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Summary (English)

Microfluidic Biochips integrate functional components for biochemical analysis and sample

preparation on a single chip. The implementation of conventional biochemical laboratory

equipment onto a chip at sub-millimetre scale offers several advantages. This thesis is focused

on continuous-flow based biochip technology. Here, valves are used as basic building blocks

to route reagents as desired along channels. Combining multiple valves allows to build

more complex components to mimic the functionality of their conventional laboratory

counterparts such as centrifuges, incubators or analysers.

Fabrication capabilities of biochips have seen a rapid growth in the last years, further minia-

turizing valves to just few µm in size and thereby allowing thousands of components to

be placed on a single chip. To keep up with the manufacturing technology, new design

methodologies are required, and researchers have started to propose methods and tools for

the physical design and programming of biochips. However, these tools have considered

simplified models and unrealistic assumptions regarding other parts of the design process.

To support the practical use of biochips, we have to consider the practical aspects that bridge

the gap from research to functional verification and fabrication.

Even though thousands of valves can be integrated on a biochip, their functionality is limited

due to the number of control-pins that can be connected to an external controller. Hence we

have proposed a pin-count reduction technique to reduce the number of required external

controls using shared valve actuations. Previous work has not considered the impact of such

pin-count reduction on the binding, routing and scheduling, resulting in suboptimal results.

Furthermore, the problem of fluid management is often ignored for microfluidic applications,

assuming that all fluidic constraints are satisfied. However, dispensing additional fluid (over-

flow) can be expensive, while shortages of fluid (underflow) can interrupt the execution and

even require manual replenishment. Therefore we provide a volume management approach
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that satisfies all constraints while improving the efficiency of mixing operations. Furthermore,

moving fluids within a biochip is simply referred to as fluid transport by researchers, ignoring

the underlying complexity. Realistic biochip design has to offer the capabilities to provide

specific volumes of fluid during the biochip’s operation. We therefore propose a component

that provides metering, alignment and missing fluid detection capabilities for fluid transport.

Current tools for physical design do not bridge the fabrication gap, which extends into lacking

functional verification. Instead, interdisciplinary specialist knowledge is required to verify,

potentially adapt and then turn the synthesized design into working biochips. Hence, in this

thesis we consider three-layer normally-closed valve biochips that use two micromilled Poly-

methylmethacrylate (PMMA) layers sandwiching a sheet of Polydimethylsiloxane (PDMS),

which are easier to fabricate. We have developed a software tool towards a more automated

biochip design process, reducing the amount of manual and error-prone work required. Aim-

ing to reduce the interdisciplinary knowledge required by the end-user to fabricate biochips,

the tool generates G-Code from the created design usable for fabrication of the biochip’s

PMMA layers in any micromilling machine.



Summary (Danish)

Traditionelle biokemiske laboratorie analyser kan i dag integreres på en enkelt biochip ved

hjælp af mikrofluidiske komponenter, hvilket giver flere fordele. Denne afhandling fokuserer

på kontinuerlig flowbaseret biochip teknologi. Her anvendes ventiler som grundlæggende

byggesten til at bestemme flowet af små voluminer af væsker i små kanaler. Ved at kombinerer

flere ventiler kan der bygges mere komplekse komponenter som efterligner funktionaliteten

af deres konventionelle laboratorie modstykker, så som centrifuger, inkubatorer og analysa-

torer. Fabrikation af biochips har oplevet en stigende vækst i de senere år og den fortsatte

miniaturisering af ventiler til nogle få µm i størrelse, tillader at tusindvis af komponenter

integreres på en enkelt chip. For at kunne følge med denne produktionsteknologi er der

brug for nye designmetoder, og forskere er begyndt at foreslå metoder og værktøjer til fysisk

design og programmering af biochips. Disse værktøjer har imidlertid overvejende anvendt

forenklede modeller og urealistiske antagelser vedrørende andre, men centrale, dele af de-

signprocessen. For at understøtte de praktiske anvendelser af biochips, skal vi også overveje

de praktiske aspekter, der er nødvendige for at komme fra forskning til funktionel verifikation

og fabrikation.

Selvom tusindvis af ventiler kan integreres på en biochip, er deres anvendelighed begræn-

set af hvor mange kontrol kanaler der kan tilsluttes en ekstern kontrol enhed. Vi foreslår

derfor en reduktionsteknik, hvor kontrol input til ventiler deles mellem så mange ventiler

som muligt for at reducere antallet af nødvendige eksterne kontrol kanaler. Tidligere arbejde

har ikke taget højde for en sådan reduktionsteknik i forhold til resurse binding, rutning og

tidsallokering, hvilket resulterer i suboptimale resultater. Endvidere ignoreres problemet med

at organisere og styre væskemængder ofte i mikrofluidiske applikationer, idet det antages at

alle fluidiske begrænsninger er opfyldt. Imidlertid kan dispensing af yderligere væske (over-

løb) være dyrt, mens mangel på væske (underløb) kan ødelægge udførelsen og endda kræve
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manuel genopfyldning. Vi foreslår derfor en mængdehåndteringsmetode, der opfylder alle

begrænsninger, samtidig med at effektiviteten af blandingsoperationer forbedres. Desuden

refererer forskere typisk flytning af væskemængder som simple transporter, og dermed igno-

rerer den underliggende kompleksitet. Et realistisk biochip design skal kunne tilbyde at levere

specifikke væskevolumener under hele procesafviklingen på biochipen. Vi foreslår derfor

en ny komponent, der kan levere måling, justering og detektering af manglende væske for

selve væsketransporten. Nuværende værktøjer til fysisk konstruktion af biochips, adresserer

ikke fabrikationsgabet, som også omfatter manglende funktionel verifikation. I stedet kræves

tværfaglig ekspertviden for at kunne verificere, potentielt tilpasse, og derefter syntetiserer en

funktionsdygtig biochip. Vi anvender derfor i denne afhandling en biochip bestående af tre-

lags normalt-lukkede ventiler, der bruger et ark polydimethylsiloxan (PDMS) som membran

mellem to polymethylmethacrylat (PMMA) lag, i hvilke kannaler og ventiler er micro-fræset.

Denne teknik letter fremstillingsprocessen. Vi har udviklet et softwareværktøj som auto-

matiserer biochip designprocessen, hvorved mængden af manuelt og fejlbehæftet arbejde,

reduceres. For at reducere mængden af specialviden omkring biochip fremstilling som kræ-

ves af slutbrugeren, genererer værktøjet direkte den G-Code, som bruges til fremstilling af

biochippens PMMA-lag for enhver micro-fræse maskine.
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Notations and Abbreviations

DB MB Droplet Based Microfluidic biochip

F B MB Flow Based Microfluidic biochip

F FU Functional Fluidic Unit

F P Flow Path

F PS Flow Path Segment

a Acceleration

t Time

F Force

PDMS Polydimethylsiloxane

P M M A Polymethyl methacrylate

V i a Layer Change

V G Valve Group

IV D In-Vitro Diagnostics

MV R Minimum Volume Requirement

M HC Maximum Hardware Capacity

HT R Hardware Transport Resolution

FV A Fluid Volume Assignment

V EDV Volume Error Detection Vent

AV Alignment Vent

LOF Left Over Fluid
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BDT Biochip Designer Tool



Contents

Summary (English) i

Summary (Danish) iii

Notations and Abbreviations vii

1 Introduction 1

1.1 Microfluidic Biochips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 State-of-the-art and Commercialization . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Biochip Design and Development . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Thesis Overview and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Biochips 11

2.1 Passive Biochips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Valve-based Biochips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Quake Valves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.2 Grover Valves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Fluidic Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Biochip Architecture Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5 Biochip Application Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.6 External Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.6.1 Control Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Design Methodologies 27

3.1 Binding, Routing and Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Component allocation and schematic design . . . . . . . . . . . . . . . . . . . . 32

3.2.1 Microfluidic HDL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 Faults and Fault Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33



x

3.4 Fabrication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4.1 Multi-layer milling and bonding . . . . . . . . . . . . . . . . . . . . . . . 38

3.4.2 G-Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.5 Programmability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.6 On-Chip Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.6.1 Layer Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 Pin-Count Reduction 47

