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Abbreviations 

APC: Antigen Presenting Cell 

CMP: Cow’s milk protein 

CT: Cholera toxin 

dNL: Draining lymph node 

EP: Epicutaneous 

EPIT: Epicutaneous Immunotherapy 

HK: Heat-killed 

ID: Intradermal 

IG: Intragastric  

IN: Intranasal 

IP: Intraperitoneal 

IPIT: Intraperitoneal Immunotherapy 

IT: Immunotherapy 

IV: Intravenous 

mLN: Mesenteric lymph node 

PR: Per rectum 

SC: Subcutaneous 
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SCIT: Subcutaneous immunotherapy 

SLIT: Sublingual IT 

Treg: Regulatory T cell 

 

Abstract 

Food allergy is an adverse reaction to otherwise harmless proteins in food. The 

disease is a major health problem of growing concern, affecting approximately 5-8% of young 

children and 2-4% of adults. No accepted strategy exists for prevention and treatment of food 

allergy, and strict avoidance of the offending food is presently the only viable management option. 

Living with food avoidance may have a huge impact on the quality of life of food allergic patients, 

with daily fear of serious or even fatal reactions. The urgent need for safe and efficient food allergy 

treatment options has led to massive research efforts to develop and improve strategies for food 

allergy immunotherapeutic approaches. A first step in developing new and improved strategies of 

immunotherapy often involves the use of animal models. In present review, we provide an overview 

of animal studies of allergen-specific immunotherapy highlighting opportunities and challenges for 

each approach. The presented models, almost exclusively performed in mice, assess therapeutic 

efficacy and immunological outcomes following oral, intraperitoneal, subcutaneous, epicutaneous, 

and sublingual administration of native allergens, or preparations of hydrolyzed allergen, T cell 

directed peptides, or allergen with immunomodulatory adjuvants. Recently, approaches using 

immune cell therapy have demonstrated efficacy. Current models mainly assess anaphylaxis as the 

primary clinical outcome. With the increased appreciation that food allergy is a heterogeneous 

disease presenting different phenotypes, there is a continued need to develop new disease-relevant 

therapeutic models of food allergy. 

 

Introduction 

Food allergy is an immune mediated hypersensitivity to specific proteins in food, 

which occur as a result of allergic sensitization due to a failure of the immune system to develop 

tolerance after first exposure, or the abrogation of an already established tolerance. The prevalence 
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of food allergy is estimated to be around 5-8% in young children and around 2-4% in adults in the 

Western world [1], and appears to be a rising problem [1,2]. Most cases of food allergy is mediated 

by IgE-dependent immediate hypersensitivity reactions, however some rarer food allergies may also 

involve cell-mediated sensitization with and without the contribution of IgE (extensively reviewed in 

[3,4]). Ingestion of disease-triggering foods in sensitized individuals can cause an array of symptoms 

in the gastrointestinal tract (pain, nausea, vomiting and diarrhea), skin (itchiness, urticarial and 

angioedema), respiratory and cardiovascular systems (dyspnea, wheezing, and tachycardia) [5]. In 

severe cases allergic reactions can cause acute respiratory and cardiac arrest. The first line of 

management involves food-avoidance, and acute systemic reactions are treated with epinephrine, 

which are often carried by patients with severe allergy in case of accidental ingestion. The lack of 

treatment options, restrictive food-avoidance, and the prospect of accidental ingestion makes food 

allergy a chronic disease that significantly impacts the quality-of-life for patients [6]. 

 

Allergen-specific immunotherapy (IT) is emerging as a viable option for human 

desensitization with the ability to increase thresholds of reactivity, as demonstrate by a recent 

systematic meta-analysis of 31 clinical trials in food allergy [7]. However, current immunotherapeutic 

regimens are typically lengthy with repeated, increasing doses of allergen, and the risk of acute 

adverse reactions. Furthermore, current regimens are largely unable to induce complete clinical 

tolerance. Thus there is a need to develop better regimens of allergen-specific IT. Testing therapies 

in animal disease models is central to evaluating the potential of new immunotherapeutic strategies 

or modified versions of current regimens. Here we present a comprehensive overview of animal 

models of food allergy therapy currently reported in the literature, and highlight opportunities for 

new avenues of study and model improvements. This review will primarily address IT in animal 

models using allergens and allergen-challenges of relevance to clinical food allergy outcomes. A 

detailed overview of the presented therapeutic animal models can be found in table 1, and 

summarized in figure 1. Currently most models have been developed in mice exploring oral therapy 
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with dosaging of native protein, and to some extent less allergenic preparations containing 

hydrolyzed allergen and immunodominant T cells epitopes. Models using epicutaneous (EPIT) or 

subcutaneous immunotherapy (SCIT) has in recent years received increased attention due to 

possible better safety and efficacy of these routes compared to oral administration. Additionally, 

models exploring therapy using immunomodulatory adjuvants or cell therapy have been developed. 

Current studies have addressed several immunological and clinical outcomes of therapy 

(summarized in figure 2). However, most models only assess the acute anaphylaxis outcome of food 

allergy by temperature loss and clinical severity scoring. With the increased appreciation that food 

allergy is a heterogeneous disease presenting with different phenotypes and mechanisms in relation 

to foods, exposure, symptoms, and natural history [8], there is a continued need to develop new 

disease-relevant therapeutic models in food allergy. 

 

Oral immunotherapy 

 The default outcome of ingesting food is for the immune system to tolerate the 

exposure to the foreign antigens contained within. The concept of oral tolerance has been studied in 

rodents since 1910, with early studies describing how oral ingestion of antigen would inhibit later 

experimental hyperactivity, thus demonstrating that tolerance to ingested food involves active 

antigen-specific suppression of hypersensitivity [9]. Several later studies have addressed the 

mechanistic basis of oral tolerance, including a pivotal role of regulatory T cells (reviewed in [10,11]). 

Oral IT (OIT) models have been developed using egg white [12], ovomucoid (native or heated) [12], 

ovalbumin [13], cow’s milk proteins [14,15] and peanut [15–17] in sensitized mice. In these studies 

therapy were able to reverse or ameliorate food challenge-induced anaphylaxis and clinical disease 

scores, when mice were challenged immediately after treatment. However some studies found 

[12,13,17], that the desensitization was short-term as sensitization returned within 2-5 weeks after 

therapeutic cessation. These findings are in line with oral immunotherapy trials in humans reporting 

limited effects on the induction of sustained unresponsiveness in food allergic individuals. The OIT 
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models found varying effect on the levels of allergen-specific IgG reporting similar [12–14], 

decreased [17], or increased [15] IgG1 levels, and similar [12–14] or increased [13,15,16] IgG2a 

levels. The therapeutic effect on allergen-specific IgE levels were similarly diverse with similar 

[13,15], increased [12] or decreased [14,16,17] levels reported. These findings could be attributed to 

the dynamic nature of Ig levels during IT, and are in line with studies in humans reporting different Ig 

patterns depended on IT efficacy and duration [18,19]. Interestingly, the studies in ovalbumin-

sensitized mice observed sustained systemic allergen-specific humoral immune responses after 

therapy, as demonstrated by basophil activation assays and peritoneal mast cells activation [12,13]. 

Thus the mice was shown to be desensitized when orally challenged with allergen, but anaphylaxis 

could be induced by systemic allergen-challenge [12]. Similar results were observed in another study 

where peanut and whey OIT suppressed mast cell responses following oral challenge, but only mice 

receiving peanut OIT were protected from intraperitoneal (IP) induced anaphylaxis, indicating 

allergen-specific differences in therapeutic outcomes and mechanisms [15]. The therapeutic 

suppression of local gastrointestinal allergic responses was proposed to be mediated by increased 

IgA levels induced by treatment; however this hypothesis remains to be formally investigated [12]. 

Oral therapy was also associated with increased gastrointestinal permeability and changes in 

transcriptional profile in proximal jejunum [12]. The significance of these treatment-induced changes 

remain to be investigated, but may reflect the adverse gastrointestinal effects reported in human 

clinical trials. 

