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Minireview

Chasing bacterial chassis for metabolic engineering: a
perspective review from classical to non-traditional
microorganisms

Patricia Calero and Pablo I. Nikel*
The Novo Nordisk Foundation Center for
Biosustainability, Technical University of Denmark,
2800 Kongens Lyngby, Denmark.

Summary

The last few years have witnessed an unprecedented
increase in the number of novel bacterial species
that hold potential to be used for metabolic engineer-
ing. Historically, however, only a handful of bacteria
have attained the acceptance and widespread use
that are needed to fulfil the needs of industrial bio-
production – and only for the synthesis of very few,
structurally simple compounds. One of the reasons
for this unfortunate circumstance has been the
dearth of tools for targeted genome engineering of
bacterial chassis, and, nowadays, synthetic biology
is significantly helping to bridge such knowledge
gap. Against this background, in this review, we dis-
cuss the state of the art in the rational design and
construction of robust bacterial chassis for meta-
bolic engineering, presenting key examples of bacte-
rial species that have secured a place in industrial
bioproduction. The emergence of novel bacterial
chassis is also considered at the light of the unique
properties of their physiology and metabolism, and
the practical applications in which they are expected
to outperform other microbial platforms. Emerging
opportunities, essential strategies to enable suc-
cessful development of industrial phenotypes, and
major challenges in the field of bacterial chassis
development are also discussed, outlining the

solutions that contemporary synthetic biology-
guided metabolic engineering offers to tackle these
issues.

Introduction

Decades of research considerably expanded the reper-
toire of biological functions that microbial cells can incor-
porate into their physiological and metabolic agendas.
Nowadays, designer cells can be constructed by adopt-
ing a combination of genome editing tools, chemical
DNA synthesis and DNA assembly technologies –

thereby fulfilling the practical goal of synthetic biology,
that is, the construction of living cells from individual
parts, which are purposefully assembled to yield a func-
tional entity (Jullesson et al., 2015). Some important hur-
dles, however, have been just started to be taken into
consideration. Cells naturally control the gene expres-
sion flow using a sophisticated variety of RNA, protein
and DNA-modifying layers of regulation, and these regu-
latory networks enable them to effectively respond to
their environments and external cues. Therefore, adding
novel, genetically encoded biological functions to these
complex networks is expected to have different conse-
quences depending on the host in which they are intro-
duced into, as these regulatory layers would be likewise
different across species. Several bacterial hosts have
been adopted for plugging-in and plugging-out genetic
circuits for specific purposes and, in most cases, the
selection of the host cell was merely dictated by its avail-
ability and/or by historical tradition. However, synthetic
biology ultimately aims at programming cells that can
execute the implanted functions in a predictable fashion,
and such objective thus calls for the adoption of specific,
formatted hosts that will necessarily have different prop-
erties depending on the application envisioned. In the
broadest sense of the term, a biological chassis can be
defined as the physical, metabolic and regulatory con-
tainment for plugging-in and plugging-out dedicated
genetic circuits and regulatory devices. This wide defini-
tion incorporates a clear engineering standpoint, in which
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a set of predefined parts are assembled together in a
rational, standardized way leading to the final object
(Endy, 2005). Moreover, and as proposed by Danchin
and Sekowska (2013), the concept of chassis encom-
passes the notion that there is a clear distinction
between a program or software that encodes the target
function(s), and a machine or hardware (i.e. the chassis
itself) that expresses and executes the program.
Apart from their role in the context of synthetic biology,

the adoption of suitable bacterial chassis has a consider-
able impact in the field of metabolic engineering (Ste-
phanopoulos, 2012; Nielsen and Keasling, 2016;
Smanski et al., 2016). The integration of synthetic biol-
ogy tools and strategies into advanced metabolic engi-
neering has enabled the incorporation of a number of
non-traditional microorganisms as hosts for developing
efficient microbial cell factories. The (already extensive)
list of the microbial hosts that can be adopted for such
purposes continues to expand as more tools for precise
gene and genome manipulation become available. Yet,
the implementation of a given host for practical applica-
tions seems to be still governed by some degree of ran-
domness, and a remarkably small number of microbial
cell factories have achieved full commercial exploitation.
This situation contrasts with the unparalleled momentum
that the development of industrial microbial processes is
gaining nowadays, driven by increased concerns about
environmental issues and the prospect of dwindling pet-
roleum resources worldwide that has increasingly shifted
the industrial focus towards the use of microorganisms
as biocatalysts. Yet again, the production of only a lim-
ited number of compounds has successfully reached
commercial scale, which indicates how difficult the whole
process of bringing a product into the market is. Improv-
ing yields, titres and productivity of microbial processes
to enable commercialization requires rational manipula-
tion of the microbial physiology, stress responses, and,
even more importantly, engineering the core metabolism
in the selected chassis. An often overlooked aspect is
that the chassis has to be adapted to specific substrate
(s) and its impurities in an industrial setup, which ulti-
mately dictates the needs and characteristics of down-
stream processing. Consequently, a major topic in the
field of metabolic engineering is the selection of an opti-
mal chassis not only able to execute the functions
needed for efficient bioproduction, but also hefty enough
to tolerate the harsh operating conditions characteristic
of industrial processes, which are of course different
from the mild, controlled conditions that prevail in the
laboratory.
In general, the physical and spatial shape of a micro-

bial cell, its genomic complement, its default gene
expression machinery and the complement of metabolic
functions are not enough to automatically meet the

requirements of a suitable chassis, and further manipu-
lations are needed in order to fulfil the characteristics
desirable for specific applications. Building on the wealth
of information generated over the years, in this review
we discuss the state of the art in bacterial chassis
development, presenting the main advantages and limi-
tations of traditional hosts (including a summary of
recent efforts on development of dedicated tools), also
bringing under the spotlight novel bacterial species that
hold promise for future developments. For the sake of
the present discussion, we will restrict the scope of this
review to bacterial chassis, without forgetting that the
development of other microbial platforms (e.g. yeast and
filamentous fungi) continues to gain considerable atten-
tion for both fundamental and practical applications.
Finally, we also present and discuss what we perceive
as being the main challenges that need to be overcome
in the design and construction of bacterial chassis in
order to reach a level of maturity compatible with com-
mercial exploitation.

Desirable properties in the ideal bacterial chassis:
bridging the knowledge-to-application gap through
synthetic biology

Over the past two decades, and together with the explo-
sive expansion of the fields of metabolic engineering
and synthetic biology, the development of suitable chas-
sis that could host newly-designed biological functions
and processes has achieved substantial relevance, as it
becomes apparent by inspecting the exponential
increase in the number of publications on the topic over
the last few years (Fig. 1). Only during the last year,
almost 100 articles had the word ‘chassis’ listed as a
keyword – a citation trend that mirrors the general
increase in the number of publications on synthetic biol-
ogy and metabolic engineering. This observation indi-
cates how intimate the connection between new
engineering endeavours and the adoption of specific
hosts is. Yet, what would be the starting point in the pro-
cess of selection and development of a bacterial chassis
for this purpose?

From ‘built-in’ properties to emergent bacterial
phenotypes

Ideally, a microbial chassis should possess certain fea-
tures to meet the practical necessities of metabolic engi-
neers and to ensure an easy and fast construction
workflow of reliable production strains. These features
include (i) enough basic knowledge on the microorgan-
ism, setting the basis for the design of culture media
and bioprocesses, (ii) simple nutritional requirements,
including readily accessible carbon and nitrogen
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sources, (iii) ‘built-in’ high resistance to physicochemical
stress, (iii) fast and efficient growth, (iv) availability of
(and possibility of developing novel) tools for targeted
genome manipulations, (v) efficient secretion systems
(either natural or amenable for engineering) to facilitate
downstream purification steps, especially when heterolo-
gous protein production is the target, and (vi) tolerance
to extreme conditions, for example high temperature.
Needless to say, there are very few microorganisms
that would naturally fulfil all these six traits (Beites and
Mendes, 2015). Traditionally, only well-characterized
bacteria that have been studied over the years in a
laboratory setup have been adopted as chassis for
metabolic engineering. This is also the case of microor-
ganisms with a long tradition in the fields of microbiol-
ogy and biotechnology that have managed to reach an
industrial scale of production. The (somewhat short) list
of bacterial hosts falling into this category includes
Escherichia coli (Pontrelli et al., 2018), Bacillus subtilis
(Gu et al., 2018), Streptomyces sp. (Spasic et al.,
2018), Pseudomonas putida (Nikel and de Lorenzo,
2018), and Corynebacterium glutamicum (Wendisch
et al., 2016), for which extensive background fundamen-
tal knowledge has been amassed. The wide use of
these well-established chassis notwithstanding, there
has been a renewed interest for bringing up-and-
coming host alternatives to the metabolic engineering
community, thus broadening the repertoire of chassis
available. Nevertheless, establishing a new chassis
encompasses challenges that need to be tackled and
for which we propose a streamlined process as
disclosed below.

