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Abstract

The excited-state dynamics of two functional Fe-carbene complexes, [Fe(bmip)2]
2+

(bmip = 2,6-bis(3-methyl-imidazole-1-ylidene)-pyridine) and [Fe(btbip)2]
2+ (btbip =

2,6-bis(3-tert-butyl-imidazole-1-ylidene)pyridine), are studied using the spin-vibronic

model. In contrast to the usual projection of the ground state nuclear wavefunc-

tion onto an excited state surface, the dynamics are initiated by an explicit inter-

action term between the external time-dependent electric field (laser pulse) and the

transition dipole moment of the molecule. The results show that the spin-vibronic

model, as constructed directly from electronic structure calculations, exhibits erro-

neous, polarization-dependent relaxation dynamics stemming from artificial interfer-

ence of coupled relaxation pathways. This is due to the lack of rotational invariance

in the description of excitation into degenerate states. We introduce and discuss a

correction using the spherical basis and complex transition dipole moments. This

modification in the interaction Hamiltonian leads to rotationally invariant excitation

and produces polarization-independent population dynamics.
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1 Introduction

Understanding radiative and nonradiative decay mechanisms of photoexcited systems has

important implications for our understanding of excited-state dynamics in fundamental as

well as applied areas of research.1 Simultaneous progress in both theoretical and experimental

approaches has made it possible to elucidate highly detailed information for complex systems.

Many of these studies exploit a close synergy between experiment and theory, which is

increasingly becoming a crucial component for achieving a deeper fundamental knowledge

of ultrafast excited-state processes.2

Pump-probe techniques applying ultrashort (fs-ps) pulses have played a key role in resolv-

ing excited-state dynamics. To achieve an effective synergy, it is important that simulations

replicate, as closely as required, the important experimental conditions. Fundamentally, this

involves careful consideration of the accuracy of potential energy surfaces (PESs) and the

nuclear motion on them. One may also be required to account for the effect of temperature

and pressure or incorporate an accurate treatment of the environment, such as a solvent.

An additional issue is the interaction between the molecule and the external time-dependent

electric field of the laser pulse that generates the electronically excited state. Presently, the

most common approach for initiating excited-state dynamics is the instantaneous projection

of the nuclear wavefunction from the electronic ground state onto the excited-state potential

energy surface.3–8 This approach assumes that the pump pulse prepares a well defined excited

state. This is usually sufficient when considering smaller molecules with relatively low den-

sity of electronic states, i.e., the state excited can be clearly identified. However, for systems

possessing high density of states, such as several classes of transition metal complexes, it

might be necessary to account explicitly for the electronic excitation process. This is further

complicated by the presence of states of different spin multiplicity. Although higher spin

states such as triplets are not formally dipole coupled to the molecular ground state, the

simultaneous presence of sizeable spin-orbit and nonadiabatic coupling means that mixing

character between the states arises. This leads to a manifold of states that can be excited.
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The excited-state dynamics of transition metal complexes have been addressed using

nonadiabatic molecular dynamics2,9,10 and quantum wavepacket approaches.6–8,10–13 For the

latter, the simulations are performed within the basis of spin-vibronic model Hamiltonians.6–8

Since the full quantum dynamical treatment of the nuclear motion for relatively large (e.g.,

consisting of 40–60 atoms) molecular systems is computationally not feasible, these models

include only the vibrational modes most relevant to the dynamics.

The spin-vibronic models,14 which are a generalized extension to the widely-adopted

vibronic coupling Hamiltonian,15 are powerful for deciphering the early time photophysics

and to discover the subtle effects driving it. Despite its advantages, the important chal-

lenge of pushing the methodology towards more realistic simulations still remains. In the

present work, we use two prototypical Fe-N -heterocyclic carbene (NHC) complexes for

ultrafast excited-state dynamics, [Fe(btbip)2]
2+ (btbip = 2,6-bis(3-tert-butyl-imidazole-1-

ylidene)pyridine) (1) and [Fe(bmip)2]
2+ (2) (bmip = 2,6-bis(3-methyl-imidazole-1-ylidene)

pyridine) (Figure 1, top),16,17 to demonstrate that the application of spin-vibronic Hamil-

tonians constructed directly from quantum chemical data, using the standard electron-field

interaction term, leads to unphysical polarization-dependent dynamics. We present a correc-

tion in the interaction Hamiltonian, which avoids this problem and correctly describes the

excitation to, and hence, subsequent photorelaxation processes from electronically degener-

ate states.