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3 Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3.1 Reducing the Pin-Count . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.4.1 Actuation of multiple valves . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5 Waste-Aware Volume Management 65

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.3 Mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.4 Volume Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.4.1 Optimizing the mixing process . . . . . . . . . . . . . . . . . . . . . . . . 76

5.4.2 Deriving mixing trees for 1:1 mixing hardware . . . . . . . . . . . . . . . 78

5.5 Experimental Evaluation and Discussion . . . . . . . . . . . . . . . . . . . . . . 81

5.6 Conclusion and Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6 A Novel Metering Component for Volume Management 87

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.2 Venting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.3 Alignment and Metering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.4 Detecting missing fluid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.5 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.5.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.5.2 Vent Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.5.3 Fluid displacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.5.4 Increasing the throughput . . . . . . . . . . . . . . . . . . . . . . . . . . . 99



Contents xi

6.5.5 Detecting insufficient volumes . . . . . . . . . . . . . . . . . . . . . . . . 99

6.5.6 Arbitrary ratio mixing using vents . . . . . . . . . . . . . . . . . . . . . . 100

6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7 Discussion and Conclusions 103

7.1 Outlook and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

A Biochip Designer Tool and Fabrication 107

A.1 Fabrication Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

A.2 PMMA preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Bibliography 117



List of Figures

Chapter 1

1.1 Number of publications related to microfluidics [90] . . . . . . . . . . . . . . . 2

1.2 Two types of biochips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Electronic vs. Microfluidic VLSI design process [9] . . . . . . . . . . . . . . . . . 6

Chapter 2

2.1 Passive mixing architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Orientation-based biochip [88] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Schematic design of a Stanford valve [32] . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Schematic design of a Grover valve . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 Switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.6 5 stage pump actuation using 3 Grover valves. Yellow lines are flow channels.

Light blue circles are displacement chambers. Dark blue circles are displace-

ment chambers filled with fluid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.7 5-Phase equal ratio mixer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.8 Schematic design for any component requiring a reaction chamber such as

heaters and detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.9 In- and outlets connected with flexible tubes . . . . . . . . . . . . . . . . . . . . 19

2.10 Storage component with four storage channels. The number of channels can

vary to suits the architectures needs . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.11 Architecture model with three inputs and outputs, one heater, filter and detec-

tor and six switches to interconnect the channels leading to the components . 20

2.12 Application model with two fluid sources, one mixing and two incubate and

detect operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.13 Biochip to controller adapter. Tubes from the controller are connected to

the adapter, into which a biochip can be placed (System from Microfluidic

Innovations Inc, IN, USA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23



Contents xiii

2.14 Pressure controller capable of providing high- and vacuum-pressure through

36 connectors using solenoid valves (System from Microfluidic Innovations

Inc, IN, USA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.15 Grid of 4 switches. Dark blue lines indicate fluid flow. . . . . . . . . . . . . . . . 25

2.16 Schematic design of a 3-bit 8-way multiplexer . . . . . . . . . . . . . . . . . . . 26

2.17 Pressure / Vacuum Latch-Valve [43] . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Chapter 3

3.1 Overview of the design of FBMBs . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Microfluidic components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Schedule example for the application from Fig. 2.12 running on the architec-

ture from Fig. 2.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4 Alternative solution to the schedule in Fig 3.3 . . . . . . . . . . . . . . . . . . . . 31

3.5 Common Faults in FBMBs [50] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.6 Fault Tolerance through redundant architecture design [51] . . . . . . . . . . . 35

3.7 Fault Tolerant Components [29] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.8 Minitech Machinery Mini-Mill/3 with PMMA piece aligned to a bracket . . . . 39

3.9 G-Code examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.10 Ambiguous assay description [7] . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.11 Code examples [6] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.12 Biocoder code example [7] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.13 Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.14 PCR Biochip with two Mixers, eight capacity storage and two in- and outputs,

optimized to reduce the number of required control-pins with on-chip control

[48] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.15 Schematic design of the use of Vias to avoid an intersection of two channels

on the same layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Chapter 4

4.1 The proposed pin-count reduction technique is implemented in the three

highlighted design steps, control synthesis and the physical design on both

layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2 IVD Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3 Typical IVD application that mixes various samples, reagents and buffers and

analyses the results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49



xiv

4.4 Impact of pin-count reduction on IVD schedule . . . . . . . . . . . . . . . . . . 50

4.5 Design steps used by the proposed method . . . . . . . . . . . . . . . . . . . . . 53

4.6 Valves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.7 Valve Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.8 Routes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.9 Multi-purpose architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.10 Multi-purpose architecture application . . . . . . . . . . . . . . . . . . . . . . . 58

4.11 Trade-off for TC4 using PCM (blue, squares and line). CSO result reference for

TC4 (red dot) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.12 Mixer with three pairs of valves using shared pressure sources . . . . . . . . . . 63

Chapter 5

5.1 The proposed volume management optimization is implemented in the high-

lighted design step application graph generation . . . . . . . . . . . . . . . . . . 67

5.2 Architecture netlist including two mixers and detectors with a maximum hard-

ware capacity (MHC) of 10 nl each. . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.3 Metering example using a metering chamber . . . . . . . . . . . . . . . . . . . . 68

5.4 Application graph showing the input requirements of the operations as ra-

tios for mixing operations (red) and as discrete values for the other type of

operations (green). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.5 Example of achieving a 1:3 mixing ratio using 1:1 mixing hardware and the

unavoidable byproduct of fluid (i.e. waste) not in the target ratio. . . . . . . . . 70

5.6 Comparison of mixing trees for a target ratio of 5:11 created by Min-Mix, REMIA

and NFB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.7 Comparison of mixing trees for a target ratio of 5:11 created by Min-Mix, REMIA

and NFB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.8 Application from Fig. 5.4 with fluid volume according to each operations MVR

assigned, leading to shortage of fluid at O6. . . . . . . . . . . . . . . . . . . . . . 71

5.9 Application from Fig. 5.4 with fluid volume according to each operations MVR

assigned, leading to shortage of fluid at O6. . . . . . . . . . . . . . . . . . . . . . 73

5.10 Application from Fig. 5.4 with optimal assignment of fluid according to the

calculated FVAs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.11 Application from Fig. 5.4 with optimal assignment of fluid according to the

calculated FVAs and leftover fluid from O1 has been reused as input for O2. . . 76



Contents xv

5.12 Application graph for a glucose test. Black labels indicate the required ratios

and discrete volumes, red labels indicate the FVAs. . . . . . . . . . . . . . . . . . 77

5.13 Optimized application graph from Fig. 5.12, where left over fluid from O2 and

O3 are used in O4. All values indicate FVAs. . . . . . . . . . . . . . . . . . . . . . 78

5.14 Two mixing trees using the same input fluids to produce the same output

fluids, but creating different LOFs due to different mixing order. . . . . . . . . . 79

5.15 Mixing trees for target ratio 1:1 which can be precisely mixed and no approxi-

mation is necessary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.16 Mixing trees for target ratio 1:2 which is approximated using a maximum of 4

operations to ratio 5:11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.17 Mixing trees for target ratio 1:4 which is approximated using a maximum of 4

operations to ratio 3:13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.18 Mixing trees for target ratio 1:8 which is approximated using a maximum of 4

operations to ratio 1:7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Chapter 6

6.1 The proposed component is added to the component library, allowing other

design steps to make use of it . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.2 Visualization of Darcy’s Law parameters applied to a PDMS membrane. . . . . 90

6.3 Metering channel containing an alignment vent. Fluid is pushed towards the

closed valve (e.g. by an off-chip pressure source) and the trapped air is vented

out of the chip through the PDMS membrane. . . . . . . . . . . . . . . . . . . . 91

6.4 Metering using an Alignment Vent . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.5 Volume error detection enabled metering component. In addition to the

alignment vent, a volume error detection vent is added at the opposite end of

the metering channel. If too little fluid is available to fill the metering channel

completely, air escapes though the VEDV which is detected by a pressure sensor. 93

