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Abstract 

Least developed countries are generally regarded as particularly sensitive to climate change 
due to among other vulnerable locations and low adaptation capabilities. In the present study, 
we address climate change hazards in least developed countries by presenting a methodological 
framework, which is suitable for the estimation damage costs as a function of risk aversion, 
equality, income distribution and climate scenario using state-of-the-art climate model 
projections. As a case study, the methodology is applied to study severe storms in Cambodia 
based on two future climate scenarios and data on historical damages from storm events, which 
are used as a proxy in performing a sensitivity analysis on all input parameters. For the 
assumptions and parameter ranges used here, the study shows a high sensitivity to the income 
distribution (reflected by discount rates) and risk aversion and smaller effects from equality 
measures and extreme wind climate scenario. We emphasize that the assumptions on risk 
aversion reflecting consumption smoothing possibilities of low-income households clearly 
depicts that climate risks can be particularly high as a consequence of poverty and therefore 
recommend that context-specific vulnerabilities and equity concerns in climate risk studies 
should be included when making assessments for least developed countries. 
 
Keywords: poverty and climate change risks, extreme events, least developed countries, 
damage costs, equality, storms 
 
 
1 Introduction 
 
In the context of climate change risks in developing countries, policy-relevant studies face 
specific challenges in matching the available climate data to damage estimates and 
development projections, which can reflect policy-makers’ concerns with climate change 
impacts on welfare and human livelihoods in the shorter term. Extreme weather events are 
already causing serious economic and human losses, with a particular high incidence rate 
among vulnerable population groups and economic sectors (Munich RE 2018). Statistical 
records of past extreme events show for some regions that the frequency and intensity of events 
have increased in recent decades, and serious damage has been reported (Young et al. 2011; 
Coumou and Rahmstorf 2012). The future projected intensities and frequencies of extreme 
wind occurrences for Southeast Asia is uncertain ranging from no-change to increases (Chang 
2011).   
The timing of climate impacts in relation to the timing of climate change departure and the 
variability of current weather patterns in different regions has been assessed by (Mora et al. 
2013), concluding that departure impacts can be expected to occur from an early state in 
tropical regions due to their very fragile ecosystems and low human response capacities. The 
study concludes that regarding damages, there is a strong link between low income levels and 
early climate departure. Taking specific climate hazard exposure and socio-economic 
development into account (Patt et al. 2010) indicates that least developed countries (LDCs) 