The very starting point in this process is frequently a
not-so-well-known microorganism (most usually, a natural
microbial isolate), which might possess some of the traits
of interest for the field (e.g. pre-endowed high tolerance
to physicochemical stress and sufficiently rapid growth
on a simple culture medium). As recently proposed for
the development of the so-called model organisms for
biotechnology (Liu and Deutschbauer, 2018), a given
wild-type bacterial strain proposed as a potential chassis
has to be subjected to extensive studies to fully exploit
its potential before its wide adoption becomes possible.
The necessary steps to be taken into this direction are
summarized in Fig. 2, and they include key approaches
such as (i) detailed sequencing of the genome, followed
by expert, well-curated annotation of genes to evaluate in
silico the metabolic potential (and potentially negative
traits, as pathogenicity) of the host, (ii) development of
genetic tools, including both replicative and suicide plas-
mids, characterized promoters covering a wide range of
gene expression levels, and genome engineering tools,
for example CRISPR/Cas9 devices, for precise genetic
manipulations, (iii) experimental enrichment of the knowl-
edge on metabolism and physiology, through the imple-
mentation of omics technologies and genome-wide
metabolic reconstructions (this is a crucial aspect of the
whole process, as feeding in silico metabolic models with
actual experimental data provides the basis for further
refinement of the predictions), (iv) construction and test-
ing of libraries of knock-out mutants in non-essential
genes, and (v) continuous curation and updating of all
the data gathered into publically available databases to
reach the whole scientific community.

Fig. 1. Intersection between the adoption of microbial chassis and the fields of metabolic engineering and synthetic biology, as reflected in the
relevant literature since 1961 up to date. The diagram indicates the number of times that the words ‘Metabolic Engineering’ (blue), ‘Synthetic
Biology’ (green) and ‘chassis’ (yellow) have been used as keywords in research and review articles in the field literature over the years (source:
PubMed, accessed in May 2018). Note that the scale is different for ‘chassis’ (indicated to the right of the diagram) and both ‘Metabolic Engi-
neering’ and ‘Synthetic Biology’ (indicated to the left of the diagram).
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In the quest of reduced- and minimal-genome bacterial
chassis by trimming out unnecessary functions

Minimal interference of the endogenous biochemistry
with any given heterologous pathway plugged-in into the
metabolism of a target host is a desirable trait for meta-
bolic engineering (de Lorenzo et al., 2015). However,
this is not often the case as metabolic intermediates or
final products of the pathway may (i) cause toxicity
issues by themselves, (ii) become targets of non-pre-
dicted enzymatic reactions (resulting in misrouting or,
again, toxicity), and/or (iii) act as inhibitors of other func-
tions. In all these possible scenarios, the consequence
is a decrease in the metabolic efficiency of the target
pathway(s) that could severely affect final titres and
yields. The construction of cell factories based on a
reduced or, ideally, minimal-genome chassis has been
proposed as a potential solution to avoid these issues
(Mart�ınez-Garc�ıa and de Lorenzo, 2016). The premise
here is that such minimal cell factories are designed for
specific production purposes, containing the minimal
information and functions needed to grow and execute
heterologous pathway(s) for efficient production with little
to no interference arising from native functions. The
behaviour of these minimal cells factories is expected to

be more predictable due to their decreased complexity,
and they should also have a higher catalytic efficiency
as they do not waste energy in transcribing and translat-
ing unnecessary genes that would otherwise give rise to
likewise unnecessary functions (Choe et al., 2016). A
major challenge here is cataloguing such ‘unnecessary’
genes and functions, which would strictly depend on
environmental (e.g. industrial operation) conditions. From
a fundamental perspective, the quest for the elusive min-
imal genome has been proposed as the way forward to
get access to all necessary components defining a living
cell – and then using this information for the construction
of efficient biocatalysts. One possibility to tackle this
challenge would be to start off by trying to identify all the
functions that are ubiquitously present in extant bacterial
genomes. This approach, however, takes for granted
that genomic analysis offers access to ubiquitous cell
structures (or, rather, gene sequences, which are seldom
sufficient to predict structures) and not functions. A more
heuristic approach to overcome this problem is the iden-
tification of persistent genes, that is, genes that tend to
be present in a quorum of genomes with a preset con-
servation percentage threshold (Acevedo-Rocha et al.,
2013). This classification divides the (bacterial) genome
into two components, the paleome, which encodes all

Fig. 2. Proposed chart for the development of a bacterial chassis for metabolic engineering, indicating the key steps required for domestication
of a potentially interesting wild-type strain. The entire process builds upon six main interconnected aspects, which cover the whole range
between gaining fundamental insight into functional genomics and physiology of the strain at stake and the design and adoption of dedicated
synthetic biology tools. Although there is a structure to be followed along the process (that usually starts with the sequencing and expert anno-
tation of the genome and a thorough physiological characterization), the steps indicated in the chart are not necessarily sequential in nature.
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the functions needed to reproduce the cell in its progeny,
while replicating its genome, and the cenome, which
allows the cell to belong to a specific environmental
niche. Such classification would in principle enable the
user to decide on the set of (dispensable) cell functions
that can be erased in any given bacterial chassis for
specific applications. Transcriptional data is also a very
important information to be exploited in the selection of
dispensable cell functions, as the expression of many
genes (including many of those making up for the pale-
ome) is, as indicated above, highly dependent on the
specific culture conditions (Kim et al., 2013).
As mentioned above, it is important to stress out that

the set of genes necessary to sustain life is not the
same across different environmental conditions, and it
will vary significantly depending on whether the cells are
growing in a rich or a simple, minimal medium and/or if
there are toxic elements and compounds present. Con-
sequently, the construction of a minimal bacterial gen-
ome might not lead to robust growth across all
conditions. Pathways that are crucial for optimal growth
under specific stress conditions or environmental fluctua-
tions, for instance, may not be deemed essential under
homoeostatic, balanced growth conditions (Nogales
et al., 2012). This aspect is especially relevant when
these cells are meant to be used for bioproduction, as
each target product may require special operating condi-
tions. As a more general principle, a reduced set of
genes should not be taken as a synonym of robustness
or fast growth, as shown for bacteria naturally endowed
with very small genomes, for example Mycoplasma
pneumoniae (Yus et al., 2009).
Top-down approaches have been traditionally emp-

loyed in engineering endeavours for obtaining minimal-
genome bacterial chassis, in which the genome of
wild-type laboratory strains has been reduced as much
as possible without impairing growth (at least under cer-
tain growth conditions). Not surprisingly, E. coli has been
the main subject of dedicated genome reduction projects
(Hashimoto et al., 2005; P�osfai et al., 2006; Hirokawa
et al., 2013; Park et al., 2014), as well as other bacterial
strains of industrial relevance, for example B. subtilis
(Ara et al., 2007; Morimoto et al., 2008), Streptomyces
avermitilis (Komatsu et al., 2010) and Pseudomonas
putida (Leprince et al., 2012; Mart�ınez-Garc�ıa et al.,
2014c; Lieder et al., 2015). Further information about
other reduced-genome bacterial strains constructed via
top-down approaches can be found in recent reviews
(Xavier et al., 2014; Choe et al., 2016). Other strategies
have been recently adopted for the construction of mini-
mal-genome bacterial cells. The significant advancement
in fast and cost-effective techniques for DNA synthesis,
assembly and efficient sequencing has contributed to
the de novo construction of synthetic Mycoplasma

mycoides cells as part of the Minimal Genome Project
running at the J. Craig Venter Institute (Hutchison et al.,
2016). In this case, the authors have adopted a bottom-
up genome minimization approach (Gibson et al., 2010)
that, apart from enabling the construction of such a mini-
mal-genome bacterial chassis, has shed light on the
complexity of bacterial genome structures. The first
proof-of-principle of the project consisted of a de novo
synthesized, modified version of the 1,000,000-bp long
genome of M. mycoides that was implanted into a DNA-
free Mycoplasma capricolum ‘envelope’, resulting in
strain JCVI-syn1.0. Building on this first version of the
minimal bacterial cell, an even smaller genome was syn-
thesized (JCVI-syn3.0), spanning 531,560 bp and 473
genes. A comparison of these two synthetic genomes
revealed a common set of 256 genes, which probably
represent the authentic minimal set of genes needed for
(limited) cell viability. Surprisingly, almost one-third of
these genes in this synthetic construct encode unknown
functions. Recent efforts by Danchin and Fang (2016)
lead to the assignment of a significant number of func-
tions to these unknown elements, belonging to core cel-
lular processes such as DNA replication and cell division
(e.g. a membrane protease involved in bacterial divi-
sion), DNA metabolism (e.g. deoxyribonucloside kinases
and phosphatases), RNA metabolism (e.g. ribonucle-
ases, nanoRNAses, and helicases), translation-related
functions (e.g. methyltransferases) and functions within
general metabolism (e.g. enzymes involved in redox bal-
ance, peroxiredoxines and ATP-dependent Fe2+ trans-
porters).
In all, the studies above pinpoint, again, the difficulties

in a priori deciding which cell functions might be dis-
pensable, and constant developments in the field are
expected to further clarify this issue in the near future.
While most of the available information on reduced- and
minimal-genome bacterial chassis is restricted to just a
handful of species, other strains will be surely added to
the metabolic engineering agenda for specific applica-
tions soon. The general physiological and metabolic
properties, as well as the advantages and the potential
shortcomings, of some of the most representative bacte-
rial strains that could constitute relevant chassis are
described in the next section.