6.6 Pressure in the flow channel forces a grover valve open, with out any applied

vacuum pressure. Air vented through the membrane at the valve can be de-

tected by a pressure sensor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.7 Prototype of a metering chamber with a large vent (19 mm vent length, 22 mm

chamber length) for fast venting. Fluid is introduced through In1 or In2 by

opening V1. Alignment of the fluid in the chamber can be started by opening

V2 and applying vacuum pressure to the venting pin. . . . . . . . . . . . . . . . 95



xvi

6.8 Vacuum pressure at the vent causing the PDMS membrane to deform into the

control channel, onto the control layer, effectively reducing the surface area. . 96

6.9 Control-layer part of a groove vent. Small parts of PMMA are left in the vent,

keeping the PDMS membrane from significantly deforming into the control

channel when vacuum pressure is applied . . . . . . . . . . . . . . . . . . . . . . 96

6.10 Grooves are left in the vent, keeping the PDMS membrane from deforming

with minimal impact of the surface area. . . . . . . . . . . . . . . . . . . . . . . . 97

6.11 Metering using an Alignment Vent . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.12 Mixer with additional vent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Chapter A

A.1 GUI of the BDT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

A.2 Biochip design process overview with yellow borders indicating the steps

covered by the BDT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

A.3 Low level design view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

A.4 Component library used by the BDT . . . . . . . . . . . . . . . . . . . . . . . . . 111

A.5 Abstract view of the architecture design showing a mixer and heater but hiding

component details and control connections . . . . . . . . . . . . . . . . . . . . 112

A.6 BDT design for a vent testing architecture . . . . . . . . . . . . . . . . . . . . . . 113

A.7 Code snipped of the control-layer G-Code used in the example . . . . . . . . . 114

A.8 Minitech Machinery Mini-Mill/3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

A.9 Hydraulic bonding press with heated plates . . . . . . . . . . . . . . . . . . . . . 116

A.10 Aligning the mill’s Z-Axis to the PMMA using a sacrificial piece to determine

the misalignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116



List of Tables

2.1 All available FPSs for the architecture in Fig. 2.11 . . . . . . . . . . . . . . . . . . 21

3.1 Examples of faults occurring in FBMBs . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1 Partial actuation Table for IVD. 0: Open. 1: Closed. X: Don’t Care . . . . . . . . 51

4.2 Valve Group Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3 Valve Group combination examples: Examples 1-5 show the outcome of com-

bining certain VGs regarding the architecture and routes from Fig. 4.8. Exam-

ples 6 and 7 show how different constraints can have varying effects on the

schedule length. For these examples, 10, 8 and 6 time units are assumed for

routes 1, 2 and 3 respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4 Comparison between PCM and CSO. The percentage values in PCM indicate

the reduction of the pin count and the increase in completion time compared

to CSO respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.1 Comparison of fluid consumption, number of operations and execution time

for MM, REMIA and NFB4 (NFB pruned to 4 vertices), at precision levels 8, 9

and 10. All results represent the average outcome of 10 test cases, 8 synthetic

and 2 real world applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2 Experimental results for optimization of a Colorimetric Cholesterol Assay

(CCA) and a Proteasome Activity Assay (PAA). . . . . . . . . . . . . . . . . . . . . 84

6.1 Experimental results for vents using various vent designs and sizes. Vent areas

marked (S) use basic, normal depth control channels at the vent, (D) indicated

deeper (1 mm) control channels to allow increased membrane deflection and

(G) marks vents using a groove design. * Marks the average flow while covering

the vent from no cover to full cover. @ Marks tests filling a complete chamber. 98



xviii



Chapter 1

Introduction

This chapter contains contributions made in P1, P2, P3, P4 and P5, as stated in Section 1.4

Microfluidics refers to the control, manipulation and behaviour of small volumes of fluids,

typically confined to space of sub-millimetre scale. After first attempts of dispensing nano-

and pico-litre volumes in the 1950s, microfluidics made its first major breakthrough as the

basis for the ink-jet technology still used today. This highly interdisciplinary field of physics,

engineering, biochemistry and bio- and nano-technology has sparked increasing academic

interest for decades. Starting with the first Lab-on-a-Chip device in 1979, microfluidic

biochip research began serious growth in the 1990s with the development of micropumps,

flowsensors and integrated fluid treatment analysis systems [66]. Within recent years this

growth continued in both academia and industry with a growing publication count as shown

in Fig. 1.1 and over 3000 patents referring to microfluidics and the USA and Europe, being

issued in 2017 [91] [92].

1.1 Microfluidic Biochips

Microfluidic biochips, also called Lab-on-a-Chip (LoC) devices, integrate multiple biochemi-

cal analysis functionalities such as dispensers, filters, mixers and detectors on a single chip.

While conventional analysers for macroscopic chemical and biological processes take up

whole laboratories, biochips can integrate these at a sub-millimetre scale, and provide several
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other advantages such as reduced sample volumes, ultra-sensitive detection and increased

throughput [121]. Several biochemical applications have already been demonstrated on

biochips such as Protein Crystallography, Amino Acid Analysis, Chemical Synthesis and

High-Throughput Screening [72]. Microfluidic large scale integration provides additional

advantages which can already be seen in advances in single cell, genomic and protein analysis

[10]. The increasing degree of automation of biochips does not just allow for higher usability

and throughput, but enables their use in harsh and even extraterrestrial environments [84].

Figure 1.1: Number of publications related to microfluidics [90]

Multiple microfluidic platforms are available today which have previously been categorised

into Capillary, Pressure Driven, Centrifugal, Electrokinetic and Acoustic, with further subcate-

gorizations available [67]. Each category provides different characterizations within the used

technologies and materials to achieve basic microfluidic functionality such as fluid-transport,

metering, mixing or incubation.

However, based on how the fluid is manipulated on the biochip, they can be more broadly

divided into two types. Digital Microfluidic Biochips (also called Droplet-Based Microflu-

idic Biochips (DBMB)) and Continuous-Flow Biochips (also called Flow-Based Microfluidic

Biochip (FBMB)) as shown in Fig. 1.2. Digital Microfluidic Biochips manipulate liquid as

discrete droplets on a two-dimensional array of electrodes [15]. A common technique to

move droplets on such chip is ElectroWetting-On-Dielectric (EWOD). Droplets are dispensed

on electrodes with a hydrophobic coating causing a high contact angle. By applying elec-
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trical current, the droplet’s surface energy increases, causing a reduced contact angle and

therefore wets the surface. Using this process, multiple electrodes can be combined to

form virtual components for transport, mixing or separation of droplets. The functionality of

such biochips is further increased by additional components such as photodiodes for sensing.

Continuous-Flow Biochips transport a continuous flow of liquid in channels which are

enclosed within the chip. This flow is manipulated using micromechanical valves. These

valves are actuated using pressure sources, thereby controlling the flow of the fluid within the

biochip as desired. The research conducted in this thesis is focused on such continuous-flow

biochips, and the functionality, fabrication and application of which is described in detail in

Chapter 2.

(a) Droplet-based biochip [110] (b) Flow-based biochip [11]

Figure 1.2: Two types of biochips

1.2 State-of-the-art and Commercialization

The ever growing interest in microfluidic biochips by the industry is evident. Previous market

projections have been outperformed and new projections show a steep increase. For example,

the global market for biochips was estimated to reach USD 4.6 Billion by 2017 [79] back in

2012. However, the market already surpassed this estimate with USD 7.63 Billion in 2015 and

is now forecast to reach USD 17.75 Billion by 2020 [68]. An increasing number of companies

are founded on the specific premise of fabricating biochips, or biochip related hardware

such as Microfluidic Chipshop [17] and Elveflow [28]. Established companies in medical

component and plastic engineering are also beginning to facilitate biochip production [60].
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Many biochip foundries for FBMBs [17, 76] specialize on passive biochips, which receive their

name from the lack of active components built into them. Instead of pressure actuated valves,

mechanical, manually operated (e.g. rotary) valves [12] are used to stop or direct the fluid

flow. Accurate design of channels and chambers allows to mix various liquids by diffusion

using only the pressure that drives the liquids through the chip. Such chips have become

the focus of the industry due to their simplicity, both in fabrication and use. Tried and true

techniques such as injection molding allows for cheap fabrication of large quantities of chips.

