to map uniform samples to the
density in question (Bishop 2006). A lot of solutions have been proposed for
other distributions, such as differentiable rejection sampling (Naesseth et al.
2017) or generalized reparameterizations that allow noise distributions to depend
weakly on the parameters (Ruiz, Titsias, and Blei 2016b).

2.2.1.1 Variance Reduction

The key to making gradient estimators work is to ensure the variance is suffi-
ciently small. Trivially, if it was zero and we had access to the true gradient
we would inherit all the guarantees of standard gradient descent, and while
stochastic gradient descent does guarantee asymptotic convergence for unbiased
gradients, high variance pushes the actual point of convergence further towards
the asymptotic regime (Robbins and Monro 1951). Various methods for reducing
the variance of Monte Carlo estimates have existed for decades in optimization
and statistics, but the initial papers proposing black-box gradient estimators
were quick to point out the importance of the topic (Ranganath, Gerrish, and
Blei 2013; Kingma and Welling 2013).

One strategy for variance reduction which is well-known in the statistics commu-
nity, albeit for other qualities, is importance sampling. The general conceit is to
estimate expectations by sampling from one distribution, and then weighting
the samples before averaging to turn the sample estimator into an estimator for
a different distribution. Mathematically,

Eq[f(z)] =
∫
q(z)f(z) dz =

∫
r(z)q(z)

r(z)f(z) dz = Er
[
q(z)
r(z)f(z)

]
, (2.15)

where we name r the proposal distribution, which we get to pick arbitrarily. In
most applications, importance sampling is simply used to generate samples from
a complicated q distribution, but we can start to speculate in whether some
choices of r lead to better estimators, specifically ones with lower variance. We
can actually find the optimal unnormalized proposal quite easily by applying
the calculus of variations to minimize the variance∫

r(z)
(
q(z)
r(z)f(z)− f̄

)2
dz (2.16)

with respect to the proposal r, where f̄ = Eq[f(z)]. Disregarding the arguments
for notational convenience, and rewriting the variance expression with a Lagrange

2.2 Gradients and Local Updates 17

multiplier and an exponential to ensure positivity,∫
er
(q
er
f − f̄

)2
dz + λ

∫
er dz − λ, (2.17)

we see that the derivative of the integrand with respect to r yields,

er
(q
er
f − f̄

)2
− 2er

(q
er
f − f̄

) q

er
f + λer. (2.18)

Setting this to zero, we can isolate er after some algebra,

er = q|f |√
f̄2 + λ

∝ q|f |. (2.19)

This is the minimal variance proposal, but ironically normalizing it requires us
to solve the original expectation problem (at least if f is positive). If we plug
it into the importance sampling relation of equation (2.15) and estimate the
expectation with a single sample ẑ ∼ r, it reduces to

q(ẑ)f(ẑ)
1

Eq[|f(z)|]q(ẑ)|f(ẑ)|
= sign(f(ẑ))Eq[|f(z)|] (2.20)

which, if f is positive, means that the estimator has 0 variance as the estimator is
just the desired expectation. This optimal density is obviously out of reach in any
practical application, but approximating it should bring down the variance. This
intuition is behind the overdispersed black-box variational inference procedure,
which argues that q|f | tends to have heavier tails than q, and thus modifying q
to have higher variance and broader tails reduces variance (Ruiz, Titsias, and
Blei 2016a).

Another popular strategy is control variates, which was brought up in the context
of gradient estimators for VI already during the original presentation of the black-
box method (Ranganath, Gerrish, and Blei 2013). The slightly counterintuitive
idea is to reduce variance by adding more randomness in the form of a zero-mean
random variable, with the saving grace that it is negatively correlated with the
target variable. In its simplest form we have

Eq[f(z)] = E
[
f(z) + αĥ

]
(2.21)

where ĥ is the arbitrary random variable we call the control variate, and α ∈ R
is a weight. Again, we can also write the expression for the variance,

Var
(
f(z) + αĥ

)
= Var(f(z)) + α2 Var

(
ĥ
)

+ 2αCov
(
ĥ, f(z)

)
. (2.22)

18 Variational Inference

If we take the derivative with respect to α and set it to 0, we find the following
optimal value,

α = −
Cov

(
ĥ, f(z)

)
Var
(
ĥ
) . (2.23)

Plugging it back into the variance expression, we get that ,

Var
(
f(z) + αĥ

)
= Var(f(z))−

Cov
(
ĥ, f(z)

)2

Var
(
ĥ
) , (2.24)

which implies that the optimal choice of ĥ is one that maximizes the covariance
with f(z). On a first look, the best choice would be f(z), but we have skipped
a bit lightly over the constraint that the control variate should be zero mean,
so the best choice is actually f(z) − E[f(z)] which leads to the same kind of
circular reasoning we saw for the importance sampling scheme.

Fulfilling zero-mean and high covariance simultaneously is actually a challenging
design problem as the closer we get to f(z), the more the control variate inherits
the expectation difficulties of the original problem. Sometimes a convenient can-
didate presents itself, like with the black-box estimator which has the integrand

∇η ln q(z;η) ln p(x, z)
q(z;η) −∇η ln q(z;η). (2.25)

It seems likely that this should have high covariance with ∇η ln q(z;η) which
is the so-called score function of q, which conveniently happens to always have
expectation 0 with respect to its underlying distribution (under some weak
regularity conditions). This makes the score readily applicable as a control
variate, and it was proposed alongside the black-box estimator (Ranganath,
Gerrish, and Blei 2013).

A more recent and general purpose design is based on Stein’s identity which
states that (Stein 1972; Liu, Lee, and Jordan 2016),

Lemma 2.4 (Stein’s Identity) For a smooth density q(z), it holds that

E
[
(∇z ln q(z;η))φ(z)> +∇zφ(z)

]
= 0, (2.26)

if
∫
∇z(q(z)φ(z)) dz = 0.

The conditions for Stein’s identity are automatically fulfilled for φ going to 0 on
the boundary and bounded q(z) (Liu, Lee, and Jordan 2016). This is readily

2.2 Gradients and Local Updates 19

transformed into a control variate by assuming φ : RD → R and summing over
the elements leaving,

ĥ = (∇z · ln q(z;η))φ(z) +∇z · φ(z) (2.27)

where ∇· is the divergence operator. This design has been used successfully in
conjunction with kernel methods (Oates, Girolami, and Chopin 2017) and a
neural version was also recently proposed (Zhu, Wan, and Zhong 2018).

A version of control variates that will become especially relevant to us later is
the REBAR/RELAX method (Tucker et al. 2017; Grathwohl et al. 2017). For
this, we assume there is an auxiliary random variable u and a function f̂ , so
that we can write

E[f(z)] = Ez[f(z)]− αEu
[
f̂(u)

]
+ αEu

[
f̂(u)

]
= (2.28)

Ez
[
f(z)− αEu|z

[
f̂(u)

]]
+ αEu

[
f̂(u)

]
(2.29)

where we have used the tower identity Eu[·] = Ez
[
Eu|z[·]

]
. This type of control

variate is particularly convenient when q(z) is not reparameterizable, but q(u)
and q(u|z) are. This becomes apparent if we take the gradient of equation
(2.29),

Ez
[(
f(z)− αEu|z

[
f̂(u)

])
∇ ln q(z;η)− α∇Eu|z

[
f̂(u)

]]
+ α∇Eu

[
f̂(u)

]
.

(2.30)

The original use case for the estimator was models with discrete z. It is impossible
to find a differentiable reparameterization of a discrete variable, but we can often
find a differentiably reparameterizable variable u such that z = H(u) where H is
a non-differentiable map. Assuming that u|z is tractable and reparameterizable,
this falls into the above category. Both binary and categorical random variables
can be reparameterized in this manner (Tucker et al. 2017). We extend it to
matrix product state models in our own work by adopting a strategy for binary
neural networks.

For completeness, we should also mention Rao-Blackwellization (Ranganath,
Gerrish, and Blei 2013). Rao-Blackwell’s theorem is a statement about the
variance of estimators, a consequence of which is that for an arbitrary estimator
g(X,Y) depending on two random variables X and Y ,

VarX(E[g(X,Y)|X]) ≤ VarX,Y (g(X,Y)). (2.31)

where E[·|X] is the conditional expectation. Intuitively, integrating out ran-
domness reduces variance. The most successful method in this paradigm is the

20 Variational Inference

local expectation gradient (Titsias and Lázaro-Gredilla 2015), which can be
summarized with the relation

∇η E[f(z)] = Ez−i

[
Ezi|z−i

[f(z−i, zi)∇η ln q(z−i, zi;η)]
]

(2.32)

where we have split z into its i’th element zi and the remaining elements z−i.
Note the expectation is also split into a multivariate and univariate part. If
we can solve the latter, Rao-Blackwell guarantees lower variance. For discrete
problems, this can be quite straightforward. We can further pick different zi
to marginalize over for each element of the gradient; to prevent superfluous
sampling we can sample a single pivot sample z∗ ∼ q(z;η) and use it for all of
the outer expectations, as z∗−i ∼ q(z−i;η).

2.2.2 Local Updates

Assuming that sets of latent variables are independent in the posterior will
weaken the approximation, but can pay out in terms of increased tractability.
If the latent quantity z breaks down into a set of latent variables or subsets of
latent variables z = {zi}Ni=1, we can assume that the sets are independent under
our approximation

q(z) =
N∏
i=1

q(zi). (2.33)

Applying this assumption to the ELBO, we can decompose it into parts

L(q) = Eq(zi)[Ezi
[ln p(z,x)]]− Ezi

[ln q(zi)] + const. = (2.34)

Eq(zi)

[
ln 1
Z

exp
(
Ez/i

[ln p(z,x)]
)]
− Ezi [ln q(zi)] + const. (2.35)

where we introduced the constant normalization constant Z. The two first terms
together form a negative KL divergence, so with respect to q(zi) alone, the
bound is maximized by matching the two elements in the divergence, i.e.

q∗(zi) = 1
Z

exp
(
Ez/i

[ln p(z,x)]
)
. (2.36)

Note that this result follows without making any parametric assumptions; as
with Bayes’ theorem, the functional form of the solution follows directly. This
sequential update scheme was once synonymous with variational Bayes, but
to contrast it with other optimization strategies it is often referred to as the
coordinate-ascent update, as it corresponds to an optimal application of that
algorithm.

2.3 Exponential Families 21

2.2.3 Variational Message Passing

In many scenarios, our model will factorize according to some Bayesian network
describing conditional independence relationships, letting us write

p(z) =
N∏
i=1

p(zi|pai) (2.37)

where pai is the set of parents of zi in the Bayesian network graph, and we
have subsumed the observed x into the set of random variables z for notational
simplicity. Substituting this into the logarithm of equation (2.36), we get

ln q∗(zi) =
N∑
j=1

E
[
ln p(zj |paj)|zi,x

]
+ const. (2.38)

Now, if j 6= i and i /∈ paj the j’th term will reduce to a constant. If i ∈ paj ,
we get the symmetric relationship j ∈ chi, with chi denoting the set of children
nodes of i. Since the expectation is then just over the children and parents of zi
(chi and pai), and the parents of the children paj for j ∈ chi, the expectation is
exactly restricted to the Markov blanket mbi which is defined to be this exact
set of variables. So the equation simplifies to (Winn and Bishop 2005)

ln q∗(zi) = E[ln p(zi|pai)|zi,x] +
∑
j∈chi

E
[
ln p(zj |paj)|zi,x

]
+ const. (2.39)

This equation details how updating q(zi) is a local operation, where a number
of function-valued “messages” from the parents (the first term) and the children
(the sum) are added together to form the update. To see under which conditions
the messages can be computed reliably, we will have to dig into the subject of
exponential families.

2.3 Exponential Families

The exponential family is a category of probability distributions that are partic-
ularly amenable to analysis and variational inference.

Definition 2.5 The exponential family consists of all distributions of the form,

p(x) = h(x) exp
(
T (x)>η −A(η)

)
, (2.40)

where η is the vector of natural parameters, A(·) is the log-normalizer, and T (·)
is the vector-valued function of sufficient statistics of x, while h(x) is the base
measure that the density reduces to if η = 0.

22 Variational Inference

This family of distributions might superficially appear to be of little practical
interest, but it happens to include the majority of distributions in common use,
including the Gaussian, the Bernoulli, the Poisson, the Gamma, the Beta, and
many others.

The exponential family distributions can also be motivated in a constructive man-
ner by considering a random quantity x which has known moments E[T (x)] = µ.
If all we know about the random quantity is the moment constraint, a rea-
sonable model of X would be the maximum entropy distribution from the set
of distributions with the fixed T -moment. This distribution can be shown to
be an exponential family with sufficient statistics T (·), and there is a unique
(minimal) exponential family with some η corresponding to every realizable
choice of µ, which has led the latter quantity to be denoted the mean param-
eters as it provides an alternative parameterization of the exponential family
class (Wainwright and Jordan 2008). To specify the natural parameters of this
maximum entropy solution, we can start with the following relationship between
the mean parameters µ and natural parameters. η

Lemma 2.6 For a random variable following an exponential family distribution
like the one defined in equation (2.40), the mean and covariance of T (X) can be
found as,

E[T (X)] = ∇ηA(η) (2.41)
Cov(T (X), T (X)) = ∇2

ηA(η) (2.42)

Proof. As the log-normalizer, A can be defined explicitly as

A(η) = ln
∫
h(x) exp

(
T (x)>η

)
dx (2.43)

and if we take the derivative of this quantity with respect to η, we get

∇A(η) =
∫
T (x)h(x) exp

(
T (x)>η

)
dx∫

h(x) exp(T (x)>η) dx
= E[T (X)] (2.44)

Repeating the argument, we get

∇2A(η) = ∇E[T (X)] = E[(T (X)−∇A(η))T (X)] = Cov(T (X), T (X))
(2.45)

proving the claim. �

While this result is extremely handy on its own, allowing us to turn expectation
integrals into derivatives, it also lets us implicitly define the natural parameters

2.3 Exponential Families 23

corresponding to a set of mean parameters as

η = [∇ηA]−1 (µ). (2.46)

There is a more amenable definition, though, in terms of the Legendre transform
(or convex conjugate) A∗(µ) of A(η), defined as

A∗(µ) = sup
η̃
µ>η̃ −A(η̃) = µ>η −A(η) (2.47)

where the last equation follows as the optimization problem has critical points
where µ = ∇ηA(η̃), which is solved by the uniquely matched pair (µ,η) obeying
lemma 2.6. The uniqueness is derived from lemma 2.6 which also happened to
show that A(η) is a convex function by virtue of the covariance being positive
semi-definite. By simple pattern-matching, we note that we can also relate A∗
to the entropy of the distribution as

Hx = −E[ln p(x)] = −
(
η> E[T (x)]−A(η) + E[ln h(x)]

)
= −A∗(x) +H(h)

(2.48)
To retrieve the natural parameters, we can take the gradient of A∗ with respect
to µ, giving us the dual form of lemma 2.6 as

η = ∇µA∗(µ) (2.49)

Given that the two parameterizations are interchangeable, we will finish this
section by reparametrizing the exponential family of equation (2.40) using µ,
yielding (Banerjee et al. 2005)

p(x) = h(x) exp
(
(µ>η −A(η)) + (T (x)− µ)>η

)
= (2.50)

h(x) exp(A∗(T (x))) exp(−DA∗(T (x),µ)) (2.51)

where
DF (x,y) = F (x)− F (y)−∇yF (y)>(x− y) (2.52)

is the general formula for a Bregman divergence associated with the convex
function F .

2.3.1 Example: The Gaussian Distribution

The Gaussian remains the most important and widely used continuous distribu-
tion in use. The D-dimensional multivariate density function is

p(x) = 1
(2π) D

2

1
|Σ| 12

exp
(
−1

2(x−m)>Σ−1(x−m)
)

(2.53)

24 Variational Inference

Expanding and reordering, we can get the natural parameterization

1
(2π) D

2
exp
(
−1

2x
>Σ−1x+ x>Σ−1m− 1

2m
>Σ−1m− 1

2 ln |Σ|
)
. (2.54)

Now, by using the trace properties, we can write the quadratic forms as inner
products,

x>Σ−1x = Tr
(
Σxx>

)
= vec

(
Σ−1)> vec

(
xx>

)
(2.55)

and then the Gaussian can be written in the standard exponential family form
as

h(x) = 1
(2π) D

2
, T (x) =

(
x

vec
(
xx>

)), η =
(

Σ−1m
vec
(
− 1

2Σ−1)), (2.56)

A = 1
2m

>Σ−1m+ 1
2 ln |Σ| = −1

4η
>
1 mat(η2)−1η1 −

1
2 ln |−2 mat(η2)| , (2.57)

where we use vec(·) and mat(·) to denote vectorization and its inverse operation.
From this we can see that Gaussians can be justified as maximum entropy
distributions with known first and second moment. By taking the derivative of
the log-normalizer using matrix calculus, we can find the

µ =
(

− 1
2 mat(η2)−1

η1

vec
(

1
4 mat(η2)−1

η1η
>
1 mat(η2)−1 − 1

2η
−1
2

)) =
(

m
vec
(
Σ +mm>

))
(2.58)

which matches up with the expected results, i.e. the two first moments.

The conjugate log-normalizer in m and Σ standard parameters is

A∗ = m>Σ−1m− D

2 −
1
2m

>Σ−1m− 1
2m

>Σ−1m− 1
2 ln |Σ| = −1

2 ln |Σ| − D

2
(2.59)

and from that follows the entropy

H(p) = −A∗ − E[ln h(x)] = 1
2 ln |Σ|+ D

2 + D

2 ln 2π = 1
2 ln |2πeΣ| (2.60)

Aside from the trivial integral over h(x), note that all of the above results have
been derived without resorting to integrals.

2.3.2 Conjugate Priors

While exponential families are eminently tractable as demonstrated above, the
real challenge of Bayesian inference is integrating information from the likelihood

2.3 Exponential Families 25

with the prior. Recall that Bayes’ theorem says that the posterior is proportional
to the product of the prior and the likelihood,

p(η|{xn}Nn=1) ∝
N∏
n=1

p(xn|η)p(η). (2.61)

So if both the likelihood and the prior are distributed according to exponential
family distributions, does this imply that the posterior is also distributed ac-
cording to an exponential family? Taking the logarithm of the right-hand side
and assuming that the prior has base measure h0, sufficient statistics T0(·), and
natural parameters γ,

N∑
n=1

ln p(xn|η)+ln p(η) =
(

η
−A(η)

)>(∑N
n=1 T (xn)
N

)
+γ>T0(η)+ln h0(η)+const.

(2.62)
So an exponential family prior with sufficient statistics T0 induces an exponential
family posterior with sufficient statistics (T0(η),η,−A(η)). As such, combina-
tions of arbitrary likelihoods and arbitrary priors can sweep out exponential
families with all kinds of ungainly sufficient statistics. The conjugate prior to a
likelihood is any prior such that the posterior has the same sufficient statistics
as the prior. The canonical conjugate prior is the one where

ln p(η) =
(

η
−A(η)

)>(
γ
ν

)
−A0(γ, ν) + ln h0(η), (2.63)

inducing a posterior of the form,

ln p(η|{xn}Nn=1) =
(

η
−A(η)

)>(∑N
n=1 T (xn) + γ
N + ν

)
−A0(γ, ν) + ln h0(η),

(2.64)
where we have dedicated a special natural parameter ν to the sufficient statistic
−A(η). A classical interpretation of the conjugate prior is that it simulates a
series of pseudo-observations: ν is added to the datapoint counter N , and γ
is added to the accumulated sufficient statistics, so that the combined effect is
equivalent to having observed ν new datapoints with average sufficient statistic
1
νγ.

2.3.3 Conjugate Models and Variational Message Passing

In section 2.2.3 we detailed a scheme for inference when the q model factorized,
but ended at an impassé as we were left with a number of tough expectations in

26 Variational Inference

the update formula,

ln q∗(zi) = E[ln p(zi|pai)|zi,x] +
∑
j∈chi

E
[
ln p(zj |paj)|zi,x

]
+ const. (2.65)

If we assume that each conditional distribution takes the shape of an exponential
family distribution with ηi being a function of the conditioning set ηi(pai),

E
[
ln p(zj |paj)

]
= E[ln h(zj)] +

(
E[T (zj)]

1

)>(E[ηj]
−E[Aj(ηj)]

)
, (2.66)

where we used the independence assumption to split the expectation across
terms, then the update formula for ln q∗(zi) can be stated as

h(zi) + T (zi)> E[ηi|x] +
∑
j∈chi

(
µj
1

)>(E[ηj |zi,x]
−E[Aj(ηj)|zi,x]

)
. (2.67)

So we can ask ourselves what assumptions we have to make to ensure that this
is tractable.

Recall that the natural parameter was a function of the conditioning set ηi(pai).
The simplest scenario is the one where this function is the identity, and each
variable only has one parent, so that the graphical model is tree-structured and
ηi = zpai

. The update formula then becomes

h(zi) + T (zi)> E
[
zpai
|x
]

+
∑
j∈chi

(
µj
1

)>(
zi

−Ai(zi)

)
(2.68)

If T (zi) =
(

zi
−Ai(zi)

)
, then the updated distribution q(zi) has the same func-

tional form as its prior. This is the same set of sufficient statistics we found for
the conjugate prior, so for tree-structured graphical models we require that the
parent of each node is a conjugate prior to it.

For more general graphs where variables can have multiple parent nodes, we
will have to consider something called variational message passing (Winn and
Bishop 2005). If the terms coming from the sum in equation (2.67) happened to
be consistent with the sufficient statistics of zi, in the sense that(

ηj
−Aj(ηj)

)
= Mj(paj/{zi})T (zi) (2.69)

2.3 Exponential Families 27

for some matrix-valued function of the co-parents Mj(·), then the message
passing formula would add together to

h(zi) + T (zi)> E

ηi +
∑
j∈chi

Mj(paj/{zi})>
(
µj
1

). (2.70)

which is a member of the same exponential family as the prior on zi with
sufficient statistics T (zi). Note that the same decomposition should be possible
for all other parents of j as well. Notably, this means that equation (2.69) should
hold, with the matrix changing with index k:(

ηj
−Aj(ηj)

)
= Mj,k(paj/{zk})T (zk), ∀k ∈ paj (2.71)

This means that ηj must be a multi-linear function of the sufficient statistics of
all the P parents(

ηj
−Aj(ηj)

)
= Mj(T[paj]1(z[paj]1), . . . , T[paj]P (z[paj]P)) (2.72)

and since expectations are linear operators, we can easily compute expectations
over M as we know the expected sufficient statistics µ for each of its inputs,

E
[
ηj

∣∣∣T[paj]i(z[paj]i)
]

= Mj(µ[paj]1 , . . . , T[paj]i(z[paj]i), . . . ,µ[paj]P) (2.73)

Together, this allows us to compute q∗(zi) from equation (2.67) by aggregating
info from the mean parameters µj of the Markov blanket j ∈ mbi using the
multi-linear aggregating functions Mi.

2.3.4 Stochastic Variational Inference

Conjugate exponential family models do not just make the message passing
updates easier, they can also make gradient computations much simpler. If we
focus on a single factor q(zk;ηk) assumed to be in the exponential family, then
the ELBO gradient from equation (2.11) becomes

∇ηk
L(η) = E

[
(∇ηk

ln q(z)) ln p(x, z)
q(z;η)

]
= (2.74)

Ezk

[
(T (zk))− E[T (zk)])

(
E[ln p(z,x)|zk]− T (zk)>ηk − ln h(zk))

)]
, (2.75)

where we could discard all terms (i.e. the log-normalizer and other factors of
q) that were constant with respect to ηk and were multiplied by the factor
T (zk)− E[T (zk)] as it has expectation 0. Now, we can recognize the expected

28 Variational Inference

ln p term as the optimal local update to q(zk) from equation (2.36). If p is a
tree-shaped conjugate exponential family model, then we know that q∗(zk) is of
the same functional form as the conditional prior p(zk|pak) as corroborated by
equation (2.68),

ln q∗(z) + const. = E[ln p(x, z)|zk] = ln h(zk) + T (zk)>η∗k −NA(ηk). (2.76)

Plugging this result back into equation (2.74) we get the gradient formula

Ezk
[(T (zk))− E[T (zk)])T (zk)] (η∗k − ηk), (2.77)

which we see is easily set to 0 by updating q(zk) to be q∗(zk), corroborating that
it is the optimal update. This equation still requires computing an expectation,
but we actually already computed the value of this expectation in lemma 2.6,
where we saw that the covariance of the sufficient statistics is simply the Hessian
of the log-normalizer,

Cov(T (zk), T (zk)) = ∇2
ηk
A(ηk). (2.78)

For exponential families, the covariance of the sufficient statistics happen to
be equal to the Fisher information matrix I, so we can write the full gradient
compactly as,

∇ηk
L(η) = Iqk

(η∗k − ηk). (2.79)

2.3.4.1 Natural Gradients

Computing a Hessian can be an inconvenience, but as argued by Hoffman,
Blei, et al. (2013) we can actually get around that by using natural gradients.
Ordinary gradients try to find the direction of steepest ascent using the standard
Euclidean norm to measure step distance; the natural gradient is what we get
if we use a distance measure more appropriate for the parameter space. If we
use symmetrized Kullback-Leibler divergence, the natural gradient ∇̃L is a
preconditioned Euclidean gradient,

∇̃ηk
L(η) = I−1

qk
∇ηk
L(η) (2.80)

where I is again the Fisher information matrix (Hoffman, Blei, et al. 2013).
Very conveniently, this preconditioner cancels exactly with the Fisher matrix
pre-factor of the original gradient, so the natural gradient can be stated succinctly
as (Hoffman, Blei, et al. 2013),

∇̃ηk
L = η∗k − ηk. (2.81)

This update shows that a natural gradient step of length 1 matches exactly with
an optimal local update (Sato 2001; Hoffman, Blei, et al. 2013). To complete the

2.4 Lower Bound Algebra 29

description of the update, we can find a formula for η∗ by returning to section
2.2.3. Of special interest is again the tree-shaped conjugate exponential family
graphical models, where by extracting the relevant terms from equation (2.68),

η∗i = E
[
zpai
|x
]

+
∑
j∈chi

(
µj
1

)
(2.82)

2.3.4.2 Stochastic Updates

Note that equation (2.82) (and the natural gradient of equation (2.81) by ex-
tension) decomposes nicely as a sum over the child indices j. A benefit of sum
decompositions is that we can also construct stochastic estimators of the gradient,

η̂∗i = E
[
zpai
|x
]

+N

(
µI
1

)
(2.83)

where I is a random index, sampled uniformly from the indices of the children
chi. As this estimator is demonstrably unbiased, we can use it in any stochastic
gradient algorithm, trading off a larger number of iterations to convergence for
a lower per-iteration cost (Robbins and Monro 1951; Bottou 2010). Another
advantage of only having to evaluate one child node is that we can get away with
only lazily updating our parameters, which is the real key to the algorithmic
procedure known as Stochastic Variational Inference (Hoffman, Blei, et al. 2013).
If we want to update node i optimally, we should first update all of its children
conditioned on i. But if there is a large number of children, this update will
carry a high computational cost. If we use the stochastic update, we can simply
pretend that we updated all of the child nodes — we only actually have to
compute the single child node corresponding to I, as the rest do not enter into
the stochastic update. So we can perform (stochastic) optimal updates, with the
iteration cost scaling in the number of samples used for the stochastic estimator
(O(1)) instead of in the number of children (O(N)).

2.4 Lower Bound Algebra

Having covered the basics of variational inference in conjugate exponential
and black-box models, we can consider how to improve on the basic design by
making inference more efficient or by expanding to more complicated models or
approximations.

30 Variational Inference

2.4.1 Variational Approximations with Auxiliary Random
Variables

Outside of the black-box paradigm, we are restricted to using q models that
are tractable in the sense that we can compute both their expectation over the
log-likelihood and their entropy. A number of authors have demonstrated how
the complexity of the variational model can be increased by introducing auxiliary
variables u into the approximation (Agakov and Barber 2004; Salimans and
Knowles 2013; Ranganath, Tran, and Blei 2015). The canonical example of an
auxiliary variable variational approximation is

q(z) =
∫
q(z|u)q(u) du (2.84)

To get a bound in both z and u, the following theorem can be used (Salimans
and Knowles 2013; Ranganath, Tran, and Blei 2015).

Theorem 2.7 For a variational approximation q(z) =
∫
q(z|u)q(u) du, the

following bound is equivalent to the ELBO for q(z)

L(q) = Eq(u,z)[ln p̃(x, z,u)− ln q(z,u)] (2.85)

where p̃(x, z,u) = p(x, z)q(u|z), with q(u|z) = q(u, z)/q(z)

Proof. Simply decompose ln q(z,u) = ln q(z) + ln q(u|z) to cancel out the
extra factor in the modified joint p̃. �

If the auxiliary conditional q(u|z) is intractable, it can be further approximated
with its own independent variational approximation r(u|z) (Ranganath, Tran,
and Blei 2015).

Lemma 2.8 For any two distributions q(u, z) and r(u|z)

Eq(u,z)[ln q(u|z)] ≥ Eq(u,z)[ln r(u|z)] (2.86)

Proof. Add E[ln r(u|z)− ln r(u|z)] to the left-hand side to get

E[ln r(u|z)] + E
[
ln q(u|z)
r(u|z)

]
= E[ln r(u|z)] + KL (q(u, z)‖r̃(u, z)) (2.87)

where r̃(u, z) = r(u|z)q(z). Since the divergence is non-negative, the bound
follows. �

2.4 Lower Bound Algebra 31

Applying the above inequality to L then yields a new bound for hierarchical
approximations (Ranganath, Tran, and Blei 2015).

Theorem 2.9 Define a bound

LH(q, r) = E[ln p(x, z)]− E[ln q(u) + ln q(z|u)− ln r(u|z)] (2.88)

then L(q) ≥ LH(q, r) with the gap being KL (q(u, z)‖r̃(u, z)).

Proof. Apply lemma 2.8 to the expanded bound in equation (2.85). The gap
follows from the proof of the lemma. �

2.4.2 Collapsed Bounds for Optimization Space Reduc-
tion

Probabilistic models can involve a number of latent nuisance parameters u
which are necessary to formulate the model, but irrelevant for the final analysis.
Even if this is not the case, we can sometimes get away with estimating the
posterior on a subset of the latent variables, and then use the approximation to
formulate a posterior on the remaining variables analytically. If our model takes
the factorized form

p(x, z,u) = p(x|z,u)p(z|u)p(u), (2.89)

the ideal solution would be to simply use

p(x, z) =
∫
p(x|z,u)p(z|u)p(u) du , (2.90)

for calculating the posterior and any other inference tasks. The marginaliza-
tion integral can be tractable, e.g. for conjugate exponential family models,
but marginalized exponential families are rarely exponential families them-
selves (Hensman, Rattray, and Lawrence 2012). As a consequence, it is difficult
to perform variational inference on marginalized models unless we use black-box
methods.

The KL-corrected bound is an alternative bound which is only over the latent
variables z. It does not marginalize out the nuisance parameters, but rather
assumes that q(z,u) = q(z)q(u) and then replaces q(u) with its optimal setting
q∗(u) from equation (2.36). The KL-corrected bound thus achieves a reduction
in the number of parameters to be optimized for.

32 Variational Inference

An enlightening derivation of the KL-corrected bound follows from first calculat-
ing the auxiliary bound

ln p(x|u) ≥ Lu(q) = Eq(z)[ln p(x, z|u)]− Eq(z)[ln q(z)] , (2.91)

which is the standard ELBO for the conditional model p(x, z|u). The lower
bound property is preserved under monotonic transformations, so we use the
transform lnEp(u)[exp(·)] on both sides, yielding the full KL-corrected bound,

ln p(x) ≥ ln
∫
p(u) exp(Lu(q)) du = (2.92)

ln
∫
p(u) exp

(
Eq(z)[ln p(x, z|u)]

)
du− E[ln q(z)]. (2.93)

Two results make this setup elegant. First, we know that q∗(u) ∝ exp
(
Eq(z)[ln p(x, z,u)]

)
from earlier. Knowing the two bounds, we can instead write

q∗(u) = p(u) exp(Lu(q(z))− LKL(q(z))). (2.94)

The auxiliary bound Lu modulates the prior through its dependence on u, while
LKL is the normalization constant. This means that we can retrieve the optimal
normalized density function for u at any time using the value of the bounds.