 

Allergen-specific ex vivo production of T cell related type-2 cytokines (IL-4, IL-5 and/or 

IL-13) were suppressed after egg [12], cow’s milk protein [14,15] and peanut [16] OIT, indicating 

suppression of systemic effector T cell immune responses. Indeed the studies found increased 

numbers of CD4+CD25+FoxP3+ regulatory T cells in the intestine or mLN in response to milk protein 

[14,15] or peanut [16] therapy. The induction of intestinal regulatory T cells was associated with 

increased tissue expression of regulatory effector cytokines TGF-β and IL-10 [14]. Unexpectedly, IT in 
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ovalbumin-sensitized mice did not result in the generation of CD4+CD25+FoxP3+ regulatory T cells 

[13], and ex vivo allergen-specific IL-10 was suppressed in mice receiving OIT [12]. These results 

suggest the induction of different immune regulatory mechanisms in the therapeutic response to 

different allergens or regimens. The study using peanut IT [16] found, that the expansion of 

regulatory T cells was abrogated eight weeks post-therapy, and the induced regulatory T cells were 

unable to transfer desensitization to sensitized mice. These findings suggest that the short-term 

desensitization in these models is due to the unstable induction of regulatory T cells. Interestingly, a 

study combining peanut OIT and abrogation of IgE signaling by anti-IgE antibody or Syk inhibitor 

administration in allergy-prone Il4raF709 (gain-of-function mutation in the IL-4 receptor α chain) 

mice found induction of sustained unresponsiveness associated with expansion of regulatory T cells 

and suppression of allergen-specific Th2 cells [17]. These findings are in line with recent studies in 

humans, where anti-IgE can facilitate accelerated desensitization by oral dosing of allergen [20]. 

Combined, the studies presented here suggest that induction of allergen-specific regulatory T cells is 

pivotal for efficient IT of food allergy, and different allergens and therapeutic regimens may induce 

regulatory T cells with different phenotypes. There is a need to study co-administration of immune 

modulatory reagents (TLR agonists and biologicals) in OIT models, and some examples are discussed 

later in the review. 

 

Intraperitoneal immunotherapy 

 The studies presented above performed IT to food proteins via the oral route, 

however a couple of studies have used intraperitoneal (IP) injections with tree nut (cashew and 

walnut) protein extracts as a model of oral therapy [21,22]. Cashew intraperitoneal IT (IPIT) was able 

to abrogate allergic reactions in response to cashew [21] or pistachio [22] (due to cross-reactivity) in 

cashew-sensitized mice. Furthermore, cashew-, walnut- or combined-IT was able to ameliorate 

anaphylaxis (temperature loss) and clinical disease presentation in cashew and walnut dual-

sensitized mice due to cross-reactivity between these three nuts [22]. IT was associated with 
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increased allergen-specific IgG1 [21,22], IgG2 [21] and suppression of T cell related type-2 cytokine 

release (IL-4, IL-5 and IL-13) [21,22] by splenocytes. Interestingly, in these models challenges were 

performed IP 2-5 weeks post-treatment indicating long-term efficacy of therapy. These findings are 

opposed to the studies of OIT reviewed above, in which efficacy to oral challenges was lost 2-4 

weeks post-treatment and allergic reactivity was sustained in response to IP (systemic) challenge for 

ovalbumin and whey OIT [12,15]. This indicates that the therapeutic tolerance induced via the oral 

route is different from tolerance generated via IP allergen administration. It could be speculated that 

oral allergen administration subverts long-term protection by chronic activation of IgE-dependent 

mechanisms, as indicated in the case of oral peanut desensitization in combination with anti-IgE 

[17]. However, more experimental work comparing administration routes using the same allergens, 

sensitization and challenge protocols are required to address this hypothesis. Furthermore, the role 

of regulatory T cells in IPIT models remains to be investigated. 

 

Immunotherapy using hydrolyzed food proteins 

It is generally accepted, that hydrolyzed food allergens exhibit lower allergenicity due 

the destruction of allergenic epitopes. It has been demonstrated, that pepsin-digested cashew 

protein extracts elicit a reduced anaphylactic response (temperature loss and symptom score) 

compared to undigested protein in a murine food allergy model using IP or oral sensitization to 

undigested cashew protein [21]. Both digested and undigested cashew protein were show to have 

similar allergenicity by inducing comparable IgE- and Th2-responses, and clinical anaphylaxis 

following challenge in mice sensitized to the respective preparations using adjuvant. These 

observations demonstrate the principle, that IT using digested protein has reduced potential to elicit 

an allergic response during therapy to native food protein. The study continued to use digested 

cashew protein as IPIT in mice sensitized to undigested cashew protein [21]. IT was demonstrated to 

abrogate anaphylaxis when the mice were challenged with undigested protein. Furthermore, 

therapy was associated with the induction of allergen-specific IgG1 and IgG2a, as well as suppression 
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of IL-5 and IL-13 production by splenocytes. The clinical and immunological outcomes were 

comparable to mice receiving IPIT using undigested protein extract, indicating the same mechanism 

of desensitization. OIT using hydrolyzed egg white proteins in egg white sensitized mice was 

indicated to ameliorate anaphylaxis as demonstrated by normalizing serum histamine levels 

following challenge [23]. Therapy was associated with a modest reduction in allergen-specific IgE 

and IgG2a, whereas IgG1 was unchanged. Allergen-stimulated splenocytes demonstrated reduced 

systemic Th1 (IFN-γ) and Th2 (IL-4) responses. Furthermore, expression of Th1 and Th2 effector 

cytokines (IFN-γ, IL-12p40, IL-4 and IL-13) was reduced in intestinal tissue; however IL-18 and IL-5 

were increased. Therapy was found to promote expression of immune regulatory genes TGF-β and 

FoxP3 but suppress IL-10 in intestinal tissue, suggesting the generation of regulatory T cells in 

therapy using digested allergens. As discuss in previous sections, IPIT and OIT may elicit different 

mode of desensitization, and oral therapy may give rise to specific gut protection and adverse 

reactions depended on the allergen [12,15]. Thus, OIT using digested and undigested protein needs 

to be compared head-to-head to determine altered efficacy, reduced adverse effects and 

mechanism of desensitization.  

 

T cell directed peptide immunotherapy 

 IT using specific peptides may be a more specific alternative to the use of digested or 

hydrolyzed food proteins allowing a consistent and well-defined therapy. Several studies have 

systematically assayed specific peptides from allergens to identify T cell epitopes by the means of 

stimulating immune cells from sensitized animals or allergic patients followed by measuring 

proliferation or cytokine production. Allergen immunodominant T cell epitopes have been identified 

for several food allergens for mice (ovalbumin [24], ovomucoid [25], beta-lactoglobulin [26,27], and 

shrimp tropomyosin [28]) and human (peanut Ara h 1 [29,30] and Ara h 2 [31,32], and shrimp 

tropomyosin [33]). Oral administration of murine immunodominat peptides have been shown to 

ameliorate or reverse anaphylaxis, disease scores and/or diarrhea in mice sensitized to ovalbumin 
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[34], ovomucoid [35], shrimp tropomyosin [28], and beta-lactoglobulin [36]. The studies of 

ovomucoid and beta-lactoglobulin reported a therapeutic effect of single peptide administration (15- 

and 22-mers) [35,36], whereas none of three different peptides (15-mers) in the ovalbumin study 

had an effect when administered individually [34]. However, administration of the three ovalbumin 

peptides as a cocktail significantly ameliorated clinical anaphylactic scores and systemic histamine 

levels, suggesting varying efficacy of different T cell epitopes. The study in shrimp-tropomyosin 

sensitized mice compared a cocktail of six immunodominant and six non-immunodominat peptides 

(20-mers) demonstrating specific efficacy of immunodominant peptide IT [28]. Therapy directed 

against ovalbumin [34], ovomucoid [35] or shrimp-tropomyosin [28] reported decreased allergen-

specific IgE levels and suppression of type-2 immune responses (IL-4, IL-5 and IL-13) in the intestine 

or following ex vivo stimulation. Additionally, these studies found therapeutic induction of immune 

regulatory mechanisms indicated by increased intestinal expression of FoxP3, TGF-β and/or IL-10 

[28,34], as well as increased allergen-specific IL-10 production and systemic CD4+FoxP3+ regulatory T 

cell numbers [35]. The study using peptide IT in beta-lactoglobulin sensitized mice was unable to 

report therapeutic effects on antibody levels (allergen-specific IgE, IgG1, IgG2a, IgA, or total IgE), 

allergen-specific immune responses ex vivo (IL-10, IFN-γ, IL-10, and IL-12), or splenic 

CD4+CD25+FoxP3+ regulatory T cell numbers, suggesting different mode of action or experimental 

difficulties in this study [36]. 

 

OIT using immunodominant peptides show therapeutic potential, but long-term 

efficacy remains to be studied in these pre-clinical models. Unfortunately, recent clinical trials using 

Fel d 1 peptide therapy in humans have been disappointing in terms of therapeutic effect (Circassia 

Pharmaceuticals plc, June 20th 2016 press release, www.circassia.com). This may be attributed to the 

need for immunodominant peptides that could be different among patients due to genetic HLA 

diversity. Indeed, systematic screening reveal different peptide epitopes among different mouse 

stains for ovomucoid [25] and beta-lactoglobulin [26,27]. 
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Subcutaneous immunotherapy 

 Administrating IT via other routes than oral may elicit different clinical and 

immunological outcomes when the food allergy expressing organ is not targeted directly. 