The lack of active components ensures ease of use and reliability. However, while active

biochips are significantly more complicated to design, fabricate and use, all of which will

be discussed in detail in Chapter 2, they also provide a level of functionality that cannot be

rivalled by passive biochips. Controlling the biochip during an applications execution allows

for more automation, just-in-time feedback and response options and more general purpose

use. While passive biochips are application-specific due to their fixed design, an active

biochip’s functionality can be used to serve many purposes. While commercial availability of

active biochips is still limited, companies already provide tools and products for individual

fabrication of chips and their use [28]. Current and near future uses of FBMBs include CDNA-

synthesis [71], DNA assembly protocols for synthetic biology [107] and the Mars Organic

Analyser [30].

1.2.1 Biochip Design and Development

Initially, microfluidics and the resulting biochip research was focused on specific advantages

that arise from using very small volumes of reagents. Enhancing the analytical performance

for pathogen sensing for example was one of the driving reasons for miniaturization. This

quickly also presented other advantages such as reduced reagent consumption and integra-

tion of sensors and other components for ease of use [64]. At this stage, the design process

of the biochips was still sidelined. Prototypes are build in a way that best highlights the

advances in reagent consumption or detection accuracy. However, realizing that biochips

can be extended to perform automated, complex procedures that would require advanced

design methodologies to keep the portability, efficiency and low cost, an increasing amount

of research is put into advancing the biochip design. At the present time, the design of

biochips is still done manually to a large degree, with the limited aid of tools such as CAD

software like AutoCAD [101]. Some early stage tools are available which offer a certain degree

of design automation [51]. While this is feasible for many current designs, it does not only
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require skills and knowledge in biochip design, but also means that applications are manually

mapped to these designs, which can include binding of operations to specific components

and determining correct valve actuation sequences. This level of exposure is comparable

with manually programming the gates of integrated circuits for microelectronics and is ex-

tremely time-consuming and error prone. Ongoing advancements in integration density and

component complexity will amplify these issues to a point where manual design is no longer

feasible. The microelectronics industry has faced similar problems in the past to which solu-

tions have been found that can be adapted to microfluidic biochips. Fig. 1.3 presents such a

possibility, showing how microfluidics can follow in the footsteps of microelectronics. Very

Large Scale Integration (VLSI) is the cornerstone of any modern electronics design and the

same concept and similar methodologies, hence called microfluidic VLSI (mVLSI), can shape

a similar future for microfluidics. Providing the same high integration that is considered the

standard in present electronics would make any currently available microfluidic platform

obsolete. Proof of concept for such integration is already available, with a biochip using more

than 25000 valves and about one million features to run 9216 polymerase chain reactions

in parallel build by Fluidigm [37]. Additional work also provides examples of how multiple

functions can be integrated and run in parallel on a single chip, using mVLSI concepts [71].

1.3 Motivation

“The electronic VLSI circuits have benefited heavily from design automation and the electronic

designers today work as conveniently on the billion transistor multi-core processors as they

did on the Intel 4004 processor with only 2,250 transistors in the early days [81].” The ability

to make similar statements about mVLSI in the future would surely be a clear indication

of a successful design evolution. However, at this time many individual parts of the design

process still need to be rid of unrealistic assumptions and limitations before a VLSI-like

equivalent can truly take over. As contributions for this interdisciplinary topic are being made

from many scientific fields, it is more likely that needs are misunderstood and unrealistic

assumptions are being made. Contributions from the computer engineering field are no

exception, as proposed designs and optimizations are often only tested on models as no

prototype fabrication facilities are available. It is therefore crucial that gaps between what

it proposed and what feasible are identified and closed, ensuring that these contributions

remain relevant. Design automation is another crucial but so far underdeveloped part of
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Figure 1.3: Electronic vs. Microfluidic VLSI design process [9]

this process. With custom and bottom-up methodologies requiring many manual steps

remaining on the forefront, it is unrealistic to assume widespread use of biochips from end-

users in fields such as biology or medicine which would require extensive training to take on

the design process themselves. User-friendly tools incorporating algorithms that can solve

design issues for the large variety of possible applications are therefore the logical next step

to improve accessibility and growth of the technology. This also provides a platform from

which further development such as towards mVLSI design has an easier access point.

The contributions presented in this thesis were made to specifically overcome such issues and

limitations. The presented design-automation and -processes make integration of complex

features feasible and allow for more biochip designs to evolve from mere models to being

fully fabricatable and usable. With mVLSI looming on the horizon, the presented methods

also address issues that arise from large scale integration and can ease the transition to such

designs.
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1.4 Thesis Overview and Contributions

The following publications represent a major part of my contributions made during my PhD

course and therefore to this thesis. The published material is re-used in part or fully in this

thesis, including results, primary material, data and interpretations. Chapters and sections

using material from some or all of these publications indicate this, by referring to these

publications as PN, with N being replaced by the number of the publication.

P1: A. Schneider, P. Pop and J. Madsen. A pin-count reduction algorithm for flow-based

microfluidic biochips. In Proc. of Design, Test, Integration and Packaging of MEMS/MOEMS

(DTIP), 2016.

P2: Alexander Schneider, Paul Pop, and Jan Madsen. Pin-count reduction for continuous

flow microfluidic biochips. volume 24, pages 483–494, Berlin, Heidelberg, January 2018.

Springer-Verlag.

P3: A. Schneider, P. Pop, and J. Madsen. Waste-aware fluid volume assignment for flowbased

microfluidic biochips. In 2017 Symposium on Design, Test, Integration and Packaging of

MEMS/MOEMS (DTIP), May 2017.

P4: A. Schneider, P. Pop and J. Madsen, Volume management for fault-tolerant continuous-

flow microfluidics, 2017 IEEE International Symposium on Defect and Fault Tolerance in

VLSI and Nanotechnology Systems (DFT), Cambridge, 2017.

P5: A. Schneider, P. Pop, and J. Madsen. A Novel Metering Component for Volume Manage-

ment in Flow-Based Microfluidic Biochips. In 2018 Symposium on Design, Test, Integration

and Packaging of MEMS/MOEMS (DTIP), May 2018.

The rest of the thesis is structured as follows:

Chapter 2 provides a detailed introduction to biochips and their underlying technology. We

discuss models that represent biochips and their functionality without restriction to a specific

(e.g. valve-) technology. Furthermore, we provide an introduction to the additional hardware

that is required to operate a biochip and the accompanying design constraints. This infor-
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mation provides the background knowledge on which the contributions in Chapters 4-6 are

based on. This chapter is based on the publications P1, P2, P3 and P5.

Chapter 3 introduces current design methodologies including fabrication, as well as the

possibilities for dynamic interaction with biochips by making them programmable. Due

to the complexity of the biochip design process, researchers have proposed solutions to

isolated design tasks. Frequently, this leads to sub-optimal or even infeasible solutions as

they cannot be integrated into the design process properly. In this chapter we introduce

existing methodologies which in their core are essential to every biochip and along which

we therefore implement our proposed methods and tools. This chapter is based on the

publications P1, P2, P3, P4 and P5.

Chapter 4 covers my contribution on the topic of pin-count reduction, which allows to op-

erate biochips using a reduced amount of controls. Even though thousands of valves can

be integrated on a biochip, their functionality is limited due to the number of control-pins

that can be connected to an external controller. Hence we have proposed a pin-count reduc-

tion technique which is integrated into the physical design and control synthesis tasks, to

reduce the number of required external controls using shared valve actuations. Contrary to

previous solutions, we consider the 2-way impact of binding, routing and scheduling with

pin-count reduction. This uncovers superior solutions and furthermore enables to trade-off

an increased application execution time for further pin-count reduction. This chapter is

based on the publications P1 and P2.

Chapter 5 covers my contribution on waste-aware volume management, providing accurate

control over the fluid volumes used in biochips. Related work has focused on optimizing

mixing operations, aiming to reduce the number of required mixing steps and therefore the

assay runtime. The potential increase in fluid consumption and the impact on volume man-

agement is often ignored. However, dispensing additional fluid (overflow) can be expensive,

while shortages of fluid (underflow) can interrupt the execution and even require manual

replenishment. Therefore we provide a volume management approach that satisfies all

constraints while extending previous mixing optimizations. By allowing leftover fluids from

operations to be reused in other mixing operations, the total volume of required fluids can be
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further reduced. Due to the techniques low computational complexity, it is also feasible to be

used during error recovery at runtime. This chapter is based on publication P3.