will experience the greatest changes in vulnerability from now until 2050, underlining the need 
for urgent responses. Further, the issues of vulnerability to climate change have been 
highlighted specifically for Asian LDCs in particular (Penning-Rowsell et al. 2013; Barbier 
2015; Wei et al. 2016) as well as for constructing future scenarios (Birkmann et al. 2015). 
Along the same lines of thinking, other studies (Zou and Wei 2010; IPCC 2014a) conclude that 
LDCs are particularly vulnerable due to the fragility of human settlements, low incomes, weak 
infrastructure and institutions, and a low level of capacity for coping with climate change. The 
effect of past disaster experiences and corresponding capabilities to reduce natural damages 
have however been found to be stronger for lower income countries compared to high income 
countries (Onuma et al. 2017). In this light, we therefore emphasize the importance in studying 
the impacts and implications of extreme events in LDCs despite uncertainties and limitations 
in data quality and availability, as well as the inherent challenges in implementing adaptation 
practices such as within-country priorities and entry points, as put forward by (Conway and 
Mustelin 2014). 
The climatic projections that are used to drive climate adaptation measures include a certain 
degree of noise arising from natural variability, especially in the short term (Hawkins and 
Sutton 2009) and for extreme events (Katz 2010), whereas economic development and 
emissions scenarios form the key uncertainties for longer term studies (Hawkins and Sutton 
2009). In addition, such hazards may be related to variables and processes that are poorly 
depicted even in present-day state-of-the-art climate models. The combination of several 
impacts, such as wind speed, wind direction, wind duration, tides and precipitation, which 
altogether form a hazardous impact, can also be difficult to reproduce properly (Wahl et al. 
2015). Altogether, climate change impact studies indicate a challenge in the trade-off between 
uncertainty and time horizon, as a few recent studies have shown for LDCs (Vermeulen et al. 
2013; Møller et al. 2017).       
In the present study, we focus on damage from extreme climate events in the form of storms in 
Cambodia, where they have been a main hazard in recent decades, a pattern that is expected to 
continue into the future (Ministry of Environment 2005, 2006; DanChurchAid/Christian Aid 
(DCA/CA) 2011; IPCC 2014b). Cambodia is an LDC with a per capita Gross National Income 
of US$ 1,140 in 2016 of which agriculture accounted for 27 percent of GDP (World Bank 
2017). In 2013, 17 percent of the population were living below the national poverty line (World 
Bank 2017). Cambodia’s population in that year was 14.7 million (National Institute of 
Statistics 2013), of which the rural population accounted for 79 percent. Cambodia is regarded 
as highly vulnerable to climate change impacts and was classified as the 25th highest country 
with regards to losses from extreme climate events in 2016 (measured as a percentage of 
purchasing power GDP - 0.8%) in the Global Climate Risk Index (Harmeling et al. 2012) and 
is therefore relevant as a case study also due to data availability. 
For purposes of the present analysis, we introduce a methodological framework for the 
assessment of damage costs from projected climate extremes with the aim of reflecting issues 
of risk aversion, equality and income distribution in a developing country context. The 
methodological framework applied here to study climate risks for Cambodia represents a 
specific application of a welfare economic approach ((IPCC 2014c), chapter 3) in which 
damage from extreme climate events is assessed in the context of LDCs in conjunction with 
uncertainties related to climate change scenarios, damage costs and, in particular, economic 
assumptions.  
Our analysis integrates state-of-the-art climate modelling and impact assessments in respect of 
climate projections of storms and associated impacts. Subsequently, the economic 
consequences are assessed in relation to human settlements and geographical areas by also 
addressing risk aversion and inequality issues. In this study, a bottom-up approach is used for 



damage costs, assigning cost parameters to assets that are at risk under storm events in 
Cambodia. Damage costs are transformed into a measure of "willingness to pay" (WTP) in 
order to avoid damage, risk preferences being integrated with the income equality of the victims 
in order to reflect special issues of climate extremes in LDCs.  
Given limited data availability in terms of both climate scenarios and damage costs (including 
geographical variations), we are focusing on providing insights into how short-term climate 
change, climate-model and climate-scenario uncertainties and poverty influence risk 
assessments. We conduct a sensitivity analysis in order to illustrate how the vulnerabilities of 
poor households can be reflected in damage estimates of extreme climate events and to identify 
a number of key assumptions that distinguish assessments of damage costs from climate 
extremes in developed and least-developed countries respectively.  
 
2 Methods  
 
2.1 Methodological Framework 
 
In the following we present the major analytical elements in our study of climate change 
vulnerabilities in Cambodia, including damage cost calculations, future storm patterns, storm 
damage, and poverty and risk aversion.  
In the methodology presented here, social welfare forms the damage cost assessment 
component (reflecting, e.g., the perspectives of societies in relation to climate change impacts), 
where the total damage cost is an aggregate measure of damage costs to individuals.  
We particularly want to reflect how extreme events can impose risks on LDCs, and reflect the 
key issue of low probability and high potential damage due to low coping capacity by low-
income households. Our methodological framework accordingly is adjusted to reflect 
preferences of society towards risk aversion and uncertainties in the context of developing 
countries (Heal and Kriström 2002; Weitzman 2011). We include risk aversion in the 
methodology by adding a (risk aversion) coefficient to the social welfare function. Risk 
aversion is included in the methodology to reflect the behaviour of individuals in cases of 
uncertainty such as for extreme storm event probabilities. In the case of minimizing the 
potential hazards of such uncertain events, the risk aversion could often lead to a high 
willingness to pay for adaptation measures. In LDCs where access to capital and thus 
consumption smoothing is limited in poor households, the literature suggests that these 
households could be particularly risk-averse in relation to the possibility of losing future 
consumption opportunities (Gollier 2001; Weitzman 2011). We also apply an income-equality 
factor to the estimates of damage in Cambodia to reflect the fact that damage in terms of welfare 
counts more for lower income households than higher-income households (Markandaya 1998).  
In the present study, we use the term ‘least-developed country’ as defined by the United Nations 
(United Nations 2018) and ‘developing country’ as defined by the International Statistics 
Institute (International Statistics Institute 2018) holding 47 and 139 countries respectively 
(there among Cambodia). We also refer to ‘low-income households’, which has several 
definitions related to income level, compared to the median or poverty line, and is here used in 
general to reflect a certain poorer share of the population within the country in question.   
 