2 Theoretical Details

Herein, we start from the spin-vibronic models recently developed and described in refs. 12

and 8 for [Fe(btbip)2]
2+ and [Fe(bmip)2]

2+, respectively. These contain the four most decisive

normal mode degrees of freedom for both complexes: tuning modes driving the largest

nuclear motion and coupling modes responsible for the strongest nonadiabatic couplings

(NACs) between different electronic states. In the models, the singlet and triplet excited
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Figure 1: Molecular structure (top) and excited-state potential energy curves (bottom)
along the dominant (lowest-frequency breathing) mode of the investigated [Fe(btbip)2]

2+ (1)
and [Fe(bmip)2]

2+ (2) complexes. The lines represent diabatic potentials obtained from fits
to adiabatic energies calculated by time-dependent density functional theory (TD-DFT),
yielding the diabatic vibronic coupling Hamiltonian.8,12 Nuclear displacements are given in
dimensionless mass-frequency weighted normal coordinates.

states included were those that are energetically accessible from the lowest optically bright

singlet metal-to-ligand charge transfer (1MLCT) states. These include two 1MLCT, three

1MC (MC = metal-centered, i.e., arising from d-d excitations), four 3MLCT and six 3MC

states for [Fe(btbip)2]
2+, and two 1MLCT, two 1MC, four 3MLCT and three 3MC states for

[Fe(bmip)2]
2+. Accounting for the three different values of the Ms quantum number (−1, 0, 1)

for each triplet state, these lead altogether to 36 and 26 electronic states for [Fe(btbip)2]
2+

and [Fe(bmip)2]
2+, respectively. Figure 1 depicts the diabatic excited-state potential energy

curves of the two carbene complexes along their lowest-frequency breathing modes, identified

5

Page 5 of 32

ACS Paragon Plus Environment

Journal of Chemical Theory and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



as the dominant vibrational modes for the photorelaxation cascade.

These models described in refs. 8 and 12 are extended in the present work by the inclusion

of an explicit description of the interaction between the molecule and the time-dependent

electric field of the exciting laser pulse. The applied spin-vibronic Hamiltonian operator is

then expressed as

H(t) = (TN + V0)1 +W + S + µ0εE(t), (1)

where TN is the kinetic energy operator, V0 is the ground-state (harmonic) potential,

1 is the unit matrix, W expresses the vibronic coupling, and S represents the spin-orbit

coupling (SOC) matrix. The last term in Equation 1 describes the interaction of the

molecule with the time-dependent electric field, E(t), of a linearly polarized pump laser

pulse in the semiclassical dipole approximation, with µ0 being the zeroth-order term of a

Taylor expansion of the transition dipole moment (TDM) µ(q), where q is the normal mode

coordinate, around the Franck-Condon point. ε is the polarization vector of the laser pulse.

The laser frequencies are chosen to be resonant for the optically bright 1MLCT states. The

pulses are transform-limited and have a Gaussian intensity profile with 60 fs full width at

half maximum. The peak of the pulse is centered at 120 fs and the intensity is chosen small

enough to avoid the saturation of absorption. The S matrix and the relevant elements of

µ0 are determined at the Franck-Condon (FC) geometry.18 The first order derivatives of

the TDMs with respect to the nuclear displacements along the normal modes are found to

be negligible compared to the corresponding zeroth-order terms computed at the FC point

(µ0). Therefore, only the elements of the µ0 matrix are included in the Hamiltonian. The

off-diagonal elements of the potential coupling matrix, W , between electronic states i and j

can be expressed as:

6
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Wij =
∑
ν

λ
(ν)
ij qν , (2)

where qν is the dimensionless, mass-frequency weighted normal coordinate of vibrational

mode ν, and λ
(ν)
ij is the linear nonadiabatic coupling constant. The W matrix contains the

energies of the electronic states (W
(0)
i for state i) at the Franck-Condon geometry, as well

as first and second-order on-diagonal elements, which are related to the forces acting on the

excited-state potentials, and the force constants, respectively:

Wii = W
(0)
i +

∑
ν

κ
(ν)
i qν +

1

2

∑
ν

γ
(ν)
i q2ν . (3)

The determined λ
(ν)
ij , κ

(ν)
i , and γ

(ν)
i coefficients are those, which, by the diagonalization

of the W matrix, lead to adiabatic potential energy surfaces in the best agreement with

those computed by electronic structure calculations, in the present case, TD-DFT (TD-