Second, whereas other alternative bounds fail to characterize what divergence
they are minimizing we can state the following theorem:

Theorem 2.10 The KL-corrected bound of p(x, z,u) is related to the mean-field
ELBO LMF factorizing over u and z by

LKL = LMF + KL (q(z)‖q∗(z)) (2.95)

Proof. Using equation (2.94), we can expand the KL divergence as

KL (q(z)‖q∗(z)) = Eq(u)

[
ln q(u)
p(u) − Lu(q)

]
+ LKL(q) (2.96)

Plugging in the definition for Lu(q) from equation (2.91), we can simplify the
expression,

Eq(u)

[
ln q(u)q(z)
p(x, z,u)

]
+ LKL(q) = −LMF(q(z), q(u)) + LKL(q(z)) (2.97)

Adding the mean-field bound then proves the theorem. �

The KL-corrected bound is then an upper bound to the mean-field ELBO, which
saturates when q(u) = q∗(u).

2.5 Biased Bounds for Model Selection 33

2.5 Biased Bounds for Model Selection

While we have mostly used variational bounds to find the optimal choice of
approximation q, it is also frequently used for model selection. Recall that model
selection is the process of finding the set of hyperparameters α so that the
actual probabilistic model p(x;α) generalizes as well as possible. Often, this is
accomplished by maximizing the log-evidence ln p(x;α) for fixed data x, in a
procedure known as empirical Bayes (Bernardo and Smith 2000; Bishop 2006).
Unfortunately, the evidence is exactly the intractable normalization constant we
are using approximate inference to avoid, making it hard to use it in practice.

As the ELBO is a lower bound of the log-evidence, it is tempting to use it as a
proxy as maximizing

L(q;α) ≤ ln p(x;α), (2.98)

with respect to the hyperparameters α should push the log-evidence upwards.
This is a strong assumption though, as the real relationship was given in lemma
2.2 as

L(q;α) = ln p(x;α)−KL (q(z)‖p(z|x;α)) . (2.99)

Maximizing the lower bound could push the log-evidence up, but the divergence
term also plays in. It is possible for the log-evidence to go down, while the KL
divergence increases proportionally to close the gap, yielding a net positive gain.
A realistic scenario could be that we pick a set of hyperparameters diffusing and
smoothening the model density, worsening the model fit, but making it easier
to approximate. A number of authors have thus pursued lower bounds with a
tighter fit to the model evidence.

The central tool in this construction is Jensen’s inequality, which states that for
concave functions like f(·) = ln(·),

E[f(g(x))] ≤ f(E[g(x)]). (Jensen’s Inequality)

Plugging in the logarithm for f and the probability ratio p/q for g, we get

Eq
[
ln
(
p(x, z)
q(z)

)]
≤ lnEq

[
p(x, z)
q(z)

]
= ln

∫
p(x, z) dz = ln p(x), (2.100)

which is another proof of the lower bounding property. The key feature used in
the argument is that p(x,z)

q(z) is an unbiased estimator of the log-evidence ln p(x)
when z ∼ q. Extrapolating from this, we could replace the density ratio with any
other parametric unbiased estimator Eq(z)[p̂(x, z, q;α)] = p(x;α), generating a
family of Monte Carlo Objectives (Maddison et al. 2017)

LMCO = E[ln p̂(x, z, q;α)]. (2.101)

34 Variational Inference

One important member of this group of bounds is the Importance Weighted ELBO
(IW-ELBO) which precedes the more general definition above (Burda, Grosse,
and Salakhutdinov 2015). More commonly known as the IWAE (importance-
weighted auto-encoder) bound due to it initially being used to train auto-encoders,
it is found by simply taking multiple samples z(i) ∼ q and expanding the implicit
unbiased estimator of the standard ELBO in a natural fashion as

LS(q) = E

[
ln 1
S

S∑
i=1

p(x, z(i))
q(z(i))

]
(2.102)

This reduces to the ELBO for S = 1, and the authors go on to show that (Burda,
Grosse, and Salakhutdinov 2015, Theorem 1),

ln p(x) ≥ Lk+1 ≥ Lk, (2.103)

demonstrating a natural progression of the bounds. We note that the bound
grows tighter with decreasing variance, a notion that was later formalized for
general Monte Carlo Objectives (Maddison et al. 2017).

Going back to Jensen’s inequality, we could also change the choice of concave
function. Defining

V (z;α) = ln q(z)− ln p(x, z;α,) (2.104)

we can write the evidence as,

p(x) = E[exp(−V (z;α))]. (2.105)

For a concave function f with f(x) ≤ x when x > 0, we can then define the
f -ELBO as (Bamler et al. 2017),

E[f(exp(−V (z;α)))] ≤ f(p(x)) ≤ p(x). (2.106)

For f being the identity, we get zero bias as it reduces to importance sampling of
Ep(z)[p(x|z)] using q, but importance sampling often suffers from large variance.
If f is the logarithm, on the other hand, then we get the ELBO which has lower
variance than importance sampling due to the canceling out of the exponential
function, but suffers from bias. A proposed bound lying between the two extremes
is the perturbative variational bound employing the function implicitly defined
by

fV0(e−V) = e−V0

(
1 + (V0 − V) + 1

2(V0 − V)2 + 1
6(V0 − V)3

)
, (2.107)

which effectively swaps the exponential function for a third order Taylor approx-
imation, reducing the growth rate and the bias simultaneously (Bamler et al.
2017).

2.6 Contribution 35

While the biased bounds are appropriate proxies for optimizing α, it is not clear
whether we can use them to find q as well, like how the original ELBO is a
surrogate for the KL divergence via equation (2.99). As such, it might not be
appropriate to maximize the new bound with respect to q; we are quite sure
not to be optimizing the KL divergence anymore, and if we are still minimizing
something divergence-like, it is unclear what properties it preserves. In a recent
paper, it was shown that every Monte Carlo objective actually does minimize the
KL divergence, just not with respect to the original posterior. They write (Le
et al. 2018, Claim 1),

Lemma 2.11 Given a non-negative unbiased estimator p̂(x, z, q;α) ≥ 0 of the
normalizing constant p(x;α) where z is distributed according to the proposal
distribution q(z), the following holds:

Eq[ln p̂(x, z, q;α)] = ln p(x;α)−KL (q‖p∗) , (2.108)

where
p∗(z) = q(z)p̂(x, z, q;α)

p(x;α) (2.109)

is the implied normalized posterior.

For the standard ELBO where p̂(x, z, q;α) = p(x,z;α)
q(z) the proxy posterior p∗ is

actually the true posterior, consistent with our previous beliefs (Le et al. 2018).
For the IW-ELBO, we can take q({zK}Sk=1) =

∏K
k=1 q(zK) and get

KL
(

K∏
k=1

q(z(k))

∥∥∥∥∥ 1
K

K∑
k=1

∏K
`=1 q(z(`))
q(z(k))

p(z(k)|x)
)
. (2.110)

This divergence is still minimized at q = p, but as K grows each marginal
z(k) of the proxy posterior becomes a mix of K − 1 copies of q and a single
copy of the true posterior p(z(k)|x). In the limit, the true posterior will have a
vanishingly small influence on the shape of the proxy posterior. This illustrates
that the IW bound is not really an appropriate objective function, despite its
other properties (Rainforth et al. 2018). As a curiosity, we note that the proxy
posterior above is reminiscent of the proxy posterior used in pseudo-extended
MCMC, except with q used instead of smoothened posteriors (Nemeth et al.
2017).

2.6 Contribution

Our own contributions to the field of variational inference are two-fold, split
across our two papers Difference-of-convex optimization for variational KL-

36 Variational Inference

corrected inference in Dirichlet process mixtures and Matrix Product states for
inference in discrete probabilistic models. The first is strongly rooted in the
traditional approach to variational inference, where we explore the properties
of the KL-corrected bound in the special case where the bound has a so-called
difference-of-convex structure. Just like the optimal coordinate-ascent steps
turned out to be interpretable in terms of natural gradients (Sato 2001), we
show that applying the convex-concave procedure by Yuille (2002) to the KL-
corrected bound leads to a novel fixed-point algorithm. For the product of N
independent categoricals on K categories that we used, q(Z) =

∏N
n=1

∏K
k=1 µ

znk

nk ,
with parameter µ, the fixed point formula turned out as,

µt+1 = softmax(∇µ ln p(X,Eqµ [Z]))|µ=µt
, (2.111)

revealing a distinct relationship between solutions to the variational inference
problem and their gradients. The paper comes with a negative result as well,
though, as this fixed point process turns out to be identical to coordinate ascent
updates, so while we shine new light on the venerable method, we fail to capitalize
fully on the promise of difference-of-convex optimization, largely owing to the
fact that to fully exploit the KL-corrected bound we need to use second-order
derivatives, and the convex-concave method is only first order.

The paper Matrix Product states for inference in discrete probabilistic models,
on the other hand, contributes to the modern black-box approach to variational
inference by demonstrating how the discrete REBAR/RELAX estimators can
be applied to the novel case of tensor networks, a powerful type of model that
we will cover in greater detail in chapter 4. We consider how the model can be
reparametrized, explore control variate designs, and build a coupled sampler
that allows the model to use the RELAX estimator. We also put a lot of
emphasis on how the structured variational approximation contrasts with mean-
field models, which can be quite weak approximations for highly structured
discrete distributions.

Chapter 3

Gaussian Processes

Gaussian processes are a kind of stochastic process, defined as a set of random
variables fx indexed by elements of some domain x ∈ X such that any finite
subset {fxi

}Ni=1 have a joint Gaussian distribution. This construction can appear
very abstract, but the ability to associate a random variable with any point of a
domain X turns out to make Gaussian processes (and other stochastic processes)
ideal for modeling functions. Take the simple index space x ∈ X = R, for
instance. In a standard coordinate system, we could for every x find a random
variable fx corresponding to the value of an unknown random function f(·) at
that location. Now imagine a dense grid xi. Since the fxi

are jointly Gaussian,
we can sample them to trace out a random graph (xi, fxi). This random graph
outlines one possible sample of the random function f(·), and we will henceforth
take f(x) = fx.

As Gaussians are parameterized by a mean and a covariance, we can imagine
collecting the means and covariances for all values x ∈ X to extend the parameters
to the stochastic process setting. We can take m(x) to be the mean function,
defining the mean value of each random variable and the random function as a
whole, and k(x,x′) to be the covariance function, yielding the covariance between
any two points x,x′ ∈ X . The covariance function determines the properties
of the random function. If k(x,x′) is high, the values of f(x) and f(x′) are
likely to be similar in value, so if we set the covariance to be high when x is
close to x′ we get more continuous functions, and the distance over which the

38 Gaussian Processes

covariance decreases is reflected in the distance over which the function changes
significantly.

As any finite set of index points induces a finite-dimensional Gaussian distribution,
we can consider the joint distribution over two index sets Xa,Xb ⊂ X with finite
mean and covariance matrix

m =
(
ma

mb

)
, K =

(
Ka ka,b
kb,a Kb

)
(3.1)

where [ma]i = f(xi) and [Ka]ij = k(xi,xj) for xi,xj ∈ Xa (similarly for b),
and [ka,b]ij = k(xi,xj) for xi ∈Xa and xj ∈Xb. In a slight abuse of notation,
we will also sometimes write k(Xa,Xb) to mean ka,b. Using standard Gaussian
calculus, we know that the conditional distribution ofXb|Xa is likewise Gaussian,
and has distribution (Rasmussen and C. K. I. Williams 2006)

mb|a = mb + kb,aK−1
a (y −ma), Kb|a = Kb + kb,aK−1

a ka,b (3.2)

for observations yi = f(xi) for xi ∈Xa.

Assuming for the time being that ma = mb = 0, the mean function becomes

kb,aK
−1
a y (3.3)

There are two possible interpretations of this:

Linear Smoother If we group s = K−1
a k>b,a we get that the mean function is

s>y, i.e. the predictive mean is a linear smoothing of the observations y.

Basis Functions By instead grouping w = K−1
a y we get that the predictive

mean is a linear combination of [kb,a]ij = k(xi,xj) for xi ∈ Xb and
xj ∈Xa. We then see that the predictive mean is a linear combination of
basis functions k(·,xj), one for each xj in the conditioning set.

In addition to the predictive distribution being tractable, we can also compute
the marginal evidence,

p(y) = N (y; 0,K). (3.4)
This is commonly used to tune the Gaussian process model, which can depend
on hyperparameters through the mean and covariance functions.

3.1 Kernels

The kernel function essentially defines the Gaussian process. The mean function
can matter in inference, but like with ordinary Gaussians we can always restate

3.1 Kernels 39

a Gaussian process with non-zero mean f ∼ GP(m, k) in terms of a Gaussian
process with zero mean f0 ∼ GP(0, k) as

f(x) = m(x) + f0(x). (3.5)

Another reason that people often argue that the mean function does not matter
is that it can be subsumed into the kernel. The price is that we have to impose
a zero-mean Gaussian scaling coefficient X ∼ N (0, λ) on the mean, yielding the
augmented random function,

f̂(x) = Xm(x) + f(x). (3.6)

As we are just adding a Gaussian to a Gaussian for every x, the result is another
Gaussian process with statistics,

E
[
f̂
]

= 0, E
[
f̂(x)f̂(x′)

]
= k(x,x′) + λm(x)m(x′) (3.7)

which is now zero-mean, but with a new term in the kernel. Of course, this
model is different from the fixed mean version; if one wants to model the random
fluctuation around some specific known mean behavior, a fixed mean is better
as it takes sign and scale into account.

Kernels can be quite different, but an import requirement is that they are always
symmetric and positive semi-definite (PSD), which means that for any set X of
indices,

v>k(X,X)v ≥ 0, ∀v ∈ R|X| (3.8)

This is equivalent to requiring that k(X,X) should always have positive eigen-
values. As an aside, this does not mean that k(X,X) has to be element-wise
positive, but it does necessitate a positive diagonal; recall that k(X,X) describes
the covariance of f(x) for x ∈X, so while the off-diagonal covariances can be
negative, the on-diagonal variances have to be non-negative. Checking whether a
particular function is PSD is a bit of a hassle, so often researchers rely on a more
compositional approach. The above derivation of the zero-mean GP illustrated
two of the most important rules of what is sometimes called the kernel calculus,
which allows for the design of novel kernels by composing existing kernels,

Squaring of a function Any function g can be turned into a kernel by multi-
plication with itself k(x,x′) = g(x)g(x′).

Addition Adding two kernels k = k1 + k2 yields a new kernel k.

Many more rules like this exist, allowing for the design of rather complex
kernels (Bishop 2006; Rasmussen and C. K. I. Williams 2006).

40 Gaussian Processes

Gaussian processes are intimately related to Bayesian linear regression, which is
really just a simpler random function

f(x) =
K∑
i=1

βiφi(x), β ∼ N (0, λi). (3.9)

Using the same arguments that we used to subsume the mean function, we can
actually convert the Bayesian linear problem into an equivalent Gaussian process
with kernel,

k(x,x′) =
K∑
i=1

λiφi(x)φi(x′). (3.10)

This shows that the classical model is a special case of the Gaussian process, and
that standard sets of basis functions map naturally to particular kernels. Linear
regression directly on the input features simply corresponds to the kernel,

klin(x,x′) = x>x′, (3.11)

and a quadratic kernel can be found just by squaring the linear kernel (another
kernel rule),

kquad(x,x′) = (x>x′)2, (3.12)
and we can get a polynomial kernel with all terms of order P simply by do-
ing (Rasmussen and C. K. I. Williams 2006),

kpoly(x,x′) = (1 + x>x′)P . (3.13)

Note that the kernel kpoly summarizes a potentially massive set of basis functions
in a very compact fashion, without compromising on expressivity. On the other
hand, the fundamental computational bottleneck of Gaussian processes, the
inversion of the kernel matrix in equation (3.2), means that it scales poorly in
the number of data points N , whereas linear regression scales poorly in the
number of features/basis functions. This becomes critical once we move into
the fully non-parametric domain, where we allow for an infinite number of basis
functions. To see how we can get to an infinite-dimensional set of basis functions,
simply take the infinite-order limit of the polynomial kernel to get the exponential
kernel:

kexp(x,x′) = lim
P→∞

(1 + 1
P
x>x′)P = exp

(
x>x′

)
. (3.14)

Finally, we can get to the most well-known and widely used kernel by using the
normalizing kernel construction rule

k(x,x′) = k0(x,x′)√
k0(x,x)

√
k0(x′,x′)

, (3.15)

ensuring that k(x,x) = 1. If we think of k as an inner product, this corresponds to
calculating the cosine similarity. Applying this normalization to the exponential

3.1 Kernels 41

kernel, we finally get the squared-exponential (SE) kernel (sometimes called the
radial basis function (RBF) or Gaussian kernel as well),

kSE(x,x′) = exp
(
−1

2(x− x′)>(x− x′)
)
. (3.16)

Whether it is helpful to think of the SE as a normalized exponential kernel is
a matter of taste; an alternative derivation constructs it as the kernel of an
infinite number of radial basis functions (Rasmussen and C. K. I. Williams
2006). The SE is widely used because of its tractability, but also because it
is infinitely smooth, making it a good kernel for well-behaved functions. The
squared-exponential is our first example of a kernel that is only a function of
its two inputs through their difference r = x− x′, making it a member of the
class of so-called stationary kernels. Typically, stationary kernels will have two
tuning parameters associated to them: the lengthscale ` and the prior variance
λ, which augments the kernel as

k(r) = λk0

(r
`

)
→ kSE(x,x′) = λ exp

(
− 1

2`2 (x− x′)>(x− x′)
)
. (3.17)

The prior variance λ we have seen before; when we derived the implicit kernel
for a set of basis functions, the coefficient of the corresponding kernel term was
exactly the prior variance associated with that basis function. The lengthscale `
determines the unit of distance. For an SE kernel, it determines how quickly the
exponential drops off, but also implicitly how quickly the function can change.
The basis functions of the SE kernel are radial basis functions centered on the
indices xi being conditioned on,

kSE(x,xi) = λ exp
(
−1

2
‖x− xi‖2

`2

)
, (3.18)

so the target function will be approximated by a number of these bump functions
— if ` is very small, the radial basis functions will be extremely narrow and the
function will be able to change more suddenly than if the . Mathematically, we
can take the derivative of the basis function:

∇xkSE(x,xi) = − λ
`2

exp
(
−‖x− xi‖

2

`2

)
(∇‖x− xi‖2). (3.19)

demonstrating that the lengthscale operates as a sort of inverse prior variance
for the gradient.

For a stationary kernel, a final property, which is useful both for pedagogical
and computational reasons, is the characterization available through Bochner’s
Theorem (Rahimi and Recht 2008),

42 Gaussian Processes

Theorem 3.1 (Bochner’s) A continuous kernel k(x,x′) = k0(x− x′) on Rd
is positive definite if and only if k0 is the Fourier transform of a non-negative
measure Λ(ω):

k0(x− x′) =
∫

exp
(
iω>(x− x′)

)
dΛ(ω) . (3.20)

This duality means that we can think of stationary kernels in terms of what
spatial frequencies their spectral measure Λ(ω) is weighting up or down. The SE
kernel, for instance, has a Gaussian measure. We can also deduce exactly if a
Gaussian process will have Markovian conditional independence structure from
the shape of the SE kernel (Hartikainen and Särkkä 2010; Kom Samo and S. J.
Roberts 2015). Two other important applications is that we can replace Λ(ω) by
a sample-based empirical measure Λ̂(ω) =

∑S
s=1 δωs

, converting a complicated
infinite-dimensional kernel into a finite-dimensional kernel or onwards to a set
of basis functions known as random Fourier features, allowing efficient finite-
dimensional methods to be used (Rahimi and Recht 2008). We can also go
the other way, by constructing a rich probability density and then finding the
corresponding kernel; using a mixture of Gaussians, the corresponding kernel is
known as a spectral mixture kernel (Wilson and Adams 2013). We note that
there exists a similar result for non-stationary kernels as well (Kom Samo and
S. Roberts 2015).

3.2 Reproducing Kernel Hilbert Spaces

We saw above that the posterior mean function was a linear combination of
partially evaluated kernel functions k(·,xi). We can trivially build a function
space containing this class by taking the completion of,

H =
{
f(x) =

n∑
i=1

αik(x,xi), n ∈ N, xi ∈ X , αi ∈ R

}
, (3.21)

and we can assign an inner product to this space by setting

〈f, g〉H =
n∑
i=1

m∑
j=1

αiβjk(xi,xj ′), (3.22)

for g(x) =
∑m
i=1 βjk(x,xj ′), where the inner product is positive definite by

inheriting the property from k. This function space is called a Reproducing
Kernel Hilbert Space (RKHS), by virtue of the kernel k(·, ·) having the so-called

3.2 Reproducing Kernel Hilbert Spaces 43

reproducing property for f ∈ H,

〈f, k(·,x∗)〉H =
n∑
i=1

αik(x∗,xi) = f(x∗). (3.23)

The property shows that we can evaluate a function f at x∗ by taking the inner
product with the reproducing kernel k(·,x∗). This is another way to characterize
an RKHS: it is a Hilbert space for which the evaluation functional is bounded,
continuous, and is itself a member of the function space. This construction is
always possible, as guaranteed by the Moore-Aronszajn theorem which proves
that there is an RKHS matching every positive-definite kernel function and vice
versa (Aronszajn 1950; Rasmussen and C. K. I. Williams 2006).

To define the Gaussian processes in the context of an RKHS, we need to first
recall Mercer’s theorem which states that

k(x,y) =
∞∑
i=1

λiφi(x)φi(y), (3.24)

where φi is an orthogonal basis of the RKHS with respect to some measure µ, i.e.∫
φi(x)φj(x) dµ(x) = δij . We then resort to the fact that a zero-mean Gaussian

process can be written in terms of a similar orthogonal basis as,

f(x) =
∞∑
i=1

Xi

√
λiφi(x), (3.25)

where the random variables Xi ∼ N (0, 1) are i.i.d. We see that E[f(x)] = 0,
while the covariance is

E[f(x)f(y)] =
∞∑

i,j=1
E[XiXj]

√
λiλjφi(x)φj(y) =

∞∑
i=1

λiφi(x)φi(y) = k(x,y),

(3.26)
where the last equality is an application of Mercer’s theorem, demonstrating
that the Gaussian process can be parameterized in terms of a kernel as before.
An interesting consequence of this description is that samples from the Gaussian
process fall outside the RKHS with probability 1:

E

∥∥∥∥∥
∞∑
i=1

Xiλiφi(x)

∥∥∥∥∥
2

H

 =
N∑
i=1

λi 〈φi, φi〉H =
∞∑
i=1

1 =∞, (3.27)

where we have used that 〈φi, φj〉H = δij/λi. To figure out where the Gaussian
process samples reside we can rely on the following theorem (Flaxman et al.
2016),

44 Gaussian Processes

Theorem 3.2 Let Hk be separable. Then GP(0, r) has sample paths in Hk if
and only if there exists a positive, continuous, self-adjoint, trace-class operator
L : Hk → Hk such that

r(x,x′) = 〈L[k(·,x)], k(·,x′)〉H (3.28)

in which case we say k nuclearly dominates r.

The particular details of this result are outside the scope of this thesis, but we note
that an example of such a dominant pair can be established by setting (Flaxman
et al. 2016),

r(x,x′) =
∫
k(x,u)k(u,x′) du . (3.29)

A consequence of the posterior mean being in the RKHS is that it inherits
the properties of the kernel used, e.g. it has the same degree of smoothness
and differentiability as the kernel itself, as it can be written as a finite linear
combination of them. Picking a covariance structure implicitly determines a set
of basis functions for the posterior mean.

Conversely, we can go from a set of (not necessarily orthogonal) basis functions
{ϕi(x)}Nk=1 to a covariance matrix, as we saw earlier. This demonstrates that
all finite-dimensional function spaces are also RKHS’s (Manton and Amblard
2014). In particular, we can associate the span of a single basis vector ϕi(x) with
the rank-1 kernel k(x,x′) = ϕ(x)ϕ(x′). Augmenting the set of basis functions
corresponds directly to adding rank-1 kernels together. This is formalized as the
fact that for RKHS Hi with reproducing kernel ki, the kernel k =

∑K
i=1 ki is the

reproducing kernel of the RKHS with elements f =
∑
fi, ∀fi ∈ Hi (Aronszajn

1950). On a related note, we can use the reproducing kernels to determine whether
one RKHS is a subset of another, Hk′ ⊂ Hk; if Mk − k′ is positive definite for
some choice of M ∈ R+ then Hk′ is contained in the larger space (Aronszajn
1950).

3.3 Gaussian Process Calculus

An extremely useful property of Gaussian processes is that they are preserved
under linear transformations. If we express a Gaussian process in the orthogonal
basis form f(x) =

∑∞
i=1Xi

√
λiφi(x), then the application of any linear operator

A distributes across the orthogonal basis functions

Af(x) =
∞∑
i=1

Xi

√
λiAφi(x). (3.30)

3.3 Gaussian Process Calculus 45

Calculating the second moment of the transformed process, we find that

E[Af(x)A′f(x′)] =
∞∑
i=1

λiAφi(x)A′φi(x′) = AĀk(x,x′) (3.31)

taking Ā to be the operator A acting on the second input x′. Since it is zero-mean
process, the second moment gives us the covariance function. that This means
that not only is the Gaussian process preserved under a linear transform, it is
also often tractable — namely in the exact cases where AA′k(x,x′) is tractable.
The really interesting feature here is that as the process is derived from the
original Gaussian process, the two are highly covariant, with covariance,

Cov(Af(x), f(x′)) = E[Af(x)f(x′)] = Ak(x,x′), (3.32)

following the same line of proof as above. This means that the two Gaussian
processes form a jointly Gaussian system such that for any finite set of indices,
the joint distribution is multivariate Gaussian and we can perform joint Gaussian
inference. Practically, if f ′ = Af , then(

f
f ′

)
∼ N (0,K∗) , K∗ =

(
K (K′)>
K′ K′′

)
(3.33)

with f and f ′ being evaluations of f at X and f ′ at X′, respectively, and
[K′′]ij = AA′k(x′i,x′j), with xi′,xj ′ ∈ X′ and [K′]ij = Ak(x′i,xj), with
xi′ ∈X′,xj ∈X.

3.3.1 Additive Processes and Linear Algebra

The simplest example of a linear operator is scaling f ′ = αf , which translates
into a kernel α2k(x,x′). This is a clear parallel to the standard result that
Var(αX) = α2 Var(X) for any random variable X. Scaling by a scalar is a
property often associated with vector spaces, which leads us to consider whether
other properties like addition might also hold for Gaussian processes in a natural
fashion. For independent Gaussian processes f ∼ GP(0, kf), g ∼ GP(0, kg) it
turns out to hold that (Rasmussen and C. K. I. Williams 2006),

f + g ∼ GP(0, kf + kg), (3.34)

Which follows from the identity Var(X + Y) = Var(X) + Var(Y) + 2 Cov(X,Y);
this also immediately tells us how to add Gaussian processes with known co-
variance. A consequence of these two properties is that we can form linear
combinations of Gaussian processes and if we stack multiple independent Gaus-
sian processes into a vector [f]i = fi ∼ GP(0, ki) we can form vector-valued (or

46 Gaussian Processes

even matrix-valued) Gaussian processes that are amenable to standard linear
algebra (Alvarez, Rosasco, and Lawrence 2011). Following the cited survey
by Alvarez, Rosasco, and Lawrence, we recognize that the vector-valued f is
distributed like a multivariate Gaussian at every index x, and that the covariance
between two function evaluations is

Cov(f(x),f(x′)) =

k1(x,x′) . . . 0
...

. . .
...

0 . . . kD(x,x′)

 ≡ k(x,x′), (3.35)

Where k(x,x′) is now a matrix-valued kernel, describing the covariances between
different dimensions of the vector-valued function. Based on this representation,
we can consider what happens when we apply a linear matrix transformation
Af , which not surprisingly evolves similarly to a standard multivariate Gaussian
variable,

Af ∼ GP(0,Ak(x,x′)A>). (3.36)

Returning to the simpler scalar example of (3.34), we note that the relationship
is a bit more complicated for the posterior, where we have

(f + g)(x∗)|y ∼ N ((k∗f + k∗g)(Kf +Kg)−1y,Kf+g|y) (3.37)
Kf+g|y = kf (x∗,x∗) + kg(x∗,x∗)− (k∗f + k∗g)>(Kf +Kg)−1(k∗f + k∗g)

(3.38)

This almost splits into independent Gaussian processes again, but not quite.
Instead of asking for (f + g)(x∗)|{(f + g)(xi), yi)}Ni=1 we can just as well find
(f + g)(x∗)|{(f + g)(xi), yi)}Ni=1 using the prior independence to simplify the
cross-covariances as

Cov(f(x), f(x′) + g(x′)) = kf (x,x′), (3.39)

leaving

f(x∗)|y ∼ N (k∗f (Kf +Kg)−1y, kf (x∗,x∗)− k∗f
>(Kf +Kg)−1k∗f) (3.40)

and similarly for g(x∗). Adding these two partial posteriors together fails
to add up to the posterior for the sum. The explanation is of course that by
conditioning we have introduced covariance, and using the identity Var(X + Y) =
Var(X) + Var(Y) + 2 Cov(X,Y), we can find the covariance by taking the
difference between (f + g)(x∗)|y and the two marginal posteriors, leaving

Cov(f(x∗), g(x∗)|y) = −2k∗f
>(Kf +Kg)−1k∗g (3.41)

3.3 Gaussian Process Calculus 47

3.3.2 Bayesian Quadrature

Integrals are perhaps one of the most quintessential examples of a linear operator.
The integral lives somewhere in the borderland between tractable and intractable,
as many integrals are known and have analytical forms, while others lack solutions.
The problem of solving integrals using numerical algorithms has thus been a
rich area of research over the years, helped along by the fact that integrals
are immensely useful tools, especially due to their intimate relationship with
probabilistic expectations. Almost all of the existing numerical algorithms are
so-called quadratures, where the integral I is estimated to be a weighted sum of
some limited set of function evaluations,

I =
∫ b

a

f(x) dx ≈
N∑
i=1

wif(xi). (3.42)

Some quadrature rules are direct applications of Riemann sums where we assume
xi < xi+1 and take wi = |xi+1−xi| and wN = 0, estimating the areas of rectangles
in the intervals between observations. Variations like the trapezoid rule use
trapezoids in place of rectangles, and we could probably imagine other shapes too,
but the approaches have the feature in common that they are often formulated
in terms of estimating local areas. A more natural point of view, though,
might be to think in terms of approximating the integrand directly, and then
taking the integral of the approximation; we just have to pick an approximation
where the integral is tractable. Both of the two described approaches can be
defined naturally in function terms: the Riemann sum tries to approximate
the integrand as piecewise constant, while the trapezoid rule uses a piecewise
linear approximation. From this, it also becomes clear that both quadrature
rules are making strong assumptions about the continuity, differentiability, and
smoothness of the underlying integrand. If the function was allowed to vary
wildly and discontinuously inside the intervals, even these conservative estimates
would be poor fits. Conversely, if the function is infinitely smooth, the two
quadratures are not efficient approximations, eschewing information that could
be used to make higher fidelity approximations.

The idea of most numerical algorithms to use limited information to make
predictions about unknown quantities is fundamentally a problem of inference.
The field of probabilistic numerics has dedicated itself to this point of view,
demonstrating that many classical numerical problems can be modeled probabilis-
tically, and that many classical numerical algorithms reduce to MAP solutions
of these models (Cockayne et al. 2017). Bayesian quadrature is the probabilistic
numerics equivalent of normal quadrature, where we approximate the integrand
using a Gaussian process, encoding our assumptions into the kernel (Briol et al.
2015). The quadrature itself follows by applying the integral operator Π[·] to

48 Gaussian Processes

the Gaussian process (Briol et al. 2015),

f ∼ GP(0, k)⇒ Π[f] ∼ N (0,ΠΠ[k(·, ·)]) (3.43)

with ΠΠ[k(·, ·)] denoting the application of the operator to both arguments of k.
Since the integral operator is a functional, mapping from a function space to the
reals, we find that the Gaussian process reduces to a Gaussian. With everything
jointly Gaussian, we can easily find the posterior on the integral to be,

Π[f] |f ∼ N
(
Π[k(·,X)]K−1f , ΠΠ[k(·, ·)]−Π[k(·,X)]K−1Π[k(X, ·)]

)
(3.44)

Focusing on the posterior mean, we recognize it as a quadrature with weights,

wi = [Π[k(·,X)]K−1]i. (3.45)

Bayesian quadrature offers a number of advantages, such as a natural uncertainty
estimate, more direct control about the function assumptions through the kernel,
and the ability to include integrals in more complex probabilistic model, a
simple example being to include input noise in the model, allowing approximate
integration of noisy functions.