2.2 Damage Cost Calculations 
 
Our damage cost assessment is based on traditional concepts of economic welfare, where the 
utility of losing consumption caused by climate extremes is measured. The concepts are 



briefly introduced in terms of equations (see (IPCC 2014c), chapter 3, for more on the 
economic welfare concept applied to studies of costing climate change). 
As a basis for measuring damage costs, we assume a social welfare function V, where u(ct) = 
Vt is the contribution to the social welfare function of generation t consuming ct. The future 
consumption depends on the probability of climate events and we therefore calculate the 
expected value Eu(ct) of consumption as follows: 
 
V = ∑  𝐸𝐸𝐸𝐸(𝑐𝑐t)𝑑𝑑(𝑡𝑡) ∞

𝑡𝑡=0 (eq. 1) 
 
where u ct is the contribution to the social welfare of consumption ct at time t. The factor d is a 
discount factor, which reflects our preferences for economic flows arriving at different points 
in time (IPCC 2005). We apply a risk aversion coefficient to the evaluation of damage, 
assuming a constant risk aversion coefficient as defined by (Arrow 1965):  
 
A (w) = - U'' (w)/U' (w) (eq. 2)    
 
where A (w) is the risk aversion associated with a given change in social welfare and U(w) its 
utility. In the case of a utility function, which is a polynomial of order n, the risk aversion 
coefficient takes the form: 
 
A (w) = n xn-1 (eq. 3) 

  
To the authors' knowledge, there are no specific studies of attitudes to the risks of climate 
change, which can be used to determine the level of the risk aversion coefficients. In our study, 
we have chosen to use risk aversion values of one to reflect risk neutrality, and three to reflect 
risk aversion.  
We apply an inequality aversion parameter (epsilon) based on (Markandaya 1998), to reflect 
the relationship between the average national income and the incomes of those suffering 
damage. The definition of the inequality is: 
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where W is social welfare, iY  is the income of an individual, and 

−

Y is representing the average 
income (fixed to a value of 1).  
Combining the welfare loss of consumption loss by climate events, risk aversion and inequality 
aversion to damage, we can then calculate the welfare economic perspective of damage costs 
(WTP) as: 
 
𝑊𝑊𝑊𝑊𝑊𝑊 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∗ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ∗ 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡 𝑡𝑡𝑡𝑡 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 
(eq. 5) 
 
We apply our methodological framework to the assessment of damages from extreme storms 
in Cambodia as a basis for discussing key uncertainties and economic assumptions in the 
specific context of developing countries. 
 
2.3 Scenarios of Storm Frequency and Intensity 

 
2.3.1 Climate Change Data 



 
The climate data input that form the basis for evaluating future storms in terms of wind 
patterns is based on the evaluation of data from three sources. One dataset includes the 
IBTrACS International Best Track Archive data set (Knapp et al. 2010), which is included 
here for comparison with other model-based sources. IBTrACS data reflect the historical 
geographical tracks of tropical cyclones and corresponding wind speeds and cover the 
historical period from the middle of the previous century (for global coverage) until the 
present day. The second dataset, CMIP5, is a multi-model global climate model ensemble 
archive (Taylor et al. 2012). The third dataset, CORDEX, is a regional climate model 
experiment framework (Giorgi and Gutowski 2015) covering selected geographical regions in 
fourteen domains with standardized coverage and grid structure. The historical wind data 
from the three source data sets of both occurrences and wind speeds are shown in Figure 1A. 
The same analysis is applied to CMIP5 and CORDEX data: The maximum daily near-surface 
wind speed (the ‘sfcwindmax’ variable) is used here as a measure to describe future wind 
speeds over Cambodia. For CMIP5, a subset ensemble of six models is randomly chosen (see 
Table 1), albeit from different source institutions, out of the 51 total available simulations 
from 25 different models, as is also done in other studies such as (Hemer and Trenham 2016). 
For CORDEX, three of the model domains cover Cambodia (South Asia, Southeast Asia and 
East Asia (EAS)). Of these, only data from the EAS domain is used, since Cambodia is 
located along the model domain boundary in the remaining two, which is known for its 
potential to degrade model performance (Larsen et al. 2013). For the EAS model domain, 
‘sfcwindmax’ output is available for five combinations of global and regional climate models 
(GCMs/RCMs), which are all included in the ensemble assessed here. Further, to depict the 
spatial patterns of wind speeds over Cambodia, the ‘wsgsmax’ variable is extracted to 
visualize gust wind speeds (Figure 1). 
 