Bacterial species adopted as a chassis: from
historical examples to up-and-coming additions

Several wild-type bacteria have been chosen as chassis
for bioproduction, from laboratory-derived E. coli to
(more recently) microbial species isolated because of
specifically interesting phenotypic properties. In an
attempt to describe the main advantages of these hosts
in particular applications, we start off by presenting the
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state of the art of one of the most used Gram-negative
bacterial chassis, E. coli, and one Gram-positive bac-
terium that has been likewise used extensively, Bacillus
subtilis. Building on their applications, other microorgan-
isms that have gained relevance as a chassis for meta-
bolic engineering (e.g. P. putida) are discussed at the
light of their unique physiological and metabolic proper-
ties. For the sake of simplicity, we will focus our discus-
sion mostly on the examples listed above. Other relevant
bacterial species that have found important industrial
applications, for example Corynebacterium, Clostridium,
and Streptomyces, are collected in Table 1, highlighting
some of their unique physiological properties along with
key examples from the literature that the reader could
access if interested on such platforms. In the sections
below, we discuss the most relevant features and advan-
tages of E. coli, B. subtilis and P. putida in relation to
metabolic engineering efforts and bioproduction of bio-
chemicals, as well as different examples of industrial
and/or laboratory-scale processes using them as plat-
forms. Figure 3 summarizes the main properties of these
bacterial chassis, listing the practical applications in
which they are known to excel.

Escherichia coli

More than 50 years of intensive research on E. coli have
positioned this bacterium as the best-studied example
among all prokaryotes, and as an obvious first-choice as
a chassis for development of cell factories. E. coli is a
Gram-negative, rod-shaped, facultative anaerobic bac-
terium (although a more proper classification of its life-
style would be as a facultative aerobe), which can be
found in mammalian intestines, some natural environ-
ments, and, in some cases, contaminated foods. Its role
as a host in biotechnology can be tracked back to its
use for L-threonine production in the 60s (Huang, 1961),

and its application for insulin production (Riggs, 1981). It
is characterized by (i) rapid growth rates, (ii) low nutrient
requirements (which lead to likewise reduced production
costs), (iii) the possibility of stablishing high-cell-density
cultures through fed-batch fermentation (Shiloach and
Fass, 2005), (iv) a versatile metabolism that has been
thoroughly investigated and (v) a variety of tools for
genetic manipulations and strain development. Although
some strains are known to be pathogenic, many of them
are safe to use for bioproduction. E. coli strains most
commonly used nowadays are based on the K-12 and B
ancestor strains, isolated in 1922 and 1918 respectively
(Blount, 2015). From these two original isolates, a wide
variety of improved strains has been tailored for specific
purposes, for example E. coli BL21 Rosetta, designed
for production of heterologous proteins using tRNAs that
recognize rare codons in mRNA; E. coli BL21(DE3),
containing a copy of the gene encoding the RNA poly-
merase from phage T7 integrated in the chromosome; or
E. coli C41(DE3) and C43(DE3), characterized by a high
tolerance to (usually toxic) membrane protein expression
(Miroux and Walker, 1996). A comprehensive list of
E. coli strains adapted for other purposes has been
listed by Baeshen et al. (2015). In addition, a number of
reduced-genome strains have also been constructed
starting from wild-type E. coli strains. Some of them
show significant physiological advantages when com-
pared to the parental, K-12 strain MG1655. This is the
case for the strain set dubbed MDS41, 42 and 43 (15%
of the bacterial genome deleted), which have high elec-
troporation efficiency and increased stability of foreign,
difficult-to-clone DNA due to the removal of all insertion
sequences (P�osfai et al., 2006). Another set of reduced-
genome E. coli strains, derived from W3110, were con-
structed in the context of the Minimum Genome Factory
project launched in Japan in 2001 (Mizoguchi et al.,
2007). One such strain, termed MGF-01 and having

Table 1. Examples of bacterial platforms endowed with unique physiological and metabolic properties for bioproduction.a

Microorganism Advantages Main type of products obtained References

Clostridium
acetobutylicum

Suitable for anoxic bioprocesses, good
solvent tolerance, grows on several
feedstocks

Acetone, butanol, and butanol,
and other solvents in
engineered strains

(Ni and Sun, 2009; Jang et al., 2012)

Streptomyces sp. Wide variety of secondary metabolites
and cognate pathways

Antibiotics (Li and Townsend, 2006; Komatsu et al.,
2013; Hiltner et al., 2015; Palazzotto
and Weber, 2018)

Corynebacterium
glutamicum

Used for industrial production of amino
acids for over 60 years

L-amino acids (e.g. glutamate
and lysine), organic acids,
diamides

(Becker and Wittmann, 2012; Wendisch,
2014; Heider and Wendisch, 2015;
Unthan et al., 2015)

Rhodococcus sp. Lignin degradation and high tolerance
to toxic compounds

Acrylamide, triacylglycerols (McLeod et al., 2006; Kosa and
Ragauskas, 2013; R€ottig et al., 2016;
Sun et al., 2016)

Mycobacterium sp. Natural capability of synthesizing and
metabolizing sterols

Steroid intermediates (Fern�andez-Cabez�on et al.,2018)

a. Selected examples of bioproduction are presented based on the main industrial applications of these bacterial species.
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22% of its genome deleted, reached a final cell density
significantly higher than the parental strain and it pro-
duced twice as much (i.e. 10 g l�1) L-threonine when
grown under the same culture conditions.

A vast number of plasmid vectors and gene expres-
sion systems can be found among the tools specifically
developed for E. coli. This (ever expanding) toolbox
includes an extensive catalogue of optimized natural and

Fig. 3. Functional relationship between intended industrially relevant practical applications and different bacterial chassis of choice, depending
on some key physiological and metabolic features they present. For the sake of simplicity, only some selected applications are shown along
with the bacterial species that could be adopted as the starting point for robust chassis design and construction. Note that, given the character-
istics of some of these bacterial species, they could potentially fulfil more than one application.
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synthetic promoters, libraries of ribosome binding sites
and other regulatory elements, plasmidial origins of repli-
cation, resistance markers, affinity tags for protein purifi-
cation and efficient transcriptional terminators (Terpe,
2006; Rosano and Ceccarelli, 2014; Dvo�r�ak et al., 2015;
Marschall et al., 2017; Segall-Shapiro et al., 2018). Fol-
lowing the very spirit of synthetic biology, some of these
tools have adopted specific standards and protocols fol-
lowed suit, such as the Registry of Standard Biological
Parts (Peccoud et al., 2008) or the BioBricks repository
(Røkke et al., 2014). Moreover, numerous genome edi-
tion tools have been developed, that have enabled fast
and easy strain manipulation through insertion and dele-
tion of genetic circuits into the E. coli chromosome (Dat-
senko and Wanner, 2000; Bloor and Cranenburgh,
2006). More recently, the adoption of techniques based
on clustered regulatory interspaced short palindromic
repeats (CRISPR) in association with Cas9-based coun-
ter selection systems for genome editing (Jiang et al.,
2013, 2015; Doudna and Charpentier, 2014), deactivated
Cas9 protein for targeted gene regulation (CRISPRi,
CRISPR interference; Qi et al., 2013) and multiplex auto-
mated genome editing (MAGE; Wang et al., 2009) have
enormously helped to boost our ability to construct engi-
neered E. coli strains in a straightforward, streamlined
fashion – thus increasing the diversity of strains that can
be used for specific bioproduction purposes. In addition
to these technologies, the discovery, understanding and
application of gene expression devices (e.g. riboswitches
and aptamers) allow for the fine-tune regulation of gene
expression in complex pathways (Kushwaha et al.,
2016). Likewise, the development of biosensors has
helped in screening and improving the synthesis of both
bulk and fine chemicals. Metabolite biosensors, which
respond to the presence of a certain molecule with an
easily detectable output, provides an easy way of
screening for efficient-producing strains from complex
libraries (Zhang and Keasling, 2011; Liu et al., 2015).
Moreover, a collection of knock-out mutants (i.e. the Keio
collection) is available, providing a simple and high-
throughput way for testing phenotypes and functions of
single, non-essential genes (Baba et al., 2006). Data
integration from deep genome sequencing (including
strains from the Keio collection), as well as elaborated
omics techniques, has led to the development of robust
computational models that predict the metabolic beha-
viour of an organism under certain simulated conditions.
Not surprisingly, such genome-scale metabolic models
were firstly reconstructed for E. coli (Orth et al., 2011).
All E. coli metabolic models available up to date, as well
as their potential practical applications, have been
reviewed by McCloskey et al. (2013) and, more recently,
by O’Brien et al. (2015). The combination of this broad
range of dedicated tools, both for in silico predictions

and wet-laboratory manipulations, has made it possible
to adopt E. coli as a model bacterial chassis for meta-
bolic engineering and synthetic biology – being a verita-
ble workhorse for developing and testing designer
metabolic pathways.
The development of even more robust production

strains using adaptive laboratory evolution (ALE, also
known as evolutionary engineering) has enabled the pro-
duction of high amounts of toxic compounds (Shepelin
et al., 2018). An ALE application studied in great detail
is increasing growth efficiency on specific carbon
sources, for example glycerol (Herring et al., 2006) or
glucose (Notley-McRobb and Ferenci, 1999; LaCroix
et al., 2015). Moreover, other E. coli strains have been
evolved to utilize alternative carbon sources, for example
citrate (Blount et al., 2008), which are not naturally con-
sumed by the parental strain. ALE-mediated adaptation
of bacterial chassis to industrially relevant toxic com-
pounds as well as by-products generated by the extant
metabolism, which may affect bacterial growth during
production, have been likewise demonstrated. Some
examples of adaptation to organic solvents yielded E.
coli strains with high tolerance towards ethanol (Good-
arzi et al., 2010), iso- and n-butanol (Atsumi et al., 2010;
Dragosits and Mattanovich, 2013), and ionic liquids
(Mohamed et al., 2017). Recently, ALE has been applied
together with flux balance analysis to generate an E. coli
strain with increased succinate production from glycerol
(Tokuyama et al., 2018), and L-serine, an amino acid
usually considered to be toxic (Mundhada et al., 2017).
The potential of ALE for evolving industrially relevant
production phenotypes has been mostly limited to
E. coli, and this technique will surely help to establish
other bacterial chassis for metabolic engineering by gen-
erating useful phenotypic traits.
Different E. coli platform strains have been developed