If we take several integrals, say Π1[f] and Π2[f] they will of course also be
correlated,

Cov(Π1[f],Π2[f]) = 〈Π1[k(·, ·)],Π2[k(·, ·)]〉H . (3.46)
From this equation, we get that the covariance is determined by the inner product
of functions µΠ ∈ H,

µΠ(x) = Π[k(·,x)]. (3.47)
This function summarizes the integral, allowing us to compute all covariances
in terms of inner products with this special function e.g. Cov(Π[f], f(x)) =
〈µ, k(·,x)〉. Additionally, just like k(·,x) has the reproducing property for
function evaluation, µ(·) reproduces the integral as

〈µΠ, f〉H =
N∑
i=1

αi 〈µΠ, k(·,xi)〉H =
N∑
i=1

αiΠ[k(·,xi)] = Π[f]. (3.48)

This is related to the functional analysis concept of a Riesz representation, hinging
on the famous Riesz representation theorem which states that any functional
F on a Hilbert space H can be represented as Af = 〈f, vA〉 for some unique
representer vA ∈ H (Kreyszig 1978).

We call µΠ an RKHS embedding of the operator Π. When Π is an expectation,
that is, of the form

Π[f] =
∫
p(x)f(x) dx , (3.49)

3.3 Gaussian Process Calculus 49

for a probability density function p(x), then the embedding is called the kernel
mean embedding and is denoted µp or µX if p is associated with a random
variable X. One consequence of moving to the probabilistic domain is that we
can naturally restate the inner product as an expectation,

〈µp, µq〉H = Ex∼p,x′∼q[k(x,x′)] , (3.50)

lending itself to the interpretation that we are measuring the similarity of p and
q by considering how similar their samples are on average.

Although the kernel mean embedding is just a Riesz representation of the expec-
tation by the above argument, it turns out that it is a very strong representation
of the underlying distribution as well. In particular, if we embed the proba-
bility measure into a universal RKHS, the map is injective, and each possible
embedding then corresponds to a specific probability measure (Smola et al. 2007;
Muandet et al. 2016). This property of inducing injective embeddings is also
possessed by some non-universal RKHSs, and spaces for which it holds are
referred to as characteristic (Sriperumbudur, Fukumizu, and Lanckriet 2011).
That a distribution can be distinguished by its expectations alone might initially
seem a bit peculiar, but relates to the venerable concept of moment-generating
functions,

MX(t) = E
[
exp
(
t>X

)]
, (3.51)

which are known to uniquely characterize any probability distribution for which it
is defined. Moment-generating functions manage to summarize the qualities of a
distribution in terms of a its expectation over a simple test function. Noticeably,
the moment-generating function appears to be a kernel mean embedding itself,
with the exponential kernel exp

(
x>x′

)
, that we used earlier to generate the SE

kernel, as its embedding kernel. A similar argument, originally due to Muandet
et al. (2016), shows that by applying Bochner’s theorem to the expression in
equation 3.50,

〈µp, µq〉H =
∫∫

p(x)q(x′)k(x,x′) dx dx′ = (3.52)∫∫
p(x)q(x′)

[∫
exp
(
iω>(x− x′)

)
dΛ(ω)

]
dx dx′ = (3.53)∫ (∫

p(x) exp
(
iω>x

)
dx
)(∫

q(x′) exp
(
iω>x′

)
dx′
)

dΛ(ω) = 〈φp, φq〉L2
Λ

(3.54)

where φp(x) =
∫
p(x) exp

(
iω>x

)
dx is the characteristic function, the gener-

alized version of moment-generating functions. So no matter what stationary
kernel we employ, the inner product in L2 is always with respect to the two char-
acteristic functions, but with the spectral density Λ(ω) of the kernel weighting
the different frequencies.

50 Gaussian Processes

3.4 Variational Inducing Point Methods

Gaussian processes are notorious for their computational demands. Referring
back to the posterior mean and covariance of equation (3.2), we note that there is
a computational bottleneck in the form of the matrix inverse, which costs O(N3).
Instead of computing the full posterior, we can take a variational approach and
find a computationally efficient approximation.

A challenge particular to variational approximations for Gaussian processes is
that the posterior is over a potentially infinite number of points, as we can
extend the posterior to any element of the domain. Since the cost is cubic in the
number of points we are conditioning on, some older methods speculated that
we could compress the posterior by conditioning on a smaller subset of points,
eliminating redundancies in the training set without compromising the posterior
too much. This idea was later carried over to the variational paradigm (Titsias
2009).

The setup is that we assume a vector of N real observations y made at a set
of locations X. We assume that these observations are related to a vector f of
N latent evaluations of a Gaussian process such that fi = f(xi),∀xi ∈X and
f ∼ GP(m(·), k(·, ·)). In addition to this, we augment our model with a set of
latent evaluations fu from the GP at an auxiliary set of locations U , which we
will denote the inducing points. We note that f and fu are strongly dependent
on each other through the GP prior. Using Bayes’, the posterior of f and fu
can trivially be stated as,

p(f ,fu|y) ∝ p(y|f)p(f |fu)p(fu). (3.55)

Note that we assume here that the likelihood is conditionally independent of fu
given f . Variationally, we could fit p(f ,fu|y) with a Gaussian approximation, but
unless the covariance matrix is sufficiently structured to reduce the computational
burden, it would not do us much good. Instead, we can apply a full Gaussian
approximation only to the subset of p(fu), and let f be modeled directly through
the conditional relationship by assuming that our variational model has the form

q(f ,fu) = p(f |fu)q(fu) (3.56)
where we emphasize that p is the true conditional relationship. Since the
likelihood is a function of f , this forces q(fu) to model latent observations
that induce an appropriate posterior on f to fit the data, explaining the name.
Mathematically, there is a convenient bit of cancellation in the ELBO from our
assumptions

L = E
[
ln p(y|f)p(f |fu)p(fu)

p(f |fu)q(fu)

]
= Eq(f)[ln p(y|f)]−KL (q(fu)‖p(fu)) . (3.57)

3.4 Variational Inducing Point Methods 51

This splits into the usual expected log-likelihood and prior divergence decompo-
sition, but the expectation of the likelihood is now with respect to the marginal-
ized distribution q(f) =

∫
p(f |fu)p(fu) dfu. Using a Gaussian distribution

q(z) = N (m,S) for the approximation makes the KL divergence tractable, and
we can also compute the marginalized density,

q(f) = N (f |kxuK−1
uu fu,Kxx − kxuK−1

uu k
>
xu)N (fu|µ,S) dfu = (3.58)

N (kxuK−1
uuµ,Kxx + kxuK−1

uu (S −Kuu)K−1
uu k

>
xu), (3.59)

using subscripts to denote whether the kernel is overX, U , or a mix. To perform
the integral we used standard Gaussian identities (Bishop 2006; Damianou and
Lawrence 2012). For notational convenience, we will denote q(f) = N (f |m̃, K̃).

A related bound can be derived by implementing the KL-corrected bound, taking
fu to be the nuisance variable. The auxiliary bound L1 ≤ ln p(y|fu) is,

L1(fu) = Ep(f |fu)

[
ln p(y|f)p(f |fu)

p(f |fu)

]
= Ep(f |fu)[ln p(y|f)] (3.60)

which would normally depend on q(f |fu), but we follow the inducing input
derivation and set the approximation to the prior conditional p(f |fu). The
KL-corrected bound is then

LKL = lnEp(fu)[exp(L1(fu))] (3.61)

In the case of a Gaussian likelihood N (y|f , σ2I), the two bounds become

L1(fu) = lnN (y|mf |fu
, σ2I)− 1

2 Tr[Kf |fu
] (3.62)

LKL = lnN (y)− 1
2σ2 Tr[Kf |fu

] (3.63)

where mf |fu
and Kf |fu

is the mean and covariance of the standard predictive
posterior, respectively, of p(f |fu) while K̄ is the covariance of the marginal,∫

N (y|mf |fu
, σ2I)N (fu|0,Kuu) dfu = N (0, σ2I + kfuK−1

uu k
>
fu) (3.64)

This cost function does not depend on q(fu), but still depends on any kernel
parameters, making it a good proxy for empirical Bayes optimization of the
hyperparameters, especially due to the ELBOs lower-bounding property. This is
also Titsias’ original derivation (Titsias 2009), while other sources discuss the
relationship to the more general bounds in greather detail (Damianou 2015).
Using the properties of the KL-corrected bound, we can additionally retrieve
the optimal q∗(fu) at any time as (Hensman, Rattray, and Lawrence 2012),

q(fu)∗ ∝ p(fu) exp(L1(fu)) ∝ N (y|mf |fu
, σ2I)N (0,Kuu) (3.65)

52 Gaussian Processes

which we integrated above, simultaneously showing LKL to be the normalization
constant. Another feature of the KL-corrected bound is that it can be derived
by finding q∗ first, and then plugging it into the original inducing point ELBO
of equation (3.57),

LKL ≡ Eq∗ [ln p(y|f)]−KL (q∗(fu)‖p(fu)) . (3.66)

A similar derivation, specifically in the context of Gaussian processes, made by
King and Lawrence (2006) was the direct inspiration for the general KL-correction
procedure.

Two issues with this fully marginalized bound is that it does not apply to non-
conjugate likelihoods and that it does not decompose over individual observations
yi, making it difficult to scale to large datasets via e.g. SVI. In these cases, we
will have to return to the standard inducing points objective of equation (3.57)
where we note that for any factorizing likelihood p(y|f) =

∏N
i=1 p(yi|fi)

L =
N∑
i=1

Eq(fi)[ln p(yi|fi)]−KL (q(fu)‖p(fu)) (3.67)

where we remark that the expectation is only with respect to univariate marginals
q(fi). This means we can apply standard quadrature methods to approximate
the integral with good accuracy (Hensman, Matthews, and Ghahramani 2015).

3.5 Contribution

Our paper Joint expectation kernels relates directly to Gaussian processes, by
proposing the joint expectation kernel as a generalization of the natural kernel
between kernel mean embeddings. As we showed in equation (3.50), the natural
kernel on distributions can be written directly as the inner product between the
kernel mean embeddings of the integrals like,

Covf (Ep[f] ,Eq[f]) = Ex∼p,x′∼q[k(x,x′)] = 〈µp, µq〉H , µp =
∫
p(x)k(x, ·) dx .

As we noted earlier, an attractive interpretation follows from the expectation of
the above equation, as it seems to state that similarity of distributions is the
average kernel similarity of random draws. This seems reasonable when we are
comparing independent distributions, and if we compare a distribution to itself,
we get the kernel

Ex,x′∼p[k(x,x′)] , (3.68)

3.5 Contribution 53

where x and x′ are i.i.d. draws from p. This is a kernel directly on distributions,
as we note that the kernel does not distinguish between comparing p to itself, or
to a copy p′ with the exact same distribution. But what if we want to distinguish
between the two? In particular, we might imagine a kernel on random variables
X ∼ p, which continue to be distributed according to particular marginal
distributions, but share a joint sample space. What we propose in our papers, is
to use the kernel

kE(X,X′) = EX,X′∼pXX′ [k(X,X′)] , (3.69)

which is completely identical to the kernel on kernel mean embeddings, except
that we are taking the expectation with respect to the joint distribution now.
We show that this is a proper kernel, and we contrast it with the standard
kernel, noting a number of unintuitive consequences. Interestingly, even if we
only consider independent random variables, the kernels are still different, as
every X is trivially dependent with respect to itself, leaving the diagonal of the
kernel matrix different:

kE(X,X) = E[k(X,X)] = k(0). (3.70)

We note how this can be used to handle censored data in a simple fashion, as an
approximate method for noisy input data, or to embed entire Gaussian processes.

54 Gaussian Processes

Chapter 4

Tensor Networks

Conditional independence is the key to most successful probabilistic machine
learning algorithms, but as we saw with Gaussian processes, sometimes complete
co-dependence is a necessary component of the inference. Conditional indepen-
dence assumptions are even more common in discrete probabilistic models, and
the graphical models literature is rife with algorithms running on trees and DAGs.
Nevertheless, it is easy to construct natural models where everything is depen-
dent. Any model where the discrete variables model a labeling or partitioning of
a set of objects is particularly susceptible to co-dependence. Take clustering, for
instance; any point added to a cluster will influence whether all other points are
likely to be put in the same cluster or not. The practical problem we are facing
is one of scale: if there are N variables with K different discrete states we have
to model KN different configurations, which quickly becomes an insurmountable
number.

We try to attack this seemingly impossible problem by restating it as a tensor
approximation problem and using a low-rank assumption to make it amenable.

This will be a shorter chapter, as the associated paper is already rather expansive.

56 Tensor Networks

4.1 Discrete Probabilistic Models as Tensors

We let X be a set of N discrete variables, with xn ∈ X taking values in the
discrete set Xn of cardinality Kn = |Xn| and we let Y be an observed set of
continuous and/or discrete random variables, jointly distributed with X under
the probabilistic model p(X,Y).

Conditioned on Y , the posterior is a discrete distribution with
∏N
n=1Kn states.

If Kn = K for all n, then there are KN states, which quickly leads to a
combinatorial explosion for even small K and N . The challenge, as always, is
the normalization constant for the posterior (or any marginal thereof). Moving
to discrete models means that we no longer have to contend with integrals
lacking closed form solutions, as every marginalization is just a sum. But if
there is KN elements in the sum, we will quickly reach the limits of what is
tractable. Conditional independence helps by breaking the large sum into a
series of sub-sums,

∑
x1,x2

p(y, x1, x2) =
∑
x1,x2

p(y|x2)p(x2|x1) =
∑
x2

p(y|x2)
∑
x1

p(x2|x1) (4.1)

So instead of one sum with K1K2 terms, we get to compute two sums in sequence,
with K1 and K2 terms, respectively. This is the idea exploited by most discrete
graphical model inference algorithms, in particular message-passing methods
and the junction-tree algorithm (Wainwright and Jordan 2008). This is a direct
parallel to what we saw for continuous models in the introduction.

If our model lacks conditional independence structure, these algorithms fall short.
Taking a step away from graphical models, another way to represent the posterior
is as any mathematical structure that can contain the posterior probabilities
associated with each of the KN possible configurations.

A tensor is an array T which can have up N dimensions or modes, each of length
Kn. It can be indexed with a set of multidimensional indices I = (i1, . . . , iN) with
in ∈ 1, . . . ,Kn where we here assume that TI ∈ R so that T ∈ RK1×...×KN . From
this, it should be clear that we can associate a tensor with any discrete probability
distribution: by assuming the discrete sample space to be Xn = {1, . . . ,Kn}
without loss of generality, we can associate an index I with a configuration
xn = in,∀n, letting us tie all values p(X = I|Y) to an element in a tensor TI
with one dimension for each of the N random variables, and each dimension
having length Kn, corresponding to each discrete state of xn.

4.2 Tensor Networks 57

(a) A scalar. (b) A ma-
trix.

(c) A matrix
product.

(d) A matrix
trace.

(e) Tucker
decom-
position.

Figure 4.1: Different expressions in the graphical language of tensor networks.

4.2 Tensor Networks

A tensor network expresses a tensor in terms of smaller independent tensors
and index contractions. When N = 2, a tensor is just a matrix, so we will use
a simple example to illustrate the idea. Consider two matrices Aij and Bjk.
We can take the so-called tensor product of these two matrices to get a new
3-dimensional tensor by tying the second dimension of A and the first dimension
of B,

Mijk = AijBjk (4.2)

This is already a simple example of a tensor network, but we also allow contrac-
tions over indices, where we sum over all possible values of for example index j:

Mik =
∑
j

AijBjk (4.3)

This is just another way to write M = AB so if j only ranges over a few values,
we recognize this as a low-rank factorization which is a well-known method for
simplifying complicated matrices and matrix expressions.

In the tensor network literature, a graphical language is often used to express
models. The tensor network is expressed as a graph, where nodes are tensors
and edges indicate the indices of each tensor. So a scalar will have no edges, a
vector a single edge, a matrix two edges, and so on. Dangling edges that extend
from one node but do not connect to another indicate the open indices of the
complete tensor represented by the full network, i.e. the edges corresponding to
indices i and k in the low-rank method would be dangling. Edges connecting two
nodes represent contractions, and the indices of the involved tensors are matched
and summed over. See figure 4.1 for examples. Given a graph with N dangling
edges, we can index by contracting the dangling indices with a monomial unit
vector ein , until all dangling edges are closed off. This leaves us with one or
more scalars graphs, that are implicitly assumed to be multiplied together.

58 Tensor Networks

Figure 4.2: CP decomposition with hyperedge.

Many classical tensor decomposition algorithms are easily restated in this graph-
ical language, for example the tucker decomposition,

Tijk =
∑
r,s,t

GrstUriUsjUtk (4.4)

which can be identified as a tensor network as the formula only involves sub-
tensors and contraction operations, and we can thus write it graphically as in
figure 4.1e.

To extend the graphical language to contractions where more than two tensors
share an index, it becomes necessary to allow hyperedges in the tensor network.
A hyperedge is an edge that can connect more than two vertices (tensors), so just
as a standard edge can be represented by the set {v1, v2} of its two adjoining
vertices, a hyperedge is just a set of greater cardinality {v1, . . . , vK}. In the
drawings, we can represent hyperedges as shaded triangles. Ironically, one model
where hyperedges are convenient is for the CP decomposition, visualized in figure
4.2, often considered a simpler version of the Tucker decomposition (Kolda and
Bader 2009). It should be noted that it is not strictly necessary to use hyperedges,
though; instead, we can use auxiliary tensors such as Aijk = 1[i = j = k] for
three edges, where the indicator function is one when the logical statement is
true.

4.3 Relationship with Graphical Models

The graphical language of tensor networks is superficially similar to probabilistic
graphical models, and in fact the relationship goes even deeper. To explain, we
provide the following definition of an undirected graphical model from Robeva
and Seigal (2017). For a hypergraph H with hyperedge set C, an undirected
graphical model with respect to H is any probabilistic model that factors as

p(X) = 1
Z
∏
C∈C

ψC(XC), (4.5)

where ψC is a clique potential for clique C: some function over XC which is the
configuration X on the subset of variables that are members of the clique. For

4.4 Tensor Trains and Rings 59

proper distributions these functions should be non-negative, but we relax that
for the time being. The graphical model in question then has a node for each
random variable, and a hyperedge for each clique. This definition leads us to
the following duality theorem, presented in a recent article (Robeva and Seigal
2017, Theorem 2.1),

Theorem 4.1 A discrete graphical model associated to a hypergraph H with
clique potentials ψC :

∏
u∈C Xu → R is the same as the data of a tensor network

associated to the dual hypergraph H∗ with tensors TC = ψC at each vertex of H∗.

This duality might appear a bit esoteric, but this means a lot of results carry
over from graphical models to tensor networks. We will show how this can be
applied to a particular branch of efficient tensor networks.

4.4 Tensor Trains and Rings

Most of the literature on tensor networks comes from quantum mechanics, but
a few particular forms of tensor network have started to diffuse over into the
tensor factorization and general machine learning literatures. One such example
is the tensor train (Oseledets 2011), which can be most easily summarized by
using the graphical notation as in figure 4.3a. The tensor train (TT) is built up
of N unique 3-tensors Gn ∈ Rrn−1×K×rn which we call the cores, where we note
n is a non-tensorial index as the other indices change along with it. The {rn}Nn=1
are the tensor train ranks (TT-ranks) of the model, and describes the capacity
of the tensor train, in the same sense as for a common low-rank factorization.
To simplify the notation a bit, we will write Gn[in] ∈ Rrn−1×rn to denote the
core matrix we get when n and in is fixed. Using this, we can write

TI = G1[i1]G2[i2] . . .GN [iN]. (4.6)

Note that since this needs to collapse to a scalar, we need to require that
r0 = rN = 1.

We can also wrap the graph around itself, giving us the circular structure in 4.3b,
sans the dotted edge. This makes it easier to see the similarity to the Tucker
model. Adding the dotted edge gives us the aptly named tensor ring, which
modifies the tensor train with a trace operator (Zhao et al. 2016),

TI = Tr[G1[i1]G2[i2] . . .GN [iN]]. (4.7)

An advantage is that this allows r0 = rN to take on values different from 1, and
on the design side we do not need to worry about the cyclic ordering of the cores.

60 Tensor Networks

It’s also more expressive, as we can expand the trace into a sum of r0 tensor
trains with different first and last cores.

As opposed to e.g. the Tucker model, matrix product states scale well in the
number of dimensions. We need to add another matrix for each dimension,
but never need to take a tensor of order higher than 3 into account, preventing
combinatorial explosions. A further advantage is that there exists an algorithm for
computing the exact tensor train of any tensor (Oseledets 2011). Unfortunately,
it scales poorly, as it involves SVDs of matrix unfoldings of the tensor. Still, the
constructive algorithm shows that the tensor train is powerful enough to capture
any tensor, given sufficient rank. These qualities make tensor trains well-suited
for approximating the large tensors we are facing, but two critical issues remain:
how do we ensure positivity of the tensor elements, and how do we calculate
normalization.

To ensure positivity, we could trivially set all the core tensors to be positive,
but it is unclear whether this would compromise the model’s capacity. Instead,
we will borrow a trick from the quantum mechanics literature, where matrix
product states are used to model wave functions that can be squared to yield
probability distributions via Born’s rule. In a bit of notational disagreement,
matrix product states is an umbrella term for both tensor trains and tensor
rings in the quantum literature, although they distinguish between the two by
stating that the tensor train has an open boundary condition and the tensor ring
a periodic boundary condition (Schollwöck 2011). We will reserve the MPS label
for the specific setting of a squared tensor train (or ring) modeling a probability
density,

p(X = I) = (TI)2 (4.8)
This solves the positivity problem, leaving normalization. For the tensor train,
we can expand the square as,

(TI)2 = GN [iN]> . . .G2[i2]>G1[i1]>G1[i1]G2[i2] . . .GN [iN]⇒ (4.9)

Z =
∑
I

(TI)2 =
∑
iN

GN [iN]> . . .
∑
i2

G2[i2]>
(∑

i1

G1[i1]>G1[i1]
)
G2[i2] . . .GN [iN]

(4.10)

A key quantity here is the recursively defined set of left marginals,

Ln =
∑
in

Gn[in]>Ln−1Gn[in], L0 = I. (4.11)

Alternatively, we could have summed out iN first and i1, giving us a recursion
in,

Rn =
∑
in

Gn[in]Ln+1Gn[in]>, RN+1 = I. (4.12)

4.4 Tensor Trains and Rings 61

with both R1 = LN = Z. So, like with the conditional independence property
we demonstrated in the introduction to the chapter, we can distribute the sum
over KN elements in such a way that we can compute it via N sums of length
K. Naturally, we can use the same principle to compute any marginal:

p(xn = in) ∝
∑
I−n

(TI)2 = Tr[Gn[in]>Ln−1Gn[in]Rn+1]. (4.13)

Here we use to I−n to denote the set of indices excluding in. This extend
to multivariate marginals when the variables of interest occur in consecutive
order, but for arbitrary marginals we will have to sum out some of the variables
explicitly, making some marginals more expensive than others.

4.4.1 Canonical Cores

Another result from quantum mechanics is that there exists so-called canonical
sets of cores.As it is, any set of cores Gn can be replaced via a so-called gauge
transform,

Ĝn[in] = A−1
n−1Gn[in]An, (4.14)

without affecting the underlying tensor, as the An cancel. This gives us some
degrees of freedom in picking cores with desirable properties. One such set of
cores is the set of left-canonical cores, with the property that∑

in

G1[in]>G1[in] = I. (4.15)

This is particularly convenient in the context of normalization for the MPS as
applying this identity iteratively to equation (4.11) demonstrates that Ln = I
for all n. Similarly, the set of right canonical cores guarantee that Rn =
I (Schollwöck 2011). As a consequence, both of these sets of cores lead to
automatically normalized MPS tensors. Any tensor train can be restated using
canonical cores, up to an external scaling coefficient. In fact, the analytical
algorithms automatically calculates a tensor train of this form. The left-canonical
set of cores is still not entirely unique, though, as we can apply gauge transforms
with orthogonal An without affecting the identity. An even stronger, and unique,
set of cores is the set that we shall refer to as the Vidal representation or
ΓΛ-representation (Schollwöck 2011),

TI = (Γ1[i1]Λ1) . . . (ΓN−1[iN−1]ΛN−1)(ΓN [iN]ΛN) (4.16)

62 Tensor Networks

G1 G2 G3 G4 G5

i1 i2 i3 i4 i5

(a) A tensor train with N = 5. Note
that the two outer tensors are 2-
tensors.

G1

G2

G3

G4

G5

i1

i2

i3i4

i5

(b) A tensor ring with N = 5. The
dotted line highlights the key dif-
ference from the tensor train.

Figure 4.3: The tensor train and tensor ring.

This adds additional parameters to the model, but we constrain Λi to be diagonal
and impose a double set of constraints on the Γn, requiring that

I =
∑
in

(Λn−1Γn[in])>(Λn−1Γn[in]), I =
∑
in

(Γn[in]Λn)(Γn[in]Λn)>. (4.17)

These conditions relate to canonicity, as collecting the parameters as either
Gn[in] = Λn−1Γn[in] or Gn[in] = Γn[in]Λn yields cores that are either left- or
right-canonical, respectively, with respect to the same tensor. Without the
ΓΛ-representation, we would have had to go through an expensive conversion
procedure. Blending the left- and right-canonical approaches, we can simplify
expressions considerably: the marginal becomes simply,

p(xn = in) ∝ Tr[Γn[in]>Λ2
n−1Γn[in]Λ2

n]. (4.18)

The Vidal representation is the gold standard from a computational point of
view since reducing the number of consecutive matrix products helps with both
the finite-time complexity and numerical issues. In addition to striving for com-
putational benefits, we can also look for parameterizations that induce certain
qualitative properties in the tensor. Physicists often use MPS’s that encode
translation invariance, simply by setting the cores equal to each other for all
n (Perez-Garcia et al. 2006), but have also contructed MPS models that are
rotationally invariant or otherwise embody physical symmetry properties (Singh,
Pfeifer, and Guifré Vidal 2010; Singh, Pfeifer, and Guifre Vidal 2011; Weichsel-
baum 2012). Attempts to encode symmetry properties of codes and bit-strings
has also been attempted (Huckle, Waldherr, and Schulte-Herbrueggen 2013).

4.4 Tensor Trains and Rings 63

x1 x2 x3 x4

a b c

(a) Dual graphical model of the tensor
train.

a b c

x1 x2 x3 x4

(b) The corresponding factor graph.

Figure 4.4: The graphical model corresponding to the tensor train according
to the duality theorem.

4.4.2 Tensor Trains as Graphical Models and Efficient In-
ference

We can apply the duality result from theorem 4.1 to find the dual graphical model
of the tensor train (Robeva and Seigal 2017), as in figure 4.4a. To make it easier
to parse, we translate the hypergraph to a more relatable factor graph format,
depicted in 4.4b (Yedidia, Freeman, and Weiss 2005; Bishop 2006; Wainwright
and Jordan 2008). Since each edge of the dual hypergraph corresponds to a
clique and a clique potential in this setup, we can just replace each edge by a
factor node. We note that in addition to the four random variables xi that we are
modeling, duality introduces three auxiliary variables that we have tentatively
labeled a, b, and c. From the factor graph, the new variables appear to transmit
dependencies between neighboring random variables. The dependency of x1 on
x2 and vice versa goes through a, for instance. While the structure is reminiscent
of a Hidden Markov Model or other sequential latent model, we note that a
HMM of the same size would have another latent variable and almost twice as
many factors, but they would all be 2-variable factors. Recall that by tensor
arguments, we know that this type of structure is sufficient to model any discrete
probability distribution, if only the rank is suitably high. Rank corresponds to
the size of the state spaces of a, b, and c in the dual graphical model.

We promised earlier that certain concepts from graphical models would transfer
to tensor networks meaningfully. One thing that we know how to do in graphical
models is efficient marginalization and exact inference using the junction-tree
algorithm (Wainwright and Jordan 2008). Given a tensor network with no dan-
gling edges, we can apply the junction-tree algorithm to get an efficient sequence
of marginalization steps. These transfer directly to tensor contractions (Robeva
and Seigal 2017). Optimal contraction order is a non-trivial problem in general
tensor networks, so getting a good ordering of the contraction steps is valuable,
although we are still left with the arduous problem of finding chordal completions
as part of running the junction-tree algorithm.

64 Tensor Networks

In Robeva and Seigal (2017), they demonstrate this principle directly on the
MPS. In short, given a contraction problem similar to the one we solved to
compute the normalization constant, they transform it to the dual graphical
model and by running the junction tree algorithm they arrive at exactly the same
contraction order as we used in equation (4.10) to compute the normalization
constant, which has been the standard in the physics community due to its
efficiency.

The duality also applies in the opposite direction: (Evenbly and Pfeifer 2013)
proves that if every index except those associated with a single tensor can be
contracted in time κ, then this can be done in time κ for any other tensor as
well, and all of these separate contractions can be computed in 3κ. Whether this
result has any application in graphical models is unknown, but by the duality
argument it could be transferred.

4.5 Contribution

Although the idea of matrix product states as probabilistic models has started
to seep into machine learning (Stoudenmire and Schwab 2016; Han et al. 2017;
Pestun and Vlassopoulos 2017), it is still a model with much of its literature
firmly rooted in quantum mechanics. Our article Matrix Product states for
inference in discrete probabilistic models attempts to bridge this divide by of-
fering a solid introduction to the topic for the machine learning community.
It is also the first paper to consider variational inference with an MPS as the
variational approximation, offering algorithms for calculating unbiased gradients
and performing inference.

We also consider differentiable representations for canonical cores, and demon-
strate a core design that is simultaneously canonical and relabeling invariant. We
discuss the general principles behind cores observing various group symmetries,
relating it to the representation theory of groups and the existing theory on
continuous symmetries developed in the physics literature (Huckle, Waldherr,
and Schulte-Herbrueggen 2013; Weichselbaum 2012; Bridgeman and Chubb
2017).

Chapter 5

Conclusion

The previous three chapters have covered the topics central to our papers and
thesis, namely variational inference, probabilistic kernel methods and Gaussian
processes, and tensor networks and matrix product states. How the topics relate
to the three papers affiliated with this PhD has been described in the individual
contribution sections of the chapters, as well as in the thesis overview in the
introduction.

While the relationship between the three papers can seem a bit tangential at
times, all of our papers deal with models that exhibit strong mutual dependence
in the posterior, preventing factorization and each paper tries to deal with this
in a novel way. The first paper Difference-of-convex optimization for variational
KL-corrected inference in Dirichlet process mixtures applies standard mean-field,
but with a correction to the bound that like proper marginalization tries to
disregard nuisance parameters in an approximately optimal manner. As such
we try to bias the optimization routine away from approximations that put
undue weight on the nuisance parameters and disregard the dependencies in a
principled manner. This results in a fixed point scheme, which unfortunately
falls short of expectations by performing identically to the classical coordinate
ascent procedure.

This contrasts with the third paper, Matrix Product states for inference in dis-
crete probabilistic models, which tries to tackle the variational inference problem

66 Conclusion

on discrete probabilistic models directly. Discrete models face all of the problems
common to structured models, but also very salient issues of combinatorial explo-
sion in the number of parameters needed to describe arbitrary fully-structured
systems. To manage this complexity, we need a parametric model which can
describe dependencies without compromising on tractability. We find that tensor
networks, and matrix product states in particular, could be a viable approach
in this regard, by reframing the discrete distributions as tensors and by using
tensor rank as a structural constraint to control the computational and structural
complexity of the approximation.

in our second paper Joint expectation kernels we consider a problem in direct
contrast to the discrete models, involving Gaussian processes—elegant continuous
non-parametric models often used as probability measures over random functions.
They have closed-form inference, but it often comes at a significant computational
cost due to the highly dependent random variables it models. We consider
how this interfaces with other stochastic variables in a hierarchy, preventing
the direct application of the analytical inference formula. By reframing the
problem completely, we find an analogous problem where we can apply the
analytical formulas, but at the cost of embedding the stochastic components of
the lower-level elements in the hierarchy directly into the Gaussian process in a
non-probabilistic manner.

The solutions offered by our papers have met with varying degrees of success,
but we believe that they have jointly helped explore the space of approximate
methods available to researchers. We further believe that all of the papers have
laid the groundwork for potentially fruitful future research: the difference-of-
convex observation might be exploited more fully by future innovations in the
optimization literature, the kernel embedding has laid the groundwork for further
exploration of embedded random variables and its relationship to inference and
contrasts with distribution-oriented embeddings, and finally our article on matrix
product states will hopefully serve as an introduction to the machine learning
community, acting as a gateway to the literature and its relationships with
probabilistic modeling, and we believe that the class of models could be a very
welcome addition to any practitioner’s arsenal of models.

Appendix A

Papers

A.1 Difference-of-convex optimization for vari-
ational KL-corrected inference in Dirichlet
process mixtures

The following paper was published as,

R Bonnevie, M N Schmidt, and M Mørup (2017). “Difference-of-
Convex optimization for variational kl-corrected inference in dirichlet
process mixtures”. In: 2017 IEEE 27th International Workshop on
Machine Learning for Signal Processing (MLSP), pages 1–6

It is related to background material covered in chapter 2.