IBTrACS (Knapp et al. 2010) 
Collaboration between multiple  regional specialized meteorological centres  
CMIP5  (Taylor et al. 2012) 
GCM  Source institute SfcWindMax   

  
  
  
  
  
  

CNRM-CM5  Meteo France x 
GFDL-ESM2G  GFDL x 
HadGEM2-ES  Met Office Hadley Centre x 
IPSL-CM5A  Intitut Pierre et Simon Laplace x 
MIROC5  University of Tokyo x 
MPI-ESM-MR  Max Planck Institute for Meteorology x 
CORDEX  (Giorgi and Gutowski 2015) 
GCM RCM Source institute SfcWindMax WsgsMax 
EC-Earth HIRHAM5 DMI x   
EC-Earth CCLM5 CLM Community x x 
HadGEM2-ES CCLM5 Met Office Hadley Centre x x 
MPI-ESM-LR CCLM5 CLM Community x x 
CNRM-CM5 CCLM5 CLM Community x x 

Table 1. Models, model combinations and variables used from the CMIP5 and CORDEX databases.   
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Plot A: IBTrACKS wind speeds and occurrences (1950-2016), CMIP5 and CORDEX daily maximum 
wind speeds and CORDEX gust wind speeds (all 1986-2005). Plots B and C: the relative increase in wind speed 
for CMIP5 and CORDEX respectively from 1986-2005 to 2010-2100 in twenty-year running means plotted 
around the central year. Plots D and E: the index level of the number of 99.73 percentile exceedances (similar 
models, years and plotting as for B and C).  
 
 



2.3.2 Projections of extreme winds 
 

To obtain a quantitative measure of future extreme winds and associated damage costs, 
changes from the 1986-2005 reference period (historical data driven by GCMs – Table 1) 
relative to the 2010-2100 period (using RCP4.5 and RCP8.5) are assessed for the CMIP5 
(six-model) and CORDEX (five-model) ensembles. Specifically, the daily maximum wind 
speed over Cambodia is extracted for both the reference and future periods. To reflect 
extreme cases of more sustained winds, the 99.73 percentile, corresponding to one event 
(daily data) per year, is calculated for the reference period for each individual model within 
the CMIP5/CORDEX model ensembles. In the following analysis, this input also reflects the 
probability of a storm event and thereby the expected risk of storm damage, as referred to in 
Section 2.2. Based on this percentile (once a year), two metrics are calculated: 
 

I. The (model mean) relative increase in the 99.73 percentile wind speed for the 
future period in running twenty-year periods (Figure 1B/C). 

II. The (model mean) number of events exceeding the 99.73 percentile (calculated for 
the historical period per model prior to calculating the ensemble mean) using the 
same running mean period (Figure 1D/E). These calculations are normalized by 
setting year 2010 to index 1.  