for boosting the formation of key metabolites of central
carbon metabolism that can be then used as key precur-
sors for target compounds. Typical examples of this sort
of manipulations include manipulations leading to
increased pyruvate or acetyl-coenzyme A (CoA) levels.
These central metabolites can be used as building
blocks in recombinant E. coli for small molecules such
as butanol (Shen et al., 2011), or more complex chemi-
cal species such as polyhydroxyalkanoates [PHAs
(Anjum et al., 2016; Chen and Jiang, 2017), specially
the simplest form of these polymers, poly(3-hydroxybuty-
rate), PHB (Gomez et al., 2012)] and fatty acids (Sarria
et al., 2017). The strategies used for enhancing the for-
mation of such metabolic precursors usually involve
deleting reactions that deplete pyruvate or acetyl-CoA or
boosting carbon fluxes through glycolytic pathways
(S�anchez-Pascuala et al., 2017). Such metabolic engi-
neering strategies, recently reviewed by Matsumoto
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et al. (2017), not only encompass the manipulation of
target structural genes but also global regulators of
metabolism, such as the ArcAB two-component system
(Bidart et al., 2012). These platform E. coli chassis
characterized by an increased availability of key
metabolites can be further used to express a wide vari-
ety of heterologous pathways tailored to produce
heterologous compounds that are not part of the extant
biochemical network. The production of aromatic com-
pounds constitutes a traditional example of this type of
metabolic manipulations (Mart�ınez et al., 2015). Struc-
tural precursors for aromatic compounds are produced
in bacteria through the shikimate pathway, which starts
with the condensation of phosphoenolpyruvate (PEP)
and erythrose-4-phosphate (E4P). The shikimate path-
way is an essential part of the extant metabolism, serv-
ing as the precursor of the aromatic amino acids
tyrosine, tryptophan and phenylalanine. Apart from their
intrinsic value as food additives, these amino acids can
be converted into relevant added-value compounds, for
example vanillin or p-hydroxystyrene (Lee and Wen-
disch, 2017), or can be used as drug precursors. Other
intermediates within the shikimate pathway can redi-
rected to the synthesis of phenol and cis,cis-muconic
acid. The formation of the key metabolites PEP and
E4P has been manipulated in order to increase the
overall flux through the shikimate route, and, in a
recent example, these manipulations lead to a signifi-
cant increase in salicylic acid formation (Noda et al.,
2016). Another strategy adopted for this purpose has
been to relieve the feedback regulation that occurs in
one of the first enzymes of the pathway, AroF. The
aroF gene encodes a 3-deoxy-D-arabino-heptulonase
(DHAP) synthase, and a single mutation, leading to an
amino acid change in position 148 of the protein
(AroFP148L), generated the feedback-resistant aroFfbr

variant (Weaver and Herrmann, 1990). This specific
AroF variant has been used in many studies to boost
the shikimate pathway for production of aromatic com-
pounds (Sengupta et al., 2015). Targeted deletion of
some native genes involved in amino acid synthesis to
remove competition with the heterologous enzymes has
also been reported, although these manipulations often
result in altered growth or significant increases in the
process cost, as some amino acids and vitamins have
to be supplemented to the culture medium (Noda et al.,
2016). Another approach, recently implemented to over-
come nutritional deficiencies in engineered E. coli
strains, includes transcriptional down-regulation of aroK
(shikimate kinase, which consumes shikimate) using
growth-phase dependent promoters (Lee and Wendisch,
2017).
Another family of products of great interest in the field

of metabolic engineering are those derived from the

mevalonate (MVA) pathway. MVA is the main precursor
of a range of added-value products such as terpenoids
and isoprenoids, through the key intermediates isopen-
tenyl pyrophosphate (IPP) and dimethylallyl diphosphate
(DMAPP). These compounds found wide applications in
the fields of therapeutics, cosmetics, biofuels, and as
colour and fragrance (food) additives. Although IPP and
DMAPP can be synthesized endogenously by E. coli
through the methyleythritol-4-phosphate (MEP) pathway
without generating MVA; this route has been shown to
have a very limited flux (Ajikumar et al., 2010). Even
though the endogenous MEP pathway is less efficient
than expressing the heterologous MVA pathway (Mor-
rone et al., 2010), quite some work has been devoted to
optimize its performance and further understand its wir-
ing (Kim and Keasling, 2001; Zhou et al., 2012; Bongers
et al., 2015). The emerging picture indicates that further
optimization is needed when the MVA pathway is used
to release metabolic bottlenecks and reduce toxicity of
some metabolic intermediates therein (Martin et al.,
2003; Ajikumar et al., 2010; Ma et al., 2011; Wang et al.,
2016a). The adoption of alternative bacterial chassis
could certainly be a way forward to overcome some of
these limitations.
Industrially, E. coli has also been used for the produc-

tion of 1,3-propanediol by DuPont and 1,4-butanediol by
Genomatica (Sabra et al., 2016). 1,3-Propanediol, a
monomer for the synthesis of industrial polymers such
as polytrimethylene terephthalate, can be naturally pro-
duced from glycerol by some microorganisms. In order
to construct a high-yield E. coli producer, the genes
encoding all the functions needed for 1,3-propanediol
synthesis were cloned from Klebsiella pneumoniae
(Gatenby et al., 1998), followed by several metabolic
engineering strategies on the resulting strain to ensure
sufficient precursor availability. 1,4-Butanediol, a struc-
turally similar diol, is another bulk chemical used as pre-
cursor of industrially-important plastics and spandex
fibres. A library of heterologous genes needed for
1,4-butanediol formation from succinyl-CoA, intermediate
of the tricarboxylic acid cycle, has been tested in E. coli
(Yim et al., 2011). This early attempt was soon com-
bined with sophisticated metabolic engineering app-
roaches, resulting in a set of E. coli strains that achieved
yields of 1,4-butanediol – high enough to warrant com-
mercialization. The sequential process for construction
and optimization of these engineered E. coli strains has
been recently reviewed in Burgard et al. (2016).
All our extensive knowledge and range of tools for

engineering E. coli make this enteric bacterium a suit-
able choice as a chassis for bulk product formation as
well as using it as a proof-of-concept for designer (syn-
thetic) pathways at their initial stages of development.
There is, however, a limit in the potential uses of E. coli,
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which is not a suitable platform for all bioprocesses and
chemicals in the currently expanding bioproduction
agenda. Some examples of challenging processes are
the production of secreted proteins at high yields or the
production of highly toxic compounds, which negatively
affect the growth and catalytic efficiency of E. coli. More-
over, new and cheaper (raw) alternatives to traditional
substrates are required in order to minimize production
costs. The utilization of different bacterial chassis,
described below, attempts to overcome these chal-
lenges.

Bacillus subtilis

Bacillus subtilis is an aerobic, rod-shaped, Gram-positive
bacterium found in soils and in the plant rhizosphere. It
is one of the best known and characterized Gram-posi-
tive microorganisms, due to a number of early studies
on its natural competence for DNA transformation and
the formation of spores as resistant, non-reproductive
structures (Spizizen, 1958). The genome of B. subtilis
strain 168 was one of the first to be sequenced (Kunst
et al., 1997), and a number of tools for genome manipu-
lation have been developed ever since, as well as a
genome-scale reconstruction of its metabolic network
10 years after the genome sequence became available
(Oh et al., 2007). More recently, a full collection of
knock-out mutants of B. subtillis has been developed
(Koo et al., 2017). Importantly, B. subtilis is free of endo-
toxins and has the generally recognized as safe (GRAS)
status as a microorganism for protein production. The
availability of numerous genetic tools, such as vectors
and gene expression systems, makes it an easy-to-han-
dle organism (Liu et al., 2017a). As mentioned in the
preceding sections, there has been extensive work in
constructing reduced-genome versions of B. subtilis.
Among them, the reduced-genome strain MGB874 has
been shown to produce higher concentrations of alkaline
cellulose and protease as heterologous proteins (Mori-
moto et al., 2008; Manabe et al., 2013).
Recombinant proteins and natural enzymes and

proteases constitute the main portfolio of industrially rele-
vant molecules produced in B. subtilis chassis –

essentially because its efficient secretory machinery
allows for the transport of proteins into the culture med-
ium to reach concentrations in the range of grams per
litre, thus reducing purification and recovery costs (van
Dijl and Hecker, 2013). The adequate signal peptides
are required in the target proteins to ensure a correct
and efficient secretion. Such signal peptides are com-
posed by three domains, known as N-, H- and
C- regions, recognized by different secretory machiner-
ies for the proper translocation of proteins from the cyto-
plasm through the membrane and to the external

medium. The best-studied protein secretory systems in
B. subtilis are the Sec and Tat pathways (Hohmann
et al., 2017). However, B. subtilis naturally produces a
number of proteases and, although some of them might
have an interest for the industry on their own, their activ-
ity usually limits the overall efficiency of heterologous
protein production. For this reason, the construction of
proteases-defective mutants has been crucial for the
development of B. subtilis as a chassis for protein pro-
duction. Some of the most used mutants of this sort are
the type strains WB600 (Wu et al., 1991) and WB800
(Wu et al., 2002), in which six and eight proteases,
respectively, have been eliminated.
Furthermore, the development of B. subtilis as a chas-