2017 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, SEPT. 25–28, 2017, TOKYO, JAPAN

DIFFERENCE-OF-CONVEX OPTIMIZATION FOR VARIATIONAL KL-CORRECTED
INFERENCE IN DIRICHLET PROCESS MIXTURES

Rasmus Bonnevie, Morten Mørup, Mikkel N. Schmidt

Technical University of Denmark
Department of Applied Mathematics and Computer Science

ABSTRACT

Variational methods for approximate inference in Bayesian
models optimise a lower bound on the marginal likelihood,
but the optimization problem often suffers from being non-
convex and high-dimensional. This can be alleviated by
working in a collapsed domain where a part of the param-
eter space is marginalized. We consider the KL-corrected
collapsed variational bound and apply it to Dirichlet process
mixture models, allowing us to reduce the optimization space
considerably. We find that the variational bound exhibits con-
sistent and exploitable structure, allowing the application of
difference-of-convex optimization algorithms. We show how
this yields an interpretable fixed-point update algorithm in the
collapsed setting for the Dirichlet process mixture model. We
connect this update formula to classical coordinate ascent up-
dates, illustrating that the proposed improvement surprisingly
reduces to the traditional scheme.

Index Terms— difference-of-convex optimization, varia-
tional inference, collapsed methods, bayesian nonparametrics

1. INTRODUCTION

Although variational inference has been around for a while [1],
there has been a surge in interest lately, moving variational in-
ference beyond the traditional mean-field approximation and
coordinate-ascent optimization. Recent advances include al-
gorithms for non-conjugate black box inference [2], stochas-
tic optimization in the large data setting [3], and universally
applicable probabilistic programming software [4], making
inference tractable for complex models such as Bayesian
neural networks [5].

Despite these advances, the variational approach hinges
on solving a potentially massive, non-convex, and high-
dimensional optimization problem. Reducing the parameter
space by analytically marginalizing parts of the variational
approximation can lead to a more well-behaved objective
function, faster convergence, and better solutions [6]. To
this end, we adopt the KL-corrected (KLC) bound as our
variational objective. It was originally invented for Gaussian
processes alone [7], but was later extended to a larger class of

conjugate exponential models [8] where it was demonstrated
to reduce the optimization space in a principled manner with-
out affecting the set of solutions. Furthermore, it has already
been shown to lead to more efficient optimization [8].

Our primary contribution is the realization that the KLC
bound has consistent structure when applied to a Dirich-
let process mixture, as it decomposes nicely into convex and
concave terms. This leads us to consider difference-of-convex
(DC) optimization as exemplified in the convex-concave pro-
cedure [9] and its generalization to non-differentiable ob-
jectives, the aptly named Difference-of-Convex Algorithm
(DCA) [10]. We show that this leads to a nice fixed-point
mapping which can be expressed as the softmax of a gradient
related to the joint distribution.

While superficially different, and derived by a different
route, this fixed-point formula turns out to reduce to the clas-
sical mean-field update. We investigate under which condi-
tions this holds and find that it is symptomatic of models with
exponential family conditionals. We consider the perspectives
of this alternate derivation, including how results about con-
vergence can potentially be carried over.

2. THE KL-CORRECTED VARIATIONAL LOWER
BOUND

Consider the general Bayesian problem of inferring a distri-
bution over latent variables Z and internal (nuisance) param-
eters U given observations of a random variable X . We can
compute the posterior p(Z,U |X) up to a constant, but the
normalization constant is typically intractable. Variational in-
ference gets around this issue by defining a family of approx-
imations q(Z,U) and then minimizing the KL divergence
KL(q‖p). The KL divergence is similarly intractable, but it
shares its critical points with the standard variational lower
bound:

LMF = Eq[ln p(X,Z,U)]− Eq[ln q(Z,U)] . (1)

Minimizing this non-convex objective with respect to the
parameters of q leads to a locally optimal approximation of
p(Z,U |X). Equation (1) is referred to as a lower bound as
it lower bounds the log-evidence ln p(X).

978-1-5090-6341-3/17/$31.00 c©2017 IEEE

Suppose we now try to marginalize U prior to doing in-
ference, then the resulting bound has the form

LC = Eq
[
ln

∫
p(X,Z,U) dU

]
− Eq[ln q(Z)] , (2)

which unfortunately requires the computation of the expec-
tation of a log-integral. Even if the integral is tractable, the
expectation over q often will not be. In the particular case
of conjugate exponential family models the integral leads to
a compound distribution outside of the exponential family,
which means that we lose many of the tractability benefits
of working with exponential family models.

This brings us to the KL-corrected bound. The deriva-
tion of the KL-corrected lower bound is a form of pseudo-
marginalization which reduces the parameter space and leaves
a more well-behaved (and still tractable) objective function,
but where the inference is still effectively over the original
unmarginalized model. There are several ways to derive it,
and we will follow Hensman et al. by deriving it by way of
an auxiliary bound [8].

The auxiliary bound is derived as a standard lower bound,
but for the model conditioned on U , instead of on the full
joint distribution.

L1(U) = Eq(Z)[ln p(X,Z|U)− ln q(Z)] . (3)

Note that the bound is a function ofU . The conditional bound
can be transformed into the KL-corrected bound as follows

LKL = lnEp(U)[exp(L1(U))] . (4)

Since L1(U) is a bound on ln p(X|U), the operations above
result in LKL being a bound on the marginal likelihood
ln p(X) as desired. The KLC bound is related to the CVB0
approximation [11] as detailed in the original article [8].

2.1. The KLC Bound for the Dirichlet Process Mixture

As an example, we will consider a particular conjugate expo-
nential family model where the KL-corrected bound is com-
putationally advantageous — namely a Dirichlet process mix-
ture model. KLC bounds for finite mixture models have al-
ready been covered [8, supplementary], but we will need the
KLC bound later so we provide the derivation here for the
non-parametrically extended mixture. We will leave the com-
ponent distribution arbitrary, under the constraint that it is an
exponential family distribution with a density of the form

p(xi|ηk) = h(xi) exp
(
η>k T (xi)−A(ηk)

)
(5)

We further model each parameter vector ηk as being drawn
from a common conjugate prior ηk ∼ p(η|γ, ν). We can
combine the above into a mixture model using latent indica-
tors Z

p(X, {ηk}∞k=1|Z) =
∞∏

k=1

[
N∏

i=1

p(xi|ηk)zik

]
p(ηk|γ, ν) (6)

The final component needed is the prior on Z. We will em-
ploy a stick-breaking representation of the Dirichlet process,
but one could just as well use a Dirichlet-multinomial pair for
a finite mixture. The stickbreaking distribution takes the form

βk ∼ Beta(1, α), zik|β1, . . . , βk ∼ Cat(wk) (7)

with dependency through wk = βk
∏
`<k(1−β`). While this

prior has an unbounded number of variables, we will control
for this later using the variational approximation so that the
bounds only ever have a finite number of terms. Writing out
the prior density gives us

p(Z|β) =
N∏

i=1

∞∏

k=1

[
βk
∏

`<k

(1− β`)
]zik

=

∞∏

k=1

βmk

k (1− βk)m
∞
k+1 , (8)

where mk =
∑N
i=1 zik and m∞k+1 =

∑∞
`=k+1m`.

Collecting U = ({ηk}∞k=1,β), we can compute the
L1(U) conditional bound, under an exponential family vari-
ational approximation q(Z|µ) parametrized by mean param-
eters µ, resulting in

L1(U) = C +
∞∑

k=1

[
η>k T̄k − m̄kA(ηk)

]
+

∞∑

k=1

[
m̄k ln(βk) + m̄∞k+1 ln(1− βk)

]
+Hq(µ), (9)

where C =
∑N
i=1 lnh(xi), T̄k =

∑N
i=1 Eq[zik]T (xi),

m̄k =
∑N
i=1 Eq[zik], and m̄∞k+1 =

∑∞
`=k+1 m̄`.

To compute the KL-corrected bound we will split up the
L1 bound into terms depending on η and β. Taking the expo-
nential as in equation (4) gives us expressions with the same
functional forms as the original distributions, allowing us to
integrate over the appropriate conjugate priors, yielding fac-
tors

∞∏

k=1

eA0(γ+T̄k,ν+m̄k)

eA0(γ,ν)
,

∞∏

k=1

B(1 + m̄k, α+ m̄∞k+1)

B(1, α)
. (10)

for the likelihood and latent distributions, respectively. Here,
A0 is the log-normalizer of the conjugate prior to η and B is
the beta function, i.e. the normalizer of the Beta distribution..

The KL-corrected bound now follows naturally from the
definition.

LKL =
∞∑

k=1

[
A0(γ + T̄k, ν + m̄k)+

lnB(1 + m̄k, α+ m̄∞k+1)
]

+Hq(Z) + const. (11)

2.2. Difference-of-Convex Structure of the KLC Bound

Our key observation is that both A0 and lnB are the log-
normalizers of exponential family models and are thus known
to be convex [12]. Since T̄k and m̄k are linear functions in
µik ≡ Eq[zik], we know that their composition with a convex
function results in something that is also convex in µik [13].
Since the sum likewise preserves convexity, the whole sum is
convex.

Furthermore, if q(Z) is an exponential family with mean
parametrization µ and log-normalizer Aq , then it can also be
shown that [12, theorem 3.4]

−A∗q(µ) = Hq(µ), (12)

whereA∗q denotes the convex conjugate of the log-normalizer.
Since the convex conjugate is always convex, we can con-
clude that the entropy is concave for an exponential fam-
ily [12].

To summarize, the bound is made up of a convex and a
concave part; additional structure we should do our best to
exploit. To stay true to the optimization literature, we will
consider minimization of −LKL from here on out, resulting
in the following (flipped) decomposition

−LKL = fvex + fcave − C, fvex = −Hq(µ), (13)

fcave = −
∞∑

k=1

[
A0(γ + T̄k, ν + m̄k)+ (14)

lnB(1 + m̄k, α+ m̄∞k+1)
]
. (15)

3. CONVEX-CONCAVE PROCEDURE

Optimization problems with a mix of convex and concave
terms are denoted as difference-of-convex problems (DC).
Technically, any non-convex smooth problem is a DC prob-
lem as functions can be decomposed into regions of positive
and negative curvature, but the decomposition is not always
obvious [9, 10].

The convex-concave procedure (CCCP) is a straightfor-
ward algorithm for DC problems [9]. The core idea is that
a stationary point for a difference function occurs when the
gradients of the two terms match, i.e.

0 = ∇ (fvex + fcave)⇔ ∇fvex = −∇fcave. (16)

The CCCP algorithm simply turns this premise into an
implicit fixed-point scheme

∇fvex(µt+1) = −∇fcave(µt), (17)

so µt+1 is picked so that the convex gradient matches the
negative concave gradient at time t. While this might look
arbitrary, this in fact elegantly exploits the features of the
function’s convex-concave nature, ensuring a monotonously
decreasing sequence [9].

An equivalent, but slightly more approachable, interpreta-
tion of CCCP is as a sequential optimization problem, where

µt+1 = argmin
µ

fvex(µ) + f̃ (µt)
cave(µ). (18)

where we have linearized the concave part around µt as
f̃

(µt)
cave(µ) =

(
fcave(µt) + (µ− µt)>∇fcave(µt)

)
. Since

the concave part is linearized it becomes trivially convex
(in addition to concave), and the complete objective is then
unequivocally a convex function, leading to a simplified
problem where the full brunt of convex optimization can be
brought into play. Since the linearization of a concave func-
tion upper bounds the concave function itself this provides an
illustration of why the sequence is monotonously decreasing
(see figure 1). for more details, see [14, 9, 10].

3.1. Necessary Conditions on the Variational Distribution

So far, we have left the variational approximation q(Z|µ)
vague. With the above in place, we see that to apply CCCP
to our bound, there are two key restrictions (and an additional
facilitator).

Expectations Linear in the Parameters We are relying on
the transparent relationship µik = E[zik] between pa-
rameters and expected latent variables. This could be
relaxed a bit — the expectation could be any linear
function of the parameters. In fact, it could even be
a convex or concave function of the parameters follow-
ing the standard composition theorems, assuming some
further conditions hold [13].

Concave Entropy The variational approximation needs to
have concave entropy. The entropy function is con-
cave for exponential family models [12], and entropy
in general is concave in the space of distributions, but
we have been unable to document that this holds for all
distributions outside of the exponential family, as well
as all possible parameterizations.

(Tractable Inverse Gradient Map) Ideally, we would also
like to know the inverse entropy-gradient map. This
turns out to be well-known for many exponential fami-
lies, but is likely unavailable for many more interesting
variational approximations. Fortunately, we will still
be able to solve the sequential problem in equation (18)
efficiently if q obeys the other conditions, so the inverse
map is not strictly necessary.

We can find at least one simple variational approximation
obeying the above conditions in the form of the widely used
product of single-sample multinomials (i.e. categorical distri-
butions).

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

linearized concave

objective (convex+concave)

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

convex + linearized concave

convex + linearized concave

Fig. 1. The sequential interpretation minimizes the objective (black) by constructing an upper bound. The concave term is
linearized to yield a convex upper bound (red; right).

3.2. Fixed-point Update for the KLC Bound

To formulate our main result, we rewrite equation (17) fol-
lowing [9],

µt+1 = [∇fvex]−1 (−∇fcave(µt)) . (19)

Since the KLC bound consists of log-normalizers, we
just need to be able to compute gradients of exponential fam-
ily log-normalizers to compute the gradient of the bound.
This makes it relevant to mention the following relation-
ships between the (arbitrary exponential family) distribu-
tion’s log-normalizer A, its natural parameters η, and its dual
parametrization in mean parameters µ [12]

[∇A]
−1

(µ) = ∇A∗(µ) = η, (20)

[∇A∗]−1
(η) = ∇A(η) = µ, (21)

illustrating key symmetries found in exponential family
models. Recall that fvex = −Hq(µ) = A∗q(µ), so that
[∇fvex]

−1
= ∇Aq by the above. Then CCCP yields

µt+1 = ∇Aq(−∇fcave(µt)). (22)

If we compare this to the second identity in (20), it appears
that −∇fcave(µt) is in some sense representing a set of nat-
ural parameters. At the fixed point µ∗ of the update rule, it
must in fact be the exact corresponding natural parameter η∗,
i.e. −∇fcave(µ∗) = η∗ = ∇A∗q(µ∗).

We can make the update rule a bit more explicit, but first
we have to handle the normalization constraints

∑K
k=1 µik =

1. We add Lagrangian terms to the convex terms such that

fvex =
N∑

i=1

K∑

k=1

µik lnµik +
N∑

i=1

λi

(
K∑

k=1

µik − 1

)
. (23)

Taking the derivative yields

gik =
∂

∂µik
fvex = lnµik + 1 + λi ⇔ µik =

exp(gik − 1)

exp(λi)
.

(24)
Applying the constraint, we get that

µik =
exp(gik)

∑K
k=1 exp(gik)

, (25)

which is the softmax function S(·), so we can write the actual
CCCP update formula (equation (19)) as

µt+1 = S(−∇fcave(µt)) = S(∇µ ln p(X,Eµ[Z]))|µ=µt
.

(26)
This is reminiscent of exponentiated gradient algorithms

which show up when objectives are regularized with Kullback-
Leibler divergences [15, 16]. Since the KL divergence
includes an entropy term it makes sense that they appear
similar.

4. CONNECTING THE KLC UPDATES WITH
MEAN-FIELD COORDINATE ASCENT

The original solution to the mean-field variational inference
problem in the uncollapsed setting was to apply coordinate
ascent, updating each distribution in turn. This procedure
was often tractable for conjugate exponential family models,
if sometimes convoluted.

In general, by taking the derivative of the lower bound
with respect to the parameters controlling the distribution over
model variable θi ∈ {θj}Nj=1 and setting the derivative to
zero, we can find that the optimal variational approximation
is[17]

q(θi) ∝ exp(Eq[ln p(θi|D, {θj}i6=j) | θi]), (27)

where D is the set of observed variables. Usually, mean field
assumptions are exploited to ensure that the expectations are
tractable, but if the expectations are computable without that
assumption then the parameters can be updated in blocks.

For our mixture, the expectation resolves to

Eq
[
ln p(zi|X,Z\i,U) | Z

]
= (28)

K∑

k=1

zik
(
T (xi)

> E[ηk]− E[A(ηk)] + E[lnwk(β)]
)

(29)

where we will denote the term in the parenthesis by ln π̃ik,
which is understood to be the log of the unnormalized prob-
ability parametrizing the multinomial variational approxima-
tion over zi. If we take the softmax of ln π̃ik we recover
the distribution itself. Let us compare this to −∇fcave. We
will consider its terms individually, starting with the log-
normalizer terms involving A0. Taking the gradient, we get

∂

∂µik
A0(γ + T̄k, ν + m̄k) = (30)

∇γ,νA>0
(
T (xi)

1

)
=

(
E[ηk]

−E[A(ηk)]

)>(
T (xi)

1

)
. (31)

These terms exactly match the ones found in the coordi-
nate ascent update.

Following a similar process, if we take the derivatives of
the log-beta terms — being log-normalizers of beta distribu-
tions — in fcave, we recover the latent terms in the ascent
updates

∂

∂µi`
lnB(1 + m̄k, α+ m̄∞k+1) =

(
E[lnβk]

E[ln(1− βk)]

)>(
1[` = k]
1[` < k]

)
, (32)

as the latent terms in the ascent formula can be expanded as

E[lnwk(β)] = E[lnβk] +
∑

`<k

E[ln(1− βk)]. (33)

Thus we can conclude that the CCCP strategy exactly matches
classical coordinate ascent. This conclusion hinges on the ex-
pectations being over the same variational distribution q(U),
but the KL-corrected bound implicitly always uses the op-
timal approximation q∗(U) so if we take coordinate ascent
steps to maximize q(U) before updating µ, then the expecta-
tions will always match.

To investigate this further, recall that in the uncollapsed
setting we need to find both a variational approximation q(U)
over the component parameters, as well as a distribution over
the clusters parameterized by µ. To every state µt, there is
an optimal setting of the variational approximation q(U); we
use Λ(µt) to denote the implicit map that maps µt to the op-
timal q∗(U). Let us use that the entropy (−fvex) is a term

LMF and LKL have in common and define a decomposition
−LMF (µ,Λ(µt)) = −E(µ,Λ(µt)) + fvex(µ) where E is
the average energy — the first argument µ is identified with
a distribution over Z, while the second argument is the distri-
bution over U which we set to the optimal value with respect
to a previous iterate µt, using the implicit map Λ(·). If µ∗ is
the optimum of the bound, the first-order optimality condition
for LMF with respect to µ states that

∇E(µ∗,Λ(µt)) = ∇fvex(µ∗) (34)

Now recall that CCCP can be interpreted as a sequen-
tial convex problem (equation (18)) with a linearized con-
cave component f̃cave(µ). We then have the exact same
optimality condition, but at a potentially different point:
−∇f̃cave(µ̃∗) = ∇fvex(µ̃∗). Furthermore, recall that the
two bounds have matching values and gradients at µt by con-
struction, i.e. ∇LKL(µt) = ∇LMF (µt), which means the
energy must match the linearized concave component

−∇f̃cave(µ̃∗) = E(µt,Λ(µt))

since f̃cave is linear, its gradient is constant, so if µ̃∗ =
µ∗, we have the peculiar property that ∇E(µt,Λ(µt)) =
∇E(µ∗,Λ(µt)), i.e. the gradient of the energy is constant as
well. This hints at “hidden linearity” in the average energy.

A partial explanation comes from considering the case
where the distribution p(Z|X,U) is in an exponential family
together with its prior p(Z|ν). Following Hoffman et al. [3],
the natural gradient ∇̃ of the lower bound for an exponential
family with parameters η is

∇̃ηLMF (η) = η − Eq(ν)[ν] = ∇µLMF (η(µ)), (35)

where the last equality can be proven using the chain rule [8].
Since the η term comes from the entropy, the natural gradient
in the energy does indeed appear to be constant. So from this
it’s clear that mean parameter gradients of the average energy
are constant when the conditionals are exponential family dis-
tributions.

We note that this identity between the two algorithms has
its benefits and can provide new angles of attack for theo-
retical problems concerning variational inference. As an ex-
ample, convergence for CCCP and other bound optimization
algorithms was investigated by Salakhutdinov et al. [14]. Fi-
nally, we should mention that this is not the first connection
found between the coordinate ascent updates and other opti-
mization paradigms. Sato deduced that the coordinate ascent
updates were similarly identical to natural gradient steps with
stepsize 1 [18]. By transitivity our iteration formula is then
also identical to a unit natural gradient step.

5. CONCLUSION

The main result of this paper is the demonstration that the
KL-corrected bound for the Dirichlet process mixture inher-

its structure from the original variational problem and can be
partitioned into convex and concave parts.

We argue that additional information available about an
objective function should be exploited to the extent possi-
ble, and the difference-of-convex literature indicates that the
above split can lead to improved non-convex optimization.

Applying the CCCP algorithm leads to a general analyti-
cal fixed-point update formula. The update formula is shown
to match standard variational Bayes updates, and thus pro-
vides a new angle of attack on the variational problem, which
can potentially be extended to models beyond the classical
mixture model.

To truly surpass the existing inference schemes it appears
that we need difference-of-convex algorithms that can take
advantage of second-order derivatives. Unfortunately, to the
best of our knowledge, the DC optimization literature has yet
to find algorithms improving on CCCP/DCA. We hope that
future research will either uncover new ways to exploit the
difference-of-convex structure, or that the connections with
DC optimization can provide a new fruitful avenue for the
analysis of collapsed variational Bayes.

6. REFERENCES

[1] Michael I Jordan, Zoubin Ghahramani, Tommi S
Jaakkola, and Lawrence K Saul, “An introduction to
variational methods for graphical models,” Machine
learning, vol. 37, no. 2, pp. 183–233, 1 Nov. 1999.

[2] Rajesh Ranganath, Sean Gerrish, and David M Blei,
“Black box variational inference,” 31 Dec. 2013.

[3] Matthew D Hoffman, David M Blei, Chong Wang, and
John Paisley, “Stochastic variational inference,” Journal
of machine learning research: JMLR, vol. 14, no. 1, pp.
1303–1347, May 2013.

[4] Alp Kucukelbir, Dustin Tran, Rajesh Ranganath, An-
drew Gelman, and David M Blei, “Automatic differ-
entiation variational inference,” 2 Mar. 2016.

[5] Diederik P Kingma and Max Welling, “Auto-Encoding
variational bayes,” 20 Dec. 2013.

[6] Yee W Teh, David Newman, and Max Welling, “A col-
lapsed variational bayesian inference algorithm for la-
tent dirichlet allocation,” in Advances in Neural Infor-
mation Processing Systems 19, B Schölkopf, J C Platt,
and T Hoffman, Eds., pp. 1353–1360. MIT Press, 2007.

[7] Nathaniel J King and Neil D Lawrence, “Fast variational
inference for gaussian process models through KL-
Correction,” in Machine Learning: ECML 2006, Lec-
ture Notes in Computer Science, pp. 270–281. Springer
Berlin Heidelberg, 1 Jan. 2006.

[8] James Hensman, Magnus Rattray, and Neil D Lawrence,
“Fast variational inference in the conjugate exponential
family,” in Advances in Neural Information Processing
Systems 25, F Pereira, C J C Burges, L Bottou, and K Q
Weinberger, Eds., pp. 2888–2896. Curran Associates,
Inc., 2012.

[9] A L Yuille and Anand Rangarajan, “The concave-
convex procedure,” Neural computation, vol. 15, no.
4, pp. 915–936, Apr. 2003.

[10] Le Thi Hoai An and Pham Dinh Tao, “The DC (differ-
ence of convex functions) programming and DCA re-
visited with DC models of real world nonconvex op-
timization problems,” Annals of Operations Research,
vol. 133, no. 1-4, pp. 23–46, 2005.

[11] Katsuhiko Ishiguro, Issei Sato, and Naonori Ueda, “Av-
eraged collapsed variational bayes inference,” Journal
of machine learning research: JMLR, vol. 18, no. 1, pp.
1–29, 2017.

[12] Martin J Wainwright and Michael I Jordan, “Graphical
models, exponential families, and variational inference,”
Found. Trends Mach. Learn., vol. 1, no. 1-2, pp. 1–305,
Jan. 2008.

[13] Stephen Boyd and Lieven Vandenberghe, Convex opti-
mization, Cambridge Univ. Pr, 2004.

[14] Ruslan Salakhutdinov, Sam Roweis, and Zoubin
Ghahramani, “On the convergence of bound optimiza-
tion algorithms,” in Proceedings of the Nineteenth Con-
ference on Uncertainty in Artificial Intelligence, San
Francisco, CA, USA, 2003, UAI’03, pp. 509–516, Mor-
gan Kaufmann Publishers Inc.

[15] David P Helmbold, Robert E Schapire, Yoram Singer,
and Manfred K Warmuth, “A comparison of new and old
algorithms for a mixture estimation problem,” Machine
learning, vol. 27, no. 1, pp. 97–119, 1997.

[16] Amir Globerson, Terry Y Koo, Xavier Carreras, and
Michael Collins, “Exponentiated gradient algorithms
for log-linear structured prediction,” in Proceedings of
the 24th International Conference on Machine Learn-
ing, New York, NY, USA, 2007, ICML ’07, pp. 305–
312, ACM.

[17] Christopher M Bishop, Pattern Recognition and Ma-
chine Learning, Springer, 17 Aug. 2006.

[18] Masa-Aki Sato, “Online model selection based on the
variational bayes,” Neural computation, vol. 13, no. 7,
pp. 1649–1681, 2001.

74 Papers

A.2 Joint expectation kernels

The following paper is yet to be published. It has been submitted to NIPS 2018.
It is related to background material covered in chapter 3.

Joint Expectation Kernels

Rasmus Bonnevie
DTU Compute, Cognitive Systems
Technical University of Denmark

Copenhagen, Denmark
rabo@dtu.dk

Mikkel N. Schmidt
DTU Compute, Cognitive Systems
Technical University of Denmark

Copenhagen, Denmark
mnsc@dtu.dk

Abstract

A kernel mean embedding (KME) represents a probability distribution as a point
in a reproducing kernel Hilbert space, and naturally induces a kernel on the distri-
butions. We propose a new joint expectation kernel which is defined over random
variables rather than probability distributions. We argue that our proposed joint
expectation kernel, in contrast to the KME, is better suited for problems such as
regression over uncertain inputs. We show how the proposed kernel can handle
censored and uncertain data, and we highlight how the KME converges to a zero
process in the high noise regime and artificially inflates observations in the low-data
regime as two qualitative flaws.

1 Introduction

With kernel methods, many classical learning problems have been reframed in terms of datum-to-
datum similarities—or inner products, to be precise—rather than by an explicit feature representation.
Using an appropriate kernel, algorithms can be applied directly to new classes of non-vectorial
datasets, such as graphs [Kondor and Lafferty, 2002, Kondor and Pan, 2016], strings [Collins and
Duffy, 2001, Eskin et al., 2003], and probability distributions [Muandet et al., 2012, Flaxman et al.,
2015, Muandet et al., 2016]. In this paper we explore the uses of probability space kernels, that
enable us to handle data with inherent uncertainty without sacrificing tractability. Compared to a
pure probabilistic model where uncertain input points must be sampled or approximated as part
of the inference process, the kernel based methods operate directly on noisy or ‘smeared out’ data
points. Applications range from classical regression and classification with input uncertainty, over
Bayesian (Gaussian process) smoothed regression, to regression on the output of latent quantities e.g.
represented by MCMC samples.

Whereas standard probability space kernels such as kernel mean embeddings [Smola et al., 2007]
implicitly take expectations prior to forming the inner product, our proposed kernel averages over the
inner products instead. This design allows our joint expectation kernel to take covariance into account,
which KME completely ignores. Ignoring covariance can be problematic for example when we have
two random variables with identical marginals: KME will conflate the two as it identifies them by
the marginal distribution, while our proposal can distinguish between the points as Cov(X,Y) is
different from Cov(X,X). As such, our proposed kernel is well-suited for tasks where we observe
random variables, such as if we have uncertain or censored data.

In the Gaussian setting the joint expectation kernel is particularly applicable, and the explicit incorpo-
ration of uncertainty allows us to build models that take the output of jointly Gaussian generative
models as input. In particular, we develop a novel probabilistic kernel model where the output of
an arbitrary Gaussian process is fed as input to another Gaussian process using the proposed kernel.
This yields a novel and flexible family of kernel models which we call nested Gaussian processes.

32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada.

2 Probability Space Kernels

By probability space kernels we generally understand kernels that take a random variableX ∼ pX(X)
or its probability distribution pX(·) as input. The most prominent framework for probability space
kernels is kernel mean embeddings (KME) [Smola et al., 2007], where a random variable X is
characterized by its embedding µX ,

µX = EX [k(X, ·)] . (1)

Here k(·, ·) is a kernel defined on the same space as X , which we will refer to as the embedding
kernel. As µX is an element of an RKHSH, it has a natural inner product,

kKME(X,Y) = 〈µX , µY 〉H = EY [EX [k(X,Y)]] . (2)

The kernel mean embedding provides a natural way to handle distributions in an RKHS setting and
there is a lot of supporting theory. For a class of kernel functions called characteristic kernels, the
mean embedding completely defines the probability distribution, so that ‖µX − µY ‖H = 0 implies
that X and Y are identically distributed [Sriperumbudur et al., 2011, Muandet et al., 2016].

Another perspective comes from Gaussian processes and Bayesian quadrature, where it is known that
if Gaussian process f(x) is generated from kernel k, then the kernel between linear transformations L
of the process [Lxf](x) and [Lyf](y) is 〈Lxk(x, ·),Lyk(y, ·)〉H Briol et al. [2015]. As expectation
E[·] is a linear operator, we see that 〈µX , µY 〉 is the induced covariance between EX [f(X)] and
EY [f(Y)]. So the inner product on embedded distributions is derived from the inner product on
expectations over test functions. This is the same line of thought behind characterizing random
variables in terms of moments and characteristic functions, which is analyzed more deeply in the
review on KMEs by Muandet et al. 2016.

We have highlighted a technical detail in the above kernel definition by writing the expectation as
two marginal expectations: A KME kernel generally does not take mutual covariance into account as
it is fundamentally a measure of similarity between marginal distributions. To be clear, there do exist
kernel mean embeddings of joint distributions as well, see e.g. [Muandet et al., 2016], but this is a
separate issue from that of defining a kernel between individual covariant random variables.

2.1 Joint Expectation Kernel

The novel joint expectation kernel (E-kernel) is straightforwardly defined as

kE(X,Y) = EX,Y [k(X,Y)] , (3)

where the expectation is now over the joint distribution of X and Y and k(·, ·) is an arbitrary
embedding kernel as for KME. X and Y are here arbitrary random variables. As opposed to the
KME kernel, we take the expectations of the inner product, rather than the inner product between
expectations.

The kernel’s positive semidefiniteness (PSD) naturally follows from that of the embedding kernel.
If KE = E[K] is taken to be a N × N matrix populated by [KE]ij = E[k(Xi, Xj)], and Xi are
random variables on the same domain, then

v> E[K]v = E
[
v>Kv

]
≥ 0,∀v ∈ RD, (4)

with the final inequality following as the expectation is over a non-negative random variable, as
v>Kv ≥ 0 by virtue of the embedding kernel being PSD.

A constructive, but less explicit, approach would be to recall that random variables X , Y are really
functions X(ω), Y (ω) from a sample space ω ∈ Ω to a measurable space such as the reals [Casella
and Berger, 2002]. A kernel related to our E-kernel could then follow from using the standard kernel
construction rule k(x, y) = k0(f(x), f(y)) [Bishop, 2006], with x and y being the random variables,
and f(·) = gω(·) being the evaluation functional at ω. This would be PSD for fixed ω, and we could
then form the E-kernel by integrating over Ω. So the kernel is intuitively an aggregate measure of
“event similarity”.

2

2.1.1 Contrasts with KME

The E-kernel is a qualitatively different kernel from the KME, with each kernel being appropriate for
different tasks. Even in the minimal setting where all of the variables are independent, the E-kernel
does not reduce to the KME. In the case of zero covariance, the two kernels are indeed equal for
off-diagonal elements where the zero covariance conditions hold sway, but on the diagonal each
variable will trivially be perfectly correlated with itself so that for a stationary embedding kernel
k(x, y) = k(x− y),

k(0)︸︷︷︸
kE(X,X)

6= EX [EX′ [k(X,X ′)]]︸ ︷︷ ︸
kKME(X,X)

, (5)

where X ′
(D)
= X is an “independent copy” of X with the same distribution.