 
To provide a measure of future wind patterns for the damage analysis, trends for both measures 
(speed and the number of exceedances) are calculated using simple linear regression over the 
2010-2100 period. Since we are addressing the tail of the probability distributions of wind 
patterns, the period length is chosen to ensure sufficient temporal coverage to identify a 
potential signal, as compared to noise from natural variability. For the damage cost 
calculations, however, we focus on the timeframe up until 2050, due to inherent uncertainties 
in projecting economic development and vulnerability over a very long timeframe of up to 
2100. The climate data extracted for the year 2050, however, are based on long-term trends 
until 2100 (Figure 1). 
For the first measure, absolute wind speeds, little change is seen over Cambodia towards 
2050/2100 for both data sources (CORDEX and CMIP5) and future scenarios (RCP4.5 and 
RCP8.5), with relative changes in the order of 0-2.5% change for the year 2100 (Figure 1 
C+B respectively). For the second measure, the number of occurrences, index values of 1.09 
and 1.27, are seen for CMIP5, RCP4.5 and RCP8.5 respectively, whereas index values of 
1.15 and 1.22 are seen for CORDEX, RCP4.5 and RCP8.5 respectively (all for year 2050; see 
Figure 1, A-D). For CMIP5, the signal of change in occurrences of extreme winds in RCP4.5 
and RCP8.5 diverge considerably after 2065, with larger changes observed under RCP8.5 in 
the long term. The same trend is not present for CORDEX, as the signal is comparable for 
both scenarios in both the short and long terms. 
For CORDEX, slightly larger increases in both metrics are seen for RCP4.5 compared to 
RCP8.5, although the patterns are largely similar. This is likely to be related to the high 
percentile used here (one event a year) which causes the results to be affected by model 
variability, which is also supported when reducing this pattern with a decreased percentile 
(not shown). For wind speeds, the pattern between RCP4.5 and RCP8.5 is also likely to be 
related to the weak trend or its absence.  
Based on the above, two climate change scenarios are used to depict the future frequency of 
extreme storms (99.73 percentile) in Cambodia: 
 



I. Climate Scenario 1, a scenario based on the CORDEX analysis (Figure 1E) showing a 
mean ensemble increase in the occurrence of extreme storms with an index value of 
1.19 between both RCPs in 2050.  

II. Climate Scenario 2, a scenario based on the CMIP5 analysis (Figure 1D) showing a 
mean ensemble increase in the occurrence of extreme storms of index 1.27 in 2050 for 
the high-emissions RCP8.5 scenario. 

 
2.4 Damages from Storms 
 
2.4.1 Damages from Historical Events 
 
Access to storm damage data for Cambodia is very limited, but some data on storm events and 
related damage in relation to victims, fatalities and houses are available in the UNDP Disaster 
Information System (UNDP 2015) covering Cambodia as one entity. This relies on reported 
data from local disaster events and does not distinguish between different storm intensities or 
damage levels. One criteria for the UNDP data is that events can only be included if they have 
been reported as part of disaster emergency assistance because of specific damage. This implies 
that the UNDP systems data reports cannot be seen as a direct measure of the number of storm 
events, but rather are a measure of the extent of damage from storm events for the storms, 
which have been reported as part of an emergency response process in Cambodia. It is 
important to recognize the inherent uncertainties of such a data system in terms of both the 
quality and the consistency of the reported data, as well as the inclusion of relevant events. 
Despite these uncertainties, we use the UNDP Disaster Information System as an indicator of 
storm damage in Cambodia since no other damage data system is currently available.  
The UNDP Disaster Information System holds information on the 1996 + 2000-2014 yearly 
occurrences of storms and the corresponding number of houses and victims affected (Figure 
2). For the reported damage data, the number of victims increases to a high level in the last part 
of the period from 2007 to 2014, which may be related to the incorporation period of the 
reporting system throughout Cambodia. For this reason, we employ damage indicators per 
Storm, as opposed to using the trends occurring in the data set.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Development in the number of damaged houses and storm victims in Cambodia reported in the UNDP 
disaster information system for 1996-2014 (UNDP 2015). Arrows point to the relevant y-axis. 



 
The data reports shown in Figure 2 cannot be used as an absolute measure of storm damage 
since some events and damage reports may be missing in the database, and the definition of a 
victim or damage to buildings may vary across data reports. A representative damage proxy 
for the storm events have therefore been chosen calculated as the average of the number of 
storm events and the related victims for the period 1996-2014. Further, this damage proxy is 
used to forecast the number of victims associated with storms in the future. 
Using a quantitative measure of victims as a proxy for damage costs rather than monetary 
values implicitly assumes that the economic value of damage to individual houses and people 
is constant over time in terms of both the magnitude of the damage and the related costs. In this 
way, the number of incidents is used to represent the damage caused by an event. There are 
many limitations to such an approach, as damage values and storm consequences might change 
over time. These uncertainties and future changes to damage values can both tend to increase 
and decrease damage cost estimates: On one hand, economic development tends to create 
higher asset values and could therefore increase damage costs by extreme climate events. On 
the other hand, development could tend to decrease the vulnerability of people and assets 
through increased awareness and investments in risk-reduction measures.  