B3LYP*19). The application of this approach, known as diabatization by ansatz,14,20 leads

to the generation of a set of coupled diabatic states. Note that the TDMs and SOCs do

not need to be diabatized, as they are only computed at the FC geometry, at which the

adiabatic and diabatic representations are chosen to be identical. The matrix elements of

W and S are given in refs. 8 and 12. The transition dipole moments are computed by the

same TD-DFT method, as the one used to calculate the excited-state potentials.8,12

In this work, we consider both molecules to have their principal C2(z) symmetry axis

aligned along the laboratory z-axis, and therefore the planes of the two ligands in both

molecules lie in the xz and yz-planes. Both complexes possess D2d equilibrium point group

symmetry, in which the (µn,x, µn,y) TDMs of the n ε {1MLCT,1MC} states for a given n

transform together as the twofold-degenerate E irreducible representation, while a transition

moment in the z-direction, µz, would transform as B2. In both molecules, the optically

7
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bright 1MLCT, as well as the energetically closest 1MC states are degenerate. This is to say

that they both show E symmetry and the corresponding TDM vectors µn,x and µn,y are

orthogonal, lying in the xy-plane, on the axes, as shown in Figure 2 for [Fe(btbip)2]
2+.21 Note

that although the length of the transition moment vectors to the 1MC states is comparable

of those the 1MLCTs, the ground-state population is mainly (∼ 90%) excited to the optically

bright 1MLCTs, as the laser frequency is chosen to be resonant for these states. Therefore, we

henceforth focus on the excitation into the degenerate 1MLCT manifold. However, we stress

that that the excitation into 1MC states is incorporated in the simulations, and the correct

description of the electronic excitation into degenerate states is independent of the applied

laser frequency. The TDMs of [Fe(bmip)2]
2+ are analogous to those shown in Figure 2 only

that the length of the TDM vectors to the 1MC states is reduced by a factor of ca. 2. The µz

transition moment is irrelevant for the description of excitation from the ground state into

doubly-degenerate states, as it vanishes for any transition from a totally symmetric electronic

state into the degenerate manifold. Consequently, in the present work, the polarization of

the electric field is considered to lie in the xy-plane and is defined throughout by the ϕ angle

between the ε polarization vector and the x-axis, see the inset of Figure 2.

The quantum dynamics simulations are performed using the Multiconfigurational Time-

Dependent Hartree (MCTDH) method.22–24 The initial nuclear wavepacket is built from

eigenfunctions of the ground state harmonic oscillator. The sizes of the basis sets applied in

the simulations are taken from refs. 8,12 (except that the number of single particle functions

for the ground state is increased from 1 to 10, as the simulations are initiated from this

state, not from the photoexcited 1MLCT state8,12), which ensures convergence for the full

duration of the simulations.

8
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Figure 2: Graphical representation of the TD-DFT-computed µn,x, µn,y transition dipole
moments corresponding to the excitation from the ground state to the degenerate pair of n ε
{1MLCT,1MC} states of [Fe(btbip)2]

2+. Note that the choice of these TDMs is not unique,
since degenerate states can be freely rotated among themselves in the Hilbert space. Inset:
ϕ is defined as the angle between the ε polarization vector of the pump pulse and the x-axis.

3 Results and Discussion

Figures 3 and 4 present the excited-state population kinetics of [Fe(btbip)2]
2+ and

[Fe(bmip)2]
2+, respectively, following excitations at four polarization angles: ϕ = {−45o, 0o,

45o, 90o}. This shows that for [Fe(btbip)2]
2+, the obtained population dynamics are highly-

dependent on the polarization;25 the largest difference, reflected in the rate of 1MLCT decay

and 1MC/3MC growth, is observed for ϕ = 45o and −45o. For [Fe(bmip)2]
2+, the effect of

the polarization is significantly weaker.

The polarization-dependent dynamics presented in Figure 3 are inconsistent with funda-

mental molecular symmetry considerations for degenerate excited states. Namely, the pair

of degenerate states transforming as the same E (D2d) irreducible representation, such as

1MLCT1 and 1MLCT2, and thus, the corresponding transition dipole moments, cannot be

uniquely defined. This means that any linear combination of the pair of degenerate states can

be chosen, leading to rotation of the TDMs in the xy-plane and identical transitions to the

9
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Figure 3: Diabatic population dynamics for [Fe(btbip)2]
2+, for four polarization angles,

normalized to the total excited state populations. As is seen from the panels, polarization
dependence is most pronounced for the 1MLCT and 1MC states during the first ps.