A few key differences between KME and E-kernel:

Limiting behavior As the input variance increases to infinity, the probability that distance ∆ =
X − Y is large will also grow. For a kernel function that goes to 0 as the distance increases,
this implies that the kernel between two independent random variables will vanish in the
limit. The kernel matrix for the KME kernel will converge to a 0 matrix and thus a zero
process. The E-kernel on the other hand converges to a scaled identity matrix with k(0) on
the diagonal, corresponding to a Gaussian noise process. So if we pick a random point from
the domain, the KME kernel will become increasingly certain that it has value 0 a priori.

Inflation effect If we split the kernel as k(x, y) = 〈k(x, ·), k(y, ·)〉 and take µX to be the kernel
mean embedding from equation (1), then we can consider the difference in behavior for
a very simple predictive task: given one observation at stochastic unknown variable X of
value y = f(X), then looking at the posterior predictive mean at x∗ = 0 of a Gaussian
process trained with these two kernels yields:

ŷE =
〈k(0, ·), µX〉
〈k(0, ·), k(0, ·)〉y (6)

ŷKME =
〈k(0, ·), µX〉
〈µX , µX〉

y =
‖k(0, ·)‖2
‖µX‖2

ŷE. (7)

Here ŷE is relatively stable with respect to µ, as the prediction only scales with the inner
product which decreases with increasing variance of X (as variance 0 maximizes the inner
product). ŷKME scales this prediction with the inverse of the squared norm of µ. If the norm
of µ decreases with increasing variance, this inflates the prediction, possibly increasing
the prediction beyond the originally observed quantity. Applying Cauchy-Schwartz to the
coefficient of ŷE we have

∣∣∣∣
〈k(0, ·), µX〉
〈k(0, ·), k(0, ·)〉

∣∣∣∣ ≤
‖µX‖
‖k(0, ·)‖ , (8)

which demonstrates that even in the extreme case, the prediction will shrink towards the prior
as input variance increases. As ŷKME inverts the ratio of this bound, there is theoretically no
bound to the inflation effect of the KME prediction, although in practice it will be controlled
by the choice of kernel.

For Gaussian process regression with an E-kernel, observing a point with extremely high variance
means that the point could be anywhere. Correlation with other points vanish, but we can still expect
the value of the point to be distributed like the prior marginal distribution. Based on the first difference
mentioned above, this argues in favor of the E-kernel. Likewise, if we have no idea about where the
point is, our mean belief should fall back towards the prior. This conflicts with the inflation effect,
once again arguing in favor of the E-kernel.

Finally, it should be noted that the E-kernels can do things that the KME simply cannot. In particular,
we will make the case that SEEK is appropriate for regression on spaces of random variables and
points with uncertain location, while KME is appropriate for regression on integrals and distributions.

3

2.2 Gaussian case: The SEEK kernel

As a useful case study, take Z =

(
X
Y

)
∼ N (m,Σ) to be jointly Gaussian random variables taking

valuesX,Y ∈ RD and take the embedding kernel to be a squared exponential kernel kSE . These
assumptions jointly define the Squared Exponential E-kernel (SEEK) which we will derive below.
As a convenience, we will write the squared exponential kernel as a scaled Gaussian, in what is
sometimes referred to as the expected kernel trick [Turner, 2012]

kSE(x,y) = λN (0;x− y,Σ0) = (9)
λ√

(2π)D|Σ0|
exp

(
−1

2
(x− y)>Σ−10 (x− y)

)
, (10)

where N (x;m,Σ) denotes the Gaussian probability density function with meanm and covariance

Σ. Now define∆ = X − Y = WZ, whereW> =

(
I
−I
)

. AsW is a linear map, the distribution

of∆ follows easily from Gaussian calculus

∆ ∼ N (Wm,WΣW>) = (11)
N (mX −mY ,ΣX,X +ΣY,Y −ΣX,Y −ΣY,X). (12)

where the indexed m and Σ correspond to the appropriate partitions of the mean and covariance
matrix. Note that the shapes match as the covariance matrices describe covariances between different
dimensions of two points — we are still only considering the kernel similarity between two elements
of the RKHS.

Writing the expectation in terms of Z (and using that SE is stationary),

kE(X,Y) = EX,Y [k(X − Y)] = (13)
E∆[k(∆)] = λE∆[N (0;∆,Σ0)] , (14)

we find a Gaussian integral of the type
∫
N (·;x,C1)N (x;m,C2) dx which results in the analytical

kernel expression for the SEEK kernel:

kSEEK(X,Y) = λN (0;Wm,WΣW> +Σ0). (15)

If we take X and Y to be one-dimensional random Gaussian variables with joint mean and covariance

m =

(
mX

mY

)
, Σ =

(
σX,X σX,Y
σX,Y σY,Y

)
, (16)

then we can write the one-dimensional SEEK kernel as

kSEEK(X,Y) = λN (0;mSEEK, σ
2
SEEK) (17)

mSEEK = mX −mY , (18)

σ2
SEEK = σ2

0 + σX,X + σY,Y − 2σX,Y . (19)

Extending this kernel to multiple dimensions using the typical separable construction of taking tensor
products corresponds to assuming that the covariance blockΣX,Y (along with the diagonal blocks)
in the multi-dimensional setting is diagonal, i.e. there is no covariance across different dimensions.

Inspecting the kernels, we see that as the variance and covariance goes to 0, we recover the original
embedding kernel. We also note that on the diagonal the equality between the SEEK and the
embedding kernel always holds true as the additional covariance terms cancel appropriately. AsΣ0

controls the lengthscale of the kernel, we see that it is through modifications of this parameter the
input covariance affects the kernel similarity, but we emphasize that the normalization term (see
the original SE kernel in equation (9)) means that changes to the covariance will also influence the
effective prior variance.

Another point of interest is that while it is useful to consider SEEK as a kernel on the subspace of
Gaussians alone, it remains a general E-kernel on the space of all distributions — it is just a happy
coincidence that we can evaluate it exactly for Gaussians when using an SE embedding. This means
that we can also evaluate the kernel similarity between a Gaussian and e.g. an empirical measure or

4

−2 −1 0 1 2

x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

y

−2 −1 0 1 2

x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

y

Figure 1: As input noise on the single black observation increases, SEEK (left) deflates and KME
(right) inflates. Blue is low input noise, red is high. Top line indicates inflation bound of

√
2.

even a deterministic point in the form of a Dirac delta distribution (both of which can be computed
analytically). This is a feature shared with the kernel mean embedding, and KME kernels over
empirical measures have already seen some use [Flaxman et al., 2015].

This also helps illustrate the “inflation effect” described in section 2.1.1. Returning to the single-
observation scenario proposed there, and further assuming a (KME-)SEEK kernel with lengthscale
σ2
0 and a Gaussian measure on the observed location X ∼ N (0, βσ2

0) for some proportionality factor
β ≥ 0, then

kSEEK(δ0, X) = kKME(δ0, X) =
1√

2πσ2
0(1 + β)

kSEEK(X,X) =
1√

2πσ2
0

,

kKME(X,X) =
1√

2πσ2
0(1 + 2β)

,

for kernels evaluated at the Dirac point measure on zero δ0, leading to mean predictions at x0 = 0 of

ŷSEEK =

√
1

1 + β
y, ŷKME =

√
1 + 2β

1 + β
y, (20)

As the relative variance β increases, we see that SEEK regresses back towards the prior mean, while
KME actually inflates its prediction, converging to a

√
2 factor in the limit (see figure 1).

2.3 Beyond Gaussians: Uniform SEEK

While Gaussians appear frequently, E-kernels can be applied beyond that domain. Another common
family of distributions is the uniform distribution. If we once again consider the SE kernel of equation
(9), but limit it to have diagonal covariance Σ0, then we can compute a closed-form kernel over
uniform distributions on axis-aligned rectangles A = [`1, u1]× . . .× [`D, uD],

UA(x) =

D∏

d=1

1[`d ≤ xd ≤ ud]
ud − `d

. (21)

As the kernel factorizes across dimensions, it suffices to consider the one-dimensional kernel as the
multivariate version can be constructed from tensor products.

The E-kernel for uniform distributions over A = [`a, ua] and B = [`b, ub] over the SE kernel can be
computed via the double integral

k(UA,UB) =
λ

|A||B|

∫ ub

`b

∫ ua

`a

N (x; y, σ2
0) dxdy . (22)

5

We recognize the inner-most integral as being computable in terms of the Gaussian standard CDF
Φ as Φ(ua−y

σ0
)− Φ(`a−yσ0

). The outer integral is then an integral over the Gaussian CDF, with the
antiderivative of the CDF being,

Φ̄(t, y) =

∫
Φ

(
t− y
σ0

)
dy = (23)

(y − t)Φ
(
t− y
σ0

)
− σ2

0 N
(
y; t, σ2

0

)
. (24)

The kernel is then

k(UA,UB) =
λ

|A||B| ((Φ̄(ua, ub)− Φ̄(ua, `b))− (25)

(Φ̄(`a, ub)− Φ̄(`a, `b))). (26)
We name this the Uniform SEEK kernel, or USEEK for short.

2.4 Empirical E-kernels

E-kernels are only analytical when the necessary double integrals can be carried out, as in the above
two cases. For many combinations of kernel and probability distribution, this will not be possible.
One approximate way of tackling this for an arbitrary kernel and an arbitrary joint distribution pXY
is to do a sample approximation of the distribution using S samples:

E[k(X,Y)] ≈ 1

S

S∑

i=1

k(xi, yi), xi, yi ∼ pXY . (27)

This Monte Carlo approximation can be made arbitrarily precise, by simply using sufficiently many
samples. These empirical E-kernels can also be used jointly with MCMC algorithms, to carry out
regressions on latent variables.

2.5 Nested Gaussian Process

To demonstrate the E-kernel’s ability to model sets of mutually covariant random variables in a way
that is outside the scope of the KME kernels, we will here use a Gaussian process to model the
input uncertainties, demonstrating how we can form a new kernel by calculating the E-kernel of the
Gaussian process.

As the Gaussian process is simply multivariate Gaussian for any finite set of observations, it falls
neatly into the SEEK framework. Limiting ourselves to the one-dimensional setting without loss
of generality, we take x, y ∈ R to be two points in the input space. Given an input kernel k, define
auxiliary points X̂ and Ŷ as being generated by a Gaussian process with input covariance k(

X̂

Ŷ

)
∼ N

((
x
y

)
,

(
k(x, x) k(x, y)
k(y, x) k(y, y)

))
. (28)

Here we have set the mean function to be the identity m(x) = x, reflecting that we are modeling
the noise around a mean position x. To get the E-kernel, we then simply have to replace m and
Σ in equations (16) and (17) by the above mean and covariance functions of the Gaussian process,
evaluated at input points x and y. We call this the nested Gaussian process (NGP) kernel, and it’s
defined as kNGP (x, y) ≡ kSEEK(X̂, Ŷ), and more explicitly as

kNGP (x, y) = λN
(
0;x− y, σ2

0 + ‖x− y‖2Hk

)
, (29)

by plugging into equation (17), where we have introduced the kernel norm,
‖x− y‖2Hk

= k(x, x) + k(y, y)− k(x, y)− k(y, x), (30)
to simplify the expression.

If the same construction was attempted using a kernel mean embedding construction, the covariance
terms would disappear and we would be left with,

kKME−NGP (x, y) = λN
(
0;x− y, σ2

0 + 2k(0, 0)
)
, (31)

taking the marginal variance into account and little else.

We leave this kernel design as a curiosity

6

10−6 10−5 10−4 10−3 10−2 10−1

Input Noise Variance

−150

−100

−50

0

50
P
re
d
ic
ti
ve

L
o
g
-l
ik
el
ih
o
o
d

base

SEEK

KME

10−6 10−5 10−4 10−3 10−2 10−1

35

40

45

50

SEEK zoomed

(a) SEEK’s generalization performance when ob-
servations have Gaussian input noise. The inserted
axis shows SEEK’s performance decline with a
more appropriate y-axis.

10−1 100

Bin Width

−120

−100

−80

−60

−40

−20

0

20

40

P
re
d
ic
ti
ve

L
o
g
-l
ik
el
ih
o
o
d

base

USEEK

KME

(b) USEEK’s generalization performance as a func-
tion of the bin width of the censoring discretiza-
tion.

Figure 2: The sample mean and its standard deviation for the predictive log-likelihood on the test set
for 1000 repeat experiments.

3 Demonstrations

In this section we will briefly demonstrate how the SEEK and USEEK kernels lead to qualitatively
different behavior compared to the standard kernel mean embedding kernels.

3.1 SEEK kernel

The SEEK kernel allows us to build regressions on spaces of Gaussian random variables and/or mixed
spaces of Gaussians, points, and empirical measures (or even Gaussian mixtures).

We will demonstrate the SEEK on independent Gaussians, meaning that it will only differ from the
KME kernel on the diagonal as previously noted. We offer two small demonstrations to show off
some of the kernel’s properties.

3.1.1 Noisy Input

One of the proposed uses of SEEK is as a kernel for regression with noisy inputs. To demonstrate this
functionality, we generate a grid of Ntrain = 10 training points on the interval [−1, 1] and perturb it
1000 times by Gaussian random noise for 25 different noise variances between 10−6 and 10−1. For
each of these experiments we construct a random function by sampling a Gaussian process at the
Ntrain perturbed training points as well as Ntest = 100 test points. We use a squared exponential
kernel with a lengthscale of 0.1 and a prior variance of 1. We also add Gaussian noise with variance
10−2 to the observations. We use xi to denote the input locations, x̃i to denote the input with input
noise added, yi = f(x̃i) to denote the evaluation of the latent function at the perturbed location, and
ỹi to denote the output with output noise. Now assume that the unperturbed training data locations, the
function evaluations at the perturbed training data locations, the input noise variance, and the kernel
parameters are available to us. Our naive baseline is a Gaussian process with a squared exponential
kernel using the true kernel parameters and trained on (xi, ỹi), i.e. the model is misspecified due to
neglecting the input noise. We compare with a GP trained with both the SEEK and the KME kernel
on Gaussian inputs N (xi, ν) where ν is the known input variance. We assume the test points are
deterministic with input variance 0, and report the mean (along with standard errors) of the predictive
log-likelihood over the many repeat experiments. We see in figure 2a that despite both models
having full knowledge of the process parameters, SEEK starts to outperform the standard Gaussian
model which assumes no input noise, as well as the KME kernel. As such the problem is one of
model misspecification, which SEEK seems to adjust for quite well. Ultimately, the performance
boost comes from increased smoothing and noise, so the classical kernel could potentially be made
competitive by changing the length-scale and output noise, but given knowledge of the generative
model parameters it’s not clear how to introduce the input variance into the standard SE kernel in an
appropriate manner.

7

3.1.2 Censored Input

Using the USEEK kernel, we can handle cases where the data was censored for privacy reasons or due
to missing information or partial observations. In these scenarios, data consists of intervals containing
the true data point. We construct a scenario with censored data by generating 50 data points and then
discretizing the points by identifying them with one of K evenly spaced bins over the interval [−2, 2].
We train USEEK and its KME variant by taking these intervals to be uniform distributions over the
point’s potential location, and we train the baseline Gaussian process by identifying all data points
with the mean of their assigned interval, as a best guess of the true point’s location.

Following the experimental paradigm of section 3.1.1 and averaging over 1000 generated datasets
using the same kernel parameters, we get the result depicted in figure 2b. The predictive likelihood
decreases as the bins grow bigger, but the rate of decrease is significantly different for the three
methods, with USEEK demonstrating the slowest decrease and overall best performance.

4 Related Methods

The Joint Expectation Kernel and the KME kernel draw connections to a number of existing method-
ologies.

The idea of making the standard squared exponential kernel non-stationary by allowing the lengthscale
to vary locally was treated thoroughly by Paciorek in e.g. [2003, 2006], but as they make clear you
cannot just plug an arbitrary function in place of the lengthscale parameter and assume the function
is PSD. We note that their construction bears resemblance to a KME kernel with a white noise
embedding kernel.

Regression on distributions has been pursued by multiple authors using the KME kernel, typically on
empirical measures where there is a computational challenge as N atoms in the measure leads to a
computational cost scaling like K2 as all atoms have to be compared pairwise. [Flaxman et al., 2015,
Póczos et al., 2013, Oliva et al., 2014]

Uncertain inputs have also been treated using variational inducing points approximations, which of
course necessitates solving the variational problem which is the primary limitation [Damianou et al.,
2016].

5 Conclusion

In this paper we have described a new family of kernels in the form of the joint expectation kernels,
or E-kernels, and shown how they extend the kernel mean embedding concept.

We have pointed out some of the key discrepancies between the classical KME kernel and the
E-kernels, such as the diagonal deviation, the different limit behavior, and the inflation effect. We
argue that E-kernels are more suitable than KME kernels for domains of random variables whereas
KME is superior for domains of marginal probability distributions or integrals.

Furthermore, we have detailed the construction of two analytical kernels in the form of the SEEK
kernel for regression on Gaussians and the USEEK for regression on uniform interval distributions.
We also described a new way of constructing novel kernels by applying the E-kernel to a Gaussian
process, resulting in the nested Gaussian process.

References
Risi Imre Kondor and John D. Lafferty. Diffusion kernels on graphs and other discrete input spaces.

In Proceedings of the Nineteenth International Conference on Machine Learning, pages 315–322,
2002.

Risi Kondor and Horace Pan. The multiscale laplacian graph kernel. In D. D. Lee, M. Sugiyama,
U. V. Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural Information Processing
Systems 29, pages 2990–2998. Curran Associates, Inc., 2016.

Michael Collins and Nigel Duffy. Convolution kernels for natural language. In Advances in Neural
Information Processing Systems, pages 625–632, 2001.

8

Eleazar Eskin, Jason Weston, William S. Noble, and Christina S. Leslie. Mismatch string kernels
for SVM protein classification. In S. Becker, S. Thrun, and K. Obermayer, editors, Advances in
Neural Information Processing Systems 15, pages 1441–1448. MIT Press, 2003.

Krikamol Muandet, Kenji Fukumizu, Francesco Dinuzzo, and Bernhard Schölkopf. Learning from
distributions via support measure machines. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q.
Weinberger, editors, Advances in Neural Information Processing Systems 25, pages 10–18. Curran
Associates, Inc., 2012.

Seth R. Flaxman, Yu-Xiang Wang, and Alexander J. Smola. Who supported obama in 2012?:
Ecological inference through distribution regression. In Proceedings of the 21th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD ’15, pages 289–298,
New York, NY, USA, 2015. ACM.

Krikamol Muandet, Kenji Fukumizu, Bharath Sriperumbudur, and Bernhard Schölkopf. Kernel mean
embedding of distributions: A review and beyond. May 2016.

Alex Smola, Arthur Gretton, Le Song, and Bernhard Schölkopf. A Hilbert space embedding for
distributions. In Marcus Hutter, Rocco A. Servedio, and Eiji Takimoto, editors, Algorithmic
Learning Theory, volume 4754 of Lecture Notes in Computer Science, pages 13–31. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2007.

Bharath K. Sriperumbudur, Kenji Fukumizu, and Gert R. G. Lanckriet. Universality, characteristic
kernels and RKHS embedding of measures. Journal of Machine Learning Research, 12:2389–2410,
February 2011.

François-Xavier Briol, Chris J. Oates, Mark Girolami, Michael A. Osborne, and Dino Sejdinovic.
Probabilistic integration: A role in statistical computation? December 2015.

George Casella and Roger L. Berger. Statistical Inference. Thomson Learning, 2nd edition, 2002.

Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer, New York, August
2006.

Ryan Darby Turner. Gaussian Processes for state space models and change point detection. PhD
thesis, University of Cambridge, 2012.

Christopher J. Paciorek. Nonstationary Gaussian processes for regression and spatial modelling.
2003.

Christopher J. Paciorek and Mark J. Schervish. Spatial modelling using a new class of nonstationary
covariance functions. Environmetrics, 17(5):483–506, 2006.

B Póczos, A Singh, A Rinaldo, and L A Wasserman. Distribution-Free distribution regression.
AISTATS, 2013.

Junier Oliva, Willie Neiswanger, Barnabas Poczos, Jeff Schneider, and Eric Xing. Fast distribution
to real regression. In Proceedings of the Seventeenth International Conference on Artificial
Intelligence and Statistics, pages 706–714, 2014.

Andreas C. Damianou, Michalis K. Titsias, and Neil D. Lawrence. Variational inference for latent
variables and uncertain inputs in Gaussian processes. Journal of machine learning research: JMLR,
17(42):1–62, 2016.

9

84 Papers

A.3 Matrix Product states for inference in dis-
crete probabilistic models

The following paper is yet to be published. It has been submitted to JMLR. It is
related to background material covered in chapter 4, but also to parts of chapter
2.

MPS for discrete models

Matrix Product States for inference in discrete probabilistic
models

Rasmus Bonnevie rabo@dtu.dk
Cognitive Systems, Department of Applied Mathematics and Computer Science
Technical University of Denmark
2800 Kgs. Lyngby, Denmark

Mikkel N. Schmidt mnsc@dtu.dk

Cognitive Systems, Department of Applied Mathematics and Computer Science

Technical University of Denmark

2800 Kgs. Lyngby, Denmark

Editor:

Abstract

When faced with problems involving inference in discrete domains, solutions often involve
appeals to conditional independence structure or mean-field approximations. We argue
that this is insufficient for a number of interesting Bayesian problems, including mixture
assignment posteriors and probabilistic relational models (e.g. the stochastic block model).
These posteriors exhibit no conditional independence structure, precluding the use of graph-
ical model methods, yet exhibit dependency between every single element of the posterior,
making mean-field methods a poor fit. We propose using an expressive yet tractable ap-
proximation inspired by tensor factorization methods, alternately known as the tensor train
or the matrix product state, and which can be construed of as a direct extension of the
mean-field approximation to higher-order dependencies. We illustrate how to efficiently
perform marginalization, conditioning, sampling, normalization, some expectations, and
approximate variational inference in our proposed model.

Keywords: variational inference, matrix product states, tensor trains, discrete models,
symmetry

1. Introduction

Inference in discrete Bayesian probabilistic models has been studied intensely for decades.
In terms of a graphical model, inference problems can be solved exactly based on dy-
namic programming such as the junction tree algorithm (Lauritzen and Spiegelhalter, 1988;
Wainwright and Jordan, 2008); however, the computational cost scales exponentially in
the so-called treewidth, intuitively a measure of graph connectedness, roughly implying
that sparse graphs (few dependencies) are straightforward to perform inference on, while
densely connected graphs can be computationally intractable. Unfortunately, for many
hierarchical models such as mixture models and probabilistic relational models, marginal-
ization of nuisance parameters leads to posteriors that are completely connected, meaning
that algorithms which rely on local conditional independence fall short.

One solution has been to use Markov chain Monte Carlo (MCMC) sampling, and in
many scenarios marginalization actually induces posteriors that are more easily traversed

1

Rasmus Bonnevie and Mikkel N. Schmidt

by MCMC algorithms as the nuisance parameters no longer have to be set appropriately
for a particular configuration to be likely (Teh et al., 2007). But MCMC on discrete spaces
also prohibits the use of efficient gradient-based samplers and it Gibbs sampling and other
MCMC methods often tend to get stuck in local modes of the posterior distribution.

Variational inference is a completely separate strategy which has been applied success-
fully to e.g. mixture inference (Bishop, 2006; Hughes and Sudderth, 2013). The idea is
to form an analytic approximation of the posterior distribution by minimizing a statistical
distance between some tractable family of distributions and the true posterior. One issue
with variational inference we would like to highlight here is that the approximations are
often quite limited in their expressiveness, and suffer more from mode collapse than even
the Gibbs sampler, as we will illustrate.

We consider probabilistic joint models of the form p(X,Y) where Y is a set of observed
random variables (discrete and/or continuous) and X is a set of latent discrete random
variables. We assume that there is no exploitable conditional independence structure in the
model. Let N denote the number of latent variables X = {Xn}Nn=1, each of which take
values in a discrete space Xn of size Kn. We denote every set x = {xi}Nn=1 where xn ∈ Xn a
configuration of the random variables, and we note that there are K∗ =

∏N
n=1Kn different

discrete configurations.

Inference is the procedure of reasoning appropriately given observations, which in the
Bayesian setting involves evaluating as well as computing marginals and expectations over
the posterior p(X|Y). This is computationally intractable in most cases, since it involves
evaluating the model evidence p(Y): a sum with an exponential number of terms. Vari-
ational inference circumvents the problem by defining a variational approximation q(x;θ)
to the true posterior p(x|Y) and maximizing the so-called evidence lower bound objective
(ELBO)

ln p(Y) ≥ L = E[ln p(x,Y)]− E[ln q(x;θ)], (1)

the optimal solution of which also implies the approximation with the lowest KL divergence
to the posterior (Wainwright and Jordan, 2008). While recent innovations have extended
the tractable classes of approximations for probabilistic models over continuous random
variables to arbitrarily complex distributions (Kingma and Welling, 2014; Ranganath et al.,
2014; Rezende and Mohamed, 2015), for most discrete distributions it is very uncommon
to see approximations that are not mean-field, i.e., where the approximation factorizes
completely as q(x;θ) =

∏N
n=1 q(xn;θn). In the discrete case, this leaves a rather constrained

design space as each independent discrete factor can in all generality be modeled with a
categorical distribution represented by a probability vector θn, where q(xn = k) = θn,k and∑Kn

k=1 θn,k = 1, ∀n.

While this approximation has been used successfully to find clusterings (Hughes and
Sudderth, 2013), topics (Teh et al., 2007), and communities (Xu et al., 2014), it does so in
part by being exceedingly coarse. It is well-known that approximations found through vari-
ational inference tend to underestimate variance and are mode-seeking by nature (Minka,
2005), and in the discrete setting this often translates into a low-variance collapse unto a
particular locally-optimal configuration x∗.

2

MPS for discrete models

2. Probability Tensor Decomposition

To get a sense for the low fidelity of the mean-field approximation, we will draw a connection
between multivariate discrete distributions and tensors. We will follow Kolda and Bader
(2009) in giving a brief outline of tensors and operations thereon. An N ’th order (or N -way)
tensor is a multidimensional array T of shape K1× . . .×KN where the element indexed by
I = (i1, . . . , iN) is denoted by TI . Rows and columns generalize to mode-n fibers, defined as
the vector vi1,...,in−1,in+1,...iN where the elements are taken from a slice of the tensor where
every index but one is kept fixed, i.e. [vi1,...,in−1,in+1,...iN]in = Ti1,...,iN . To relate tensors to
matrices, we can perform a matricization of T on mode n, denoted by T(n), by stacking
all of its mode-n fibers row-wise into a matrix of shape (

∏
m 6=nKm) × Kn.1 Finally, we

have the n-mode product ×n of a tensor with a matrix operator which we can conveniently
express in terms of the matricized tensor

(T ×n A)(n) = AT(n). (2)

There are two notions of rank, each going hand-in-hand with a particular kind of tensor
decomposition. The first is the tensor rank R, which is the minimal number of vector outer
products (otherwise known as rank-one tensors) needed to sum to the tensor T . It is related
to the canonical polyadic (CP) decomposition of the form

T =

R∑

r=1

v
(r)
1 ◦ . . . ◦ v

(r)
N , (3)

where ◦ is the tensor outer product such that [T ◦v]i1,...,iD+1 = Ti1,...,iDviD+1 . Second, there’s
the multilinear rank which is a vector (r1, . . . , rN), where rn is equivalently the rank of T(n)

or the minimal number of rows in the matrix Un which features in the higher-order SVD
(or Tucker) decomposition

T = C ×1 U1 ×2 . . .×N Un, (4)

where C is the r1 × . . .× rN core tensor. By counting the number of rank-one terms in the
Tucker decomposition, we get that R ≤ ∏N

n=1 rn ≤
∏N
n=1Kn. It should be noted that the

final upper bound is loose.

2.1 Probability Tensors

To connect this to probabilistic models, consider that we can associate each configuration x
with a posterior probability value p(x|Y). We can combine these values into a K1×. . .×KN

probability tensor Tx = p(x|Y), where the x subscript indicates that dimension n is indexed
by the value of xn. This is a probability tensor in the sense that each element corresponds
to a configuration, and it sums to 1, so if we vectorized it into a vector of length K∗, it
could parameterize a categorical distribution over all possible configurations, similarly to
the θn parameters described previously.

Now, as a distribution, the mean-field approximation q(x;θ) also defines a probability
tensor with elements

T̂x = θ1,x1 . . . θN,xN . (5)

1. the stacking order is inconsequential, as long as it is consistent.

3

Rasmus Bonnevie and Mikkel N. Schmidt

In tensor parlance, this is a rank-one tensor of form T̂ = θ1 ◦ . . . ◦ θN . Returning to the
concept of tensor rank, we note that the approximation has the minimal rank possible, and
is thus in some sense maximally simple. It seems optimistic to believe that the posterior
probability tensors will have such simplistic structure, and Kolda and Bader (2009) go on
to cite a result of a Monte Carlo experiment demonstrating that even for a small randomly-
generated 2× 2× 2 tensor, rank-one tensors occur with zero probability.2

2.2 Tensor Trains

So if we accept that approximation with a rank-one tensor is a flawed approach, what
should we do instead? Recall that the sought tensor T has K∗ =

∏N
n=1Kn elements, which

grows exponentially with N , which rules out a naive representation. We already saw two
structured representations, namely the CP representation of equation (3), and the Tucker
representation in (4). Tucker unfortunately suffers from the same combinatorial explosion
as T due to the existence of the tensor C. CP on the other hand is convenient, but given
that expressing T can require up towards K∗ rank-one tensors, it might not be the most
parsimonious representation.

Oseledets (2011) propose a different decomposition. Starting from the tensor T , we can
find a low-rank decomposition of the mode-1 unfolding as

T(1) = U1V
>

1 , (6)

where we choose U1 to be orthogonal (which is possible using SVD). Now, V1 will have
shape r1×

∏N
n=2Kn where r1 is the rank of the low-rank decomposition used. To continue,

we reshape V1 to have shape r1K2 ×
∏N
m=3Km. We can then recursively define Un as

UnV
>
n = Reshape

(
Vn−1; (rn−1Kn,

N∏

m=n+1

Km)

)
. (7)

Compared to CP and Tucker, it is less clear how to expand this into a tensor expression.
But if we define the so-called core tensors Gn = Reshape(Un; (rn−1,Kn, rn)) with r0 =
rN = 1, then we can elegantly express the individual indices of the tensor as

TI = G1[i1]G2[i2] . . .GN [iN], (8)

where we abuse notation slightly to define [Gn[k]]ij = [Gn]ikj to be the 2nd mode matrix
slices. This sequential construction of “carriages” linked together has led to naming the
decomposition the tensor train (TT) decomposition.

If we insist on a formula similar to equation (3) or (4), we can define the block vec
product as

(
A1

A2

)
�
(
B1

B2

)
=

A1B1

A1B2

A2B1

A2B2

, (9)

block vec product

2. note, though, that the posterior probability tensors are not random draws from the space of tensors.

4

MPS for discrete models

following which we can define the vectorized TT-tensor as (Van Loan, 2008)

vec(T) = Ũ1 � . . .� ŨN , Ũn =

Gn[1]

...
Gn[Kn]

. (10)

Evaluation of the tensor train requires N matrix products, which would normally cost
O(r3

n) a piece, but since the first and last core have vector-shaped slices, we can calculate
the whole train using only matrix-vector products (O(r2

n)) by starting multiplication from
the left or the right.

The central advantage of tensor trains is the number of operations that can be efficiently
implemented directly on the representation (Oseledets, 2011):

Contraction If we want to sum out index in, we can write the tensor in terms of its indices
and move the sum to the appropriate matrix core

Kn∑

in=1

TI = G1[i1] . . .

(
N∑

in=1

Gn[in]

)
. . .GN [iN]. (11)

Scaling Scaling every core Gn by αn is equivalent to scaling the tensor train by
∏N
n=1 αn.

Addition As can be verified using standard linear algebra, the TT decomposition Cn of
the addition of two TT-tensors with cores An and Bn can be found to be

C1[k] =
(
A1[k] B1[k]

)
, CN [k] =

(
AN [k]
BN [k]

)
, (12)

Cn[k] =

(
An[k] 0

0 Bn[k]

)
, n 6= 1 ∧ n 6= N. (13)

Multiplication Finally, the TT decomposition Cn of the element-wise multiplication of
two TT-tensors A and B with cores An and Bn is simply Cn[k] = An[k]⊗Bn[k], where
⊗ is the Kronecker product, as follows from

AIBI = TrAI TrBI = Tr[AI⊗BI] = Tr[(A1[i1]⊗B1[i1]) . . . (AN [iN]⊗BN [iN])], (14)

These operations are sufficient for e.g. calculating the Frobenius norm of a tensor (Oseledets,
2011), but they also turn out to be extremely useful for probabilistic models as we will now
show.