 
2.4.2 Projections of Damage from Storms 
 
For the damage cost assessment, the number of victims have been chosen as a representative 
indicator of damages since the aggregation of multiple indicators would not be feasible (i.e. 
houses destroyed, damaged and victims). 
Based on the average proxy of damage (victims) per storm event amounting to 99 for the period 
1996 to 2014 and the two climate scenarios, the number of victims associated with storms have 
been projected until the year 2050 as shown in Figure 3. The two alternative climate scenarios 
described in the section above are used in order to compare the damage cost proxy represented 
by the victims of storms, which, given Climate Scenarios 1 and 2, could be affected by storms 
in 2050. We use the year 2050 due to the greater uncertainties regarding the damage proxy on 
storm victims with a longer timeframe.    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Projections of victims by storms in Cambodia in 2050 based on average numbers of victims per storm 
in UNDP data records for the period 1996-2014, with storm projections for climate scenarios (C1) and (C2) for 
the period 2015-2050. 



 
2.5 Poverty and Risk Aversion 

 
In the following, we combine the damage cost proxy given the climate scenarios with 
alternative assumptions for risk aversion and inequality weights to income classes (both 
components are a part of WTP equation No. 5, described above). 
Damage cost proxy  
To provide a proxy for damage costs, data on victims reported for Cambodia in the period 1996 
to 2014 are used. Using, for example, damaged houses instead showing a similar pattern would 
have resulted in similar results. The damage cost proxy index value provides us with the 
following values for the period 2015-2050, stated as the number of victims relative to the 1996-
2014 average: 
 
• Climate Scenario 1 damage cost proxy = 1.19  

• Climate Scenario 2 damage cost proxy = 1.27  

 

Risk aversion 

We apply a risk aversion coefficient of three and an alternative coefficient of one representing 
risk neutrality to reflect risk aversion. 
 
Inequality weight to income classes 
We apply income distribution weights of 1 and 1.75 respectively to reflect two different 
assumptions in the damage assessment given weight to low income groups in the damage 
assessment. The weight of one implies that all individuals are valued as having an income equal 
to the average income in Cambodia, while the weight of 1.75 assigns a higher value to low-
income groups. We are basing our income distribution weights on consumption data in the 
Cambodian government household consumption survey from 2009 (CRDI 2013) which is on 
both a national level as well as for the capital of Phnom Penh, other urban areas and rural areas 
(Figure 4). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. The distribution of Cambodian household consumption in different quintiles (left) and averages for 
different urban and rural areas. 



 
Based on the data shown in Figure 4, we assume that 60% of the damaged households have a 
daily household consumption corresponding to the average consumption in the two lowest 
quintiles, 30% have average consumption (quintile 3), and 10% have consumption 
corresponding to the average consumption in quantiles 4 and 5. The average consumption in 
quintiles 1 and 2 combined is 4886 Riels, corresponding to 67% of total average consumption 
for Cambodia, while the average consumption in quintiles 4 and 5 is 2.6 times total average 
consumption in Cambodia. The inequality factors then become:  
 
• With income distribution weight 1: 0.60 * (1/0.67)1 + 0.30 * (1/1)1 + 0.10 * (1/2.6)1 = 
1.2 
• With income distribution weight 1.75: 0.60 * (1/0.67)1.75 + 0.30 * (1/1)1.75 + 0.10 * 
(1/2.6)1.75 = 1.5         
 
Climate scenarios 1 and 2 are combined in a sensitivity analysis in combination with 
assumptions about risk aversion and weights to income inequalities (see Table 2).  
The risk calculations are employ Net Present values (NPV) for a 36-year timeframe. The NPVs 
then serve as proxy values of damage based on climate scenario assumptions for the period 
2014 to 2050. The NPV values are calculated using a high discount rate of 7% and a lower 
discount rate of 5%. 
 