Chapter 6 introduces my contribution on a novel metering component for volume manage-

ment. Moving fluids within a biochip is simply referred to as fluid transport by researchers,

ignoring the underlying complexity. However, realistic biochip design has to offer the capa-

bility to provide specific volumes of fluid to precise locations in the architecture, which is not

a trivial task. Our proposed component is capable of aligning and metering fluids, as well as

detecting missing fluids during the biochip’s operation. We make use of the gas permeability

of the PDMS from which parts of biochips are made to introduce vents that allow for the

proposed functionality. This chapter is based on the publication P5.

Chapter 7 contains the discussion and concludes this thesis.

Appendix A describes a biochip design tool that has been developed to design and fabricate

our prototypes. Current tools for physical design do not bridge the fabrication gap, which

extends into lacking functional verification. Instead, interdisciplinary specialist knowledge

is required to verify, potentially adapt and then turn the synthesized design into working

biochips. We have connected our physical-design methodology to a micromilling fabrication

process for biochips using normally-closed valves. Such biochips are build from PDMS and

PMMA that can be purchased off-the-shelf and are therefore easy to fabricate by non-expert

end-users. The micromilling process to fabricate the PMMA layers is automated using the

G-Code output from our tool.
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Chapter 2

Biochips

This chapter contains contributions made in P1, P2, P3 and P5, as stated in Section 1.4.

Decades of research on biochips has led to a wide range of design methodologies, fabrication

techniques, modelling and simulation tools, automation and optimization etc. In this chapter

we will introduce those technologies and methodologies which provide the base for our work

presented in the following chapters. The work presented in this thesis is based on Flow-Based

Microfluidic Biochips (FBMB). While some analogies can be drawn between FBMBs and

Droplet-Based Microfluidic Biochips (DBMB), adapting methodologies from one platform to

the other still requires considerable work. Therefore, possible applications of this work for

DBMBs or a direct comparison to existing DBMBs research is considered out of scope for this

thesis. However, within the FBMB platform, no restrictions are made concerning the type of

technology used.

2.1 Passive Biochips

We consider a biochipt to be passive if it contains no active components such as valves or

pumps which can direct the flow of liquids on the chip. Such chips are therefore limited in

their functionality, but also simple regarding the design and fabrication. Fig. 2.1a illustrates

a mixing channel example where two input channels are joint, causing the fluid from both

to mix. However, the outcome quality of operations such as mixing depends heavily on the
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component design and the physical properties of the used fluids [57]. This example uses

simple diffusion to mix the input fluids, which is sufficient for some, but not all liquids,

which marks the limits of design simplicity for passive biochips. More effective methods for

this purpose have been developed, such as split-and-recombine, lamination, recirculation

(recycle flow) [33] and chaotic advection [83]. Such methods result in more complex channel

designs to provide adequate diffusion such as an example shows in Fig. 2.1b.

(a) Basic mixing channel (b) Advanced mixing channel [20]

Figure 2.1: Passive mixing architectures

Passive biochips are currently the most common commercially available chips [17]. One

of the main reasons for this is the easy usability, as no additional hardware is necessary to

operate the chip. Reagents can be inserted into the chip directly, for example using a syringe.

Furthermore can these chips be fabricated as one solid piece using injection-molding which

is very efficient at high quantity production. Additional designs such as orientation-based

biochips [88] have been proposed, indicating the wide range of design possibilities. As shown

in Fig. 2.2, mixing of two fluids can be achieved in a simple channel. The desired mixing

functionality is achieved by adjusting the orientation of the chip in regard to earth’s gravity,

causing fluids of different density to mix in certain ratios.

2.2 Valve-based Biochips

While passive biochips are popular due to their simplicity in fabrication, they also come

with drawbacks. Passive biochips are for the most part application specific, meaning that

most biochemical assays need an individual biochip design. Programmable biochips on
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Figure 2.2: Orientation-based biochip [88]

the other hand can reconfigure the timing, order and routing of operations to allow single

designs to operate several different applications. Furthermore do programmable chips

provide more flexibility and increased automation. Feedback loops can be constructed which

allow outcome based experiments to continue, without manual intervention. Additionally,

programmable biochips provide the possibility of error recovery, which can save high value

reagents or data from getting lost due to faults [117].

Active biochips are also called valve-based biochips as they obtain all their active functionality

from basic valves. Valves in biochips are considered to only have two states: (1) Open and (2)

Closed, which can either restrict or allow the flow of fluids within a channel in a biochip. This

forms a strong analogy to transistors in electronics which allows for many methodologies to

be adapted to microfluidics. Currently, two major valve technologies are being used, Quake

valves and Grover valves which as introduced in the next two sections.

2.2.1 Quake Valves

The microfluidic valve technology developed at Stanford (also known as Stanford valve) [32]

is designed for biochips, built from PolyDiMethylSiloxane (PDMS) which is a flexible and

durable material (more details on fabrication in Sect. 3.4). To introduce valve functionality,

the chip is divided into two layers, the Flow- and Control-Layer. The Flow-Layer contains

channels used to transport fluids, while the channels in the Control-Layer distribute pressure.

Fig. 2.3 shows a schematic design of a Stanford valve and indicates the separation of the chip

in two layers. To close this valve, pressure is applied to the channel in the Control-Layer
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(control channel) which pinches the channel in the Flow-Layer (flow channel), interrupting it

and prohibiting fluid from passing. Such valves have been shown to have a very fast response

time up to 100 Hz [32]. Furthermore can they be densely integrated as functional valves at 6 x

6 µm have been fabricated, although at a slower response time [8]. In its idle state, i.e. no

pressure is applied to the control channel, this valve remains open, hence it is also called

a “normally-open valve”. To allow better sealing of the flow channel, the control channels

are build rectangularly, while the flow channels are rounded on one side. Furthermore, the

control channel can be placed above or below the flow channel [32].

Figure 2.3: Schematic design of a Stanford valve [32]

2.2.2 Grover Valves

An alternative valve technology developed at Berkeley (also known as Berkeley valve) [42]

is designed for biochips, build from three separate parts. Contrary to Quake valves the two

outer layers are made from PMMA, Glass or a similar material and are separated by only a

thin (typically 100-250 µm thick) membrane of PDMS. The other layers however are also

referred to as Flow- and Control-Layer, into which the channels are fabricated. The thin layer

of PDMS is required to enable this valve technology. As shown in Fig. 2.4, a valve is fully

integrated into the layers, by leaving a notch in the flow channel during fabrication, which

interrupts the flow of fluid through this channel. Simultaneously, a deflection chamber is

built into the Control-Layer at the same location. Such cambers typically occupy at least 1 x 1
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mm2. In its idle state, i.e. only atmospheric pressure is applied to the control channel, this

valve remains closed, hence it is also called a “normally-closed valve”. In Fig. 2.4b the valve is

shown in its open state, cause by vacuum pressure being applied to the deflection chamber

in the Control-Layer. This pressure deflects the flexible PDMS membrane into the deflection

chamber, creating a connection between the previously separated parts of the flow channel.

(a) Closed Valve (b) Open Valve

Figure 2.4: Schematic design of a Grover valve

2.3 Fluidic Components

Combining multiple valves allows for the fabrication of more complex components such as

active mixers, sealed heating and detection chambers, switches or storage components. We

model such components schematically as shown in the upcoming figures, which indicate the

flow channels in yellow and valve positions in blue. Control channels that connect the valves

with control-pins are omitted.

(a) 3-way switch (b) 4-way switch

Figure 2.5: Switches

Switches enable the creation of complex architecture designs, by allowing overlapping chan-

nels and guiding the flow of the liquid by restricting access to certain channels. A switch

is typically an intersection of three or four channels, where each channel can be blocked
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by a valve, located close to the intersection as shown in Fig. 2.5. However, there is no hard

restriction on the number of intersecting channels to form a switch, or the angle in which

channels connect to the switch. While unlikely to affect the majority of applications, the

switch design can affect properties such as the fluid’s Reynolds Number [103] or heat transfer

[65]. However, depending on the valve type and fabrication method, the number of valves

that can be placed closely and at the desired angle to a switch is far more likely to be the

limiting factor, resulting in the common use of 4-way and 90° angle switches.