sis for heterologous protein production has included the
design of a wide variety of gene expression systems.
Different types of strong, constitutive as well as inducible
promoters used in B. subtilis have been reviewed by
Song et al. (2015). The Bacillus Genetic Stock Centre
(BGSC) was created for maintenance and distribution of
the (ever increasing) catalogue of characterized Bacillus
strains and knock-out mutants. Apart from the strains,
the BGSC collection also contains cloning vectors and
expression plasmids that can be used in B. subtilis.
However, some of these plasmids tend to be unstable
and, due to the natural ability of B. subtilis of DNA
uptake and integration into the chromosome through
double crossover, homologous recombination, single-
copy DNA integration is the most used method for
heterologous gene expression (Kunst and Rapoport,
1995), although novel and easy ways for DNA transfor-
mation and mobilization are being developed (Miyano
et al., 2018). Several genomic regions in the B. subtilis
chromosome have been characterized for heterologous
gene expression; such as amyE (encoding an a-amy-
lase) which provides a coloured-colony phenotype by
performing an a-amylase test to check for successful
gene integration. This strategy has been adopted by
Commichau et al. (2014) for engineering efficient vitamin
B6 production in B. subtilis strain 168.
As described before, B. subtilis is a very attractive

organism for enzyme production, as their easy secretion
outside the cell simplifies the downstream processing as
well as their (re)folding when needed (Westers et al.,
2004). The global industrial production of enzymes mar-
ket is expected to reach $ 6.2 billion in 2020, and these
enzymes have applications as varied as production of
detergents, treatment of textiles, additives for the food
industry, cosmetics and waste degradation (Singh et al.,
2016). Some examples of industrially relevant enzymes
produced in B. subtilis chassis are subtilisin (an alkaline
serine protease), a- and b-amylases, b-glucanases and
laccases (Schallmey et al., 2004). Numerous examples
on the optimization of heterologous enzyme production
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in B. subtilis have been published – which attempt to
improve the overall process efficiency, finding new inter-
esting enzymes and to develop more suitable chassis
for the industry (Chen et al., 2016; Feng et al., 2017).
Apart from its prominent role in protein production,

B. subtilis is also used for industrial processes aimed at
the synthesis of nucleotides, vitamins, surfactants and
antibiotics, for example bacitracin and subtilin. Nucleo-
tides, for example inosine monophosphate (IMP) and
guanosine monophosphate (GMP), are extensively used
in a wide range of processed foods as flavour boosters in
combination with monosodium L-glutamate. Industrial
production of these nucleotides has traditionally relied in
Gram-positive microorganisms and, among them,
B. subtilis and other Bacillus species have a prominent
role due to a large accumulation of inosine in the culture
medium (Chen et al., 2005). Building on this natural
occurrence, multiple studies have been performed to
improve nucleotide accumulation, using strategies such
as classical random mutagenesis (Matsui et al., 1982),
culture optimization (Chen et al., 2005), target mutagene-
sis to avoid IMP degradation (Asahara and Mori, 2010) or
introduction of nucleotidases that remove the phosphate
group from IMP and GMP (Terakawa et al., 2016). A
number of vitamins are also being produced industrially in
B. subtilis as the chassis, mainly riboflavin, cobalamin
and biotin. Riboflavin, a component of the vitamin B2
complex, is a major nutrient in human diet, which can be
naturally found in vegetables and raw milk. Nowadays,
riboflavin is produced by fermentation for its use as an
additive in the food industry, and B. subtilis is one of the
microorganisms most often used in such bioprocess. A
limitation in the availability of precursor nucleotides (i.e.
GTP), however, is known to hinder riboflavin production.
For this reason, a deregulation of purine synthesis has
been implemented to ensure efficient accumulation of this
vitamin (Stahmann et al., 2000; Shi et al., 2014).
Poly-c-glutamic acid is a homopolyamide naturally pro-

duced by B. subtilis and related bacteria. A relevant
microbial polymer used in food, medical, cosmetic and
waste treatment industries (Shih and Van, 2001; Bajaj
and Singhal, 2011), it is composed of D- and L-glutamic
acid units interconnected through the amide linkage of
their a-amino and c-carboxylic groups. The cost-effective
production of poly-c-glutamic acid has been achieved
using natural-producer Bacillus strains (Tanaka et al.,
1997), as well as by improved strains using genome
manipulation techniques such as genome shuffling (Zeng
et al., 2016). B. subtilis has also been used to produce
pure chiral stereoisomers, for example D-(—)-2,3-
butanediol, another promising diol used as a biofuel and
bulk chemical for chemical synthesis (Fu et al., 2016).
Other molecules, for example hyaluronic acid (a high-
molecular-weight glycosaminoglycan used in the

pharmaceutical and cosmetic industry), have been pro-
duced in B. subtilis up to the range of grams per litre
(Jin et al., 2016). Bacillus has been also applied as a
functional chassis to produce and secrete a synthetic
cellulosome for further use in the degradation of raw cel-
lulosic substrates (Lin et al., 2017). The production of
other important pharmaceutical molecules, for example
N-acetylglucosamine, has been attempted as well, and
the bioprocess has been optimized through pathway
modulation and successful colocalization of pathway
enzymes using scaffold proteins (Liu et al., 2017b,c).
All the examples above accredit the value of B. sub-

tilis as a robust chassis, well established in the
biotechnology field for production of endogenous
enzymes – and also for the production of heterologous
proteins, although the titres are usually not comparable
to those of endogenously synthesized proteins. For
these reasons, more research needs to be performed in
this bacterial strain, including genome reduction, identifi-
cation and optimization of signal peptides, development
of novel, more efficient secretion and expression sys-
tems, and further optimization of both culture settings
and resistance to stressful conditions (Tjalsma et al.,
2004; Song et al., 2015; Ozt€urk et al., 2016). In biopro-
cesses for which built-in resistance to harsh operating
conditions is needed, the focus shifts to a different type
of bacterial chassis, as discussed in the next section.

Pseudomonas putida

Chemical stress, for example under the form of either
endogenously produced or exogenously added chemi-
cals, is one of the main hurdles encountered in industrial
bioprocesses. Either the desired product or some of the
substrate feedstocks (e.g. some compounds found in
biomass hydrolysates) can inhibit bacterial growth or
even cause cell death (Keasling, 2010). In both cases,
the yields and titres of the bioprocess are negatively
affected, leading to sub-optimal production performance.
Moreover, two-phase fermentations, where a second
organic phase is used to extract the product from the
aqueous phase [e.g. during production of p-vinylphenol
or 1,3-propanediol (Rujananon et al., 2014; Salgado
et al., 2014)], require the use of microorganisms able to
tolerate the solvent(s) used as second phase. Specifi-
cally, due to toxic effects, the choice of solvents for
whole-cell biotransformations in two-phase solvent-water
systems is usually very limited. Only low-toxicity solvents
with high hydrophobicity coefficients can be applied for
this purpose, limiting the scope of possible bioprocesses
that can be carried out under these conditions. For these
reasons, the adoption of bacterial chassis with an
enhanced tolerance to chemical stresses is needed
(Nicolaou et al., 2010; Kusumawardhani et al., 2018).
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The ubiquitous saprophytic, soil-colonizer P. putida, a
Gram-negative, rod-shaped bacterium is increasingly
being used as a chassis for applications characterized
by harsh operating conditions. P. putida KT2440, which
has been certified as a GRAS platform for recombinant
protein production, is the most studied and used strain
within the genus, and it is considered a safe host for
cloning and expressing heterologous genes (Poblete-
Castro et al., 2017). P. putida KT2440 possesses many
of the desired features in an ideal bacterial chassis, such
as rapid growth, low nutritional requirements and avail-
ability of sophisticated tools for genome and genetic
manipulation (Nikel and de Lorenzo, 2018). A collection
of mutant strains obtained by random integration of mini-
Tn5 elements, known as the Pseudomonas Reference
Culture Collection, is available for strain KT2440 (Duque
et al., 2007). Moreover, this soil bacterium is endowed
with built-in, advantageous evolutionary traits, for exam-
ple a remarkably versatile metabolism that serves as a
treasure trove for enzymatic activities, and increased tol-
erance towards oxidative stress. P. putida can also sus-
tain high rates of NADPH regeneration when growing on
hexoses, due to the fact that glucose is converted into
glyceraldehyde-3-phosphate and pyruvate via the Ent-
ner-Doudoroff (ED) pathway (Martins dos Santos et al.,
2004; del Castillo et al., 2007; Nikel et al., 2015a), and
part of these trioses-phosphate are recycled back into
hexoses-phosphate, generating one molecule of NADPH
via a combination of activities of the ED pathway, the
pentose phosphate pathway, and an incomplete Emb-
den-Meyerhof-Parnas route, collectively termed EDEMP
cycle (Nikel et al., 2016). This particular metabolic archi-
tecture has been shown to enable a better expression of
heterologous enzymatic pathways and serves as an effi-
cient source of reducing power for maintaining a high tol-
erance to stressful conditions (Blank et al., 2008;
Chavarr�ıa et al., 2013; Nikel et al., 2014b). Furthermore,
P. putida KT2440 is able to use a wide range of com-
pounds as carbon sources, such as succinate, citrate
and other intermediates of the tricarboxylic acid cycle.
More importantly, the original soil environment of P.
putida KT2440 and its ability to thrive in the rhizosphere
are connected with its ability to degrade aromatic com-
pounds derived from lignin degradation, for example
benzoate, p-coumarate, caffeate and vanillate (Jim�enez
et al., 2002; Dvo�r�ak et al., 2017). This fact makes
P. putida KT2440 an important candidate for its use to
grow in lignin-derived feedstocks (Linger et al., 2014;
Ragauskas et al., 2014; Beckham et al., 2016; Ravi
et al., 2017).
Remarkably, P. putida has a number of mechanisms