 Climate Scenario 1 Climate Scenario 2 
Damage cost proxy 1.19 1.27 
Risk aversion high 3 3 
Risk aversion neutral 1 1 
Inequality factor high 1.5 1.5 
Inequality factor low 1.2 1.2 

Table 2. Combinations of assumptions applied to the damage cost proxies in terms of climate scenarios, risk 
aversion and income inequality factors. 
 
3 Results and Discussion 
 
The modelling of extreme winds is an immense challenge which is quite well described in 
literature (IPCC 2014b) and is dependent not just on very local scale features, including 
orography (Herrmann et al. 2011), but also, for example, the quality of GCM forcings (Jury 
et al. 2015). In the present paper, we perform storm-induced damage cost calculations based 
on both RCM and GCM projections. The use of RCMs in the analysis of extreme winds has 
in general been performed in studies such as (Rockel and Woth 2007; Jiang et al. 2010; Kunz 
et al. 2010). Further, CORDEX simulations, like those used in the present study, have been 
used to assess future wind patterns (Tobin et al. 2016) and successfully reproduce tropical 
cyclone features (Jin et al. 2016), as well as other hazard events (Púčik et al. 2017). For 
RCMs, a typical assumption is that an increased resolution is better able to resolve smaller 
scale spatio-temporal features contributing to the generation of extreme winds. (Pryor et al. 
2012) argue that these scales are still poorly represented in most RCMs, despite showing an 
improved reproduction of extreme winds for finer scale resolution runs using the RCA3 RCM 
in the range of 50 to 6.25 km. Supporting the use of RCMs over GCMs, (Kumar et al. 2015) 
showed a generally poor reproduction of local scale features and absolute values when 
assessing high or extreme winds from the ‘sfcwindmax’ variable in fifteen selected CMIP5 
(global) climate models. Similarly, (Camargo 2014; Kumar et al. 2015) showed a poor 



CMIP5 reproduction of observed cyclone patterns, though with better performances 
regarding spatial patterns rather than frequencies. The increase in the number of severe events 
up until 2050 relative to 2010, like that found in the present study, is closely in line with the 
findings of (Ren and Leslie 2015) using a tropical cyclone tracker to project future extreme 
wind conditions over Western Australia, showing an increase of factor of 1.3 (events/year) 
from 2005 to 2050. The relation between IBTrACKS wind speeds and occurrences, CMIP5 
and CORDEX daily maximum wind speeds and CORDEX gust wind speeds can be seen in 
Figure 1A, which reveals the effect of model resolution on simulated wind speeds. In 
summary, the analysis of climate data suggests that more trust should be put in outputs from 
regional climate models like those represented here by Climate Scenario 1 (using both 
RCP4.5 and 8.5) than in the case of Climate Scenario 2, which is solely based on runs by 
GCMs under the CMIP5 for the RCP8.5 climate scenario.   
Very few studies on the impacts of future extreme weather events as a consequence of climate 
change exist and most have been completed for developed countries (IPCC 2007, 2014a). We 
here argue that low-income families are particularly vulnerable to extreme climate events, and 
the location of extreme storm events in relation to income distribution is therefore a key 
element in assessing vulnerabilities. Figure 5 shows the geographical distribution of 99.73 
percentile gust wind speeds (1986-2005) and population densities and poverty levels for 2010-
2011 (Ministry of Planning 2012). From the map (Figure 5A), it is clear that the highest wind 
speeds have occurred towards the coast in the south-western parts of the country and to some 
extent towards its eastern and western borders. In this respect, a high share of low-income 
households are located towards the coast, although the population density is also relatively low. 
In the areas surrounding Phnom Penh, where poverty is also widespread and incomes are low, 
moderate wind speeds also occur. In a similar analysis (not shown), the future projected wind 
speeds were analysed showing similar geographical patterns as shown here. Seen in the context 
of future economic development, the relative contribution to GDP of primary economic sectors 
like agriculture and fishery, which are predominant in particularly vulnerable areas, can be 
expected to decrease. This implies that the conclusions regarding welfare loss associated with 
extreme climate events will look different over time depending on national versus regional 
geographical scales (DanChurchAid/Christian Aid (DCA/CA) 2011).    
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Plot A: The 99.73 percentile gust wind speed (wsgsmax) over Cambodia for 1986-2005 for Climate 
Scenario 1 – see Table 1 for model description. Plot B: Cambodia’s population density (2010-2011). Plot C: the 
percentage of poor household (levels one and two) in Cambodia (2010-2011). Three regions are missing. Mekong 
River is plotted in blue. The latter two plots were reproduced from (Ministry of Planning 2012).    
 