Figure 2.6: 5 stage pump actuation using 3 Grover valves. Yellow lines are flow channels. Light blue
circles are displacement chambers. Dark blue circles are displacement chambers filled
with fluid.

Pumps allow fluid to be moved within the chip without any outside pressure source. By

placing three valves in sequence in a channel, these valves can be actuated to drive the

liquid in this channel forward. Pumping fundamentally works the same using either Quake

(normally-open) and Grover (normally-closed) valves. The speed by which the liquid is

displaced can be controlled by the actuation speed of the pumping valves. The volume that is

displaced with each actuation of the pump depends on the channel and valve sizes. Quake

valves can be built at a very small scale and have been shown to allow fluid displacement of

volumes as small as 100 pl [32]. The displace volume using Grover valves depends on the size

of the displacement chamber of the diaphragm valve, which has been shown to have volumes

down to the nanolitre range [41]. To create a one way motion of the fluid, the valves have to

be actuated in a specific sequence as illustrated in Fig. 2.6 on Grover valves. The opening of

a valve, i.e. deflecting the membrane into the displacement chamber, creates a vacuum at

the valve. To equalize the pressure differential, contents of the flow channel (e.g. fluid) are

sucked into the displacement chamber. Closed adjacent valves control from which side the
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pressure differential is equalized. For example, in step 1 in Fig. 2.6 the vacuum created by

opening the input valve can only be equalized from the top, as the closed diaphragm valve

does not allow any flow towards the input valve from the bottom.

(a) Mixer (b) Phase 1

(c) Phase 2 (d) Phase 3

(e) Phase 4 (f ) Phase 5

Figure 2.7: 5-Phase equal ratio mixer

Mixers provide the same functionality as centrifuges or vortex mixers in a conventional lab.

While passive chips require fluids to mix by diffusion within various designs of diffusion

chambers, active mixers can achieve this in an enclosed area, with no restriction on mixing

time [18]. A model of such a mixer is shown in Fig. 2.7, which consists of a round mixing

channel and nine valves. The input and output channel, along with the valves 1-3 and 7-9

are placed so that the mixer is separated into two equal sized chambers. This allows to fill
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the mixers with two equal volumes of fluids, resulting in an equal mixing ratio. Such mixers

are therefore also called 1:1 mixers. Valves 4-6 form a pneumatic pump which is used to

operate the mixer and mix the loaded liquids. The mixing operation consists of five phases as

shown in Figs. 2.7b to 2.7f. The first two phases represent the loading of the upper and lower

chamber of the mixer with the desired reagents. In phase three, the mixer is sealed and the

pump actuated, causing motion within the rounded channel. The last two phases remove the

mixed liquid from the upper and lower chamber. Other ratios can be achieved by performing

multiple mixing operations in sequence or using arbitrary ratio mixers, which is covered in

detail in Chapter 5.

Figure 2.8: Schematic design for any component requiring a reaction chamber such as heaters and
detectors

Components such as Heaters or Detectors are represented in a simple manner by an enclosed

part of a channel as shown in Fig. 2.8. From a schematic view, these components only need

to be able to hold fluids in place while the operation is performed. This can be in form of

outside components such as a microscope, or combined with internal components such

as magnetic beads [115]. The shape of such chambers is not limited to rectangles, but can

be fabricated in other shapes to aid the desired process. Common practices for incubation

are heating plates or infra-red light sources which allow for very quick changes in the fluids

temperature due to the small volume [39]. On-chip detection methods have seen limited use

so far as many conventional techniques such as agerose gels are difficult to implement within

a biochip and optical detection is hindered by the chip’s outer layers, but still possible [109].

However, advancements in the miniaturization of electrochemical sensors will greatly benefit

the range of detection methods for biochips [13, 35] and bioanalysers using microfluidics

provide a range of detection options as well [89]. Nevertheless, manual and external detection

measures are still common to date, such as analysing the fluid on-chip using a microscope,

or moving the fluid out of the chip into separate detection hardware.

Input and Output interfaces are typically holes in the flow-layer, connecting a flow channel

to the outside of the chip. These interfaces can then be connected to fluid sources or waste

containers using tubes as shown in Fig. 2.9. Such interfaces are identical and can therefore

be assigned as required. Alternatively, an input can form a reservoir, allowing the fluid to

be placed on the chip, removing the need for a fluid source. The fluid can then be moved
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Figure 2.9: In- and outlets connected with flexible tubes

from the reservoir using on-chip pumps. For ease of use, such reservoirs can also be filled

(e.g. with buffer) and sealed during fabrication, reducing the amount of fluids that need to be

introduced to the chip by the user.

Figure 2.10: Storage component with four storage channels. The number of channels can vary to suits
the architectures needs

Storages are required to store reagents for later use, without occupying functional compo-

nents. A storage component consists of multiple channels that can hold a specific volume

of liquid, for example as much as one mixing chamber. As Fig. 2.10 shows, a series of valves

allows to access each storage cell individually.

2.4 Biochip Architecture Model

We use a system-level architecture model based on a topology graph to capture the biochip

architecture [97, Chapter 3]. In such models, all components that provide functionality to

execute a fluidic operation, such as mixers, heaters, detectors and storages are part of the

same group of components. We call these components Functional Fluidic Units (FFU) and
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they are represented as rectangles in our models as shown in Fig. 2.11. The same model

shows switches as black nodes, in- and outputs as white nodes and channels as lines. This

non-technology specific architecture model determines the number and type of components

in the architecture and how they are connected to each other, but does not determine the size,

position or mechanical properties of the components or how they are connected to pressure

sources. This allows a wide range of technologies (e.g. valve or mixing) to be implemented

using the same model. While our example architecture in Fig. 2.11 has preassigned in- and

outputs, it is important to note that for most architectures the physical properties of such

interfaces do not differ and the assignment is therefore interchangeable. The assignment of

interfaces as in- or outputs would then be made in the routing phase (see Sect. 3.1). However,

for simplicity reasons we choose to have our architecture’s interfaces preassigned.

Figure 2.11: Architecture model with three inputs and outputs, one heater, filter and detector and six
switches to interconnect the channels leading to the components

Furthermore, this model allows to determine all available routes or Flow Paths (FP) on the

chip. Since fluids are moved by pressure, a complete FP must follow one of two rules. (1) The

start and end of the FP are separate in- or outputs, one through which the pressure is applied

and one through which the pressure can be released from the chip. (2) Alternatively, pressure

can be generated by on-chip pumps, making circular FPs without connection to any in- or

outputs possible. FPs can be broken down into Flow Path Segments (FPS), each of which

represents a directed connection between two FFUs. To connect the two FFUs, a FPS can

contain any number of switches, but no additional FFUs, e.g. (In1, S1, S2, Mixer2) is a valid

FPS while (In1, S1, Mixer1, S3, S4, Mixer2) is not. FPSs are mutually exclusive, meaning they

cannot be used to transport fluids at the same time, if they share at least one vertex. Table 2.1

shows a list of all available FPSs for the architecture in Fig. 2.11. As FPSs represent every

available connection between FFUs, a FP can be described as a set of FPSs, which follow one

of the complete FP rules set forth before.
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FPS1 = (In1, S1, Heater1)
FPS2 = (In1, S1, S2, Filter1)
FPS3 = (In1, S1, S2, S3, Detector1)
FPS4 = (In2, S2, S1, Heater1)
FPS5 = (In2, S2, Filter1)
FPS6 = (In2, S2, S3, Detector1)
FPS7 = (In3, S5, S4, Heater1)
FPS8 = (In3, S5, Filter1)
FPS9 = (In3, S5, S6, Detector1)
FPS10 = (Heater1, S1, S2, S3, Out1)
FPS11 = (Heater1, S1, S2, Filter1)
FPS12 = (Heater1, S1, S2, S3, Detector1)
FPS13 = (Heater1, S4, Out2)
FPS14 = (Heater1, S4, S5, Filter1)
FPS15 = (Heater1, S4, S5, S6, Out3)
FPS16 = (Heater1, S4, S5, S6, Detector1)
FPS17 = (Detector1, S3, Out1)
FPS18 = (Detector1, S3, S2, Filter1)
FPS19 = (Detector1, S3, S2, S1, Heater1)
FPS20 = (Detector1, S6, Out3)
FPS21 = (Detector1, S6, S5, S4, Out2)
FPS22 = (Filter1, S2, S3, Out1)
FPS23 = (Filter1, S2, S3, Detector1)
FPS24 = (Filter1, S2, S1, Heater1)
FPS25 = (Filter1, S5, S4, Out2)
FPS26 = (Filter1, S5, S6, Out3)
FPS27 = (Filter1, S5, S6, Detector1)