Subcutaneous (SC) injections have for decades been used in IT of allergic disease with demonstrated 

efficacy in asthma, rhinitis, and venom allergies [37]. However, the use of subcutaneous IT (SCIT) in 

food allergy was likely abandoned in the 1990s due to high rates of adverse systemic reactions in 

peanut allergic patients [38,39]. A recent study compared SCIT and OIT in models of cow’s milk 

(whey) and peanut allergy [15]. SCIT and OIT were able to suppress anaphylaxis and mast cell 

degranulation (serum mMCP-1) following intragastric (IG) or intradermal (ID) challenge in both 

models with no clear differences in route-dependent efficacy. Rather, clinical allergen-dependent 

differences were indicated by the observation that neither SCIT nor OIT could protect from IP 

induced anaphylaxis in whey sensitized mice, but peanut sensitized mice were protected in a 

therapeutic dose-dependent manner. Both SCIT and OIT increased serum allergen-specific IgG1 and 

IgG2a, whereas only SCIT increased allergen-specific IgE. This may be in line with the observation, 

that only OIT suppressed (whey) or had similar (peanut) allergen-specific type-2 cytokines 

production (IL-5 and IL-13) while SCIT was similar (whey) or increased (peanut). The authors 

addressed the frequency of CD4+CD69+ST2+ Th2, CD4+CD69+CXCR3+ Th1 and CD4+CD25+FoxP3+ 

regulatory T cells in spleen or mLN, however no clear allergen- or therapy-related patterns could be 

observed suggesting diverse underlying immunological mechanisms [15]. Other SCIT mouse models 

using food allergens support efficacy, but have been conducted without oral or IP allergen 

provocations for the assessment of clinical food allergy outcomes. Studies using ovalbumin or 

peanut SCIT found therapy to suppress allergen-specific IgE and increase IgG2a in serum [40,41]. In 

line, SCIT treated animals exhibited decreased airway hyperreactivity and suppressed type-2 

immune responses in the lung following airway allergen challenge. Additional mechanistic studies in 

SCIT models employing clinical food allergy-related outcomes are needed, including therapeutic 

duration, and adverse reactions compared to OIT. 
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Epicutaneous immunotherapy 

 Epicutaneus IT (EPIT) has recently emerged as a new mode of allergen delivery in food 

allergy therapy. It was hypothesized that applying allergen onto intact skin would allow controlled 

diffusion, and reduce risk of systemic allergen dissemination and anaphylaxis. To this end, DBV 

Technologies developed an epicutaneus delivery system (Viaskin patch) that consists of a chamber 

that releases allergen onto the skin [41], where it diffuses into the epidermis and is taken up by 

dendritic cells that migrates to draining lymph nodes and induce allergen-specific regulatory T cells 

[42]. Early studies found that EPIT could suppress allergen-specific IgE and type-2 immune 

responses, and increase allergen-specific IgG2a in ovalbumin [41,42], peanut [40,41], cow’s milk 

protein [43], house dust mite [41] and pollen [41,44] sensitized mice. The first studies of EPIT in 

relation to food allergy outcomes were conducted in models of esophago-gastro-enteropathy 

following long-term allergen exposure in sensitized animals. EPIT was found to completely reverse 

esophageal and gastric eosinophilia, and reduce serum allergen-specific IgE in peanut sensitized 

mice [45,46] and pigs [47]. Abrogated eosinophilia was associated with reduced eotaxin (CCL11) in 

mice esophagus and pig splenocytes. Furthermore, EPIT suppressed systemic allergen-specific type-2 

(IL-5 and IL-13) immune responses in the models. The studies in mice reported increased 

CD4+CD25+FoxP3+ regulatory T cells expressing CTLA-4, but not PD-1 or IL-10 in the spleen following 

EPIT [46]. The EPIT-induced regulatory T cells were found to suppress esophageal eosinophilia, 

eotaxin and IL-5 expression when adoptively transferred into non-treated peanut-sensitized animals. 

The regulatory T cells exhibited a stable phenotype as cells adoptively transferred from mice 8 weeks 

post-treatment retained the suppression of allergen-induced esophageal eosinophilia and systemic 

type-2 (IL-5 and IL-13) immune responses. These findings are supported by a more recent study 

demonstrating long-term stability of EPIT induced, but not OIT or sublingual IT (SLIT) induced, 

regulatory T cells [16]. EPIT-induced regulatory T cells were found to specifically express CCR9, CLA, 

CCR6, CCR3 and CCR8, suggesting that these cells can migrate and suppress allergic responses in 

several peripheral tissues, including the gut and skin. Interestingly, transfer of EPIT induced 
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regulatory T cells was found to expand the endogenous regulatory T cell population in recipient mice 

[46], which may explain why EPIT to cow’s milk proteins suppress later sensitization to peanut and 

house dust mite in mice [43]. 

 

A recent study reported the therapeutic involvement of EPIT-induced regulatory T 

cells in a model of acute ovalbumin-induced anaphylaxis [13]. In this study did EPIT, but not OIT, 

induce long-term (>5 weeks) protection against anaphylaxis following oral challenge in ovalbumin-

sensitized mice. Interestingly, humoral allergen-specific responses were not affected by treatment as 

demonstrated by basophil activation test and passive sensitization of naïve animal. Rather, allergen-

specific CD4+LAP+FoxP3- regulatory T cells expressing CCR9, CCR6 and CCR4 were found to be 

induced in response to EPIT, but not OIT. These cells were induced in skin-draining lymph nodes and 

migrated to mLN and gut lamina propria. Adoptive transfer and cytokine blocking experiments in 

passively sensitized mice indicated that EPIT-induced regulatory T cells suppress mast cell activation 

in a TGF-β dependent manner. 

 

The findings in EPIT models demonstrate that EPIT-induced regulatory T cells have a 

stable and distinct phenotype compared to regulatory T cells induced via other routes. Clinical trials 

in humans have shown that EPIT is safe, however the current strategies have demonstrated limited 

efficacy [48]. Further technical improvements of EPIT delivery, including skin preparation and 

delivery matrix, are open for optimization and mechanistic exploration in animal models of food 

allergy. 

 

Sublingual immunotherapy 

 Sublingual IT (SLIT) involves administration of allergen under the tongue followed by 

swallowing. This therapeutic route is commonly used in the treatment of allergic rhinitis and asthma 

with demonstrated efficacy in humans [49]. Clinical trials of SLIT in food allergy has been conducted 
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in humans, but indicated reduced efficacy in the treatment of peanut and cow’s milk allergy 

compared to OIT [50,51]. To our knowledge, only one therapeutic animal model using SLIT in 

relation to food allergy outcomes has been published. The study was published very recently 

demonstrating clinical efficacy of SLIT in cow’s milk sensitized mice using low dosages of allergen (pg 

to ng range) [52]. Therapy was associated with increased IL-10 and TGF-β levels in jejunum indicating 

a role of regulatory T cells. This is supported by the study mentioned earlier comparing the function 

and phenotype of regulatory T cells induced by SLIT, EPIT and OIT in peanut sensitized mice [53]. No 

marked therapeutic difference was observed between allergen administration routes in relation to 

increased allergen-specific IgG2a in serum and suppression of allergen-specific type-2 (IL-5 and IL-13) 

cytokines. SLIT and OIT did however increase allergen-specific IL-10 production compared to EPIT, 

which in the SLIT group was essential for the suppression of allergen-specific IL-5 and IL-13 ex vixo. 

These findings indicate that SLIT induces IL-10 producing regulatory Tr1 cells in this peanut model. 

The study further indicated that the SLIT-induced regulatory Tr1 cells were unstable, as regulatory T 

cells adoptively transferred 8 weeks post treatment to sensitized animals had lost the ability to 

suppress allergic esophageal eosinophilia and allergen-specific immune responses. Development of 

new SLIT food allergy animal models may further our understanding of the immunological 

mechanism of SLIT in this disease, and allow optimization of administration protocols and allergen 

formulation. 

 

Immunotherapy using immunomodulatory adjuvants 

 Adjuvants are commonly used in vaccines to elicit a desired immunological response.  