Figure 6 shows the resulting NPV damage proxy results for both climate change scenarios for 
the range of assumptions used here regarding risk aversion and income-inequality weights 
(Table 2) using a 5% and a 7% discount rate. Here we are comparing the damage proxy for 
Climate Scenarios 1 and 2. From the results, it is obvious that the damage proxy for storms is 
critically dependent on assumptions about discount rates, income equalities and risk aversion. 
This corresponds to the findings of (Halsnæs et al. 2015), who, through a sensitivity analysis 
of 32 combinations of climate scenarios and economic assumptions, concluded that future 
climate scenarios and the economic assumptions used are both very important in determining 
the risks of extreme climate events and, thus, the level of cost-effective adaptation. The largest 
NPV of the damage proxy is achieved when a high-risk aversion coefficient of three and a 
high-income inequality factor are used. If the assumptions applied to the damage cost value are 
considered one by one, the risk aversion coefficient in our application has the largest impact 
on the damage proxy, followed by the income equality factor. Variations in our assumptions 
about discount rates, as well as the two climate scenarios, have a smaller impact on the damage 
cost proxy. This conclusion reflects the fact that it is important to consider specific issues in 



relation to damage cost assessments in LDCs countries and that the degree or nature of climate 
change is not the most important issue in this respect. 

 
 
Figure 6. Damage 
proxy levels in 2014 
(in NPV) for avoided 
damage using 
different combinations 
of inequality factors, 
risk aversion and 
climate scenarios, 
using discount rates of 
5% and 7%. See Table 
2 for different 
combinations of 
assumptions and 
climate scenarios. 
 
 
 
 
 

In conclusion, the sensitivity analysis demonstrates that damage costs associated with extreme 
events for LDCs (as for severe storms in Cambodia) strongly depend on how the incomes of 
storm victims are included in the analysis. Low-income households often live in geographical 
areas, which are prone to climate extremes and with houses poorly protected against storms. 
Since the most vulnerable households tend to be poor, cost-benefit analyses could conclude 
that the assets lost typically have a low economic value in absolute terms. The present study, 
however, shows that the utility of lost consumption because of extreme climate events in LDCs 
may have a high value in terms of missed welfare. Following these arguments, climate policies 
and international finance must assign a high priority to adaptation investments in vulnerable 
areas with a high density of low-income households in LDCs as seen from an equity 
perspective.  
 

Conclusions 
 
Low incomes, weak infrastructure and limited institutional capacity for coping with climate 
change provides a background for making developing countries very vulnerable to climate 
change. Extreme events that have occurred in recent decades point to the threat of an increasing 
frequency of incidents and damage. Despite uncertainties about the attribution of such events 
to climate change, it is therefore important to strengthen data and methodological frameworks 
further for assessing risks in vulnerable countries. 
In this paper, we employed specific assumptions on index-based projections of extreme winds, 
WTP values for avoided damage reflecting risk aversion and inequality factors as used to 
increase the weight of damage and associated income losses in the context of LDCs and poor 
households. We show that by applying these factor perturbations in the sensitivity analysis, a 
substantial influence is given to the WTP estimates of avoided damages as well as to the 
discount rate level. This indicates that the nature and extent of these assumptions is very 



important seen in the context of economic arguments for climate risk management in countries 
like Cambodia. The study contains certain uncertainties in relation to climate data on storm 
patterns and the damage associated with storm events. A set of relatively simple assumptions 
have therefore been adopted based on available climate projections and national damage 
reports, the implication being that the solidity of the specific magnitude of climate risks and 
adaptation costs in LDCs is limited. However, the study forms a relevant contribution to 
existing literature by clearly highlighting the range of critical assumptions made and further 
reflects the resulting inequality and vulnerability outcomes. The same approach could be 
applied to other types of high-impact events and other case regions.  
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