Table 2.1: All available FPSs for the architecture in Fig. 2.11

2.5 Biochip Application Model

To model a biochemical application, we use a directed, acyclic and polar sequencing graph

model [80]. An example of such an application graph can be seen in Fig. 2.12. A node in this

graph is an operation that runs on a FFU. The edges denote dependencies between operations

that require fluid transport. Each operation Oi has an execution time Ci when running on

a FFU j . Some execution times are given by the application, such as an incubation time

along with a temperature. Others are dependent on the technology used in the architecture,

e.g. the mixing time might vary depending on the used mixing technology. Finally, some

operations do not have a precise execution time, such as optical detection which is done
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manually. Application models are not architecture specific. Therefore, before an application

can be run on a biochip, the application has to be mapped to the chip. This includes binding

operations to the functional units (where the operation should be executed), the routing

of fluids (which channels should be used for transport) and scheduling (at which times the

fluids are transported and the operations are executed) which are discussed in Sect. 3.1.

Figure 2.12: Application model with two fluid sources, one mixing and two incubate and detect
operations

2.6 External Hardware

To actuate valves in a biochip, a source of pressure, either higher or lower than atmospheric

pressure (depending on the valve type) is required. Furthermore, this pressure needs to be

distributed to multiple valves and turned on and off independently throughout the use of

the biochip. Control channels are therefore connected to the outside of the chip through

an interface called a control-pin, to which a pressure source can be connected, for example

through a rubber tube as shown in Fig. 2.9. More complex interfaces for larger numbers of

control-pins can for example also be connected using a connection adapter as shown in

Fig. 2.13. In this example, a biochip is placed between two parts of the adapter which are then

held together using screws. The elasticity of a full-PDMS chip as used here aids in sealing the

connection between the chip and the adapter, but adapters with integrated sealing can be
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manufactured as well. The adapter redirects the pressure from the tubes to a specific area

on the chip’s surface, therefore determining where on the chip the control-pins have to be

placed. While the predetermined control-pin locations put some constraints on the chip

design, connections to the control-pins can usually be found if they are distributed evenly

on the adapter. Having the chip fabricated according to the adapter design allows for rapid

interchanging of biochips.

Figure 2.13: Biochip to controller adapter. Tubes from the controller are connected to the adapter,
into which a biochip can be placed (System from Microfluidic Innovations Inc, IN, USA)

These pressure sources leading to an adapter or directly into the chip are fundamental com-

ponents of programmable microfluidic biochips, as they control the valves that enable the

integrated functionality. Therefore, pressure has to be supplied to all valves and be individ-

uality controllable to provide dynamic valve control. Furthermore, depending on the chip

technology, external pressure sources may have to provide both high and low (vacuum) pres-

sure at every connection. This is accomplished by control hardware that distributes a single

pressure source into many control-pin connections and allows individual, programmable

control over each connection using solenoid valves. The market for such hardware is con-

stantly increasing and various solutions are already available to date [28, 74, 75]. While the
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size, cost, weight and pressure ranges can vary significantly between different control hard-

ware, each is considerably larger and heavier than any biochip, as clearly visible in Fig. 2.14.

These measures increase with the complexity (number of valves) of the biochip that need to

be controlled. It is therefore imperative to optimize the use of valves on biochips to reduce

the size of external hardware that is required.

Figure 2.14: Pressure controller capable of providing high- and vacuum-pressure through 36 connec-
tors using solenoid valves (System from Microfluidic Innovations Inc, IN, USA)

2.6.1 Control Logic

The order in which the chip’s valves have to be actuated, can be extrapolated from an appli-

cation’s schedule [78], which in turn is created from the chip’s architecture and the order of

operations defined in the application. Translating the execution of the schedule into signals

for valves reveals that each valve has three logical states it can reside in. Beside the two

physical states, open and closed, valves can logically also be in a don’t care state. This is the

case whenever the physical state of the valve, has no impact on the execution whatsoever, as

demonstrated in Fig. 2.15. Here, fluid is being passed through a grid of 4-way switches. At

every switch that the fluid is routed through, 2 valves need to be open while the remaining 2

are closed to ensure a directed flow. However, the state of the valves in the unused switch is

irrelevant at this point and they are considered to be in a don’t care state. This logical state
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Figure 2.15: Grid of 4 switches. Dark blue lines indicate fluid flow.

plays a significant role in optimization strategies such as pin-count reduction which will be

explained in detail in Chapter 4.

Such optimization strategies are necessary as typical control hardware only provides about

8-40 (depending on hardware size) individual pressure connections, requires a power source

and is significantly larger and heavier than the biochip. This makes the external hardware

necessary to operate the biochip a limiting factor. As the number of integrated valves can far

exceed the number of reasonably available individual pressure connections, components and

methods such as multiplexers [113], latching valves [43] and pin-count reduction techniques

have to be implemented to allow more complex chips to be operated. Multiplexers as shown

in Fig. 2.16 enable the control of multiple individual valves with each pressure source. This

leads to 2n output options being controlled using n input “bits”, or 2∗ log2(n) pressure

sources. Each of these bits controls two sets of valves which are in opposing states, depending

on the bit’s value. A latching valve as shown in Fig. 2.17 enables more complex valve behaviour

without additional pressure sources. A latching valve can be opened and closed with a short

pressure impulse (< 1 second) and will retain this state for a prolonged time (> 1 minute),

without the pressure source remaining active [43].
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Figure 2.16: Schematic design of a 3-bit 8-way multiplexer

Figure 2.17: Pressure / Vacuum Latch-Valve [43]



Chapter 3

Design Methodologies

This chapter contains contributions made in P1, P2, P3 and P5, as stated in Section 1.4.

As biochips become capable of increasingly complex tasks, new design methodologies are

necessary to keep the design process feasible. However, no single technology or set of

components has been identified yet around which methodologies can be build. Instead, a

flexible approach is required that does not only allow for a wide range of applications as

input, but can also incorporate evolving technologies.

Fig. 3.1 shows an overview of our design process for FBMBs, resulting in both a manufac-

turable, physical design of a biochip as well as its logic counterpart that manages the active

parts of the chip during the application’s execution. In this process, information about the

used technologies and components is acquired by every design step individually as required.

This does not only allow for more flexibility and easier comparability between technologies,

but also enables the creation of partial designs, without having determined a technology to

be used yet. This, still general, overview indicates the underlying complexity of microflu-

idic biochips and therefore the need for automation and optimization of the processes as

presented in this thesis.

Over the past years, first attempts have been made to automate individual parts of this

progress such as binding, routing and scheduling [24, 82], physical design [70], control

synthesis [78] and on-chip control logic [22], which are in part presented in this chapter.
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In a sequential process of this design, results of previous steps would be used in future

steps. However, many parts of the design process predict an output of a later stage such as

a control synthesis prediction during physical synthesis of the flow-layer. Such predictions

are necessary in order to find a solution in reasonable time or to increase the quality of

the overall design. This does however lead to optimization loops. Every design step D that

uses a prediction of a future step SPr edi cted as input, could potentially be revisited once the

actual solution to step S is available as input. The revisited step DRevi si ted would in turn

create another solution SRevi si ted which could be used as input, creating an optimization

loop. Instead of an iterative approach, a “Co-Design” of these design steps is required [16].

Attempts have been made, but mostly result in an iterative design on a smaller scale [120].