Therapeutic studies in food allergy models have explored the ability of adjuvants to skew the allergic 

type-2 immune response towards a type-1 response using TLR9 agonists [54–57] or heat-killed (HK) 

bacteria [58,59]. Two of the studies using TLR9 agonists were performed in mice sensitized to peanut 

using OIT [56] with whole peanut or peanut protein extract [54,55]. The studies addressing the role 

of HK bacterial adjuvants were performed using subcutaneous or per rectum (PR) IT using 
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recombinant Ara h 1-3 proteins with modified epitopes reducing IgE binding in peanut sensitized 

mice [58,59]. The studies reported similar results with suppression of oral challenge-induced 

anaphylaxis, reduced allergen-specific IgE and increased IgG2a in groups receiving adjuvant allergen-

specific therapy. Allergen-specific type-2 (IL-4, IL-5 and IL-13) immune responses were suppressed, 

whereas IFN-γ was increased. Similar results was obtained in a IPIT study in peanut sensitized mice 

comparing the action of class A, B, and C CpG-ODN TLR9 agonists, where therapeutic effect was 

reported for class B and C CpG-ODNs indicating that B cells are a target of TLR9 agonism [56]. Two 

studies performed several oral challenges indicating therapeutic efficacy for up to 10-16 weeks post 

treatment [55,59]. Combined, these findings indicate that Th1-driving adjuvants promote allergen-

specific Th1 cells with a stable phenotype. Another study using TLR9 agonist in intradermal IT in 

ovalbumin sensitized mice found limited effect on anaphylaxis scores and temperature loss, but 

indicated improved survival following challenge [57]. This finding may indicate allergen-specific 

differences, or reflect different treatment regimens. The role of regulatory T cells in these models 

remains largely unknown. One study using TLR9 agonist found no therapeutic effect on allergen-

specific TGF-β levels [55], whereas one model using HK bacterial reported increased allergen-specific 

TGF-β [59]. As HK bacteria contain several ligands stimulating innate immunity, it cannot be excluded 

that agonists targeting other pathogen-associated molecular pattern receptors than TLR9 can be 

involved in promoting regulatory T cells. Thus there is an opportunity to study the role of other 

adjuvants in these models to identify alternatives to complex whole bacterial adjuvants contain 

several unknown components and antigens. Additionally, targeting the gut microbiota composition 

using probiotics or prebiotics may be an option to modulate local immune responses. Administration 

of a mixture of probiotic bacteria to shrimp tropomyosin sensitized mice has previously been found 

to suppress type-2 immune responses and challenge-induced anaphylaxis [60]. Thus, combining 

probiotics and allergen-specific IT may lead to improved efficacy. 
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A recent study employed a synthetic cetylpyridinium chloride and oil based 

nanoemulsion adjuvant with type-1/17 driving properties for nasal peanut IT in mice [61]. The 

adjuvant was found to promote suppression of challenge-induced anaphylaxis, allergen-specific IgE, 

and type-2 (IL-4, IL-5, IL-33) immune responses, while increasing IgG2a and IgG2b and regulatory T 

cells. The induction of therapeutic efficacy was partly dependent on IL-10 highlighting an underlying 

role of immunoregulatory mechanisms in this type of adjuvant. The importance of enhancing 

immunoregulatory mechanisms during allergen-specific IT is further supported by a recent study 

combining SLIT and the expansion of regulatory T cells using IL-2/anti-IL-2Ab complexes in cow’s milk 

sensitized mice [52]. 

 

 An interesting study used peanut protein chemically coupled to syngeneic splenic 

leukocytes as intravenous (IV) IT in peanut sensitized mice [62]. The chemical linking induces 

apoptosis in leukocytes making the cells a therapeutic vehicle and adjuvant in allergen-specific IT. 

Previous studies suggest that the apoptotic leukocytes are taken up by splenic marginal zone APCs 

leading to the induction of clonal anergy and regulatory T cell specific for the coupled antigen. IT in 

peanut sensitized mice was found to reverse challenge-induced blood eosinophilia and suppress 

allergen-specific type-2 (IL-4 and IL-13) responses, but had only a week effect on anaphylactic scores. 

This IT approach may need optimization in terms of chemical linking, cell subsets, and control of 

apoptosis/necrosis. Other vehicles for allergen could be explored for IV administration, including 

synthetic particles, coupling to APC-receptor specific targets, and allergen complexes. 

 

Cellular immunotherapy 

IT using immune cells has been used in the clinic to promote anti-cancer immunity, 

commonly by administrating ex vivo expanded effector T cells or dendritic cells carrying cancer 

antigens [63]. To our knowledge, cellular IT has not been applied in clinical allergy, which likely is 

reflected by the very few studies of this therapeutic approach in food allergy animal models. The 
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generation and transfer of allergen-specific regulatory T cells could be a potential therapy. This was 

recently explored in a model of peanut allergy where mice received regulatory T cells from mice 

having received OIT, SLIT or EPIT with peanut [16]. The study found that EPIT-induced regulatory T 

cells could suppress the elicitation of esophageal eosinophilia. Although the main objective was to 

assess the phenotypic stability of regulatory T cells induced by various routes of IT, this study 

provides a model of exploring this type of IT. 

 

 Dendritic cells play a central role in instructing T cell responses based on molecular 

signals from pathogens and other environmental stimuli. A recent study exploited that retinoic acid 

stimulates the development of a tolerogenic dendritic cell phenotype (RA-DCs). RA-DCs was 

generated in vitro and pulsed with ovalbumin or peanut protein before being administrated IP to 

sensitized mice [64]. RA-DC therapy suppressed challenge-induced anaphylaxis and diarrhea in both 

models. Therapeutic efficacy was dependent on IL-27 production by the RA-DCs, and in vitro 

experiments found that RA-DCs stimulated the development of IL-10 producing regulatory 

CD4+LAG3+CD49b-FoxP3- Tr1 cells. Mechanistically the study indicated that the RA-DCs could 

suppress allergen-specific Th2 cells via IL-10 and TGF-β production, while IL-27 converted Th2 cells 

into regulatory Tr1 cells. 

 

 Cellular IT is in its infancy within food allergy, and inspiration could be taken from the 

experiences in the field of autoimmunity, which aims to suppress the pathological Th1/17 response 

and promote regulatory T cells [65]. Models using other immune cell phenotypes for therapy, as well 

as optimizing the approach in terms of cell preparation, route of delivery, and adjuvants may be 

needed. 
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Conclusion 

Animal models of food allergen-specific IT are widely used as a preclinical approach to 

study the efficacy of new therapeutic strategies. As reviewed here, animal models have been used as 

a first screen of the applicability of different routes of administration, the use of modified version of 

allergens, and the use of combining allergen with non-specific immune modulation. Efficacy has 

mostly been evaluated by means of anaphylactic scores, while the therapeutic mechanisms have 

primarily been associated of the induction of regulatory T cells, changes in allergen-specific antibody 

levels, and suppression of Th2-related cytokines. Only few of the reported studies use experimental 

techniques to ascertain causal therapeutic mechanisms, including the use of signal blocking, cell 

depletion and transfer experiments, and gene knock-out mice. Thus, there remain opportunities for 

in-depth mechanistic studies of the induction and maintenance of immunological tolerance in these 

models. As no allergen-specific immunotherapeutic approaches has yet been accepted in food 

allergy, animal models may play a valuable tool in addressing safety and efficacy, and to compare 

different approaches in a controlled environment. Animal models have the unique potential to allow 

the study of the efficacy of a given approach with different allergens, as well as the in-depth study of 

mechanisms underlying an immunotherapeutic effect. With the rising appreciation that food allergy 

is a heterogeneous disease [8] future models should include other disease-relevant clinical outcomes 

in addition to acute anaphylaxis, including diarrhea, respiratory function and gastrointestinal 

pathology. Intriguingly, the models presented underline a possible role of allergen-specific 

differences in therapeutic outcomes, mechanisms, and even sensitization. In line, the skin has been 

indicated as a route of sensitization for which models has recently been developed [13]. It remains 

however largely unknown how the route (oral, IP, skin, or respiratory) or method of sensitization 

(adjuvant use, or genetically susceptible mice) affect therapeutic outcomes in the presented IT 

models. Animal models will in the future remain a valuable tool to study efficacy and mechanisms in 

different food allergy phenotypes in a controlled manner. 
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Table 1 - Therapeutic animal models in food allergy 

Route Intervention 
Allergen 
(sensitization) Host Sensitization Treatment Challenge Outcomes Ref. 