for tolerance towards high concentrations of aromatic
chemicals, for example toluene, xylenes and styrene
(note that these toxic compounds can also be used by

some P. putida strains), including a wide repertoire of
efflux pumps (Inoue and Horikoshi, 1989; Ramos et al.,
2002; Santos et al., 2004; Dom�ınguez-Cuevas et al.,
2006; Calero et al., 2018). Toluene, for instance, is an
aromatic and highly toxic solvent that kills most microor-
ganisms at concentrations as low as 0.1% (v/v). Being
an industrial feedstock, it kept accumulating in the envi-
ronment since its very discovery back in the 19th cen-
tury. Several efforts were therefore aimed at finding
microorganisms able to degrade toluene, converting it
into less-harmful compounds. Even when some Achro-
mobacter and Nocardia species were known to tolerate
moderate concentrations of toluene, a true robust and
resistant strain chasing was largely missing in the picture
for many years. The seminal work by Prof. Horikoshi’s
group in the late 80s in this regard showed that an iso-
late of Pseudomonas sp. could thrive in the presence of
very high concentrations of toluene. Soon after the publi-
cation of this article, Prof. de Bont’s group in The
Netherlands and that of Prof. Ramos in Spain reported
the isolation of two other Pseudomonas strains that were
also able to grow in the presence of saturating concen-
trations of toluene. A most surprising finding was that all
three strains isolated in the three countries and different
niches happened to be the same microorganism,
P. putida. The discovery of solvent tolerance opened a
new research avenue and aroused great interest in the
use of this kind of bacterial chassis in bioremediation
and biotransformations in biphasic systems, as well as in
the development of biosensors for environmental con-
taminants. How do Pseudomonas cells thrive under
these harsh conditions? As indicated above, the most
relevant of the many mechanisms for solvent tolerance
in Pseudomonas seems to be related to the action of a
series of efflux pumps that extrude toluene (and, likely,
other solvents) from the cell membranes to the outer
medium, a high energy-demanding process whose price
bacteria are forced to pay to survive under such extreme
conditions. Another important mechanism that con-
tributes to solvent tolerance involves changes in phos-
pholipid composition, that is isomerization of cis-
unsaturated fatty acids to trans-isomers, and changes in
head group composition in membrane phospholipids. All
these changes influence membrane fluidity and conse-
quently have an effect on resistance to the membrane
chaos brought about by solvents. Apart from lipid disor-
ganization, protein unfolding occurs when toluene and
other solvents dissolve in cell membranes. This situation
brings forth a general stress response on bacteria that,
in most cases, is accounted for by expressing several
molecular chaperones and other enzymes related to
stress resistance.
Tolerance to solvents, and the ability of using them as

carbon sources, is a very oxygen-demanding cellular
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process. P. putida KT2440 is a strict aerobe due to the
absence of fermentative pathways and the inability of
using alternative electron acceptors other than oxygen –

leading to a somewhat limited number of naturally syn-
thesized by-products under industrially relevant condi-
tions (Mart�ınez-Garc�ıa et al., 2014b; Tiso et al., 2014).
The lack of fermentation pathways also leads to a very
high oxygen requirements for optimal bacterial growth,
which can be a problem when culturing bacteria in large
bioreactors giving the non-homogenous distribution of
nutrients (Davis et al., 2015), as well as impairing the
practical use of P. putida KT2440 to carry out anoxic,
oxygen-sensitive reactions. This problem was assessed
by introducing synthetic fermentation pathways that,
when expressed in strain KT2440, lead to higher survival
under anoxic conditions (Nikel and de Lorenzo, 2013).
Schmitz et al. (2015) and Lai et al. (2016) also tackled
this problem by employing bioelectrochemical systems.
This is an area of intense research currently under devel-
opment, which aims at modifying the lifestyle of environ-
mental bacteria, and holds the promise of further
multiplying the uses of P. putida as a functional chassis
under a range of operating conditions.
A number of tools for genetic and genome engineering

of P. putida have been developed, including the com-
plete set of modular vectors of the Standard Euro-
pean Vector Architecture (SEVA) platform (Silva-Rocha
et al., 2013; Mart�ınez-Garc�ıa et al., 2015), transposons
(Mart�ınez-Garc�ıa et al., 2014a) and a wide range of pro-
moters, both natural and synthetic, which have been
characterized in strain KT2440 (Zobel et al., 2015;
Calero et al., 2016). Homologous recombination-based
techniques (e.g. using the homing endonuclease I-SceI
from Saccharomyces cerevisiae that recognizes an 18-
bp DNA sequence, not present in bacterial chromo-
somes) have been implemented for deleting large geno-
mic fragments (Mart�ınez-Garc�ıa and de Lorenzo, 2011).
The procedure is based on forcing homologous recombi-
nation by the appearance of a double strand break in
the target genome upon cleavage in vivo by I-SceI, the
intracellular expression of which is driven by the 3-
methylbenzoate-inducible promoter Pm in a broad host
range expression plasmid. Using this system, 69 genes
involved in synthesis and functioning of the flagellar
machinery were successfully deleted from strain KT2440
(Mart�ınez-Garc�ıa et al., 2014c), as well as a number of
genes related to genetic instability, such as insertion
sequences and transposons (in total, 4.3% of the gen-
ome DNA was eliminated). These operations generated
a reduced-genome P. putida chassis, EM42, which
showed a significant increase in ATP and NAD(P)H
availability. The growth of the resulting chassis showed
improvements in both rich and minimal medium with dif-
ferent carbon sources, with enhanced resistance to

reactive oxygen species, which in turn led to an
increased heterologous GFP and luciferase production
(Mart�ınez-Garc�ıa et al., 2014b). In further tests con-
ducted in bioreactors, the reduced-genome chassis had
significantly improved plasmid stability and heterologous
protein production, among other traits, as compared to
the parental strain (Lieder et al., 2015). Novel tools for
advanced genome edition, based on the expression of
specific DNA recombinases, are constantly being devel-
oped for P. putida KT2440 (Mart�ınez-Garc�ıa and de Lor-
enzo, 2017), for example for increasing the efficiency of
DNA recombination. The development of these tech-
niques will allow for the use of precise MAGE and
CRISPR/Cas9-based technologies in the near future,
speeding-up genomic manipulations in Pseudomonas
chassis.
In addition to the genetic and genome engineering

tools, a number of bioinformatic tools have been devel-
oped to facilitate the rational design of metabolically
engineered strains based on P. putida KT2440. Soon
after the sequencing of its entire genome in 2002 by Nel-
son et al. (2002), three genome-scale metabolic models
were developed for strain KT2440 (Nogales et al., 2008;
Puchałka et al., 2008; Sohn et al., 2010) – with a recent
update on the occasion of the genome re-sequencing
and re-annotation (Belda et al., 2016), and the most
comprehensive genome-wide metabolic reconstruction
build to date (Nogales et al., 2017). The integration of in
silico model predictions and experimental data from
omics (e.g. deep RNA sequencing) has provided further
insights into the metabolism of P. putida KT2440 (Kim
et al., 2013; Nikel et al., 2014a). Finally, a number of
databases are currently available, with continuously
updated genetic information (e.g. the Pseudomonas
Genome Database; Winsor et al., 2016) and a protein–
protein interaction database (PutidaNET; Park et al.,
2009). A platform integrating all the omics information
available for P. putida would be highly desirable, facilitat-
ing further manipulations of an already attractive bacte-
rial chassis.
Although the seminal works on the practical biotechno-

logical applications of P. putida have been focused on
xenobiotics degradation, the use of this chassis as a
bacterial cell factory for bioproduction increased expo-
nentially over the last decades (Poblete-Castro et al.,
2012; Loeschcke and Thies, 2015; Nikel et al., 2016).
One of the most well-known products synthesized using
Pseudomonas species is the family of PHAs polyesters
(Prieto et al., 2016). PHAs are naturally synthesized by
P. putida under specific conditions, for example nitro-
gen-limited conditions in the presence of sufficient
amounts of a suitable carbon source (Hoffmann and
Rehm, 2004), and these polyesters are used as carbon
and energy storage. The biodegradability of PHAs as
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well as their material properties, such as thermoplastic-
ity, insolubility and lack of toxicity, make them good alter-
natives for fuel-based plastics for ecofriendly packaging
and other industrial purposes (Steinb€uchel and L€utke-
Eversloh, 2003; Ouyang et al., 2007). In addition to the
biosynthesis of PHA biopolymers (for which strain Gpo1
has been used at the industrial scale), P. putida is gain-
ing importance as a cell factory for de novo biosynthesis
of heterologous, often difficult-to-produce chemical com-
pounds. For many of the target chemicals in this family,
the natural tolerance of P. putida towards aromatic mole-
cules and its ability to convert these chemical structures
via mono- and di-oxygenases (P�erez-Pantoja et al.,
2013) have been exploited for strain engineering. Rele-
vant cases of this sort include the synthesis of 3-methyl-
catechol (H€usken et al., 2001), o-cresol (Faizal et al.,
2005), cis,cis-muconate (van Duuren et al., 2011, 2012)
and styrene (Blank et al., 2008).
Other compounds produced in P. putida are rhamno-