Just like in algebra, there are a number of operations that are essential to probability
theory, and most of them turn out to be quite easy to carry out on a probability tensor in
TT format:

Marginalization We can find any desired marginal distribution by applying contraction
to the indices that we want to marginalize over. As a convenience, we define the
marginal core matrices

Mn =

Kn∑

in=1

Gn[in], (15)

5

Rasmus Bonnevie and Mikkel N. Schmidt

so that marginalization can be written as

p(x/n) =

Kn∑

in=1

TI = G1[i1] . . .Mn . . .GN [iN], (16)

where x/n denotes the full set of random variables {xn}Nn=1, excluding the n’th ele-
ment.

Normalization Given an unnormalized probability tensor (i.e. any non-negative tensor),
we can easily calculate the normalizing constant of the tensor by using the contraction
operation presented above on every index. As contraction is the same as marginal-
ization, we can write the normalization constant using the marginal cores defined
above

Z = M1 . . .MN . (17)

Having computed the normalization constant, we can also normalize the tensor using
the scaling operation.

Conditioning Conditional distributions are likewise easily computed by fixing the core
slices corresponding to the observations, and marginalizing out all remaining indices
to compute the normalization constant.

As a further note of interest, we can also compute a large class of expectations, namely
all those where the quantity of interest can be written as another tensor train Q. The
expectation is then simply

E[QI] =
∑

I
TIQI , (18)

which is an element-wise product, followed by a complete contraction over all indices.
The main limitations of tensor trains is picking ranks, ordering the dimensions, and en-

suring non-negativity. The rank of the tensor train is a fundamental hyperparameter which
will effectively correspond to the expressiveness of the approximation. While most tensors
seem to not be full rank, it makes sense to choose this parameter based predominantly
on computational budget. There are no proper guidelines for ordering the dimensions, al-
though the result saying that a perfect approximation exists holds no matter the ordering.
It’s also possible to use a tensor ring decomposition instead, which makes the tensor train
invariant to cyclic permutations of the dimensions (Zhao et al., 2016). Non-negativity is
the most crucial problem, as it is a necessary constraint which has to hold globally.

By simple linear algebra arguments, it is clear that if all the cores are non-negative,
then the tensor will be non-negative as well. From a tensor decomposition point of view it
is however unlikely that the best representation of the tensor has only non-negative cores.
Another construction that ensures non-negativity is a squaring, such that the tensor train
T̂ itself models the square root of the probability tensor. By the algebra rules presented
above, this implies a tensor train

TI = T̂ 2
I = (Ĝ1[i1]⊗ Ĝ1[i1]) . . . (ĜN [iN]⊗ ĜN [iN]). (19)

That is, the probability tensor can be guaranteed to be positive if each core matrix of the
probability tensor can be represented by a Kronecker product of a matrix with itself,

Gn[in] = Ĝn[in]⊗ Ĝn[in]. (20)

6

MPS for discrete models

2.3 Matrix Product State

Interestingly, the tensor train decomposition has been developed independently within the
quantum mechanics community under the name of matrix product states (see Schollwöck
(2011) for a review of the history of its development). It falls within the larger umbrella
of tensor networks, a general framework for constructing arbitrarily complex hierarchical
tensor decompositions.

The matrix product state (MPS) literature contains a number of results not present in
the tensor train literature, which motivates its introduction here. In quantum mechanics,
the MPS T represents the quantum mechanical wave function of a combined quantum state
of N particles where each particle xn can be in one of Kn states. Following the probabilistic
interpretation of quantum mechanics via Born’s rule, the probability of the system being in
a configuration x is exactly the square of the MPS, similarly to the squaring construction
we employed above to ensure non-negativity. While an MPS is really synonymous with a
tensor train, we will use the term to describe squared tensor trains as probabilistic models,
in contrast with the more general tensor train. A problem with the squaring construction
as presented, is that it incurs a bit of a performance hit since we have to operate with cores
with squared ranks r2

n despite only being able to model the complexity of T̂ , the square
root of the tensor, with an effective rank of rn. The articles on MPS propose a solution
for this, in the form of the bubbling algorithm, which can speed up the computation of
contractions (and thus normalization, marginalization, and conditioning) significantly for
particular cases (Bridgeman and Chubb, 2017; Robeva and Seigal, 2018).

Instead of following the derivation of multiplication in equation (14), consider the sce-
nario where we want to contract a product of two tensor trains over i1:

K1∑

i1=1

A1[i1] . . .AN [iN]B1[i1] . . .BN [iN] = AN [iN]> . . .

(
K1∑

i1=1

A1[i1]>B1[i1]

)
. . .BN [iN]. (21)

Note that by transposition (possible since the quantity is scalar) we have gathered the
factors depending on i1 together. We can then analytically marginalize them out. Instead
of being forced to instantiate Kronecker products of the cores, as would be necessary when
calculating marginals of equation (19) so that a full contraction costs O(Nr4), the bubbling
algorithm only requires O(2Nr3) operations. If we then want to also marginalize over i2
we can write

K2∑

i2=1

A2[i2]>
(

K1∑

i1=1

A1[i1]>B1[i1]

)
A2[i2]. (22)

Returning to our squared tensor trains with cores Gn, we introduce the left marginal matrices
recursively as,

L1 =

K1∑

i1=1

G1[i1]>G1[i1], Ln =

Kn∑

in=1

Gn[in]>Ln−1Gn[in], (23)

so the contraction over indices i1, . . . , im can be written as
∑

i1,...,im

T̂ 2
I = GN [iN]> . . .Gm+1[im+1]>LmGm+1[im+1] . . .GN [iN]. (24)

7

Rasmus Bonnevie and Mikkel N. Schmidt

This is helpful, but only for a rather limited set of contractions and marginals. Fortunately,
we can define a similar series of right marginal matrices, by first noting that equation (24)
can be written as

Tr[LmGm+1[im+1] . . .
(
GN [iN]GN [iN]>

)
. . .Gm+1[im+1]>] (25)

If we then marginalize over first iN , then iN−1 and so on, we can define the right marginal
matrices as

RN =

KN∑

iN=1

GN [iN]GN [iN]>, Rn =

Kn∑

in=1

Gn[in]Rn+1Gn[in]> (26)

and then finally, the contraction over i1, . . . , i` and iu, . . . , iN can be written as,
∑

i1,...,i`

∑

iu,...,iN

T̂ 2
I = Tr[L`G`+1[i`+1] . . .Gu−1[iu−1]RuGu−1[iu−1]> . . .G`+1[i`+1]>] (27)

As a future convenience, let Gba denote the consecutive product of cores from Ga[ia] to Gb[ib],
then we can also write the above statement as,

∑

i1,...,i`

∑

iu,...,iN

T̂ 2
I = Tr[L`G

u−1
`+1RuG

u−1
`+1

>
]. (28)

While this allows us to compute many marginals efficiently, a small caveat is that the
efficiency drops once we start to consider non-consecutive marginals since we can only use
the recursive formulas on the first and last indices. A final note is that we get a series of
identities relating the left and right marginal matrices to the partition function,

Z = Tr[LnRn+1] = LN = R1. (29)

2.4 Canonical Representation

Another key feature employed in the MPS literature is the idea of a canonical set of cores.
As presented, the tensor train is not a unique representation as applying a so-called gauge
transform

G̃n[in] = A−1
n Gn[in]An+1, (30)

gauge transform

does not change the value of the corresponding tensor, i.e., the tensors represented by Gn
and G̃n are identical for all choices of An. We can use this to strategically pick cores with
desirable properties.

Left- and right-canonical matrix product states constitute two classical forms of canon-
icity (Schollwöck, 2011), defined as,

Kn∑

in=1

Gn[in]>Gn[in] = I, ∀n, (31)

left-canonical

Kn∑

in=1

Gn[in]Gn[in]> = I, ∀n, (32)

right-canonical

8

MPS for discrete models

Note that for left-canonical MPS’s, this implies that L1 = I, and by the definition in
equation (23), all Ln = I. Similarly, for right-canonical MPS’s it is true that all Rn = I.
As an immediate consequence, Z = LN = R1 = 1 so that the tensor is automatically a
probability tensor.

While the canonicity constraint might look complicated, it is actually easy to describe
the set of cores for which it holds true. Defining stacked core matrices,

U (L)
n =

Gn[1]

...
Gn[Kn]

, U (R)

n =

Gn[1]>

...
Gn[Kn]>

 (33)

the constraints are simply U
(L)
n

>
U

(L)
n = I and U

(R)
n

>
U

(R)
n = I for left- and right-canonical

MPS’s, respectively. By inspection, the constraints are equivalent to the stacked matrices
being column-orthogonal. Recalling the algorithm used to construct tensor trains using
sequential SVD’s from section 2.2, this condition is natural: There we defined the cores as

reshapes of orthogonal matrices, and as it turns out, Un = PU
(L)
n for a permutation P , so

that the cores returned by the algorithm define a left-canonical MPS. The final step of the
algorithm returns a scalar coefficient, scaling the normalized tensor train appropriately.

Strict left/right-canonical form is only possible if we impose some constraints on the

ranks rn. For left-canonical matrices, U
(L)
n has shape Knrn−1×rn, so we need rn ≤ Knrn−1

to hold to ensure that the matrix can be column-orthogonal. If we assume rn = Knrn−1

and K = Kn for all n, this leads to the following progression of ranks

1,K,K2 . . .K2,K, 1. (34)

Since the maximal rank grows exponentially, this is further evidence that we need to impose
some additional low-rank assumption.

While canonicity is a computationally beneficial constraint to impose, it is not enough
to ensure uniqueness. For a left/right-canonical MPS, we can still preserve both canonicity
and the value of the MPS if we substitute Gn[in] for Q>nGn[in]Qn+1 for orthogonal matrices
Qn. Schollwöck (2011) gives a good introduction to a unique representation alternately
called the Vidal representation or the ΓΛ-representation as it defines (Vidal, 2003),

Gn[in] = Λn−1Γn[in], (35)

where Λn is a diagonal matrix and Γn is the same size as Gn[in]. We additionally impose
the constraint that Gn[in] is left-canonical,

I =

Kn∑

in=1

Gn[in]>Gn[in] =

Kn∑

in=1

Γn[in]>Λ2
n−1Γn[in]. (36)

There are of course many such possible decompositions. To make the representation unique,
we note that,

TI = . . .Λn−1 (Γn[in]Λn)︸ ︷︷ ︸
G̃n

Γn+1[in+1] . . . , (37)

9

Rasmus Bonnevie and Mikkel N. Schmidt

where G̃n describes an equivalent set of cores, defining the same tensor. It can then be
shown that we can simultaneously require that this alternative representation corresponds
to a right-canonical set of cores (Vidal, 2003; Schollwöck, 2011),

I =

Kn∑

in=1

Gn[in]Gn[in]> =

Kn∑

in=1

Γn[in]Λ2
nΓn[in]>. (38)

This is a particularly powerful representation as it allows us to shift effortlessly between
left- and right-canonical core sets by simply collecting the Γ and Λ cores in different orders.
In particular, we can employ mixed-canonical representations, where Ln′ = I for all n′ ≤ n
and Rn′ = I for all n′ > n. A univariate marginal can then be computed in constant time
as

p(xn = in) = Tr[Gn[in]>Ln−1Gn[in]Rn+1] = Tr[Γn[in]>Λ2
n−1Γn[in]Λ2

n]. (39)

2.5 Sampling

An attractive feature in a probabilistic model is the ability to generate random samples. A
direct approach to generate samples is to use an ancestral sampling routine based on the
marginals and conditionals we have already discussed (Ferris and Vidal, 2012; Han et al.,
2017). We will sample sequentially from the left, starting with x1, then x2, and so on. x1

is simple to sample, as the marginal is readily available as

p(x1 = k) = Tr[G1[k]>G1[k]R2]. (40)

Having sampled x1, we can then go on to sample x2|x1 from the appropriate conditional
distribution,

p(x2 = k|x1) ∝ Tr[G2[k]>
(
G1[x1]>G1[x1]

)
G2[k]R3], (41)

and so on,

p(xn = k|x1, . . . xn−1) ∝ Tr[Gn[k]>CnGn[k]Rn+1], (42)

where the conditioning information of the past samples is summarized in a matrix

Cn = Gn−1[xn−1]> . . .G1[x1]>G1[x1] . . .Gn−1[xn−1]. (43)

This sampling routine offers an excellent argument for why canonical forms can be useful:
If we pick our MPS to be right-canonical, we can remove all of the right marginal matrices
Rn = I from the equations above, reducing the computational load.

3. Inference for the MPS

We consider a joint distribution p(X,Y) where Y is observed and X = {Xn}Nn=1 is a
set of unobserved discrete variables, such that the joint distribution can be studied as
a unnormalized probability tensor indexed by X. Calculating the posterior distribution
p(X|Y) by Bayes’ theorem

p(X|Y) =
p(X,Y)

p(Y)
(44)

10

MPS for discrete models

reduces to finding the evidence p(Y) which is the normalization constant. If the domain of
X is of moderate size, this is easily computed as the sum across all possible configurations,
but this calculation suffers under a combinatorial explosion as N grows large.

We can instead consider approximations based on a finite number of observations of the
probability tensor. As the tensor is unnormalized, the approximation problem is ill-posed.
Consider, for instance, the scenario where all elements but one have been evaluated; if the
final element is vanishingly small, the approximation is excellent, but if it has a value vastly
larger than the observed elements, it can be arbitrarily poor.

Using an MPS as the approximate model alleviates this to a degree, as we limit our
search to sufficiently regular probability tensors that can be written as a low-rank MPS.
As such we hope to exploit that observing a minority of configurations will still inform us
heuristically about the value of similar configurations.

While we could approximate the tensor directly and normalize post hoc, we will advocate
using a divergence measure between probability distributions. In particular, we will attempt
to use variational inference which minimizes the Kullback-Leibler divergence,

KL(q(X)‖p(X|Y)) = Eq
[
ln

q(X)

p(X|Y)

]
, (45)

by solving the equivalent problem of maximizing the evidence lower bound (ELBO),

ln p(Y) ≥ L = Eq
[
ln
p(X,Y)

q(X)

]
. (46)

If q is parametric with parameters θ, which we denote qθ for now, then the most common
gradient estimators are (Ranganath et al., 2014; Kingma and Welling, 2014)

∇θL =EX∼q

[(
ln
p(X,Y)

q(X)

)
∇ ln qθ(X)

]
= (47)

score estimator

Eε∼q0
[
∇θ ln

p(h(ε, θ),Y)

q(h(ε, θ))

]
(48)

reparametrization

The score estimator is alternately known as the black-box gradient estimator or REIN-
FORCE (Ranganath et al., 2014), while the reparametrization estimator depends on find-
ing a function h(ε, θ) and distribution q0 such that X̂ = h(ε, θ) for ε ∼ q0 is identically
distributed to X ∼ qθ(X).

The reparametrization estimator is considered superior as it has empirically lower vari-
ance. Constructing a differentiable reparametrization for a discrete distribution is however
impossible, but it has recently been shown that the gradient can be approximated with
some fidelity using a relaxed differentiable version of the discrete distribution.

3.1 Differentiable MPS

As we saw in section 2.5, ancestral sampling from the MPS involves sampling from cate-
gorical distributions. To reparametrize a categorical random variable k ∼ Categorical(p)
with probability vector p, we can employ the Gumbel-max trick which provides a non-
differentiable reparametrization (Gumbel, 1954)

wk = pk +Gk, k = argmax
k

(wk), (49)

11

Rasmus Bonnevie and Mikkel N. Schmidt

where Gk ∼ Gumbel(0, 1) are i.i.d. standard Gumbel random variables. Here, the argmax
is the non-differentiable component, and the Gumbel variables take the role of the non-
parametric random noise ε. To relax this non-differentiable component, we substitute it
with

onehot(argmax
k

wk) ≈ softmax(w/T), (50)

with the fidelity of the approximation increasing as the temperature T → 0. This ap-
proximation is alternately known as Gumbel-softmax (Jang et al., 2017) or the concrete
distribution (Maddison et al., 2017).

While this allows us to (approximately) reparametrize every step of the ancestral sam-
pling process, it does not take into account that the categorical distribution of xn,

p(xn = k|x1, . . . xn−1) ∝ Tr[Gn[k]>CnGn[k]Rn+1], (51)

as seen in equation (42), depends conditionally on the exact samples xm,m < n from the
past, via the recursively-defined conditioning tensor,

Cn = Gn−1[xn−1]>Cn−1Gn−1[xn−1]. (52)

To get around this, we can define a relaxed conditioning matrix,

Ĉn =
K∑

k=1

x̂nkGn−1[k]>Ĉn−1Gn−1[k], (53)

which is based on a separate sequence of x̂n = onehot(x̂n) continuous random variables,
which we design to be Gumbel-softmax relaxations of the conditional sampling equation in
equation (51),

znk = log Tr[Gn[k]>ĈnGn[k]Rn+1] (54)

x̂n = softmax

(
1

T
(zn +Gn)

)
. (55)

where we have swapped the proper conditioning matrix C for the relaxed version and where
Gn is a vector of stacked i.i.d. Gumbel variables. As the conditioning matrix is a convex
combination, we can also impose a mixture interpretation of the approximate conditional,

p(x̂n = k|x̂1, . . . x̂n−1) ∝
K∑

m=1

x̂nk Tr[Gn[k]>
(
Gn−1[m]>Ĉn−1Gn−1[m]

)
Gn[k]Rn+1], (56)

which is a mixture of the different conditionals that would arise based on the sampled value
of xn, weighted by the normalized Gumbel-softmax variables x̂n. By continuing to expand
the conditioning matrices, we can get a mixture over all possible pasts x̂1, . . . , x̂n−1.

Note that in the low-temperature limit, this approaches the correct conditional sampling
steps. We name the sequential procedure generating the x̂n variables the differentiable MPS
(dMPS), as every step of it is differentiable.

12

MPS for discrete models

3.2 Unbiased Gradient Estimation

While using the dMPS as a direct substitute for the MPS during inference will often work
fine, the consecutive approximations mean that we are no longer solving the original prob-
lem, but some facsimile thereof.

To improve this approximation, we can make use of recently proposed efficient unbiased
gradient estimators for objectives involving discrete random variables, with the REBAR
estimator and its generalization RELAX at the forefront (Tucker et al., 2017; Grathwohl
et al., 2017). The RELAX estimator is unbiased and takes the form

∇θ Eq(x;θ)[f(x)] =E
[
(f(x)− Eq(z|x;θ)[cφ(z)])∇θ ln q(x; θ)

]
+ (57)

∇θ Eq(z;θ)[cφ(z)]− Eq(z;θ)
[
∇θ Eq(z|b;θ)[cφ(z)]

]
(58)

where f is a loss function or other scalar function of interest, cφ is a parametric control
variate, x ∼ q(x; θ) is the discrete variable sampled from parametric probabilistic model of
interest q, and z is any random variable; ideally one strongly correlated with the original
variable x. The estimator typically works best when q(z; θ) and q(z|b; θ) can be assumed to
be reparametrizable.

In the original papers, z is picked to be continuous reparametrization of x in the sense
that x = H(z) for some non-differentiable transfer function H(·). They then recommend
setting cφ(z) = f(H̃(z)) where H̃(z) is a differentiable approximation of H. RELAX further
advocates augmenting cφ as,

cφ(z) = f(H̃(z)) + c′φ(z), (59)

where c′ is a neural network or other high-capacity model (Grathwohl et al., 2017).
To design a RELAX estimator for the MPS, we must find a continuous variable zn

that correlates with each of the xn = onehot(xn) discrete variables in our model. It would
be natural if we could use the differentiable relaxation x̂n, but this is not immediately
correlated with xn—in fact, the two define independent sequences of random variables. To
correlate the two, we take xn to be generated via a Gumbel-max reparametrization as in
equation (49), and we then tie the Gumbel noise used in each true sampling step to that
used for the matching relaxed sampling steps in equation (55). The corresponding coupled
graphical model is depicted in figure 1. This approach is strongly inspired by one presented
in the appendices of the original REBAR paper (Tucker et al., 2017).

Conditioning on x, we can sample the Gumbel noiseGn conditioned on that information
(see appendix A for details), and using that we can run the coupled dMPS forward. Given
the continuous random variables X̂ = {x̂n}Nn=1, we will assume our control variate is,

cφ(X̂) = ln p(X̂,Y)− ln q(X̂) + c′φ(X̂), (60)

This is not strictly correct as p and q are defined over discrete domains, but often there is a
direct way to relax both. For an MPS q, we can relax it by doing a weighted marginalization,

L̂1 =

K1∑

i1=1

x̂1i1G1[i1]>G1[i1], Ln =

Kn∑

in=1

x̂ninGn[in]>L̂n−1Gn[in]. (61)

This corresponds to standard indexing when the x̂n vectors are one-hot.

13

Rasmus Bonnevie and Mikkel N. Schmidt

x1 x2 x3 x4

G1 G2 G3 G4

x̂1 x̂2 x̂3 x̂4

Figure 1: Coupled sampler for RELAX reparametrization. We can sample the continuous
variables x̂i conditioned on the discrete xi.

3.3 Differentiable Normal Forms

Following the previous chapter, we can apply gradient-based optimization to the cores Gn[k],
but we are left with some challenges, such as how to handle normalization. If we constrain
the parameters to left/right-canonical cores, we not only get automatic normalization, but
also reduce the issue of non-identifiability. We saw in section 2.4 that the defining constraint
of left/right-canonical cores was equivalently stated in terms of an orthogonal matrix as in
equation (33). By inverting this argument, we can take any column-orthogonal matrix and
then define the cores (or their transposes, for right-canonicity) of an MPS to be equal to
the blocks of the auxiliary orthogonal matrix. The respective canonical constraint will then
be automatically maintained.

Given this, we need a differentiable parametrization of orthogonal matrices. There are in
general two overall strategies for constructing orthogonal matrices: i) map a latent quantity
through a map that has the orthogonal matrices as its image, or ii) construct a general
orthogonal matrix by multiplying members of some set of elementary matrices (Shepard
et al., 2015). The drawback of the former approach is that it tends to involve complex
matrix operations like matrix inverses and matrix exponentials, while the latter results in
long chains of repeated operations.

The Cayley transform (Shepard et al., 2015) says that

Q = (I −A)(I +A)−1 (62)

is orthogonal, when A is skew-symmetric, i.e., A> = −A. I +A is always invertible, and
is often well-conditioned as it has eigenvalues 1 + iλk, where iλk are the eigenvalues of the
skew-symmetric matrix.

Alternatively, to avoid the matrix inverse, we can express an arbitrary orthogonal matrix
Q ∈ O(k) as the product of K Householder reflections (Sun and Bischof, 1995),

Q =

K∏

k=1

H(vk), H(vk) = I − 2
vkv

>
k

v>k vk
, vk 6= 0 (63)

The complexity of the representation is O(K3), so equal to the Cayley transform, but does
not involve matrix inverses. On the other hand, the algebraic inverses can also lead to
numerical issues, although we empirically observe that this is not common.

14

MPS for discrete models

4. Symmetry

Clustering and mixture models are often described in terms of a random label xn determin-
ing which cluster or mixture component each data point belongs to. As such, the individual
label spaces of all the variables xn can be identified with the same canonical label space of
K ≡ K1 = . . . = KN discrete labels.

Typically, the labels are indistinguishable in the prior leading to both the prior and the
posterior possessing a relabeling symmetry : given any permutation map σ(·) on the K labels,
the configuration given by x̂n = σ(xn) is exactly as probable as the original configuration
xn (so p(x) = p(x̂) for distribution p). In other words, for any particular partition of the
data, the common label assigned to the elements in each set is inconsequential, as long as
it encodes the same partition.

4.1 Marginals under Relabeling Symmetry

Mathematically, we can write distributions with relabeling symmetry as

p(x) =
∑

S∈SK(I)

ωS
χ(x ∈ LK(S))

K!
, (64)

where
∑

S ωS = 1, SK(I) is the set of partitions of the set I into K non-empty parts, where
each partition element S is a set of disjoint subsets of I, with their union being I. LK(S)
is the set of K! labellings x of the partition S using K labels.

Relabeling symmetry has strong effects on the marginals of the distribution, as they by
definition are uniform. Stating the factorization formula

p(x|S) =

K∑

k=1

χ(xj = k, j ∈ A)

K

χ(xI/A ∈ LK−1(S/{A}))
(K − 1)!

χ(xj 6= k, j /∈ A) (65)

for any A ∈ S, we can consider A = N(n, S) where N(n, S) is the set of indices grouped
together with index n under partition S. Then we can compute

p(xn = k) =
∑

S∈SK(I)

ωS
∑

x/n

p(x|S) =
∑

S∈SK(I)

ωS
χ(xj = k, j ∈ N(n, S))

K
=

1

K
, (66)

where the second equality is true as we marginalize exactly over p(xI/A|S/{A}) for K − 1
labels, and the final equality is true by design.

Using the same type of arguments, we can find that the probability table of the bivariate
marginal can be written as a constant plus diagonal matrix

p(xn = k, xm = `) =

{
αnm, k = `
1−Kαnm
K2−K , k 6= `

(67)

where Kαnm is the co-occurrence (co-clustering) probability that xn = xm. In other words,
the distribution only distinguishes between whether the two points in question are clustered
together, or apart.

15

Rasmus Bonnevie and Mikkel N. Schmidt

4.2 Tensor Trains and Relabeling

In tensor language, we can say that a probability tensor has relabeling symmetry if its under-
lying distribution has it, and the relabeling symmetry means that the tensor is unchanged
under a simultaneous and identical permutation along each mode, i.e.

T = T ×1 Pσ ×2 . . .×N Pσ (68)

has to hold for each permutation σ, where Pσ is the matrix representation of σ, where
Pij = 1 if σ(j) = i, and zero otherwise. Adopting a general result from Kolda and Bader
(2009), we can vectorize to get the equivalent matrix expression

(
P⊗Nσ − I

)
vec(T) = 0 (69)

where we use P⊗Nσ =

N times︷ ︸︸ ︷
Pσ ⊗ . . .⊗ Pσ to denote a Kronecker power. So the vectorized tensor

has to live in the intersection of the null spaces of all of these massive KN ×KN matrices.
This statement can be made a bit more compact by noting that the set of all permutations
can be constructed from a smaller subset of generating permutations. A classical choice
is the set of all transpositions i ↔ j, swapping elements i and j, while the most compact
consists of just two elements: a transposition of the two first elements 0↔ 1, and the cycle
permutation σ(i) = i + 1 (mod K) that performs a circular shift of every index (Conrad;
Miller, 1901).

Permutations on the coordinates of a tensor in a TT format are straightforward to
apply, giving rise to a permuted tensor which can also be represented in TT format, with
the cores being a simple reordering of the original cores: Ĝn[k] = Gn[σ(k)]. It is of interest
to consider whether we can encode knowledge about the posterior, such as the relabeling
symmetry, directly into the MPS approximation as this might reduce both redundancy in
representation and the risk of degenerate solutions.

In all generality, there is a trivial construction for making a tensor (or other function-like
object) invariant to a finite closed group of transformations σ ∈ Π, which is to construct a
new tensor by averaging over all the group elements

T̂I =
∑

σ∈Π

Tσ(I). (70)

This approach has been used previously in the kernel literature to make invariant ker-
nels (Haasdonk and Burkhardt, 2007), and is simple to apply in the TT setting as well,
as we have rules for adding tensor trains together. The problem with this approach arises
when the cardinality |Π| is large, as the rank grows linearly with the number of terms in the
sum, and many groups of interest, including the set of permutations, possess a large number
of elements. As such it is more attractive if we can find representations that directly encode
the symmetries.

Limiting ourselves to K = 2, it is fairly simple to build tensor trains with symmetries
using structured cores. This case, while minimally complex in some sense, is of interest due
to its tight relationship to the concepts of bits and bit-strings. Huckle et al. (2013) consider
a number of bit-string symmetries, including bit-shift, reverse, and relabeling, the latter of

16

MPS for discrete models

which they name the bit-flip symmetry. For K = 2, it is characterized by the single swap
permutation 0↔ 1. They further show that if

Gn[1] = UnGn[0]Un+1 (71)

with U being a set of involutions where U2
n = I and UN+1 = U0 = 1, we can inspect the

value of the tensor at index I

TI = . . . (UnGn[in]Un+1)(Un+1Gn+1[in+1]Un+2) . . . = (72)

. . .Gn [̄in]Gn+1 [̄in+1] . . . = TĪ (73)

to see that the value at I is equal to that at index Ī where the bar indicates the application
of the bit-flip/swap permutation. The authors go on to show that for any tensor train
with relabeling symmetry, there exists a representation where the cores follow the above
relation (Huckle et al., 2013, Theorem 3.8). Note that the result is not air-tight: cores of
the form above lead to the symmetry, and for every tensor train with the symmetry, there
exists a set of cores with the properties above, but this does not directly exclude different
sets of cores describing the same tensor, but without the property. Indeed, in the proof
of theorem 3.8, they have to double the assumed rank to prove that the tensor train has
a set of cores obeying equation (71). In the next section we will pursue a more general
theory of symmetry. Our approach is inspired by the physics literature, where they have
developed MPS’s invariant to various symmetries, in particular of the continuous and spatial
variety (Singh et al., 2010, 2011; Weichselbaum, 2012).

4.3 Representation Theory

In section 2.4, we noted that each tensor does not have a unique representation as a tensor
train, and that a family of gauge transforms,

Gn[k]→ A−1
n Gn[k]An+1, (74)

leave the implicit tensor invariant, as the An matrices cancel. If we conjecture that this
is a necessary condition, such that the equivalence of two equal-sized tensor trains implies
that they are gauge transforms of each other, we get the consequence that for tensor trains
invariant to permutation, the permutation must be acting as a gauge transform (Bridgeman
and Chubb, 2017). In other words,

Gn[σ(k)] = A−1
n,σGn[k]An+1,σ. (75)

We note that An,σ cannot depend on k, by the definition of the gauge transform. We
can then also consider consecutive applications of multiple transforms, e.g.,

Gn[σ2(σ1(k))] = A−1
n,σ2A

−1
n,σ1Gn[k]An+1,σ1An+1,σ2 = A−1

n,σ2◦σ1Gn[k]An+1,σ2◦σ1 (76)

The last equality states that the matrix representation for the composite map σ2 ◦ σ1

should be equivalent to the product of the separate matrix representations for σ1 and σ2.
If we assume that the set of transforms we are interested in form a finite group G under
function composition, then the set of matrices obeying this relationship are exactly the

17

Rasmus Bonnevie and Mikkel N. Schmidt

matrix representations of said group. As permutations form groups, we can apply the
above idea to our cases of interest.

Any finite group is isomorphic to a subgroup of the symmetric group S(K) by Cayley’s
theorem. Every element σ ∈ S(K) is a permutation on K elements, and we can define
the so-called permutation representation ρ : S(K)→ RK×K , consisting of the permutation
matrices ρ(σ) = Pσ. Specifically, this assumes a correspondence between element k and
canonical basis vector ek, so that Pσek = eσ(k) (where we use σ(k) to mean application
of the permutation operation). Similarly, we can define another equivalent matrix repre-
sentation by changing the basis as P̃σ = QPσQ

−1. We can furthermore construct matrix
representations of size nK × nK by using the direct sum ⊕ as

(Q1P
(1)
σ Q−1

1)⊕ (Q2P
(2)
σ Q−1

2) =

(
Q1 0
0 Q2

)(
P

(1)
σ 0

0 P
(2)
σ

)(
Q1 0
0 Q2

)−1

, (77)

where the resulting matrix is likewise a representation. While we have maintained an explicit
basis above, note that this disappears under the gauge transform equivalence, so we will
assume that Q = I going forward.

If we assume that our maximum TT rank is a multiple of K, all of the intermediate ranks
rn will be multiples of K as well, and we can use direct sums of the standard permutations
matrices to form representations An,σ = I ⊗ Pσ at every site. Note that their inverse is
given by their transpose.

To finalize the representation, we can select K elements σk ∈ S(K) where σk(1) = k, to
generate the cores

Gn[k] = (I ⊗ Pσk)Gn[1](I ⊗ Pσk)>, (78)

implying that the representation is determined by the choice of matrix representation and
a single “free” Gn[1]. From equation (75), a constraint on Gn[1] is imposed, as it should
be invariant to σ where σ(1) = 1. For the standard permutation representation presented
above, the invariant subspace under this subgroup of permutations is the span of e1, and 1
which is invariant to all permutations. To ensure that the block-wise column- and row-space
is the subspace spanned by these vectors, we can write

Gn[1] = (I ⊗ V)Bn(I ⊗ V)>, V =
(
e1

1√
K

1
)
, Bn ∈ R

2
K
rn× 2

K
rn+1 . (79)

Alternatively, we can use a projection matrix to the same effect, but the above representation
is less redundant.