 

Oral Immunotherapy (OIT)  

Oral Egg white Ovalbumin 
(Egg) 

Mouse; 
C3H/HeJ 

Oral; 1 mg 
ovalbumin + 10 µg 
CT weekly, 6 wks 

Increasing 1 – 
50 mg/day egg 
white for 14 
days 

Oral; 50 mg 
ovalbumin 

Short term amelioration of 
anaphylaxis (temperature 
loss) and disease score 
Clinical desensitization lost 
2wks post treatment 
Increased serum ovalbumin-
specific IgE and IgA, and 
similar IgG1 and IgG2a post-
treatment 
Suppression of splenic T cell 
cytokines  (IL-13, IL-10 and 
IFN-γ) 2 wks post-treatment 
Treatment induces increased 
gut permeability 

[12] 

Oral Egg white Ovomucoid 
(Egg) 

Mouse; 
C3H/HeJ 

Oral; 1 mg 
ovomucoid 
+ 10 µg CT weekly, 6 
wks 

Increasing 1 – 
50 mg/day egg 
white for 14 
days 

Oral; 25 mg 
ovomucoid  

Short term amelioration of 
anaphylaxis (temperature 
loss) and disease score 
Desensitization lost after 2 
wks post-treatment 

[12] 

Oral Native or heated 
ovomucoid 
 

Ovomucoid 
(Egg) 

Mouse; 
C3H/HeJ 

Oral; 1 mg 
ovomucoid + 10 µg 
CT weekly, 6 wks 

Increasing 0.5 
– 25 mg/day 
ovomucoid for 
14 days 

Oral; 25 mg 
ovomucoid 

Abrogation of anaphylaxis 
and disease score 
 

[12] 

Oral Ovalbumin Ovalbumin 
(Egg) 

Mouse; 
C3H/HeJ 

Skin; 100 µg 
ovalbumin weekly, 6 
wks  

1 mg 
ovalbumin, 
daily, 8 wks 

Oral; 10, 20, 
and 50 mg 
ovalbumin 
30 min apart 

Short term amelioration of 
anaphylaxis (temperature 
loss) 
Desensitization lost after 5 
wks post-treatment 
Increased serum IgG1 and 
IgG2a 

[13] 

Oral Ovalbumin Ovalbumin 
(Egg) 

Mouse; 
C3H/HeJ 

Oral; 1 mg 
ovalbumin + 10 µg 
CT weekly, 6 wks  

1 mg 
ovalbumin, 
daily, 8 wks 

Oral; 10, 20, 
and 50 mg 
ovalbumin 
30 min apart 

No effect on anaphylaxis 
(temperature loss) 
No effect on serum allergen-
specific IgG1 and IgG2a 

[13] 

Oral Cow milk protein Cow milk 
protein  

Mouse; 
BALB/c 

Oral; 20 mg cow milk 
protein + 10 CT 
weekly, 6 wks 

10 µg cow 
milk protein 
weekly, 4 or 8 
wks  

Oral; 10 mg 
cow milk 
protein 

Clinical scores ameliorated 
and negative skin test after 8 
wks of therapy 
Decreased serum allergen-
specific IgE and IgG1, but 
similar IgG2a 

[14] 
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Suppression of splenic  
allergen-specific cytokines IL-
5 and IL-13, but unchanged 
IFN-γ 
Reduced intestinal 
expression of IL-5, IL-13 and 
GATA3, and increased IFN-γ, 
IL-10, TGF-β and FoxP3 
Elevated percentages of 
intestinal CD4

+
CD25

+
FoxP3

+
 

cells expressing IL-10 

Oral Whey Whey (milk) Mouse; 
C3H/HeOuJ 

IG; 20 mg whey + 20 
µg CT; day 0, 7, 14, 
21 
and 28 

0.1, 1, 10 or 
100 mg whey 
5x weekly for 
3 wks 

50 mg IG,  
100 mg IP, 
or 10 µg ID; 
whey 

Decreased ear swelling, 
anaphylaxis score and 
temperature loss following ID 
challenge 
Decreased serum mMCP-1 
levels following IG challenge 
No protection from IP-
induced anaphylaxis 
Similar allergen-specific IgE, 
and increased IgG1 and IgG2a 
level in serum 
Reduced CD4

+
CD69

+
ST2

+
 Th2 

cells and increased 
CD4

+
CD69

+
CXCR3

+
 Th1 cells 

in spleen 
CD4

+
CD25

+
FoxP3

+
 regulatory 

T cells increased in mLN, but 
not spleen 
Suppressed allergen-specific 
IL-5 and IL-13, and similar IL-
10 and IFN-γ production by 
splenocytes 

[15] 

Oral Peanut butter; Anti-
IgE or SYKi facilitated 

Peanut butter  Mouse; 
allergy-
prone 
Il4raF709 

Oral; 23 mg peanut 
butter (5 mg 
protein) weekly, 4 
wks 

225 mg 
peanut butter 
daily, 3 wks; 
25 µg/day 
anti-IgE IP for 
4 days before 
peanut or 30 
mg/kg SYKi IG 
daily with the 
peanut 

Oral; 430 mg 
peanut 
butter 

Prolonged suppression of 
anaphylaxis 
Expansion of allergen-specific 
regulatory T cells 
Suppression of allergen-
specific Th2 immune 
responses 
 

[17] 

Oral Peanut protein 
extract 

Peanut 
protein 

Mouse; 
C3H/HeOuJ 

IG; 6 mg peanut 
protein extract + 20 

0.15, 1.5, or 
15 mg peanut 

15 mg IG, 
100 mg IP, 

Decreased ear swelling 
following ID challenge 

[15] 
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extract µg CT; day 0, 1, 2, 7, 
14, 21 and 28 

protein 
extract 5x 
weekly for 3 
wks 

or 1 µg ID; 
peanut 
protein 
extract 

Decreased serum mMCP-1 
levels following IG challenge 
Decreased  anaphylaxis score 
and temperature loss 
following IP-induced 
anaphylaxis 
Similar allergen-specific IgE, 
and increased IgG1 and IgG2a 
level in serum 
Similar CD4

+
CD69

+
ST2

+
 Th2 

cells, CD4
+
CD69

+
CXCR3

+
 Th1, 

and CD4
+
CD25

+
FoxP3

+
 

regulatory T cells in spleen 
Similar allergen-specific IL-5, 
IL-13, IL-10 and IFN-γ 
production by splenocytes 

Oral Peanut protein 
extract 

Peanut 
protein 
extract 

Mouse; 
BALB/c 

IG; 1 mg peanut 
protein extract + 10 
µg CT weekly for 6 
wks 

1 mg peanut 
protein 
extract week 
1, 2 mg 
protein week 
2, and 5 mg 
protein week 
3 - 8. 

None Suppression of allergen-
specific IgE and induction of 
IgG2a 
Reduced ex vivo splenic 
allergen-specific IL-5 and IL-
13, and increased IL-10  
Increased splenic  CD4

+
CD25

+
 

regulatory T cells expressing 
FoxP3, CTLA-4, LAP, CCR9 and 
CCR4 

[16] 

 

Intraperitoneal immunotherapy (IPIT) 

IP Cashew protein 
extract 

Cashew 
protein 
extract 

Mouse; 
C3H/HeJ 

Oral; 2 mg cashew 
protein extract + 10 
µg CT day 1, 8 and 
15, and 5 mg protein 
+ 10 µg CT day 22 

3 IP doses 
weekly; 
Dosing: 50 µg 
cashew 
protein 
extract week 
1, 125 µg 
week 2, and 
200 µg week 
3+4  

IP; 1 mg 
cashew 
protein 
extract 14 
days post 
treatment 

Abrogation of anaphylaxis 
(temperature loss) and 
disease score 
Increased allergen-specific 
IgG1 and IgG2a, but no effect 
on IgE 
Suppression of splenic  
allergen-specific cytokines IL-
5 and IL-13, but unchanged 
IL-4 and IFN-γ 

[21] 

IP 
 
 
 

Cashew protein 
extract in cross-
reactivity model 

Cashew or 
egg protein 
extract 

Mouse; 
C3H/HeJ 

IP; 500 µg protein 
extract (cashew or 
egg) +  2 mg alum 
week 1, 2 and 4 

3 IP doses 
weekly; 
Dosaging: 100 
µg protein 
extract 
(cashew) week 
1, 250 µg 

IP; 1 mg 
protein 
extract 
(cashew, 
pistachio, or 
egg) 

Abrogation of anaphylaxis 
(temperature loss) and 
disease score following 
cashew or pistachio 
challenge in  cashew-
sensitized mice 
Increased allergen-specific 

[22] 
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week 2, and 
500 µg week 
3+4 

IgG1 
Suppression of splenic  
allergen-specific cytokines IL-
4 and IL-5, and increased IL-
12p40 
Mice sensitized to egg was 
not protected from egg-
induced anaphylaxis 
following cashew IT 