lipids, low toxic, biodegradable bacterial biosurfactants,
via the heterologous expression of the rhl genes from
the Pseudomonas aeruginosa biosynthesis pathway
(Wittgens et al., 2011; Tiso et al., 2017). P. putida has
also been used as a functional chassis for the produc-
tion of terpenoids, taking advantage of the natural stress
resistance of this species to toxic chemicals. Production
of (S)-perillyl alcohol, for instance, has been achieved by
expressing a cytochrome P450 (van Beilen et al., 2005);
and de novo production of geranic acid has been engi-
neered by coexpressing a geraniol synthase from Oci-
mum basilicum together with genes encoding the MVA
pathway for isoprenoid synthesis (Mi et al., 2014). Zeax-
anthin is another class of terpenoid that has been effi-
ciently produced in P. putida (Beuttler et al., 2011;
Loeschcke et al., 2013). Moreover, a number of aromatic
compounds have been produced in P. putida using the
amino acids derived from the shikimate pathway as pre-
cursors. For the production of such molecules, a small
number of genes were introduced into the engineered
strains, and further metabolic engineering to increase
the availability of amino acid precursors was performed
in order to improve yields. Interestingly enough, the reg-
ulation of these pathways in P. putida KT2440 and S12
(a solvent tolerant strain) seems to differ from that in E.
coli, which requires the adoption of specific metabolic
engineering strategies. Examples of production of
added-value aromatic molecules in P. putida are
illustrated by cinnamic acid (Nijkamp et al., 2005) and
phenol (Wierckx et al., 2005; Wynands et al., 2018) –

achieved, among other manipulations, by introducing a
phenylalanine-ammonia lyase from Rhodosporidium toru-
loides and the tyrosine phenol lyase from Pantoea
agglomerans. Other strains producing derivatives of
these aromatic compounds were developed, producing,

for example p-hydroxystyrene (Verhoef et al., 2009), p-
hydroxybenzoate (Yu et al., 2016), anthranilate (Kuepper
et al., 2015), vanillate (Graf and Altenbuchner, 2014)
and p-coumaric acid (Calero et al., 2016). Furthermore,
a number of molecules are being synthesized in indus-
trial-scale fermentations using engineered P. putida
strains. Such examples include the synthesis of 5-cyano-
pentanamide by DuPont (USA) or 5-methylpyrazine-2-
carboxylic acid by Lonza (Switzerland) (Kiener, 1992;
Tiso et al., 2014).
In all, P. putida is considered as one of the most

promising chassis for handling the synthesis of difficult-
to-produce chemicals, involving harsh reactions and
complex biochemistries that impose a high level of
chemical stress to the host cells. The broad, rich meta-
bolism of P. putida also makes it a suitable candidate for
the use of cheap feedstock substrates with high levels of
impurities, for example lignocellulosic biomass hydroly-
sates, although more research is still required to
increase growth rates and product yields and titres under
these operating conditions. While all these issues are
actively being investigated nowadays, the next relevant
question pertains to the adoption of novel bacterial spe-
cies that could also serve as the starting point for the
construction of robust chassis.

Emergent bacterial chassis

Microbial diversity provides a phenomenal source of
solutions to the practical problems encountered in meta-
bolic engineering. Screening through the natural biologi-
cal repertoire of solutions and exploit them for
bioproduction must be part of the engineering agenda
(Price et al., 2018). Some of the current challenges are
(i) limitations in growth rates and product yields in engi-
neered bacteria, (ii) minimizing production costs (i.e.
feedstock prices) and (iii) simplifying downstream pro-
cessing. Against this background, in this section, we dis-
cuss up-and-coming bacterial chassis that have
exceptionally attractive features to develop them as
hosts for bioproduction. The selected examples include
Vibrio natriegens (endowed with a remarkably fast
growth), cyanobacteria (due to their photosynthetic capa-
bilities) and Roseobacter and Halomonas as marine bac-
terial species with an unique tolerance to saline stress.
Other relevant, emerging bacterial species that could be
potentially developed as chassis for specific applications
include both Shewanella and Geobacter sp., which can
be used to engineer microbial fuel cells due to their elec-
tron-accepting capabilities; Klebsiella sp., which can pro-
duce a variety of low-molecular-weight bulk products
using glycerol as carbon source; and Deinococcus, due
to its high resistance to DNA damage and broad range
of feedstock utilization (Fredrickson et al., 2008; Dantas
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et al., 2015; Gerber et al., 2015; Kumar and Park,
2018). Although significant research efforts have been
invested on alternative bacterial chassis in recent years,
much work is still lying ahead to place them at a similar
state of acceptance and widespread use as E. coli or
B. subtilis. These challenges notwithstanding, in this
section we discuss the state of the art and developments
to move the field of metabolic engineering forward by
adopting non-traditional bacterial chassis.

Vibrio natriegens

One of the desired traits of the ideal chassis to be used
as a cell factory for the production of biomass-asso-
ciated products is the fastest growth possible with the
lowest nutrients need. V. natriegens is a Gram-negative,
facultative anaerobic bacterium. Formerly known as
Pseudomonas natriegens and Beneckea natriegens, it
was firstly isolated and described in 1961 (Eagon, 1961;
Payne et al., 1961). This bacterium has the shortest
doubling time known to date: 15 min in brain heart infu-
sion medium supplemented with KCl, MgCl2 and addi-
tional NaCl at 37°C, and 9.8 min in the same culture
conditions but with a culture medium supplemented with
sea salt. These doubling times are around two times
shorter than those of a fast-growing E. coli strain (e.g.
NEB TurboTM) grown in the same culture conditions. The
genome of V. natriegens has been recently sequenced
(Maida et al., 2013; Lee et al., 2016) and, in an attempt
to develop this host as a functional chassis for biopro-
duction, a number of techniques and tools have been
tested and developed, including expression vectors, pro-
tocols for DNA transformation, synthetic promoters cov-
ering a range of expression strengths and tools for
manipulating gene expression levels via CRISPRi (Lee
et al., 2016; Weinstock et al., 2016). The fast growth of
this bacterium allows for a significant speed-up of labo-
ratory cloning procedures, as colonies are already visible
on a plate after a mere six-h post-transformation incuba-
tion. V. natriegens was also found to have a secretory
system able to export proteins to the culture medium
(Weinstock et al., 2016). Moreover, natural transforma-
tion and multiplex genome editing was achieved by over-
expressing the tfoX gene from V. cholera and
V. natriegens, achieving up to four simultaneous scar-
less genome edits (Dalia et al., 2017). Further research
on the central carbon metabolism of V. natriegens has
been performed in glucose-grown cells using 13C-based
metabolic flux analysis, showing a flux distribution in
central carbon metabolism similar to that of E. coli (Long
et al., 2017). Its suitability to be grown in large bioreactor
cultures using different carbon sources has been also
tested, achieving cell densities around 20 g cell dry
weight l�1, and rates of substrate consumption faster

than those of E. coli and S. cerevisiae have been
reported under these growth conditions (Hoffart et al.,
2017). V. natriegens has been successfully applied for
the production of industrially relevant chemical com-
pounds such as PHAs and L-alanine, hinting a great
potential for biotechnological applications in the near
future (Dalia et al., 2017; Hoffart et al., 2017).

Cyanobacteria

Cyanobacteria are increasingly becoming attractive
chassis to sustain production of biofuels and chemicals
due to their ability to use sunlight through photosynthe-
sis, which provides a renewable, cheap, and almost
unlimited energy source. Since CO2 is fixed during the
process, a significant reduction of production costs
related to feedstocks is also expected. In contrast to
other photosynthetic organisms, such as plants,
cyanobacteria are characterized by a relatively fast
growth (Carroll et al., 2018). Several strains of
cyanobacteria have been used so far for metabolic engi-
neering, for example Synechocystis sp. PCC 6803,
Synechococcus elongatus PCC 7942, and Synechococ-
cus sp. PCC 7002, the genomes of which have been
sequenced (Kaneko et al., 1995). A number of tools for
genome engineering have been developed for these
cyanobacterial strains (in particular, for Synechocystis
sp. PCC 6803 and Synechococcus elongatus PCC
7942), and a suite of transformation techniques have
been likewise tested, for example via natural transforma-
tion or electroporation (Wang et al., 2012; Yu et al.,
2013). Neutral insertion genome regions in the chromo-
some and fluorescent reporters have been studied (Ruff-
ing et al., 2016). Moreover, genetic engineering of a
Synechococcus strain has been achieved using the
CRISPR/Cas9 system, although expression of the gene
encoding Cas9 brought about severe growth impairment
(Wendt et al., 2016). Nonetheless, efficient gene repres-
sion of several genes has been implemented using
CRISPRi in Synechocystis sp. PCC 6803 (Kaczmarzyk
et al., 2018). Cyanobacteria have attracted a lot of atten-
tion for the production of biofuels as an alternative to
other photosynthetic systems like plants. Apart from the
obvious differences in replication rates, the use of
cyanobacteria has been proposed as an alternative to
overcome the problem of competition with croplands for
food, while still avoiding the need of using sugars as
feedstock (Ducat et al., 2011; Nozzi et al., 2013; Savakis
and Hellingwerf, 2015). Although cyanobacteria have
found a somewhat limited use in industry thus far, sev-
eral added-value compounds have been produced using
this chassis. A classic example of this sort is repre-
sented by several biofuels, for example ethanol, bis-
abolene, farnesene, 1-butanol, isoprene and isopropanol
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(Dexter and Fu, 2009; Lindberg et al., 2010; Lan and
Liao, 2011; Kusakabe et al., 2013; Davies et al., 2014;
Halfmann et al., 2014) – which even led to the creation
of the spin-off company Photanol in the Netherlands for
cost-efficient production of biochemicals using cyanobac-
teria. Bioproduction of other compounds, for example
1,3-propanediol using CO2 as the only carbon substrate,
has been engineered through the use of specific promot-
ers and optimization of culture conditions (Hirokawa
et al., 2017). Furthermore, a wide range of cyanobacte-
ria strains are able to produce PHAs. 3-Hydroxybutyrate,
the key metabolic precursor of PHB, has also been pro-
duced in Synechocystis sp. PCC 6803 in an attempt to
reduce the high biopolymer production costs associated
with traditional, sugar-based fermentation approaches
(Wang et al., 2013). Although sufficiently high PHB
accumulation has been reached, up to 85.1% of the cell
dry weight (Samantaray and Mallick, 2012), the volumet-
ric productivities are still far from being economically
competitive (Singh and Mallick, 2018). One of the main
reasons for this low productivity is the lack of methods
and efficient processes for biomass production at a
large, industrial scale and the somewhat limited set of
tools available for targeted and fast genome manipula-
tions. Sophisticated metabolic engineering approaches
for facilitating CO2 and formate fixation have been devel-
oped over the last few years (Yishai et al., 2017; Cotton
et al., 2018), and will surely help launching cyanobacte-
ria as functional chassis for novel metabolic functions
towards sustainable bioproduction.