4.4 Left-Canonical Form for the Relabeling Symmetric MPS

Due to the design, we can construe the parameter matrix as a block matrix of 2× 2 blocks,
Bn =

∑
i,j eie

>
j ⊗Bnij , and use that to consider the inner product

Gn[k]>Gn[k] = (I ⊗ PσkV)B>n (I ⊗Ω)Bn(I ⊗ PσkV)> = (80)
∑

ijrs

(eje
>
i ere

>
s ⊗ VkB>nijΩBnrsV

>
k) = (81)

∑

js

eje
>
s ⊗ Vk

rn/K∑

r=1

B>nrjΩBnrs

V >k , (82)

18

MPS for discrete models

where Vk is the same as V , with e1 swapped for ek and Ω = V >V . If we standardize with
respect to Ω by setting B̃n ← (I ⊗ Ω1/2)Bn, we can write the left-canonicity condition
from section 2.4 as

I =
K∑

k=1

Gn[k]>Gn[k] =
∑

js

eje
>
s ⊗

K∑

k=1

Vk

rn/K∑

r=1

B̃>nrjB̃nrs

V >k . (83)

This condition translates into the block-wise statement that for j = s, the right Kronecker
factor should be the identity matrix, and for j 6= ` it should be the zero matrix.

Let M =
∑rn/K

r=1 B̃>nrjB̃nrs. Splitting the products with Vk into rank-one elements
yields

K∑

k=1

VkMV >k =

K∑

k=1

(
M11eke

>
k +

M22

K
11> +

1√
K

(
M12ek1

> +M211e
>
k

))
= (84)

M11I +

(
M22 +

M12 +M21√
K

)
11>, (85)

This immediately gives us the condition that M11 = 1 for diagonal blocks j = s and M22 = 0
when j 6= s. Inspecting B̃n, this means that all columns with odd index should form an
orthonormal basis Qodd. For all blocks it should furthermore hold that

M22 +
1√
K

(M12 +M21) = 0 (86)

which we can express in matrix form as

Q>evenQeven +
1√
K

(Q>evenQodd +Q>oddQeven) = 0⇒ (87)

H>H +
1√
K
H> +

1√
K
H + H̄>H̄ = 0, (88)

where we get the last equation by defining Qeven = QoddH + Q̄oddH̄, where Q̄odd is the
orthogonal subspace of Qodd, and H and H̄ are appropriately shaped coefficient matrices.
By completing the square, we can transform the condition into

(
√
KH + I)>(

√
KH + I) = I −KH̄>H̄. (89)

Taking the SVD of H̄ = LSW> we can multiply by W> on both sides to get a diagonal
matrix on the right-hand side,

W>(
√
KH + I)>(

√
KH + I)W = I −KS2. (90)

Equation (89) has an inner product on the left-hand side, so equation (89) is implicitly
solved when

U ≡ (
√
KH + I)W (I −KS2)−

1
2 , (91)

is an orthogonal matrix. Via algebra, a family of solutions can be found as

H =
1√
K

(
U(I −KS2)

1
2W> +

(
U Ū

)(C1

C2

)
W̄> − I

)
, (92)

19

Rasmus Bonnevie and Mikkel N. Schmidt

where for U and W , the matrices Ū and W̄ are orthogonal to their counterparts, and
span the orthogonal complement of bases U and W , respectively. If we use U∗ and W∗ to
denote the concatenation of the two complementary bases into a full basis (square orthogonal
matrix),

H =
1√
K

(
U∗C∗W>

∗ − I
)
, H̄ = LSW T , C∗ =

(
(I −KS)

1
2 C1

0 C2

)
(93)

fulfills the projected condition from equation (90) for arbitrary orthogonal U , W , L and di-
agonal S with |Sii| < 1

K . Plugging the result back into the original constraint from equation
(89), we get the final condition

I = C>∗ C∗ +

(
KS2 0

0 0

)
=

(
I (I −KS2)

1
2C1

C>1 (I −KS2)
1
2 C>1 C1 +C>2 C2

)
(94)

which reduces to two simplifying conditions: C1 = 0 and C2 has to be orthogonal.

For S = 0, there is no weight on the orthogonal subspace, and

H =
1√
K

(
UW> − I

)
, (95)

where QW> is an arbitrary orthogonal matrix.

Just like with the original left/right-canonical forms, we cannot expect the above to
work with arbitrary choices of rank: the identity matrix has full-rank, and by adding K
rank-r matrices we can get at best a rank Kr matrix. Problematically, the above design
is intrinsically of lower rank than it should be: the coefficient matrix Bn is only rank
min(2

K rn,
2
K rn+1). Multiplying by K, we see that for the initial regime where rn < rn+1,

we have to ensure 2rn ≥ rn+1. Maximizing the possible rank by setting 2rn = rn+1, we get
the rank progression

1,K, 2K, 22K, . . . , 2nK, . . .K, 1. (96)

Since this maximal rank is smaller than the maximal rank of the unconstrained problem, it
might be the case that this is not simply due to the relabeling symmetry constraints, but
that there exists symmetric tensors that are not expressible using the above representation.
Indeed, this appears to be the case empirically. A simple remedy is to augment the size
of the core to the maximal rank achievable in the unconstrained setting by zero padding
the relabeling symmetric representation, and then add the same constant matrix to all core
slices. While this appears to remove the low-rank problem, we have been unable to find a
parametric canonical form for this augmented representation, which is left as future work.

5. Relationship to Probabilistic and Graphical Models

Whereas we have transformed the probabilistic model into a probability tensor and then
approximated it with the MPS in the sense of a tensor approximation, it is possible to do it
the other way around. In fact, there is a duality between tensor networks (the generaliza-
tion of MPS’s to more complex hierarchies of tensor products) and probabilistic graphical
models (Robeva and Seigal, 2018). This dual view lends additional insights: For example,

20

MPS for discrete models

an efficient ordering of tensor contractions when computing e.g. a marginal or the normal-
ization constant can be found by using the classical junction-tree algorithm on the dual
graphical model (Robeva and Seigal, 2018). Prior to the explicit description of the duality,
it was also shown how graphical models (or the corresponding decomposed log-densities)
could be mapped to tensor networks (Novikov et al., 2014).

These two results highlight that we can in some sense characterize the MPS as a graph-
ical model for which inference is particularly efficient. We find that MPS’s bear resem-
blance to observable operator models (Jaeger, 2000) and the class of rational stochastic
languages (Balle et al., 2015) which are formally distributions over all sequences Σ∗ using
some alphabet of states Σ where the distribution of x = (i1, . . . , iN) ∈ Σ∗ is computable as,

pRSL(x) = v>0 Ai1 . . .AiNv∞ (97)

for some set of matrices Ak. The MPS is tremendously similar, except that it is a dis-
tribution over sequences of length N only and allows for the state matrices A, including
dimensionality, to vary with the index. If we truncate the model above to only be over
length N sequences, we can identify it with an MPS with the translation invariance prop-
erty, where Gm[k] = Gn[k] for all m,n (Schollwöck, 2011). This similarity is of interest,
as the most prominent member of the above model classes is the Hidden Markov model
(HMM), which can be converted into the above form by setting

Ai = Diag(Os,:)T (98)

for transitions Tij = p(zn+1 = j|zn = i), latent states zn ∈ Σ, and emission matrix Oij =
p(xn = j|zn = i) where Os,: denotes the s’th row (Jaeger, 2000). We highlight this as the
observable operator model is a generalization of the HMM, which is limited by equation (98)
constraining the shape of each Ak matrix (Jaeger, 2000). For instance, an HMM can never
have negative elements in its matrices.

6. Experiments

In this section we will demonstrate the functionality of the matrix product state model when
used as a variational approximation for tensor-shaped distributions. Throughout, we will use
a stochastic block model (Nowicki and Snijders, 2001) posterior as our approximation target.
It is a model for community detection in networks, which is related to other clustering
problems. In particular, we assume an observed binary adjacency matrix Y ∈ {0, 1}N×N
for an undirected graph over N vertices. The stochastic block model for K communities is

21

Rasmus Bonnevie and Mikkel N. Schmidt

then,

w ∼ Dirichlet(α1, . . . , αK), (99)

cluster proportions

xi ∼ Categorical(w), ∀i ∈ 1, . . . , N, (100)

cluster assignments

ηk` ∼ Beta(ak`, bk`), ∀k ∈ 1, . . . ,K, ` ∈ k, . . . ,K, (101)

link probabilities

Yij ∼ Bernoulli(ηxi,xj), ∀i ∈ 1, . . . , N, j ∈ i+ 1, . . . , N. (102)

observed links

Here, ηk,` describes the probability of a connection between community k and `, with
` ≥ k, and {αk}Kk=1, {ak`}Kk,`=1, and {bk`}Kk,`=1 are hyperparameters. We consider the label
symmetric setting αk = α, ak` = a, bk` = b∀k, ` ∈ 1, . . . ,K. This model cannot be written
as a probability tensor in its current form, as it contains continuous variables w and ηk`.
Fortunately, the model is in the conjugate exponential family, so we can integrate out w
and ηk`, leaving a posterior density over the discrete xi.

P (X|Y) ∝ B(α1 + n1, . . . , αK + nk)
∏

k`

B(mk` + a, m̄k` + b), (103)

where B is the (multivariate) Beta function, nk denotes the number of observations in cluster
k and mk`, and m̄k` denotes the number of edges and non-edges respectively between nodes
in cluster k and `. If we let each xi index a dimension of a tensor, we get a K × . . . ×
K (unnormalized) posterior probability tensor with N modes. This tensor will be our
approximation target.

6.1 Influence of Rank

The rank of the matrix product state is the most significant tuning parameter, both in terms
of modeling capacity and computational complexity. Using the incremental SVD algorithm
defined in section 2.2, we are guaranteed to always be able to perfectly approximate any
tensor, if only we use a sufficiently high rank. In the worst case, each iteration involves the
SVD of a matrix with maximal rank, i.e. a matrix of size Ki ×KN−i in the i’th step, until
we hit step bN/2c, at which point the effective rank will start to decrease. The maximal
rank is attained at this tipping point, so the maximal rank required to express a tensor with
N modes of length K is KbN/2c. We plot this in figure 2a for different values of K. This
is smaller than the number of elements in the tensor, but unfortunately scales in the same
exponential manner. As such, low-rank assumptions are a necessity.

To give a brief demonstration of the model’s potential efficacy, we generated small
Erdős-Rényi random graphs with 4, 6 and 8 vertices. These are sufficiently small for us
to compute the true gradient and true posterior, making it possible to calculate the actual
KL divergence between the posterior and the approximation. We found the locally optimal
approximation using an off-the-shelf BFGS optimization routine and 10 random restarts,
and selected the solution with the smalles KL divergence. We did this for 10 random

22

MPS for discrete models

2 4 6 8 10 12 14 16 18 20
Number of variables (N)

101

102

103

104

105

106

M
ax

im
um

 ra
nk

K=2
K=3
K=4

(a) The upper bound on the rank of the
true TT decomposition of any tensor with
N modes of dimensionality K.

1 2 4 8 12 16
Rank

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

KL
 d
iv
er
ge

nc
e

size 4
size 6
size 8

(b) The true KL divergence computed for
small tractable models and approximations
of varying rank. Errorbars denote standard
deviation over 10 random graphs. Horizon-
tal lines denote best mean-field solution.

instances for each vertex count. Figure 2b shows the average KL divergence at the best run,
with the errorbars denoting the standard deviation across different random graphs. While
the tensors in question here are very small with only 16, 64 and 256 elements respectively,
the maximal ranks are 4, 8, and 16, but in this experiment the approximation already
appears quite trustworthy at around half that rank. Note that this result might depend a
lot on how the random graph is generated, especially for larger graphs.

For further demonstration, we fitted models of varying rank using BFGS (as above) and
unfolded the resulting tensors into a matrix. Naive unfoldings of a tensor have a tendency
to hide its structural regularity, in much the same way as a random permutation on e.g. an
adjacency graph can make even very regular graphs appear irregular. To form a structured
unfolding, we can group the random variables (for graph clustering, one for each vertex)
into two equally-sized ordered lists, which we then to use to index into the rows and columns
of the matrix, respectively. We associate the i’th element xi of the first list with the i’th

digit of a base K number, i.e. r =
∑N/2−1

i=0 xiK
i, which we can then use as a row index;

we can do the same for the second list and the column index. In this way, we can map
any configuration of the discrete random variables to an element in the matrix. We call
the resulting matrix the mosaic of the tensor. We show mosaics of differently ranked tensor

Figure 3: Mosaics of varying rank, showing a tiled heatmap of the posterior approximation.
Structural complexity increases with rank, slowly approximating the complexity of the true
tensor.

23

Rasmus Bonnevie and Mikkel N. Schmidt

(a) Variance of the gradient estimators. (b) Most of our methods are unbiased, ex-
cept for inference using the dMPS directly.

Figure 4: Estimated squared bias and variance to true gradient with 20 000 gradient samples,
each with 100 gradient draws per estimate. We register the estimated bias and variance
for each parameter—the boxplots summarize the distribution of the estimates over the
parameters. We use T to denote temperature used in Gumbel-softmax.

approximations in figure 3, compared to the true posterior tensor in the setting where we
have N = 8 vertices and K = 3 communities.

6.2 Variance Reduction

We have detailed a number of ways to estimate the gradients and control their variance.
Keeping within the small N paradigm where the true gradient is tractable, we will demon-
strate that the gradients exhibit different characteristics even at this scale. In particular, we
take the graph to be an N = 4 cycle graph and look for K = 2 communities. We initialized
randomly, and took 20 BFGS steps to get into the basin of attraction. Empirically, we
observed that the gradients at random initializations were be extremely unstable, but we
observed that the gradient algorithms tend to escape this regime quickly.

Figure 4 shows the variance and squared bias of various estimators and control variates,
including results for two temperatures of the Gumbel softmax. We took a 100-sample Monte
Carlo gradient estimator as our gradient estimator, and resampled the estimator 20 000
times to produce the statistical summaries. We used an MPS with a canonical core using
the Householder implementation which has 52 parameters. We calculated the summaries
for each partial gradient individually, letting the box plots describe the distribution of the
quantities across parameters. By using an unbiased estimate of the gradient variance along
an unbiased estimate of the squared residual with respect to the true gradient, we can get
an unbiased estimate of the squared bias by using the bias-variance trade-off identity.

24

MPS for discrete models

The score estimator, our baseline, stands out as the highest variance estimator. The
dMPS estimators employ a direct differentiation of a dMPS and are the simplest estimators
in our arsenal. We note that for both temperature settings we achieve a reduction in
variance, but the reduction is particularly significant for T = 0.5 which is in the same
league as the best estimators. This is offset by its significant bias, and there we see the
inverse relationship: the lower temperature estimator has significantly smaller bias. So the
dMPS estimators seem to exhibit a very explicit bias-variance trade-off.

Comparing estimators of equal temperature to each other, the two static RELAX es-
timators (without optimization over the variance-reducing parameters) match the dMPS
estimators in terms of variance, but as with all other RELAX-based estimators we see that
they are unbiased. To be clear, these estimators use the dMPS as control-variate, without
any added parametric component, which goes some way in explaining the correlation with
that approach.

The models labeled var. reduc. performs stochastic optimization on the variance by
using the variance gradient estimator described in the REBAR and RELAX papers (Tucker
et al., 2017; Grathwohl et al., 2017). We optimize for 40 000 steps using the AMSgrad
algorithm which has improved convergence properties compared to Adam (Reddi et al.,
2018). The most advanced estimator we investigate is the learned CV model where we
extend RELAX by using the control variate,

ν(ln p(x, z)− ln qMPS(z) + αf̂(z)) (104)

where the two first terms make up the dMPS-based control variate, while f̂ is a flexible
function (a neural network) with everything scaled by a coefficient ν (Grathwohl et al.,
2017). Due to the structure of our problem, we settle for using an MPS with canonical
cores of maximum rank 2 instead, scaled by α. This works quite well, yielding the best
unbiased estimator of the whole selection. It might be possible to improve upon this further
by using a higher-rank MPS in the control variate, but there are certainly some complexity
trade-offs.

A few empirical observations about training the variance reduced estimators are worth
mentioning. That RELAX is better with high-temperature estimators goes against the
intuition that we should strive for a control variate that is as close as possible to the true
objective; apparently the increased variance we incur from a low temperature is too high a
price. In fact, when we optimize for the temperature, we often see it increasing to values of
1 or higher, which is significantly above what we would otherwise expect based on model-
fitting intuitions and the literature on Gumbel-softmax where temperatures around 0.5
are usually recommended (Maddison et al., 2017; Jang et al., 2017). The scalar weight ν
multiplied onto the control variate is on the other hand quite stable, and almost always
converges to 1. The few times ν diverged, it was usually preceded by the temperature
dropping to a very low value, causing high variance gradients and unstable training. In
general, we advocate keeping both the temperature and the scaling parameter from dropping
too close to 0.

6.3 Biased vs Unbiased Gradients

The earliest of the recent bout of papers on gradient-based learning of discrete distributions
hinged mostly on relaxations such as the Gumbel-softmax trick we employed to form the

25

Rasmus Bonnevie and Mikkel N. Schmidt

dMPS, which naturally introduced bias into the inference (Maddison et al., 2017; Jang et al.,
2017). Although they had some success in their applications, we will make the case that
the bias can be quite harmful.

In particular, we ran a dMPS versus an MPS trained with RELAX gradients and a
learned control variate on an N = 9 graph (specifically the first 9 nodes of Zachary’s karate
network) taking K = 2. We used canonical cores, a gradient estimator based on 1 000
samples, and optimized using AMSgrad. We tracked the true ELBO, which is tractable due
to the size of the graph, as well as the differentiable and stochastically estimated version
of the ELBO targeted by the dMPS. Both of these learning curves appear in figure 5.
Note that similar behavior was noted in several experimental runs, with this one picked for
illustrative purposes.

We notice in particular that while the dMPS appears to perform exceedingly well accord-
ing to its own biased metric, its behaviour with respect to the true objective is concerning,
as it dips to its lowest point around iteration 500, before rebounding and leveling off at a
higher level, around iteration 800. Most importantly, this seems to indicate that the biased
objective is running counter to the true objective in some subtle way.

We can pick this observation apart by taking the entire 512 element posterior probability
tensor, and compare it to the approximate posteriors. We plot the true probability against
the approximation for all tensor elements individually in the plots in figure 6. The two first
subfigures correspond to the iterations marked with vertical lines in figure 5, and the third
subfigure is at convergence. We note that at iteration 500 the approximation is somewhat
sound, with the approximation roughly in the right range of values and a good fit to the
highest value mode. Then at iteration 800, we see that pretty much all of the probability
mass is concentrated at the single highest mode. The unbiased gradient meanwhile finds a
reasonable approximation, especially with respect to the more significant high probability
states.

6.4 Experiments on the karate graph

In this section we approximate the posterior of a stochastic block model applied to the
venerable karate graph (Zachary, 1977). This is a 34 vertex social graph with K = 2 gold
standard communities. We use uniform priors, αk = 1/K, ak` = 1 and bk` = 1 since
informed priors can have a large impact on the posterior’s concentration.

The undirected graph has a total of

(
34
2

)
= 561 possible edges, and we assume that we

only observe 400 of these vertex pairings, leaving a test set of 161 to allow us to evaluate
the model by its prediction on held-out data.

As a baseline, we also solved it using a mean-field approximation, employing KL-
corrected bounds (Hensman et al., 2012) and an out of the box L-BFGS optimization to
efficiently find local optima. We ran it 500 times to establish the global optimum with some
certainty.

6.4.1 Initialization and Warm Starts

A central issue with graphs of any meaningful size is that due to the combinatorial explo-
sion of possible states, they can be quite sensitive to initialization. One advantage of our

26

MPS for discrete models

(a) The true ELBO (not stochastically esti-
mated).

(b) The stochastic loss function employed by
the dMPS.

Figure 5: Learning curves of two MPS models trained using biased and unbiased gradients,
respectively. We report the true loss, and the implicit loss of the biased method. Horizontal
lines correspond to snapshots at iteration 500 and 800 in figure 6.

(a) Iteration 500. (b) Iteration 800. (c) At convergence.

Figure 6: Difference between the estimated q and the true posterior at all 512 positions of
the probability tensor. Black points correspond to the true posterior.

problem is that we can in many cases easily find local optima or efficiently computable ap-
proximations, in particular in the settings where we can calculate the analytical ELBO for
a mean-field model. To each mean-field solution qi(X) =

∏N
n=1 qi,n(xn), we can associate a

tensor Ti which is the outer product of the marginal probability vectors, as in equation (3).

27

Rasmus Bonnevie and Mikkel N. Schmidt

(a) ELBO for the different ini-
tialization strategies.

(b) Predictive likelihood on
test set. Line denotes the
mean-field model with best
ELBO.

(c) Marginal entropy. Lines
denote maximum possible en-
tropy (top) and entropy where
each marginal puts 0.9 on a sin-
gle entry.

Figure 7: Learning curves for three different initialization strategies.

We could cobble together all the mean-field solutions into a mixture T̄ = 1
S

∑S
i=1 Ti,

and compute the norm

〈
T − T̄ , T − T̄

〉
= 〈T , T 〉+

1

S2

S∑

i,j=1

〈Ti, Tj〉 −
2

S

S∑

i=1

〈T , Ti〉 , (105)

which is computable as all of the inner products are simple expectations per equation (18).
Unfortunately, due to the high dimensionality of the tensors, this problem appears to be
numerically problematic as distances break down due to the curse of dimensionality.

As a light proxy, we propose using the sum of log expectations,

S∑

i=1

log 〈T , Ti〉 . (106)

Intuitively, if Ti is close to a one-hot encoding, maximizing the expectation 〈T , Ti〉 en-
courages the model to put as much mass as possible on that index. Summing over the
expectations with respect to all states aims to then find a compromise that puts mass on
all the indices, but if the expectations are just summed the optimal solution will be to put
maximum mass on the index with highest weight. The logarithm tries to balance this by
making it disproportionately disadvantageous to put zero mass on any of the states. This
target is amenable to off-the-shelf optimizers like BFGS. Since there is still some chance of
collapsing onto the S states, we recommend performing early stopping after 30 steps.

Another alternative to random initialization is to start in the maximum entropy state.
The entropy of the entire MPS is difficult to calculate, but since we can compute the
marginals efficiently we can use the marginal entropy as a proxy, encouraging that no label
preferred a priori.

28

MPS for discrete models

Figure 8: 3 restarts of rank 16 MPS on the karate network. We continue working with the
red curve.

In figure 7 we visualize the learning curves generated by initializing using these two
strategies. We also consider a boosted version of the expectation-based initialization, where
we only maximize the objective with respect to the 20 entries with highest predictive like-
lihood.

In figure 7a we have inverted the ELBO to get a minimization problem, and we see that
all curves implement a decreasing behavior as expected, although the expectation strategy
behaves oddly in the initial transient phase. The initial state of the entropy initialization
is not surprisingly a rather poor initialization with respect to the ELBO, but it seems to
decrease to the level of the others gracefully.

The entropy initialization likewise under-performs on predictive likelihood in figure
7b.The best predictive likelihood achieved by any of the mean-field optima is −59 which is
achieved by the boosted method, which was specifically designed to be close to that state,
but we see that this is not a stable point and the boosted strategy dives down to the same
level as the other curves. This is in line with the mean-field solution with the best bound
having a rather mediocre predictive performance, so this is mostly indicative of some kind
of model mismatch.

From the marginal entropy plot in figure 7c, we see that all of the states start in fairly
entropic solutions, despite having very different empirical behavior. We also see that the
inference procedure drives all of them towards low entropy configurations, with the lower
reference line being the entropy of a mean-field model where every marginal puts 0.9 prob-
ability mass on a single entry, and divides the rest evenly. This is discouraging, as we had
hoped the flexibility of the MPS would allow us to find solutions with high marginal entropy.

6.4.2 Induced Covariance

Next, we ran a rank 16 MPS with canonical cores, warm starts using the expectation
strategy, and AMSgrad with a 0.01 learning rate. We plot three restarts in figure 8. We
note that run 1 surpasses the other two runs by a fair margin, so we selected that for further

29

Rasmus Bonnevie and Mikkel N. Schmidt

(a) Covariance matrix for restart 1. Blocks
corresponds to labels. Marginal covariance
has been deducted.

(b) Co-location matrix for restart 1.

Figure 9: Covariance and co-location matrices for restart 1, estimated using 10 000 samples.

inspection. As a rule, we generally observe quite noisy transient phases during optimization,
but eventually it levels out.

We have no good easily computable metric to evaluate the degree to which dependencies
have been encoded in the approximate posterior. Something like mutual information would
have been ideal, but to get a more local measure we will consider the covariance matrix
of each one-hot categorical variable pair xn and xn′ , with element (k, k′) of the covariance
matrix given by,

Cov(xnk, xn′k′) = E[xnkxn′k′]− E[xnk]E[xn′k′] (107)

If k = k′, and the respective covariance element is positive, this means that those two points
are likely to get sorted into the same cluster. We can take this a step further by computing
the co-location matrix

E
[
XX>

]
(108)

where [X]nk = xnk. Given any sample instantiation X̂, the quantity X̂X̂> gives a binary
matrix where each element is 1 if two elements share a label in X̂. Taking the expectation
then gives us the co-location probability of how likely two elements are clustered on average.
Both of these quantities can be estimated. The expectations here are computable using the
tensor train framework, as we can compute the marginal distribution of the two variables,
or use the tower property to express it in terms of a conditional expectation. It is often
simpler to just sample it though, which is what we will do going forward, using 10 000
samples.

We visualize the covariance matrix in figure 9a. The blocks are indexed by label, so
the upper left block is covariance between xi0 and xj0, the upper right block is between
elements xi0 and xj1, and so on. For saliency, we have deducted the corresponding covariance
matrix of the marginal distribution, which is only non-zero on the diagonals of each of these

30

MPS for discrete models

(a) Covariance matrix for the permutation-
invariant core. Blocks corresponds to labels.
Marginal covariance has been deducted.

(b) Co-location matrix for the permutation-
invariant core.

Figure 10: Covariance and co-location matrices for the permutation-invariant kernel, esti-
mated using 10 000 samples. Note that the color scale for covariance has been extended.

blocks. So all of the observed covariance is due to the higher-rank modeling. We note that
one group exhibits relatively high positive correlation, making it likely that these elements
group together. When we look to the corresponding co-location matrix in figure 9b, we
see that there are some elements that almost always get clustered together, but we also
see that the elements for which we observed high covariance are the elements that are
somewhat uncertainly labeled. The strong blocks correspond to elements that have highly
concentrated marginals, giving them an almost certain assignment. This is a consequence
of most of the local optima we find concentrating around a single symmetry mode. The
uncertain elements then get randomly assigned to each of these blocks, but the covariance
tells us that they are assigned as a group. This is not the case for mean-field models,
where all uncertain elements must be randomly assigned without consideration for other
elements, which encourages these rank-1 mean-field solutions to collapse unto a specific
hard clustering.

6.4.3 Permutation Invariance

We now run a similarly sized MPS with a set of permutation-invariant cores. Seeing as we
are working with K = 2 we can use the bit-flip symmetry core (Huckle et al., 2013), although
we will have to explicitly normalize it as we do not have a canonical self-normalizing version
of that core available. After 20 000 iterations, we get the covariance and co-location plots
of figure 10.

Contrasted with the canonical core set from before, the covariances exhibited in figure
10a are a lot stronger; note that the color scale has been extended to cover the new range of
values. Compared to figure 10b, we also note that the co-location is near-identical to that

31

Rasmus Bonnevie and Mikkel N. Schmidt

of a covariance block, which is of course a direct consequence of the permutation-invariant
representation modeling everything through covariance alone. Another consequence is that
the diagonal blocks of the covariance matrix are now identical, since the two labels are
interchangeable. More distressingly, we note that the upper left corner seems to hardly be
modeled at all, which is especially odd as this part of the model was assigned labels with
very high certainty. This could be an issue with model capacity, but it could also be a
local optima problem: if we want to put the points of the upper left corner in one cluster,
it might be problematic if the K clusters have already been “spent” clustering the lower
left corner, according to some kind of partition that is not consistent with the remaining
points. Either way, it should be clear that permutation-invariant cores have a large effect
on the produced posterior approximations and that the choice of core leads to qualitative
differences.

7. Related Work and Further Reading

As matrix product states have seen wide-spread use in quantum mechanics, there is a
large literature on the topic. Unfortunately, for readers outside the physics community,
the presentation can be impenetrable, which is one of the motivating reasons behind the
present manuscript. For general introductions to the topic, we recommend Schollwöck
(2011) which covers the mechanics and mathematics well and is quite pedagogical. The
figure-heavy introduction by Bridgeman and Chubb (2017) complements it nicely. For
some more esoteric and physics-oriented introductions, interested readers might want to
consult Perez-Garćıa et al. (2007); Orús (2014a); Biamonte and Bergholm (2017).

In the tensor literature, the tensor train has also been growing in popularity, starting
with its publication in Oseledets (2011). The literature on tensor trains has proven less
relevant for this presentation, due to the more algebraic focus. We note that other results
from the physics literature have started to percolate over, such as the tensor ring decom-
position (Zhao et al., 2016), which is known as a MPS with periodic boundary condition in
quantum mechanics (Schollwöck, 2011).

As noted previously, we are not the first to consider the relationship between matrix
product states and probabilistic models. Arguably, this relationship is a bit of a false di-
chotomy, as its application in quantum mechanics means that it has always had a statistical
interpretation, by virtue of the way a quantum mechanical wave function is related to a
probability distribution by way of Born’s rule. The more explicit connections to probabilis-
tic models, and graphical models in particular, were pioneered by Novikov et al. (2014) and
culminated recently in a duality result (Robeva and Seigal, 2018). There have also been
a few ventures into applying tensor trains and matrix product states in machine learning
applications (Stoudenmire and Schwab, 2016; Pestun and Vlassopoulos, 2017). We high-
light the recent paper by Han et al. (2017), which uses the probabilistic interpretation of an
MPS directly, and propose the use of a sampling algorithm which was originally presented
in Ferris and Vidal (2012). Their work differs from ours by only using the model for gen-
erative density estimation. By not imposing any prior knowledge or otherwise preventing
the density from collapsing unto the observations, we fear this application is somewhat
ill-posed.

32

MPS for discrete models

8. Conclusion

In this paper, we have attempted to lay the groundwork for how matrix product states can be
used as an approximate model in variational inference. Part of our contribution is that this
text should serve as a pedagogical gateway for people in the machine learning community
interested in this topic, by offering an introduction to the topic, relevant references to the
existing literature, and translating some of the physics-oriented results into a notation that
is more relatable to machine learning researchers.

The main challenge of integrating the MPS into a variational inference setting is finding
ways to estimate gradients in a robust manner. As a first step, this requires finding a
differentiable representation for the MPS, which is a bit different from other papers where
the model is often learned by way of repeated application of singular value decompositions
like in the tensor train algorithm we originally described in section 2.2 (Oseledets, 2011), or
the density-matrix renormalization group (DMRG) method popular in physics (Schollwöck,
2011). We note that Han et al. (2017) propose a hybrid approach, combining the iterative
procedure of the DMRG, gradient steps, and SVD. This is one of the things that could
be pursued in future work, although we were worried that local updates might make the
model more likely to converge to local modes. This worry is motivated by the passing
similarity with Gibbs sampling, which can become trapped due to its inability to make
global changes (Jain and Neal, 2004).

There are some remaining mysteries when it comes to representations. We consider a
differentiable ΓΛ-representation to be an important target for future research as it would
make marginalization operations exceedingly expeditious, and allow direct parametric con-
trol over the form of the marginals. Further exploration of symmetry representations is
another thing we believe would be fruitful; although modeling symmetry modes wastes
some of the model’s capacity, we conjecture that factoring in symmetry constraints reduces
the search space and thus helps with exploring the model space. One could also attempt
to find representations that only concentrate on a single symmetry mode, but we have not
looked into this. We found that many of our representations depended on orthogonal ma-
trices with their own differentiable parametric forms, where we have one unresolved issue
as the orthogonal matrices do not form a connected manifold, i.e. there does not exist a
parametric representation capable of modeling all orthogonal matrices with both positive
and negative determinant (Shepard et al., 2015). A final missing piece is the opportunity to
use complex valued representations which is standard in the physics community. One might
hope that using complex numbers translates directly into added model capacity, simply by
virtue of the increase in parameters, without increasing the rank. Additionally, since we
only need to model the square root of the true probability tensor, allowing complex values
gives us an infinite number of alternative solutions; when the tensor train is real-valued,
we can flip signs in the elements of the tensor train without affecting the square. With
complex-valued tensor trains we can multiply any element with any root of unity without
affecting it. On the other hand, the constructive argument means that it always suffices to
use real-valued tensors.