Figure 4: Diabatic population dynamics for [Fe(bmip)2]
2+, for four different polarization

angles, normalized to the total excited state populations. As is clear from the figure, the
difference between the corresponding population curves is small.
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degenerate excite-state manifold. This transformation is equivalent to fixing the molecule

and rotating the polarization vector by the same angle, which must not affect the simu-

lated dynamics the way it is seen in Figure 3. As we will discuss later in this section, this

inconsistency derives from a lack of rotational invariance of the computational description

of the excitation process, which has to be corrected to produce polarization-independent

population dynamics.

Figure 2 shows that in cases of ϕ = 45o and ϕ = −45o both 1MLCTs are excited (in the

former case with the same and in the latter with opposite signs), which creates a propensity

for interference effects between the coupled relaxation pathways. Indeed, the polarization-

dependent dynamics observed in Figure 3 for [Fe(btbip)2]
2+ is consistent with interferences

between the internal conversion relaxation pathways from the 1MLCT1 and 1MLCT2 states to

the same 1MC state. This occurs due to the nonadiabatic coupling between the pair of degen-

erate 1MLCT/1MC states (λ1MLCT1,1MC2
= λ1MLCT1,1MC3

= λ1MLCT2,1MC2
= λ1MLCT2,1MC3

=

λ1MLCT,1MC, see Figure 5a) and the fact that both 1MLCT states are excited. Figure 4

reveals that the situation is quite different for [Fe(bmip)2]
2+: only a small polarization de-

pendence arises in the simulated population dynamics. This is because the 1MC states

of this complex are energetically unaccessible from the 1MLCT, as is clear from Figure 1.

Consequently, only a single dominant 1MLCT→3MLCT→3MC pathway is observed. Impor-

tantly, the 1MLCT→3MLCT pathway involves decay of the two initially excited 1MLCTs

through separate intersystem crossing relaxation channels to the highest-lying 3MLCT state,

3MLCT4, as illustrated in Figure 5c. Thus, no 1MLCT-1MC interferences can rise here. The

small, nonvanishing effect is attributed to interferences occurring through the nonadiabatic

coupling between the degenerate pairs of 3MLCT and 3MC states, analogous to the one illus-

trated in Figure 5a for 1MLCT and 1MC states. The contribution of this relaxation channel

to the full 3MLCT→3MC population transfer is, however, rather small. This explains the

much weaker polarization dependence in the resulting population dynamics than the one

caused by the 1MLCT-1MC relaxation pathway in [Fe(btbip)2]
2+.
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Figure 5: Schematic illustration of the two possible coupling mechanisms determining the
initial excited-state dynamics of the two investigated carbene complexes: a) singlet-singlet
nonadiabatic coupling for [Fe(btbip)2]

2+ (1) and b), c) singlet-triplet spin-orbit coupling for
[Fe(btbip)2]

2+and [Fe(bmip)2]
2+ (2), respectively. For [Fe(bmip)2]

2+, only SOC is relevant
during the first few hundred femtoseconds. For [Fe(btbip)2]

2+, both coupling mechanisms are
operative. Note that these coupling schemes are consistent with the pair of degenerate singlet
states, whose TDM vectors µn,x and µn,y lie exactly on the x and y axes, as illustrated in
Figure 2.
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To further investigate the nature of the observed interferences, we have created a simpli-

fied model Hamiltonian for [Fe(btbip)2]
2+, in which all spin-orbit couplings and, therefore,

triplet states were neglected. Excitation in this case was treated in the impulsive limit,

i.e., the initial wavepacket was constructed by projecting the ground state vibrational wave-

function onto the two 1MLCT states with different amplitudes. Here, the different laser

polarizations were simulated by different weights (w1, w2) to scale the initial wavefunction

in the two degenerate 1MLCT states. Figure 6 presents the results of three simulations, in

which the relative weights of (+1/
√

2,+1/
√

2, in-phase, i.e., ϕ = 45o), (+1, 0, i.e., ϕ = 0o),

and (−1/
√

2,+1/
√

2, out-phase, i.e., ϕ = −45o) were used. These simulations illustrate

the cases of constructive (+1/
√

2,+1/
√

2), vanishing (1,0) and destructive (+1/
√

2,−1/
√

2)

interference for the coupled 1MLCT→1MC decay pathways. The observed effect is analo-

gous for the full model, with the only difference being that a fraction of the excited-state

population in the full model is additionally converted from the 1MLCT to the 1MC via the

3MLCT states. This additional relaxation channel, which is not observed in the absence of

SOC, as shown in Figure 6, is however not influenced by the laser polarization.