Roseobacter and Halomonas

Besides bioproduction, alternative engineering applica-
tions call for an alternative chassis as well. As proposed
by Borg et al. (2016), this is the case for the bioremedia-
tion of plastic waste in marine environments, a specific
process for which marine bacteria would be the most suit-
able chassis. One of the most important clades in marine
habitats is Roseobacter. These bacteria have been
described previously as source of secondary metabolites,
for example antibiotics (Martens et al., 2007; Brock et al.,
2014; Wang et al., 2016b), and techniques for genome
manipulation have been developed (Borg et al., 2016;
Tang et al., 2016). Another case of an alternative, marine
chassis microorganism is Halomonas, which can grow in
the presence of high salt concentrations under non-sterile
conditions (Tan et al., 2011) – significantly reducing costs
associated with sterilization in the fermentation process.
Although the toolbox for genetic manipulation of this bac-
terial species is somewhat limited, advances have been
made to overcome this problem, for example the develop-
ment of constitutive and inducible promoters for targeted
gene expression (Yin et al., 2014; Zhao et al., 2017),

construction of knock-out mutants through homologous
recombination stimulated by double-strand breaks in the
bacterial genome (Fu et al., 2014), and the implementa-
tion of the CRISPRi technology (Tao et al., 2017). In
terms of practical applications, and by combining all these
engineering strategies, Halomonas strains have been
successfully used for bioproduction of PHB and PHAs
copolymers containing 3-hydroxyvalerate (Fu et al.,
2014), and the osmocompatible solute ectoine (Chen
et al., 2017).

Outlook and the challenges ahead

The preceding sections indicate that, although there is a
reasonably sizeable number of bacterial chassis avail-
able for specific applications that have been developed
(and continue to be refined) over the years, further
developments are needed as a decisive step towards
the adoption of a universal chassis. Having discussed
the main phenotypic properties and metabolic character-
istics of a handful of bacterial species that serve as func-
tional chassis for bioproduction, in this section we
present the challenges that we perceive as a significant
hurdle to overcome in the near future – and we propose
that tackling them should be an integral part of the whole
process that starts from selecting a promising bacterial
species until the establishment of a given bioprocess at
the industrial scale (Fig. 4). Importantly, these issues are
known to be important for several bacterial chassis, even
when the phenomena described below have been mostly
described in E. coli-derived chassis.
Unsolved aspects of microbial metabolism still pose

considerable challenges when selecting a given bacterial
chassis for executing specific (biochemical) functions.
One of these problems is the loss of catalytic efficiency
when the production process is scaled-up in large biore-
actors, compatible with industrial fermentations – which
serves as a reminder that metabolic efficiency at the lab-
oratory scale hardly means high fitness in an industrial
bioreactor. As recently shown for a recombinant E. coli
strain carrying genes needed for MVA synthesis cultured
in a rich medium, cells engineered for bioproduction usu-
ally lose the implanted catalytic functions in several gen-
erations due to an evolutionary process in which
enhanced fitness is selected for, which usually implies
blocking or elimination of heterologous pathways (Rugb-
jerg et al., 2018). One of the main reasons behind this
general effect is the presence of heterogeneities in the
metabolism across the entire cell population (Nikel et al.,
2015b), that could be either endogenous (i.e. arising
from the native genomic and metabolic properties of the
cells) or exogenous (i.e. due to the burden that produc-
ing a chemical compound at high yields usually imposes
on the engineered cells) (Akkaya et al., 2018). Tackling
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this problem is therefore one of the major challenges in
bringing bacterial chassis to actual industrial-scale bio-
production. In connection with this aspect, the evolution
of alternative metabolic architectures in the engineered
biochemical network (as opposed to changes operated
merely at the genetic level) during bioproduction will help
designing more efficient bioprocesses (Nikel and de Lor-
enzo, 2018).
Metabolic orthogonality is a major objective (as well as

a significant challenge) in the field of metabolic engineer-
ing. The design of authentic orthogonal metabolic path-
ways, a concept referring to the minimization (and,
ideally, suppression) of potential interactions between
the synthetic metabolic pathway to be implanted and the
extant metabolism of the bacterial chassis, has become
a holy grail to optimize bioproduction (Pandit et al.,
2017). A much needed further step into this direction
would be to rationally combine the different tools so far
developed for genome engineering and experimentally
curated computational prediction [e.g. retrosynthesis
approaches (Del�epine et al., 2018)] for designing entirely
novel (i.e. synthetic) metabolic architectures that can be
plugged-in into any given bacterial chassis. The emerg-
ing field of designing and implementing orthogonal meta-
bolisms is being boosted by applying sophisticated
strategies for enzyme engineering and de novo protein
design (Erb et al., 2017; Arnold, 2018). Such tailor-made
enzymes, potentially able to catalyze novel, non-natural
biochemical reactions, hold the promise of paving the
way for the design of portable synthetic metabolisms that

can be integrated in any given chassis. Automation and
standardization, two core tenets of synthetic biology,
should be incorporated in the workflow of designing
orthogonal metabolisms as well. The combination of
these approaches would result in the efficient design of
trans-metabolisms for bioproduction of virtually any
chemical structure in a bacterial chassis of choice.
In close connection with engineering completely novel

trans-metabolisms, the field of metabolic engineering is
currently primed for the expansion of products in the
biotechnological agenda – as industrial-scale bioproduc-
tion is still largely limited to a handful of chemicals that
exist only naturally in biological systems. Accessing
new-to-Nature products through metabolic engineering is
not only desirable but an actual necessity in a rapidly
changing world in which access to natural, fossil-based
resources is becoming critical. Redesigning the biochem-
ical palate of bacterial chassis is the way forward to
access these novel products, and rewriting the metabolic
blueprint to broaden the chemical repertoire achievable
by engineered cells is a condition to access novel prod-
ucts (Hossain et al., 2018). Note that such ambitious
objective calls for deepening our current understanding
of the very core metabolic wiring in bacteria, a subject
that has recently gained much attention after quite some
time of (undeserved) ostracism (Aslan et al., 2017).
Including rare chemical elements into the biochemical
agenda of bacterial chassis, for example halogens and
boron (Kan et al., 2017), will revolutionize bioproduction
by multiplying the catalytic power of bacterial cell

Fig. 4. Some of the challenges ahead for developing functional bacterial chassis for metabolic engineering. Effective bioproduction could only
be achieved by overcoming the current hurdles of genetic and genomic instability (e.g. leading to alteration or loss of production phenotypes),
phenotypic variability across individual cells in the microbial population, and the inevitable interactions between metabolic implants and the
extant biochemistry of the bacterial chassis. The way forward to tackle these issues requires the combination of robust in silico predictions and
in-depth experimental validation, if possible under conditions compatible with industrial production.
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factories. Yet again, these operations would be enabled
by an in-depth knowledge of microbial metabolism, and
standardized workflows should be developed to access
these novel biochemistries.
Finally, and in addition to all these scientific and tech-

nical aspects, legislative issues will play a decisive role
in the practical implementation of novel bacterial chassis
for bioproduction. The development of suitable regulatory
frameworks will be needed to bring superior biocatalysts
into the biotechnological arena by tackling and overcom-
ing legal restrictions. In any case, and irrespective of the
current hurdles, the whole field of metabolic engineering
is witnessing an exceptional increase in the number of
bacterial chassis adopted for bioproduction, especially
considering that the revolution brought about by the
implementation of sophisticated tools for genome engi-
neering (e.g. CRISPR/Cas9-based approaches) has
eliminated many of the common barriers that used to
hinder the �a la carte construction of bacterial chassis.
The time has definitely come to capitalize on the knowl-
edge amassed over the years for the smart design and
construction of robust bacterial cell factories by combin-
ing in silico and wet-laboratory approaches.
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