Optimization remains a challenge. While we found that our stochastic gradients per-
formed admirably considering the difficulty of the problem, more work could be put into
finding good warm start procedures based on e.g. locally optimal mean-field solutions like

33

Rasmus Bonnevie and Mikkel N. Schmidt

we used. Another avenue would be to extend the coordinate-ascent updates of DMRG and
Han et al. (2017) to the full variational problem. Finally, we think there could be merit
in pursuing Riemannian optimization as the tensor trains span a sub-manifold of the space
of all tensors, and the gauge invariance means that we are often using highly redundant
parameterizations. Some progress has already been made in this direction (Steinlechner,
2016). Numerical issues also remain problematic, as we are forced to work in the non-log
domain to exploit the MPS structure. Whether this can be fully circumvented by technical
means is an open question. One could also imagine hybrid models where we also model the
log-probability with an MPS in conjunction with the normalized model.

The MPS methods are designed to scale well, although the O(R3) scaling in the max-
imum rank eventually gets prohibitive. Scaling in N is linear for many operations, which
is a big difference from most other factorization schemes. The trade-off is that few of the
MPS and TT operations come cheaper than O(N), e.g. both evaluation and sampling scale
as O(N). We did a full-fledged implementation in Tensorflow, parallelizing where possible,
but performance could still be quite slow. Additionally, running it on a GPU often made
the whole thing slower, despite most operations being standard linear algebra routines. It
is possible that the large computational graphs and the long chains of small matrix opera-
tions is a poor fit for Tensorflow. Also, from inspection, the main bottleneck appears to be
the existing implementation of Einstein summation, which has not been fully optimized in
Tensorflow yet. In summary, it should be possible to make a high-performance versions of
the MPS.

There is also room for exploring some of the more advanced architectures from the ten-
sor networks literature. The tensor ring (Zhao et al., 2016), known as an MPS with periodic
boundary conditions in the physics literature (Schollwöck, 2011), is a straightforward exten-
sion of the tensor train which makes the tensor invariant to cyclic reordering of the cores,
but it lacks a canonical representation, as well as the efficient normalization scheme of equa-
tion (21), forcing the explicit computation of Kronecker products of the cores. Even more
advanced architectures like PEPS and MERA could also prove useful, although few of the
analytical formulas available for the MPS carry over (Orús, 2014a,b). Another interesting
avenue is the idea of implementing the cores as their own tensor trains, possibly allowing
the extension of the MPS ideology to larger ranks (Hübener et al., 2010). Note that tensor
trains can also be used to speed up standard matrix multiplications considerably (Oseledets,
2011; Novikov et al., 2015).

References

Borja Balle, Prakash Panangaden, and Doina Precup. A canonical form for weighted au-
tomata and applications to approximate minimization. January 2015.

Jacob Biamonte and Ville Bergholm. Tensor networks in a nutshell. arXiv preprint
arXiv:1708.00006, July 2017.

Christopher Bishop. Pattern recognition and machine learning. Springer, New York, 2006.

Jacob C Bridgeman and Christopher T Chubb. Hand-waving and interpretive dance: an
introductory course on tensor networks. Journal of Physics A: Mathematical and Theo-

34

MPS for discrete models

retical, 50(22):223001, May 2017.

Keith Conrad. Generating sets. Technical report, University of Conneticut, Department
of Mathematics. URL www.math.uconn.edu/~kconrad/blurbs/grouptheory/genset.

pdf.

Andrew J Ferris and Guifre Vidal. Perfect sampling with unitary tensor networks. Physical
review. B, Condensed matter, 85(16):165146, April 2012.

Will Grathwohl, Dami Choi, Yuhuai Wu, Geoff Roeder, and David Duvenaud. Backprop-
agation through the void: Optimizing control variates for black-box gradient estimation.
October 2017.

J E Gumbel. Statistical theory of extreme values and some practical applications, NBS.
Applied Mathematical Series, 1954.

Bernard Haasdonk and Hans Burkhardt. Invariant kernel functions for pattern analysis and
machine learning. Machine learning, 68(1):35–61, July 2007.

Zhao-Yu Han, Jun Wang, Heng Fan, Lei Wang, and Pan Zhang. Unsupervised generative
modeling using matrix product states. arXiv preprint arXiv:1709.01662, September 2017.

James Hensman, Magnus Rattray, and Neil D Lawrence. Fast variational inference in the
conjugate exponential family. In F Pereira, C J C Burges, L Bottou, and K Q Weinberger,
editors, Advances in Neural Information Processing Systems 25, pages 2888–2896. Curran
Associates, Inc., 2012.

R Hübener, V Nebendahl, and W Dür. Concatenated tensor network states. New journal
of physics, 12(2):025004, February 2010.

Thomas K Huckle, Konrad Waldherr, and Thomas Schulte-Herbrüggen. Exploiting matrix
symmetries and physical symmetries in matrix product states and tensor trains. Linear
and Multilinear Algebra, 61(1):91–122, January 2013.

Michael C Hughes and Erik Sudderth. Memoized online variational inference for dirichlet
process mixture models. In C J C Burges, L Bottou, M Welling, Z Ghahramani, and
K Q Weinberger, editors, Advances in Neural Information Processing Systems 26, pages
1133–1141. Curran Associates, Inc., 2013.

H Jaeger. Observable operator models for discrete stochastic time series. Neural computa-
tion, 12(6):1371–1398, June 2000.

Sonia Jain and Radford M Neal. A Split-Merge markov chain monte carlo procedure for
the dirichlet process mixture model. Journal of computational and graphical statistics: a
joint publication of American Statistical Association, Institute of Mathematical Statistics,
Interface Foundation of North America, 13(1):158–182, 2004.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with Gumbel-
Softmax. In International Conference on Learning Representations (ICLR), April 2017.

35

Rasmus Bonnevie and Mikkel N. Schmidt

Diederik P Kingma and Max Welling. Auto-Encoding variational bayes. In International
Conference on Learning Representations (ICLR), 2014.

T Kolda and B Bader. Tensor decompositions and applications. SIAM Review, 51(3):
455–500, 2009.

S.L. Lauritzen and D.J. Spiegelhalter. Local computations with probabilities on graphical
structures and their application to expert systems. J.R. Statist. Soc. B, 50(2):157–224,
1988.

Chris J Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A contin-
uous relaxation of discrete random variables. In International Conference on Learning
Representations (ICLR), 2017.

George Abram Miller. On the groups generated by two operators. Bulletin of the American
Mathematical Society, 7(10):424–426, 1901.

Tom Minka. Divergence measures and message passing. Technical report, Microsoft Re-
search, 2005.

Alexander Novikov, Anton Rodomanov, Anton Osokin, and Dmitry Vetrov. Putting MRFs
on a tensor train. In International Conference on Machine Learning, pages 811–819.
jmlr.org, January 2014.

Alexander Novikov, Dmitrii Podoprikhin, Anton Osokin, and Dmitry P Vetrov. Tensorizing
neural networks. In C Cortes, N D Lawrence, D D Lee, M Sugiyama, and R Garnett,
editors, Advances in Neural Information Processing Systems 28, pages 442–450. Curran
Associates, Inc., 2015.

K. Nowicki and T. Snijders. Estimation and prediction for stochastic blockstructures. Jour-
nal of the American Statistical Association, 96(455):1077–1087, 2001.

R Orús. A practical introduction to tensor networks: Matrix product states and projected
entangled pair states. Annals of physics, 2014a.

Román Orús. Advances on tensor network theory: symmetries, fermions, entanglement,
and holography. The European physical journal. B, 87(11):280, November 2014b.

I Oseledets. Tensor-Train decomposition. SIAM Journal of Scientific Computing, 33(5):
2295–2317, January 2011.

David Perez-Garćıa, Frank Verstraete, Michael M Wolf, and J Ignacio Cirac. Matrix product
state representations. Quantum Information and Computation, 7(5-6):401–430, 2007.

Vasily Pestun and Yiannis Vlassopoulos. Tensor network language model. arXiv preprint
arXiv:1710.10248, October 2017.

Rajesh Ranganath, Sean Gerrish, and David Blei. Black box variational inference. In
Artificial Intelligence and Statistics, pages 814–822, April 2014.

36

MPS for discrete models

Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond.
In International Conference on Learning Representations. sanjivk.com, 2018.

Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In
International Conference on Machine Learning, pages 1530–1538, 2015.

Elina Robeva and Anna Seigal. Duality of graphical models and tensor networks. Informa-
tion and Inference: A Journal of the IMA, June 2018.

Ulrich Schollwöck. The density-matrix renormalization group in the age of matrix product
states. Annals of physics, 326(1):96–192, January 2011.

Ron Shepard, Scott R Brozell, and Gergely Gidofalvi. The representation and parametriza-
tion of orthogonal matrices. The journal of physical chemistry. A, 119(28):7924–7939,
July 2015.

Sukhwinder Singh, Robert N C Pfeifer, and Guifré Vidal. Tensor network decompositions
in the presence of a global symmetry. Physical review. A, 82(5):050301, November 2010.

Sukhwinder Singh, Robert N C Pfeifer, and Guifre Vidal. Tensor network states and algo-
rithms in the presence of a global U (1) symmetry. Physical Review B: Condensed Matter
and Materials Physics, 83(11):115125, 2011.

Michael Maximilian Steinlechner. Riemannian optimization for solving high-dimensional
problems with low-rank tensor structure. PhD thesis, École polytechnique fédérale de
Lausanne, 2016.

Edwin Miles Stoudenmire and David J Schwab. Supervised learning with tensor networks.
In Advances in Neural Information Processing Systems, pages 4799–4807, 2016.

Xiaobai Sun and Christian Bischof. A Basis-Kernel representation of orthogonal matrices.
SIAM Journal on Matrix Analysis and Applications, 16(4):1184–1196, 1995.

Yee W Teh, David Newman, and Max Welling. A collapsed variational bayesian inference
algorithm for latent dirichlet allocation. In B Schölkopf, J C Platt, and T Hoffman,
editors, Advances in Neural Information Processing Systems 19, pages 1353–1360. MIT
Press, 2007.

George Tucker, Andriy Mnih, Chris J Maddison, Dieterich Lawson, and Jascha Sohl-
Dickstein. REBAR: Low-variance, unbiased gradient estimates for discrete latent variable
models. March 2017.

Charles F Van Loan. Tensor network computations in quantum chemistry. Technical report,
2008.

Guifré Vidal. Efficient classical simulation of slightly entangled quantum computations.
Physical review letters, 91(14):147902, October 2003.

Martin J Wainwright and Michael I Jordan. Graphical models, exponential families, and
variational inference. Found. Trends Mach. Learn., 1(1-2):1–305, January 2008.

37

Rasmus Bonnevie and Mikkel N. Schmidt

Andreas Weichselbaum. Non-abelian symmetries in tensor networks: a quantum symmetry
space approach. February 2012.

Zhiqiang Xu, Yiping Ke, and Yi Wang. A fast inference algorithm for stochastic blockmodel.
In Data Mining (ICDM), 2014 IEEE International Conference on, pages 620–629, De-
cember 2014.

Wayne W Zachary. An information flow model for conflict and fission in small groups.
Journal of anthropological research, 33(4):452–473, 1977.

Qibin Zhao, Guoxu Zhou, Shengli Xie, Liqing Zhang, and Andrzej Cichocki. Tensor ring
decomposition. arXiv preprint arXiv:1606.05535, June 2016.

Appendix A. REBAR for categoricals

The current best method unbiased discrete gradient estimator is the REBAR estimator
which constructs a control variate with coupled randomness. If we denote the discrete
random variable b and the cost function f , then the target is to estimate ∇E[f(b)]. Given
a source of randomness p(ε) and a continuous reparametrization z = g(ε, θ) such that
b = H(z) after passing through a gating function H, REBAR builds a control variate using
a dummy reparametrization z′ ∼ p(z|b) likely to have high correlation with the original.

If b is a categorical variable Cat(α), a natural reparametrization follows via the Gumbel-
max trick. The procedure is simply:

εi ∼ U [0, 1]

zi = lnαi − ln(− ln(εi)) ∼ Gumbel(lnαi, 1)

b = arg max(z)

Going the other way and sampling from p(z|b) is slightly more complicated. It turns out
that

zb ∼ Gumbel

(
ln

N∑

i=1

αi, 1

)

zi|zb ∼,TruncatedGumbel (lnαi, 1, zi ≤ zb) ∀i 6= b.

The Gumbel has pdf and cdf

fG(x;µ, 1) = exp(−(x− µ)− exp(−(x− µ))) (109)

FG(x;µ, 1) = exp(− exp(−(x− µ))). (110)

so the truncated cdf is conveniently just

FTG(x;µ, 1, x ≤ t) =
FG(x;µ, 1)

FG(t;µ, 1)
. (111)

Finding a reparametrization then just becomes a question of applying the inverse transform
sampler of the truncated Gumbel to a uniform variable u, and as

F−1
G (p;µ, 1) = µ− ln(− ln(p)). (112)

38

MPS for discrete models

we have
x = F−1

TG(u) = F−1
G (FG(t)u) = µ− ln(− lnFG(t)− lnu). (113)

If we instead want to reparametrize in terms of a Gumbel variable z, we can use that
u = FG(z) (running the inverse transform sampler in reverse) and then substitute in to get

x = µ− ln(− lnFG(t)− lnFG(z)) = µ− ln
(
e−(t−µ) + e−(z−µ)

)
. (114)

which can finally be reduced to x = − ln
(
e−t + e−z

)
.

39

124 Bibliography

Bibliography

Agakov, Felix V and David Barber (November 2004). “An Auxiliary Variational
Method”. In: Neural Information Processing. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, pages 561–566.

Alvarez, Mauricio A, Lorenzo Rosasco, and Neil D Lawrence (June 2011). “Ker-
nels for Vector-Valued Functions: A Review”. In: Foundations and Trends R©
in Machine Learning 4.3.

Amari, Shun-Ichi and Hiroshi Nagaoka (2007). Methods of Information Geometry.
en. American Mathematical Soc.

Aronszajn, N (1950). “Theory of Reproducing Kernels”. In: Transactions of the
American Mathematical Society 68.3, pages 337–404.

Bamler, Robert et al. (2017). “Perturbative Black Box Variational Inference”.
In: arXiv preprint arXiv:1709. 07433.

Banerjee, Arindam et al. (December 2005). “Clustering with Bregman Diver-
gences”. In: Journal of machine learning research: JMLR 6, pages 1705–1749.

Bernardo, José M and Adrian F M Smith (2000). Bayesian theory. eng. Reprint.
Wiley.

Bishop, Christopher M (August 2006). Pattern Recognition and Machine Learning.
en. New York: Springer.

Bonnevie, R, M N Schmidt, and M Mørup (2017). “Difference-of-Convex opti-
mization for variational kl-corrected inference in dirichlet process mixtures”.
In: 2017 IEEE 27th International Workshop on Machine Learning for Signal
Processing (MLSP), pages 1–6.

Bottou, Léon (January 2010). “Large-Scale Machine Learning with Stochastic
Gradient Descent”. In: Proceedings of COMPSTAT’2010. Physica-Verlag HD,
pages 177–186.

126 BIBLIOGRAPHY

Bridgeman, Jacob C and Christopher T Chubb (May 2017). “Hand-waving and
interpretive dance: an introductory course on tensor networks”. en. In: Journal
of Physics A: Mathematical and Theoretical 50.22, page 223001.

Briol, François-Xavier et al. (December 2015). “Probabilistic Integration: A Role
in Statistical Computation?” In: arXiv: 1512.00933 [stat.ML].

Burda, Yuri, Roger Grosse, and Ruslan Salakhutdinov (September 2015). “Im-
portance Weighted Autoencoders”. In: arXiv: 1509.00519 [cs.LG].

Carpenter, Bob et al. (2017). “Stan: A Probabilistic Programming Language”.
In: Journal of Statistical Software, Articles 76.1, pages 1–32.

Chen, Zhe (2003). “Bayesian filtering: From Kalman filters to particle filters,
and beyond”. In: Statistics 182.1, pages 1–69.

Cockayne, Jon et al. (February 2017). “Bayesian Probabilistic Numerical Meth-
ods”. In: arXiv: 1702.03673 [stat.ME].

Damianou, Andreas C (July 2015). “Deep Gaussian Processes and Variational
Propagation of Uncertainty”. PhD thesis. University of Sheffield.

Damianou, Andreas C and Neil D Lawrence (November 2012). “Deep Gaussian
Processes”. In: arXiv: 1211.0358 [stat.ML].

Evenbly, Glen and Robert N C Pfeifer (October 2013). “Improving the ef-
ficiency of variational tensor network algorithms”. In: arXiv: 1310 . 8023
[cond-mat.str-el].

Flaxman, Seth et al. (March 2016). “Bayesian Learning of Kernel Embeddings”.
In: arXiv: 1603.02160 [stat.ML].

Gelman, Andrew et al. (2014). Bayesian Data Analysis. CRC Press.
Grathwohl, Will et al. (October 2017). “Backpropagation through the Void:
Optimizing control variates for black-box gradient estimation”. In: arXiv:
1711.00123 [cs.LG].

Han, Zhao-Yu et al. (September 2017). “Unsupervised Generative Modeling Using
Matrix Product States”. In: arXiv: 1709.01662 [cond-mat.stat-mech].

Hartikainen, J and S Särkkä (August 2010). “Kalman filtering and smoothing
solutions to temporal Gaussian process regression models”. In: 2010 IEEE
International Workshop on Machine Learning for Signal Processing, pages 379–
384.

Hensman, James, Alexander Matthews, and Zoubin Ghahramani (2015). “Scal-
able Variational Gaussian Process Classification”. In: AISTATS. jmlr.org.

Hensman, James, Magnus Rattray, and Neil D Lawrence (2012). “Fast Variational
Inference in the Conjugate Exponential Family”. In: Advances in Neural Infor-
mation Processing Systems 25. Edited by F Pereira et al. Curran Associates,
Inc., pages 2888–2896.

Hoffman, Matthew D, David M Blei, et al. (May 2013). “Stochastic Variational
Inference”. In: Journal of machine learning research: JMLR 14.1, pages 1303–
1347.

Hoffman, Matthew D and Andrew Gelman (2014). “The No-U-turn sampler:
adaptively setting path lengths in Hamiltonian Monte Carlo”. In: Journal of
machine learning research: JMLR 15.1, pages 1593–1623.

http://arxiv.org/abs/1512.00933
http://arxiv.org/abs/1509.00519
http://arxiv.org/abs/1702.03673
http://arxiv.org/abs/1211.0358
http://arxiv.org/abs/1310.8023
http://arxiv.org/abs/1310.8023
http://arxiv.org/abs/1603.02160
http://arxiv.org/abs/1711.00123
http://arxiv.org/abs/1709.01662

BIBLIOGRAPHY 127

Huckle, T, K Waldherr, and T Schulte-Herbrueggen (January 2013). “Exploiting
Matrix Symmetries and Physical Symmetries in Matrix Product States and
Tensor Trains”. In: arXiv: 1301.0746 [math-ph].

Jaynes, E T (April 2003). Probability Theory: The Logic of Science. en. Cambridge
University Press.

Jordan, Michael I et al. (November 1999). “An Introduction to Variational
Methods for Graphical Models”. In: Machine learning 37.2, pages 183–233.

King, Nathaniel J and Neil D Lawrence (January 2006). “Fast Variational
Inference for Gaussian Process Models Through KL-Correction”. In: Machine
Learning: ECML 2006. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, pages 270–281.

Kingma, Diederik P and Max Welling (December 2013). “Auto-Encoding Varia-
tional Bayes”. In: arXiv: 1312.6114v10 [stat.ML].

Kolda, T and B Bader (2009). “Tensor Decompositions and Applications”. In:
SIAM Review 51.3, pages 455–500.

Koller, Daphne and Nir Friedman (2009). Probabilistic graphical models: princi-
ples and techniques. MIT press.

Kom Samo, Yves-Laurent and Stephen Roberts (June 2015). “Generalized Spec-
tral Kernels”. In: arXiv: 1506.02236 [stat.ML].

Kom Samo, Yves-Laurent and Stephen J Roberts (October 2015). “p-Markov
Gaussian Processes for Scalable and Expressive Online Bayesian Nonparametric
Time Series Forecasting”. In: arXiv: 1510.02830 [stat.ML].

Kreyszig, Erwin (1978). Introductory Functional Analysis With Applications. en.
John Wiley & Sons.

Kullback, S and R A Leibler (March 1951). “On Information and Sufficiency”.
In: Annals of Mathematical Statistics 22.1, pages 79–86.

Le, Tuan Anh et al. (2018). “Auto-encoding sequential monte carlo”. In: Pro-
ceedings of the 6th International Conference on Learning Representations
(ICLR).

Liseo, Brunero and Nicola Loperfido (February 2003). “A Bayesian interpretation
of the multivariate skew-normal distribution”. In: Statistics & probability letters
61.4, pages 395–401.

Liu, Qiang, Jason D Lee, and Michael I Jordan (February 2016). “A Kernelized
Stein Discrepancy for Goodness-of-fit Tests and Model Evaluation”. In: arXiv:
1602.03253 [stat.ML].

Maddison, Chris J et al. (May 2017). “Filtering Variational Objectives”. In:
arXiv: 1705.09279 [cs.LG].

Manton, Jonathan H and Pierre-Olivier Amblard (August 2014). “A Primer on
Reproducing Kernel Hilbert Spaces”. In: arXiv: 1408.0952 [math.HO].

Minka, Tom (2005). Divergence measures and message passing. Technical report.
Microsoft Research.

Muandet, Krikamol et al. (May 2016). “Kernel Mean Embedding of Distributions:
A Review and Beyond”. In: arXiv: 1605.09522 [stat.ML].

http://arxiv.org/abs/1301.0746
http://arxiv.org/abs/1312.6114v10
http://arxiv.org/abs/1506.02236
http://arxiv.org/abs/1510.02830
http://arxiv.org/abs/1602.03253
http://arxiv.org/abs/1705.09279
http://arxiv.org/abs/1408.0952
http://arxiv.org/abs/1605.09522

128 BIBLIOGRAPHY

Naesseth, Christian et al. (2017). “Reparameterization Gradients through Acceptance-
Rejection Sampling Algorithms”. In: Artificial Intelligence and Statistics. pro-
ceedings.mlr.press, pages 489–498.

Nemeth, Christopher et al. (August 2017). “Pseudo-extended Markov chain
Monte Carlo”. In: arXiv: 1708.05239 [stat.ME].

Oates, Chris J, Mark Girolami, and Nicolas Chopin (June 2017). “Control
functionals for Monte Carlo integration”. In: Journal of the Royal Statistical
Society. Series B, Statistical methodology 79.3, pages 695–718.

Oseledets, I (January 2011). “Tensor-Train Decomposition”. In: SIAM Journal
of Scientific Computing 33.5, pages 2295–2317.

Perez-Garcia, D et al. (August 2006). “Matrix Product State Representations”.
In: arXiv: quant-ph/0608197 [quant-ph].

Pestun, Vasily and Yiannis Vlassopoulos (October 2017). “Tensor network lan-
guage model”. In: arXiv: 1710.10248 [cs.CL].

Polson, Nicholas G, James G Scott, and Jesse Windle (December 2013). “Bayesian
Inference for Logistic Models Using Pólya–Gamma Latent Variables”. In:
Journal of the American Statistical Association 108.504, pages 1339–1349.

Rahimi, Ali and Benjamin Recht (2008). “Random Features for Large-Scale
Kernel Machines”. In: Advances in Neural Information Processing Systems 20.
Edited by J C Platt et al. Curran Associates, Inc., pages 1177–1184.

Rainforth, Tom et al. (February 2018). “Tighter Variational Bounds are Not
Necessarily Better”. In: arXiv: 1802.04537 [stat.ML].

Ranganath, Rajesh, Sean Gerrish, and David M Blei (December 2013). “Black
Box Variational Inference”. In: arXiv: 1401.0118 [stat.ML].

Ranganath, Rajesh, Dustin Tran, and David M Blei (November 2015). “Hierar-
chical Variational Models”. In: arXiv: 1511.02386 [stat.ML].

Rasmussen, C E and C K I Williams (2006). Gaussian Processes for Machine
Learning. Adaptative computation and machine learning series. University
Press Group Limited.

Rezende, D J, S Mohamed, et al. (2014). “Stochastic backpropagation and
approximate inference in deep generative models”. In: Proceedings of the.

Robbins, Herbert and Sutton Monro (September 1951). “A Stochastic Approxi-
mation Method”. In: Annals of Mathematical Statistics 22.3, pages 400–407.

Robeva, Elina and Anna Seigal (October 2017). “Duality of Graphical Models
and Tensor Networks”. In: arXiv: 1710.01437 [math.ST].

Ruiz, Francisco J R, Michalis K Titsias, and David M Blei (2016a). “Overdis-
persed Black-box Variational Inference”. In: Proceedings of the Thirty-Second
Conference on Uncertainty in Artificial Intelligence. UAI’16. Arlington, Vir-
ginia, United States: AUAI Press, pages 647–656.

– (2016b). “The generalized reparameterization gradient”. In: Proceedings of
the 30th International Conference on Neural Information Processing Systems,
pages 460–468.

http://arxiv.org/abs/1708.05239
http://arxiv.org/abs/quant-ph/0608197
http://arxiv.org/abs/1710.10248
http://arxiv.org/abs/1802.04537
http://arxiv.org/abs/1401.0118
http://arxiv.org/abs/1511.02386
http://arxiv.org/abs/1710.01437

BIBLIOGRAPHY 129

Salimans, Tim and David A Knowles (December 2013). “Fixed-Form Variational
Posterior Approximation through Stochastic Linear Regression”. In: Bayesian
analysis 8.4, pages 837–882.

Sato, Masa-Aki (2001). “Online Model Selection Based on the Variational Bayes”.
In: Neural computation 13.7, pages 1649–1681.

Schein, Aaron, Hanna Wallach, and Mingyuan Zhou (2016). “Poisson-Gamma
dynamical systems”. In: Advances in Neural Information Processing Systems
29. Edited by D D Lee et al. Curran Associates, Inc., pages 5005–5013.

Schollwöck, Ulrich (January 2011). “The density-matrix renormalization group
in the age of matrix product states”. In: Annals of physics 326.1, pages 96–192.

Singh, Sukhwinder, Robert N C Pfeifer, and Guifre Vidal (2011). “Tensor network
states and algorithms in the presence of a global U (1) symmetry”. In: Physical
Review B: Condensed Matter and Materials Physics 83.11, page 115125.

Singh, Sukhwinder, Robert N C Pfeifer, and Guifré Vidal (November 2010).
“Tensor network decompositions in the presence of a global symmetry”. In:
Physical review. A 82.5, page 050301.

Smola, Alex et al. (2007). “A Hilbert Space Embedding for Distributions”. In:
Algorithmic Learning Theory. Edited by Marcus Hutter, Rocco A Servedio,
and Eiji Takimoto. Volume 4754. Lecture Notes in Computer Science. Berlin,
Heidelberg: Springer Berlin Heidelberg, pages 13–31.

Speed, T P and H T Kiiveri (March 1986). “Gaussian Markov Distributions over
Finite Graphs”. en. In: Annals of statistics 14.1, pages 138–150.

Sriperumbudur, Bharath K, Kenji Fukumizu, and Gert R G Lanckriet (Febru-
ary 2011). “Universality, Characteristic Kernels and RKHS Embedding of
Measures”. In: Journal of machine learning research: JMLR 12, pages 2389–
2410.

Stein, Charles (1972). “A bound for the error in the normal approximation to
the distribution of a sum of dependent random variables”. In: Proceedings
of the Sixth Berkeley Symposium on Mathematical Statistics and Probability,
Volume 2: Probability Theory.

Stoudenmire, Edwin Miles and David J Schwab (2016). “Supervised learning
with tensor networks”. In: Advances in Neural Information Processing Systems,
pages 4799–4807.

Teh, Yee W, David Newman, and Max Welling (2007). “A Collapsed Variational
Bayesian Inference Algorithm for Latent Dirichlet Allocation”. In: Advances in
Neural Information Processing Systems 19. Edited by B Schölkopf, J C Platt,
and T Hoffman. MIT Press, pages 1353–1360.

Titsias, Michalis K (2009). “Variational learning of inducing variables in sparse
Gaussian processes”. In: International Conference on Artificial Intelligence
and Statistics, pages 567–574.

Titsias, Michalis K and Miguel Lázaro-Gredilla (2015). “Local Expectation Gradi-
ents for Black Box Variational Inference”. In: Advances in Neural Information
Processing Systems 28. Edited by C Cortes et al. Curran Associates, Inc.,
pages 2620–2628.

130 BIBLIOGRAPHY

Tucker, George et al. (2017). “REBAR: Low-variance, unbiased gradient estimates
for discrete latent variable models”. In: Advances in Neural Information
Processing Systems 30. Edited by I Guyon et al. Curran Associates, Inc.,
pages 2627–2636.

Wainwright, Martin J and Michael I Jordan (January 2008). “Graphical Models,
Exponential Families, and Variational Inference”. In: Found. Trends Mach.
Learn. 1.1-2, pages 1–305.

Weichselbaum, Andreas (February 2012). “Non-abelian symmetries in tensor
networks: a quantum symmetry space approach”. In: arXiv: 1202 . 5664
[cond-mat.str-el].

Williams, Ronald J (May 1992). “Simple statistical gradient-following algorithms
for connectionist reinforcement learning”. In: Machine learning 8.3, pages 229–
256.

Wilson, Andrew and Ryan Adams (2013). “Gaussian Process Kernels for Pattern
Discovery and Extrapolation”. In: Proceedings of The 30th International
Conference on Machine Learning. jmlr.org, pages 1067–1075.

Winn, John M and Christopher M Bishop (2005). “Variational message passing”.
In: Journal of Machine Learning Research, pages 661–694.

Yedidia, Jonathan S, W T Freeman, and Y Weiss (July 2005). “Constructing
free-energy approximations and generalized belief propagation algorithms”. In:
IEEE transactions on information theory / Professional Technical Group on
Information Theory 51.7, pages 2282–2312.

Yuille, A L (July 2002). “CCCP algorithms to minimize the Bethe and Kikuchi
free energies: convergent alternatives to belief propagation”. In: Neural com-
putation 14.7, pages 1691–1722.

Zhao, Qibin et al. (June 2016). “Tensor Ring Decomposition”. In: arXiv: 1606.
05535 [cs.NA].

Zhu, Zhanxing, Ruosi Wan, and Mingjun Zhong (June 2018). “Neural Control
Variates for Variance Reduction”. In: arXiv: 1806.00159 [stat.ML].

http://arxiv.org/abs/1202.5664
http://arxiv.org/abs/1202.5664
http://arxiv.org/abs/1606.05535
http://arxiv.org/abs/1606.05535
http://arxiv.org/abs/1806.00159

	Summary (English)
	Summary (Danish)
	List of Publications
	Preface
	Acknowledgements
	Notation
	Contents
	1 Introduction
	1.1 Structure in Bayesian Probabilistic Models
	1.1.1 When Conditional Independence Breaks Down
	1.1.2 Approximations and Dependencies

	1.2 Papers and Thesis Overview
	1.2.1 Structure of the Thesis

	2 Variational Inference
	2.1 KL Divergence and the Lower Bound
	2.2 Gradients and Local Updates
	2.2.1 Gradient Estimators
	2.2.2 Local Updates
	2.2.3 Variational Message Passing

	2.3 Exponential Families
	2.3.1 Example: The Gaussian Distribution
	2.3.2 Conjugate Priors
	2.3.3 Conjugate Models and Variational Message Passing
	2.3.4 Stochastic Variational Inference

	2.4 Lower Bound Algebra
	2.4.1 Variational Approximations with Auxiliary Random Variables
	2.4.2 Collapsed Bounds for Optimization Space Reduction

	2.5 Biased Bounds for Model Selection
	2.6 Contribution

	3 Gaussian Processes
	3.1 Kernels
	3.2 Reproducing Kernel Hilbert Spaces
	3.3 Gaussian Process Calculus
	3.3.1 Additive Processes and Linear Algebra
	3.3.2 Bayesian Quadrature

	3.4 Variational Inducing Point Methods
	3.5 Contribution

	4 Tensor Networks
	4.1 Discrete Probabilistic Models as Tensors
	4.2 Tensor Networks
	4.3 Relationship with Graphical Models
	4.4 Tensor Trains and Rings
	4.4.1 Canonical Cores
	4.4.2 Tensor Trains as Graphical Models and Efficient Inference

	4.5 Contribution

	5 Conclusion
	A Papers
	A.1 Difference-of-convex optimization for variational KL-corrected inference in Dirichlet process mixtures
	A.2 Joint expectation kernels
	A.3 Matrix Product states for inference in discrete probabilistic models

	Bibliography