Figure 6: Population dynamics from simulations using the singlet states of [Fe(btbip)2]
2+

only with three initial conditions: Solid and dotted curves are obtained by launching
wavepackets on the two 1MLCT states with the same (constructive interference) and oppo-
site (destructive interference) phases, respectively, while dashed curves show results obtained
by launching the wavepacket on only the 1MLCT1 state (no interference). Note that results
obtained with the (0,1) relative weights are identical to those of (1,0) weights.

13

Page 13 of 32

ACS Paragon Plus Environment

Journal of Chemical Theory and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



In the following, we analyze the origin of the artificial interferences and develop a cor-

rection for this erroneous behavior.

In the so far presented simulations, the µn,x and µn,y (n ε {1MLCT,1MC}) transition

dipole moment vectors, shown in Figure 2, have been treated separately and were therefore

uniquely defined. This is, however, unphysical, since the two vectors for a given n should refer

to indistinguishable degenerate states, and transform together as the twofold-degenerate E

irreducible representation of the D2d point group. The description of the excitation process as

two separate transitions translates into the above reported artificial interference of relaxation

pathways through the nonadiabatic coupling. This becomes clear from the following.

In the simulations, the electronic excitation is described by the µ0εE(t) interaction term

(see Equation 1). With µ1MLCT,x = (µ, 0), µ1MLCT,y = (0, µ), where µ is the TDM com-

puted by TD-DFT (see Figure 2), and ε = (cosϕ, sinϕ), the interaction terms for transitions

from the ground state to the 1MLCT1 and 1MLCT2 states will be µE(t) cosϕ and µE(t) sinϕ,

respectively. As shown in Figure 5a, each of these 1MLCT states is coupled to both com-

ponents of the degenerate 1MC manifold, i.e. 1MC2 and 1MC3, with the same coupling

strength, λ1MLCT,1MC = λ. Therefore, the probability of the transition from the ground state

to the 1MC degenerate manifold via the two degenerate 1MLCT states is proportional to:

|λµE(t) cosϕ+ λµE(t) sinϕ|2 = |λµE(t)|2(1 + sin 2ϕ) . (4)

The appearing unphysical angle dependence thus originates from the incorrect, rotational-

variant description of the excitation into degenerate states, which is reflected in the observed

interferences and polarization-dependent dynamics. We note that this problem is equally

present in the case of treating the excitation in the impulsive limit, i.e., just projecting the

wavepacket onto the excited-state surfaces with the weights reflecting the laser polarization,

as is clear from Figure 6.

The problem of this unphysical polarization dependence is solved by ensuring the cor-
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rect symmetry transformation of the excitation process. In the case of excitation from the

electronic ground state into degenerate states, the direct product of the irreducible represen-

tations of these states in the D2d point group is A1⊗E = E. This determines that the dipole

moment operator has to transform as E, in order to obtain nonvanishing transition matrix

elements for the A1 → E transition. This has the consequence that the (µx,µy) transition

dipole moments have to transform together and thus these TDMs cannot be represented in

one dimension in real space. However, such a one-dimensional representation is possible in

complex space using the spherical basis.26,27 Therefore, we rewrite the TDM vectors as:

µ′
n,x = µn,x , µ′

n,y = i · µn,y , (5)

where i is the imaginary unit. We mention that this solution is closely related to the E×e

Jahn-Teller Hamiltonian of Köppel et al.,15 transformed to a complex eletronic and vibra-

tional basis. This ensures that the vibronic angular momentum is diagonal and commutes

with the Hamiltonian, eliminating any artificial rotational variance.

Crucially, using Equaton 5, the overall transition probability from the ground to the de-

generate 1MC states via internal conversion through the 1MLCT states becomes proportional

to:

|λµE(t) cosϕ+ i · λµE(t) sinϕ|2 = |λµE(t)|2 . (6)

Equation 6 shows correctly no angular dependence and thus ensures rotational invariance.

This description is transferable to the case of impulsive excitation by weighting the initial nu-

clear wavefunction in the excited states with (+1/
√

2,+i/
√

2), (+1, 0), and (−1/
√

2,+i/
√

2),

as well as to any molecule, in which excitation occurs to degenerate E states.