IP Cashew or walnut 
protein extract in 
multi-sensitization 
model 

Cashew and 
walnut 
protein 
extract 

Mouse; 
C3H/Hej 

IP; 500 µg protein 
extract (cashew and 
walnut) +  2 mg alum 
week 1, 2, and 4 

3 IP doses 
weekly; 
Dosaging: 100 
µg protein 
extract 
(cashew 
and/or 
walnut) week 
1, 250 µg 
week 2, and 
500 µg week 
3+4 

IP; 1 mg 
protein 
(cashew, or 
walnut) 

Cashew and cashew + walnut 
IT protect from cashew-
induced anaphylaxis 
(temperature loss) and 
disease score 
Walnut IT partly protect from 
cashew-induced anaphylaxis 
(temperature loss) and 
disease score 
Walnut and cashew + walnut 
IT protect from walnut-
induced anaphylaxis 
(temperature loss) and 
disease score 
Cashew IT partly protect 
from walnut-induced 
anaphylaxis (temperature 
loss) and disease score 
Cashew, walnut and cashew 
+ walnut IT increases both 
cashew and walnut-specific 
IgG1 

[22] 

 

Immunotherapy using hydrolyzed food proteins 

IP Digested cashew 
protein extract 

Cashew 
protein 
extract 

Mouse; 
C3H/HeJ 

Oral; 2 mg cashew 
protein extract + 10 
µg CT day 1, 8 and 
15, and 5 mg protein 
+ 10 µg CT day 22 

3 IP doses pr. 
week; 
Dosaging: 50 
µg digested 
cashew 
protein 
extract week 
1, 125 µg 
week 2, and 
200 µg week 
3+4  

IP; 1 mg 
cashew 
protein 
extract 14 
days post 
treatment 

Abrogation of anaphylaxis 
(temperature loss) and 
disease score 
Increased allergen-specific 
IgG1 and IgG2a, but no effect 
on IgE 
Suppression of splenic  
allergen-specific cytokines IL-
5 and IL-13, but unchanged 
IL-4 and IFN-γ 
Clinical and immunological 
outcomes were similar in 

[21] 
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mice receiving therapy with 
intact cashew protein 

Oral Hydrolyzed egg 
white proteins 

Egg white 
proteins 

Mouse; 
BALB/c 

Oral; 5 mg egg white 
proteins + 10 µg CT 
2x weekly, 4 wks 

Oral; 5 mg 
hydrolyzed 
egg white 
proteins 3x 
weekly, 3 wks 

Oral; 20 mg 
egg white 
proteins 

Normalization of serum 
histamine 
Decreased allergen-specific 
IgE and IgG2a, and 
unchanged IgG and IgG1 
Reduced allergen-specific IL-4 
and IFN-γ by splenocytes 
Reduced intestinal 
expression of IL-4, IL-13, IFN-
γ, IL-10 and IL-12p40, and 
increased IL-18, IL-5, TGF-β 
and FoxP3 

[23] 

 

T cell directed peptide immunotherapy 

Oral Peptides from 
ovalbumin 
(immunodominat T 
cell epitopes) - 3 
single peptides or 
cocktail 

Ovalbumin 
(Egg) 

Mouse; 
BALB/c 

Oral; 1 mg 
ovalbumin + 10 µg 
CT 2x weekly, 4 wks 

Oral; 100 µg 
peptide 3x 
weekly, 3 wks 

Oral; 20 mg 
ovalbumin 

Peptide cocktail suppressed 
anaphylactic disease scores 
and serum histamine levels 
Reduced allergen-specific IgE 
and unchanged IgG 
Allergen-specific decreased 
IL-4 and increased IFN-γ in 
splenocytes 
Reduced intestinal 
expression of IL-4, IL-5, IL-13, 
and increased TGF-β and 
FoxP3 
Possibly increased fecal IgA 

[34] 

Oral Peptide from 
ovomucoid 
(immunodominat T 
cell epitope) - single 
or triple sequence 

Ovomucoid 
(Egg) 

Mouse; 
BALB/c 

Oral; 1 mg 
ovomucoid + 10 µg 
CT 2x weekly, 4 wks 

Oral; 1 mg 
single or 3 mg 
triple 3x 
weekly, 4 wks 

Oral; 20 mg 
ovomucoid 

Peptide abrogated disease 
score and histamine release 
Decreased allergen-specific 
IgE, similar IgG, IgG1 and 
increased IgG2a 
Possibly increased fecal IgA 
Allergen-specific decreased 
IL-4 and increased IL-12, IFN-
γand IL-10 in splenocytes 
Increase percentage of blood 
CD4

+
FoxP3

+
 cells 

[35] 

Oral Peptides from 
shrimp-tropomyosin 
(immunodominat T 
cell epitopes) - 
Cocktail of 6 

Recombinant 
shrimp-
tropomyosin 

Mouse; 
BALB/c 

Oral; 100 µg 
recombinant shrimp-
tropomyosin + 10 µg 
CT day 0, 12, 19, and 
26 

Oral; 1,2 mg 
peptide mix 2x 
weekly, 4 wks 

Oral; 500 µg 
recombinant 
shrimp-
tropomyosin 

Peptide cocktail suppressed 
disease scores, diarrhea, and 
serum mMCP-1 levels 
Decreased allergen-specific 
IgE, increased IgG2a and 

[28] 
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peptides similar IgG1 in serum 
Suppression of intestinal IL-5 
and IL-13 expression, and 
increased FoxP3, CD25, IL-10, 
IL-12, IL-18 and IFN-γ 
Allergen-specific decreased 
IL-4 and IL-5, and increased 
IFN-γ in splenocytes 

Oral Peptides from beta-
lactoglobulin 
(immunodominat T 
cell epitopes) - 2 
single peptides 

beta-
lactoglobulin 
(Milk) 

Mouse; 
BALB/c 

IP; 50 µg beta-
lactoglobulin + 2 mg 
alum weekly, 3 wks 

Oral; 1 mg 
peptide 3x 
weekly, 4 wks 

Oral; 50 mg 
beta-
lactoglobulin 

Peptides abrogation of 
anaphylaxis (temperature 
loss) and suppressed disease 
scores 
No effect on serum allergen-
specific IgE, IgG1, IgG2a, IgA, 
total-IgE, or fecal total-IgA 
No differences in allergen-
specific IFN-γ, IL-12, IL-4 
and/IL-10 in splenocytes or 
mLN cells 
No difference in splenic 
CD4

+
CD25

+
FoxP3

+
 regulatory 

T cell population 

[36] 

 

Subcutaneous immunotherapy (SCIT) 

SC Whey Whey (milk) Mouse; 
C3H/HeOuJ 

IG; 20 mg whey + 20 
µg CT; day 0, 7, 14, 
21, 
and 28 

SC; 2.5, 10 or 
25 μg whey 3x 
weekly, 3 wks  
 

50 mg IG, 
100 mg IP, 
or 10 µg ID; 
whey 

Decreased anaphylaxis score 
and temperature loss, but 
minimal effect on ear 
swelling following ID 
challenge 
Decreased serum mMCP-1 
levels following IG challenge 
No protection from IP-
induced anaphylaxis 
Increased allergen-specific 
IgE, IgG1, and IgG2a levels in 
serum 
Reduced CD4

+
CD69

+
ST2

+
 Th2 

cells and increased 
CD4

+
CD69

+
CXCR3

+
 Th1 cells 

in spleen 
Similar CD4

+
CD25

+
FoxP3

+
 

regulatory T cells in mLN and 
spleen 
Similar allergen-specific IL-5, 
IL-13, IL-10, and IFN-γ 

[15] 
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production by splenocytes 

SC Peanut protein 
extract 

Peanut 
protein 
extract 

Mouse; 
C3H/HeOuJ 

IG.; 6 mg peanut 
protein extract + 20 
µg CT; day 0, 1, 2, 7, 
14, 21, and 28 

SC; 1, 10 or 
100 µg peanut 
protein 
extract 3x 
weekly, 3 wks  

15 mg IG, 
100 mg IP, 
or 1 µg ID; 
peanut 
protein 
extract 

Minimal effect on ear 
swelling following ID 
challenge Decreased serum 
mMCP-1 levels following IG 
challenge 
Decreased  anaphylaxis score 
and temperature loss 
following IP-induced 
anaphylaxis 
Increased allergen-specific 
IgE, IgG1, and IgG2a levels in 
serum 
Increased CD4

+
CD69

+
ST2

+
 

Th2 cells, and similar 
CD4

+
CD69

+
CXCR3

+
 Th1, and 

CD4
+
CD25

+
FoxP3

+
 regulatory 

T cells in spleen 
Increased allergen-specific IL-
5 and IL-10, and similar IL-13 
and IFN-γ production by 
splenocytes 

[15] 

 

Epicutaneous immunotherapy (EPIT) 