We have repeated the excited-state simulations for both complexes utilizing the TDM

vectors defined in Equation 5, while keeping all other matrix elements unchanged. The re-

sults of these simulations are shown in Figures 7 and 8 for [Fe(btbip)2]
2+and [Fe(bmip)2]

2+,

respectively. It is apparent from these figures that the application of complex TDMs leads
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to population dynamics that are same for all four polarization angles (in fact, this holds for

any value of ϕ). The reason is that the complex representation of TDMs ensures rotation-

ally invariant excitation into degenerate states and thus the correct phases of the nuclear

wavefunctions, which eliminates the unphysical interferences of relaxation pathways. There-

fore, all polarizations yield identical dynamics, which for [Fe(btbip)2]
2+, essentially coincide

with those obtained without applying the correction in the interaction Hamiltonian, for

ϕ = {0o, 90o}, shown in Figure 3. Namely, the latter two polarizations account correctly

for the fact that the transition occurs in the direction of the electric field. However, this

is clearly not the case for any other polarization angle. For them, correct dynamics are

obtained only if the correction introduced in this section is applied.

4 Conclusion

In this work, we have shown on two functional Fe-carbene complexes that spin-vibronic

Hamiltonians created directly from ab initio data, using the standard electron-field inter-

action term, can lead erroneously to polarization-dependent excited-state dynamics. This

problem arises due to the incorrect description of excitation of nuclear wavepackets into elec-

tronically degenerate states, resulting in artificial interference of coupled relaxation pathways.

The reason for this deficiency is that the simulated excitation process lacks invariance with

respect to rotation in the xy-plane. This translates into unphysical polarization-dependent

dynamics through the nonadiabatic couplings among pairs of degenerate states. Crucially,

the complex representation of transition dipole moments ensures rotational invariance. The

correct description of the excitation process eliminates the interferences and thus produces

correct excited-state dynamics for both investigated complexes. An equivalent treatment is

necessary for molecules, in which photorelaxation occurs from degenerate E excited states.
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Figure 7: Diabatic population dynamics for [Fe(btbip)2]
2+ obtained by applying the cor-

rection in the interaction Hamiltonian, i.e., using the TDM vectors defined in Equation 5,
for four polarization angles. As is seen from the panels, the excited-state populations are
independent of the polarization.28
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Figure 8: Diabatic population dynamics for [Fe(bmip)2]
2+ obtained by applying the cor-

rection in the interaction Hamiltonian, i.e., using the TDM vectors defined in Equation
5, for four polarization angles. As is seen in the figure, the excited-state populations are
independent of the polarization.
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haus, A.; Vithanage, D. A.; Göransson, E.; Corani, A.; Lomoth, R.; Sundström, V.;

Wärnmark, K. Towards Longer-Lived Metal-to-Ligand Charge Transfer States of

Iron(II) Complexes: An N -Heterocyclic Carbene Approach. Chem. Commun. 2013,

49, 6412–6414.

(17) Liu, Y.; Persson, P.; Sundström, V.; Wärnmark, K. Fe N-Heterocyclic Carbene Com-

plexes as Promising Photosensitizers. Acc. Chem. Res. 2016, 49, 1477–1485.

(18) Only those TDM elements are computed and used in the Hamiltonian which correspond

to excitation from the ground state, since transitions between excited states are far off-

resonant with respect to the exciting laser wavelength.

(19) Reiher, M.; Salomon, O.; Artur Hess, B. Reparameterization of Hybrid Functionals

Based on Energy Differences of States of Different Multiplicity. Theor. Chem. Acc.

2001, 107, 48–55.

(20) Gatti, F.; Lasorne, B.; Meyer, H.-D.; Nauts, A. Applications of Quantum Dynamics

in Chemistry, Lecture Notes in Chemistry, vol 98 ; Springer International Publishing,

2017.

(21) Note that the TDM vectors to the degenerate singlet states as obtained from the elec-

tronic structure computations performed without symmetry constraints were originally

20

Page 20 of 32

ACS Paragon Plus Environment

Journal of Chemical Theory and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



not aligned to the x and y axes for both complexes. This is due to the fact that the de-

generate states can be freely rotated among themselves in the Hilbert space. Therefore,

the SOC elements given in refs. 8 and 12 were transformed according to a rotation of

the pair of 1MLCT/1MC states by 182.77/88.2 and 37.19/179.35 degrees for complexes

1 and 2, respectively, leading to TDMs lying on the axes, as illustrated in Figure 2.

(22) Meyer, H.-D.; Manthe, U.; Cederbaum, L. The Multi-Configurational Time-Dependent

Hartree Approach. Chem. Phys. Lett. 1990, 165, 73 – 78.
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