EP Ovalbumin Ovalbumin 
(Egg) 

Mouse; 
C3H/HeJ 

Skin; 100 µg 
ovalbumin weekly, 6 
wks  

100 µg 
ovalbumin in 
Viaskin patch 
48 hours 
weekly, 8 wks 

Oral; 10, 20, 
and 50 mg 
ovalbumin 
30 min apart 

Long-term reversal  of 
anaphylaxis (temperature 
loss) at 1 and 5 weeks post-
treatment 
Persistent increased serum 
allergen-specific IgG1 and 
IgG2a at 1 and 5 weeks post-
treatment 
No effect in basophil 
activation tests 
No therapeutic blocking 
antibodies demonstrated by 
passive sensitization of naïve 
animal 
Therapeutic induction of 
CD4

+
LAP

+
FoxP3

-
 regulatory T 

cells in skin dLN and mLN 
expressing CCR9, CCR6 and 
CCR4 
Therapeutic effect mediate 
by TGF-β 

[13] 
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EP Ovalbumin Ovalbumin 
(Egg) 

Mouse; 
C3H/HeJ 

Oral; 1 mg 
ovalbumin + 10 µg 
CT weekly, 6 wks  

100 µg 
ovalbumin in 
Viaskin patch 
48 hours 
weekly, 8 wks 

Oral; 10, 20, 
and 50 mg 
ovalbumin 
30 min apart 

Reversal  of anaphylaxis 
(temperature loss) 
Increased allergen-specific 
IgG1 and IgG2a at 1 week, 
but not 5 weeks post 
treatment 
No effect in basophil 
activation tests 
No therapeutic blocking 
antibodies demonstrated by 
passive sensitization of naïve 
animal 
Therapeutic induction of 
CD4

+
LAP

+
FoxP3

-
 regulatory T 

cells in skin bLN and mLN 
expressing CCR9, CCR6 and 
CCR4 
Therapeutic effect mediate 
by TGF-β 

[13] 

EP Peanut protein 
extract 

Peanut 
protein 
extract 

Mouse; 
BALB/c 

Oral; 1 mg peanut 
protein extract + 10 
µg CT weekly, 6 wks 

100 µg peanut 
protein 
extract in 
Viaskin patch 
48 hours 
weekly, 8 wks 

Peanut as 
feed day 1-
4, peanut in 
feed day 5-
10, and 10 
mg IG daily 
the last 3 
days  

Suppression of esophageal 
eosinophilia, and acanthosis 
and inflammation scores 
Reversal of allergic 
enteropathy and villous 
morphology 
Increased IgG2a in serum 
Reduced allergen-specific IL-
5, IL-13 and IL-10, and similar 
IFN-γ production by 
splenocytes  
FoxP3 mRNA expression in 
esophagus 
Increased splenic 
CD4

+
CD25

+
FoxP3

+
 regulatory 

T cells expressing CTLA-4, but 
not IL-10 and PD-1 
Reduced eotaxin and 
increased FoxP3 expression 
in esophagus  
Efficacy dependent on CD25 
during treatment 
Long-term stability of 
treatment induced regulatory 
T cells was demonstrated by 
adoptive transfer of 
CD4

+
CD25

+
 T cells 8 wks post 

[45,46] 
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treatment 

EP Peanut protein 
extract 

Peanut 
protein 
extract 

Pig; (LW  x 
LR) x P 

IP; 100 µg peanut 
protein extract + 8 
mg alum week 1, 2, 
and 4 

100 µg peanut 
protein 
extract in 
Viaskin patch 
for 24 hours 
daily, 81 days 

Oral; 4 mg 
peanut 
protein 
extract daily 
for 10 days 

Reversal of visual gastritis, 
and gastric tissue 
inflammation and 
eosinophilia 
Reduced serum allergen-
specific IgE 
Suppression of splenic Gata3, 
FoxP3, IL-5 and eotaxin 
mRNA expression 

[47] 

 

Sublingual immunotherapy (SLIT) 

SL Cow milk protein Cow milk 
protein 

Mouse; 
BALB/c 

IG; 20 mg cow milk 
protein + 10 µg CT 
weekly, 6 wks 

10 pg 2x 
weekly, 4 
weeks. 
Followed by 
10 ng 2x 
weekly, 4 
weeks; cow 
milk protein 

IG; 10 mg 
cow milk 
protein 
twice 24h 
apart 

Suppression of clinical 
symptom scores  
Decreased allergen-specific 
serum IgE 
Decreased allergen-specific 
IL-5 production by 
splenocytes 
Increased IL-10 and TGF-β 
levels in jejunum 

[52] 

 

Immunotherapy using immunomodulatory adjuvants 

Oral TLR9 agonist (IMO) + 
peanut protein 
extract 

Peanut 
protein 
extract 

Mouse; 
C3H/HeJ 

Oral; 1 mg peanut 
protein extract + 10 
µg CT day 0 and 14. 

1 mg peanut 
protein 
extract with or 
without 150 
µg TLR9 
agonist day 
21, 24, 28, and 
31 

IG; 1 mg 
peanut 
protein 
extract 2x, 
30-40 min 
interval 

Suppression of anaphylaxis 
scores and reversal of serum 
histamine levels 
Reduced mast cells and 
eosinophils in small intestine 
Decreased in allergen-specific 
IgE and IgG1, and increased 
IgG2a in serum 
Increased allergen-specific 
IgA in intestine 
Suppressed allergen-specific 
IL-5 and IL-13, and increased 
IFN-γ production by 
splenocytes 

[54] 

IG TLR9 agonist (class B 
CpG-ODN 1826) + 
defatted whole 
roasted peanut in 
PLGA nanoparticles 

Whole 
roasted 
peanut 

Mouse; 
C3H/HeJ 

IG; 10 mg whole 
roasted peanut + 20 
µg CT + 1.1 µl 80-
proof EtOH pr. g BW 
weekly, 6 wks. 50 
mg boost with same 
adjuvant wks 7 and 8 

200 µg whole 
roasted 
peanut with or 
without 1.8 µg 
TLR9 agonist 
weekly, 4 wks 

Oral; 200 mg 
whole 
roasted 
peanut 
(done 
weekly with 
IG 
sensitization 

Suppression of anaphylaxis 
scores, temperature loss and 
plasma histamine levels 
Decrease in allergen-specific 
IgE and IgG1, and increased 
IgG2a in serum 
Decreased allergen-specific 
IL-4, IL-5 and IL-13, and 

[55] 
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dose the day 
after for 5 
wks) 

increased IFN-γ production 
by splenocytes 

 IP TLR9 agonist (class A 
CpG-ODN 1585, class 
B CpG-ODN 1826, or 
class C CpG-ODN 
M362) + peanut 
protein extract  

Peanut 
protein 
extract 

Mouse; 
C3H/HeJ 

IP; 500 µg peanut 
protein extract + 2 
mg alum weekly, 3 
wks 

Increasing 100 
– 500 µg 
peanut 
protein 
extract with or 
without 30 µg 
TLR9 agonist 
twice weekly, 
3 wks 

IP;  1 mg 
peanut 
protein 
extract 

Class B and C CpG-ODNs 
decreased anaphylaxis 
scores, temperature loss and 
serum MMCP-1 levels 
Similar allergen-specific IgE 
and IgG1, and increased 
IgG2a in serum 
Decreased allergen-specific 
IL-5 and IL-13, and similar IL-
4 production by splenocytes 
Class B CpG-ODN increased 
allergen-specific IFN-γ 
production by splenocytes 

[56] 

ID TLR9 agonist (class B 
CpG-ODN 1826) + 
ovalbumin in PLGA 
nanoparticles 

Ovalbumin 
(Egg) 

Mouse; 
BALB/c 

IP; 50 µg ovalbumin 
+ 2 mg alum weekly, 
2 wks 

20 µg 
ovalbumin 
with or 
without 25 µg 
TLR9 agonist, 
3x 6 days 
apart 

IP; 1 mg 
ovalbumin 

Limited effect on anaphylaxis 
score and temperature loss 
Possible protection from 
death 
 

[57] 

SC Heat-killed Listeria 
monocytogenes 
(HKLM) + IgE-binding 
modified 
recombinant Ara h 1-
3 

Whole 
roasted 
peanut 

Mouse; 
C3H/HeJ 

IG; 10 mg whole 
roasted peanut + 20 
µg CT + 1, weekly, 
week 1-6 and 8 

90 ug 
modified 
recombinant 
Ara h 1-3 with 
10

8
 HKLM 

weekly, 3 wks, 
or without 
HKLM 3x 
weekly, 4 wks 

IG; 25 mg 
whole 
roasted 
peanut 2x, 
30 - 40 min 
interval 

Suppression plasma 
histamine levels, but limited 
effect on of anaphylaxis 
scores and temperature loss 
Limited effect on respiratory 
distress measured as 
unrestrained Peak Expiratory 
Flow  
Decreased allergen-specific 
IgE and increased IgG2a in 
serum 
Decreased allergen-specific 
IL-4, IL-5 and IL-13, and 
increased IFN-γ production 
by splenocytes 

[58] 

PR Heat-killed 
Escherichia coli 
expressing IgE-
binding modified 
recombinant Ara h 1-
3 

Whole 
roasted 
peanut 

Mouse; 
C3H/HeJ 

IG; 10 mg whole 
roasted peanut + 20 
µg CT + 1, weekly, 
week 1-6 and 8 

0,9, 9 or 90 µg 
whole roasted 
peanut 
weekly, 3 wks 

IG; 25 mg 
whole 
roasted 
peanut 2x, 
30-40 min 
interval at 2, 
6 and 10 

Long-term reversal of 
anaphylaxis scores and 
suppression of plasma 
histamine levels 
Decreased allergen-specific 
IgE and increased IgG2a in 
serum 

[59] 
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wks post-
treatment 

Decreased allergen-specific 
IL-4, IL-5 and IL-13, and 
increased IFN-γ and TGF-β 
production by splenocytes 
 

 IN Nanoemulsion 
(cetylpyridinium 
chloride and oil 
based) + peanut 
protein extract 

Peanut 
protein 
extract 

Mouse; 
C3H/HeJ 

IP; 20 µg peanut 
protein extract + 2 
mg alum, weekly, 2 
wks 

20 µg peanut 
protein 
extract with or 
without 20 % 
nanoemulsion, 
3x, 4 wks 
apart 

IG; 10 mg 
peanut 
flour, 6x 
during 2 wks 
(or 100 µg 
IP)  

Suppression of anaphylaxis 
scores and temperature loss 
following IP challenge 
Suppression of anaphylaxis 
scores and serum MCPT-1 
levels following IG challenge 
Decreased allergen-specific 
IgE and IgG1, and increased 
IgG2a and IgG2b 
Decreased allergen-specific 
IL-4, IL-13, IL-33 and IL-21, 
and increased IFN-γ, IL-22, 
and IL-10 in mLN cells 
Increased percentage of 
CD4+CD25+FoxP3 regulatory 
T cells in mLN 
Induction of therapeutic 
efficacy was partly 
dependent on IL-10 

[61] 

 Nanoemulsion 
(cetylpyridinium 
chloride and oil 
based) + peanut 
protein extract 

Peanut 
protein 
extract 

Mouse; 
C3H/HeJ 

IG; 1 mg peanut 
protein extract + 10 
µg CT, 3x weekly, 2 
wks 

20 µg peanut 
protein 
extract with or 
without 20 % 
nanoemulsion, 
3x, 4 wks 
apart 

IG; 10 mg 
peanut 
flour, 6x 
during 2 wks 
(or 100 µg 
IP) 

Suppression of anaphylaxis 
scores and serum MCPT-1 
levels following IG challenge 
Decreased allergen-specific 
IL-4, and IL-13, and increased 
IFN-γ and IL-10 in mLN cells 

[61] 

SL IL-2/anti-IL-2Ab 
complex (IL-2C) + 
cow milk protein 

Cow milk 
protein 

Mouse; 
BALB/c 

IG; 20 mg cow milk 
protein + 10 µg CT 
weekly, 6 wks 

10 pg cow 
milk protein 
2x weekly, 4 
weeks. 
Followed by 
10 ng cow 
milk protein 
2x weekly, 4 
weeks. With 
or without IL-
2C (15000IU 
IL-2 + 4.5 µg 
anti-IL-2) IP 5x 
in the 

IG; 10 mg 
cow milk 
protein 
twice 24h 
apart 

Possibly enhanced SLIT 
therapy indicated by weak 
suppression of clinical 
symptom scores and 
allergen-specific serum IgE 
Expansion of intestinal 
mucosal CD4+CD25+FoxP3+ 
regulatory T cells 
Increased TGF-β levels in 
jejunum  
 

[52] 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

treatment 
period 

 IV Peanut protein 
extract fixed to 
splenic leukocytes 

Peanut 
protein 
extract 

Mouse; 
C3H/HeJ 

IG; 100 µg peanut 
protein extract + 50 
µg SEB, weekly, 8 
wks 

5 x 10
7
  

leukocytes, 
weekly, 2 wks 

Oral; 5 mg 
peanut 
protein 
extract 

Weak effect on anaphylaxis 
scores, but reversed blood 
eosinophilia 
Similar allergen-specific IgE  
Decreased allergen-specific 
IL-4 and IL-13, and similar IL-
5 production by splenocytes 

[62] 

 

Cellular immunotherapy 

IV CD4+CD25+ 
regulatory T cells 
induced by OIT, SLIT 
or EPIT 

Peanut 
protein 
extract 

Mouse; 
BALB/c 

IG; 1 mg peanut 
protein extract + 10 
µg CT weekly for 6 
wks 

5 x 10
5
 Treg 

cells 
Peanut as 
feed day 1-
4, peanut in 
feed day 5-
10, and 10 
mg peanut 
protein 
extract IG 
daily the last 
3 days 

EPIT-induced CD4
+
CD25

+
 

Tregs suppressed of 
esophageal eosinophilia 
Suppressed allergen-specific 
IL-5, IL-13, IFN-γ and IL-10 
production by splenocytes 
 

[16] 

IP Ovalbumin-pulsed 
retinoic acid-
differentiated 
dendritic cells (RA-
DCs) generated in 
vitro 

Ovalbumin 
(Egg) 

Mouse; 
BALB/c 

IP; 2 µg ovalbumin + 
2 mg alum 

10
6
 RA-DCs IG; 2 mg 

ovalbumin 
Suppression of anaphylaxis 
score, diarrhea incidence, 
and serum mMCP-1 
Decreased serum allergen-
specific IgE and IgG1 
Decreased IL-4, IL-5, IL-9 and 
IL-13 in peritoneal fluid  
Therapeutic effect 
dependent on IL-27 
production by RA-DCs 

[64] 

IP Peanut protein-
pulsed retinoic acid-
differentiated 
dendritic cells (RA-
DCs) generated in 
vitro 

Peanut 
protein 
extract 

Mouse; 
BALB/c 

IP; 20 µg peanut 
protein extract + 1 
mg alum 

10
6
 RA-DCs IG; 50 mg 

peanut 
butter 

Suppression of anaphylaxis 
score, diarrhea incidence, 
and serum mMCP-1 
Decreased serum allergen-
specific IgE and IgG1 
Similar IL-4, IL-5, IL-9 and IL-
13, and increased IL-10 in 
peritoneal fluid  

[64] 

CMP, Cow’s milk protein; CT, Cholera toxin; dNL, Draining lymph node; EP, Epicutaneous; EPIT, Epicutaneous Immunotherapy; HK, Heat-killed; ID, Intradermal; IN, Intranasal; IG, Intragastric; IP, Intraperitoneal; IPIT, 

Intraperitoneal Immunotherapy; IT, Immunotherapy; IV, Intravenous; mLN, Mesenteric lymph node; PR, Per rectum; SC, Subcutaneous; SCIT, Subcutaneous immunotherapy; SL, Sublingual; SLIT, Sublingual IT; Treg, 

Regulatory T cell. 
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Figure legends 

 

Figure 1 – Overview of allergen-specific immunotherapy models in food allergy. Flowcharts show 

models in relation to a particular food allergy (egg, cow’s milk, peanut, tree nut, and shrimp) with 

the specific allergen, mode of sensitization, and therapy used. The thickness of lines shows the 

number of models reported using the specific approach (1-8). Immunotherapeutic approaches 

include oral (OIT), intraperitoneal (IPIT), subcutaneous (SCIT), epicutaneous (EPIT), or sublingual 

(SLIT) administration of allergen, allergen in combination with immunomodulatory adjuvant 

(adjuvant IT) or immune cells (cellular IT), and preparations of hydrolyzed allergen or allergen-

derived T cell epitopes. Unless stated otherwise the reported models were conducted in mice. 

Il4raF709 designate that the model was conducted in allergy-prone mice with gain-of-function 

mutation in the IL-4 receptor α chain.  

 

Figure 2 – Overview of clinical and immunological outcomes assessed within allergen-specific 

immunotherapy models in food allergy. Outcomes has been divided into clinical (symptoms), para-

clinical (histology), and immunological (serology, systemic and tissue immune responses) measures. 
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