Figure 3.1: Overview of the design of FBMBs
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3.1 Binding, Routing and Scheduling

The way in which a given application such as in Fig. 2.12 is mapped to an architecture as in

Fig. 2.11 has a significant impact on the design steps of physical design and control synthesis

from our design process overview in Fig. 3.1. The binding of operations determines which

FFU will be used to execute any given operation. Routing determines the pathways that the

fluid takes from one bound FFU to another. Scheduling determines the order in which the

operations are executed. While some operations such as O1, O2 and O3 in Fig. 2.12 can be

scheduled in any order, other operations such as O3 and O4 have to obey their sequential

order. Binding of operations is very restricted for most architectures, as operations need to

be bound to FFUs that can execute the desired functionality, e.g. an incubation operation

has to be executed in an incubator component. Furthermore might other restrictions apply

such as the maximum volume of a component which we have omitted for our basic example.

However, if multiple components providing the same functionality are available, the binding

of operations can have significant impact on the routing and scheduling of the operations. It

is therefore beneficial to only determine all binding possibilities at a first stage and decide

the specific binding to a single FFU during the routing process to avoid impractical routes to

a previously bound FFU.

(a) Available FPSs from In1 (b) Available FPSs from Heater1 to outputs

Figure 3.2: Microfluidic components

Some previous work has simplified the routing problem, by ignoring the need of pressure to

move fluids, resulting in fewer components being occupied during fluid transport [79]. Our

routing algorithm does not include any simplifications and determines functional routes

without imposing additional constraints. We construct a Flow-Path (FP) by linking together

multiple Flow-Path Segments (FPS) which are determined first, as explained in Sect. 2.4. We

use the term “route” to refer to those FPs which have been chosen to be used by an operation,
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distinguishing them from other available FPs not used as routes. From this list of FPSs (which

are stated in Table 2.1 for our example) we can determine FPs to suit the operations of the

application. We divide this process into three steps. (1) A connection between the FFU where

the fluid is currently located and the target FFU (as determined by the binding process) has to

be found. For example, operation O1 from Fig. 2.12 requires fluid from In1 to be transported

to a heater. O1 can execute on any heater, and our routing will search for a heater FFU to

bind operation O1 to (in this simple example there is only one option). We determine a path

between these FFUs using one, or a set of connected FPSs. This is done using a Breadth-First

Search algorithm, with all FPSs beginning at In1 as starting points. Additional FPSs are linked

to the established FPSs until a connection between the FFUs has been found. Fig. 3.2a shows

all FPSs starting at In1. Since FPS1 directly connects In1 to Heater1, it is chosen as part of the

route for operation O1 while the other options are discarded.

Figure 3.3: Schedule example for the application from Fig. 2.12 running on the architecture from
Fig. 2.11

Two additional steps are necessary to form a valid FP. These steps have commonly been

ignored in previous work to simplify the process, but are crucial for realistic behaviour of the

model [80]. (2) The path determined in (1) has to be connected to an output. To the heating

operation O1 we bound Heater1 and therefore need to connect our partial FP to an output

from there. This is done using the same Breadth-First Search algorithm as in (1), only with

Heater1 as the starting point and any output as target. However, during this search conflicts

with the previously determined path from In1 to Heater1 have to be omitted. Considering all

available FPSs that lead to outputs as shown in Fig. 3.2b FPS10 cannot be used to connect

Heater1 with Out1, since this FPS overlaps with FPS1 which is already in use. For operation

O1, we therefore use FPS13 to connect Heater1 to Out2 without causing any overlap.

(3) The path determined in (1) has to be connected to an input to be considered a valid FP.

For operation O1 this is already the case and no further action is required to complete the

route. For operations that do not start at an input, an input has to be found in the same
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fashion as an output in (2). Depending on the architecture, it is possible that multiple paths

connecting the source and target FFU exist or multiple components of the same type to

which an operation can be bound (e.g. Heater, Detector) are available, meaning we will end

up with multiple options for all three routing steps, e.g. in Fig. 3.2b we could have also used

FPS15 to connect Heater1 with Out3. While choosing the shortest route is beneficial in many

cases, other methods have been presented [2], and we discuss our own in more detail in

Chapter 4. To schedule applications, prominent methods from computer science can be

applied. Techniques such as List Scheduling [73] which optimizes the overall execution time

of an application provide solutions applicable to our microfluidic system. For our scheduling,

we allow parallel execution of operations if their routes do not overlap. Furthermore we

assume that operations bound to a FFU (i.e. all operations that are not transport operations)

do not use any part of the chip aside its bound FFU. For simplicity reasons, in this example,

we assume that any operation (including transport) takes 1 minute, except for the heating

operation for which the application states an execution time of 2 minutes. From these

constraints the scheduling algorithm can determine a schedule as shown in Fig. 3.3 for our

example architecture and application. As transport operations to both the filter and detector

can’t be executed at the same time, the transport operation to the detector was delayed until

time step 1. In turn, once the filter operations is finished, the fluid can’t be moved to the

detector while it is still in use from O2 and this transport operations is therefore delayed to

time step 3. Here, two transport operations are combined, moving fluid from the filter to

the detector while moving fluid from the detector to Out3, which is possible as both share

the same route. Optimal (i.e. shortest overall execution time) schedules are frequently not

unique, as the alternative schedule in Fig. 3.4 shows.

Figure 3.4: Alternative solution to the schedule in Fig 3.3
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3.2 Component allocation and schematic design

A schematic design of a biochip (i.e. a netlist in Fig. 3.1) that follows our Biochip Architecture

Model from Sect. 2.4 can be constructed from an application graph, using a given component

library. To do so, the netlist is required to allocate components capable of executing all

operations given by the application model. Furthermore, these components have to be

connected in such a way, that the order of operations from the application model can be

satisfied when executed on such a hardware. The allocation and schematic design of an

architecture does not determine the location or size of components, or the length and route of

channels connecting them, which is part of the Physical-Synthesis. A possible solution to the

allocation and schematic design is presented in [96]. The component allocation is determined

through a predicted schedule, created from the application graph. This preliminary schedule

determined which operations can be executed in sequence and which have to be executed in

parallel, due to given constraints. Parallel execution of, for example two heating operations,

then requires the allocation of at least two heating components. The allocated components

are then bound to the operations in the schedule, allowing to determine the necessary

connections between these components to transport fluids to sequential operations. As

this synthesis problem is NP-Complete [116], heuristic algorithms are applied to provide

solutions in reasonable time, which are however not guaranteed to be optimal.

3.2.1 Microfluidic HDL

In efforts to alleviate the strain of biochip end-users on hardware design, a Microfluidic

Hardware Description Language (MHDL) has been proposed in [69]. There, the language

and accompanying compiler, verification tool and simulator are presented. Analogous to the

electronic design automation leading to VHDL, the goal of MHDL is to separate the end-user

from the hardware designer. MHDL allows specialized designers to take over the design task,

including functional verification and performance estimation and provide the end-user with

a suitable design.
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3.3 Faults and Fault Tolerance

This subsection is based on the contribution P4 as described in Sect. 1.4.

Many potential use cases for biochips such as patient care, or on-site sampling require a

high level of reliability from the devices that are used. Faulty devices can result in the loss

of expensive or hard to obtain samples and reagents, while undetected errors can cause far

reaching issues for example in case of misdiagnosis in healthcare. Before widespread use of

biochips is possible, their reliability has to be increased and demonstrated to be at a level

that at least rivals current methodologies.

Previous work has identified and classified faults in FBMBs into a Fault Model [50]. Such fault

models allow to better distinguish between different potential faults and apply fault-detection

and -tolerance methods more efficiently by adding additional abstraction layers. The fault

model classifies faults in two main categories: Permanent Faults and Transient Faults.

Figure 3.5: Common Faults in FBMBs [50]

Permanent Faults, examples of which are listed in Table 3.1, are caused by physical defects,

usually introduced during the fabrication of the biochip or caused by worn out components.
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Cause of Defect Observable Error Fault Model

Foreign particles, imperfect
molding and hard baking

Transmission of pressure
is interrupted

Block in flow channels
or control channels

Defect in bonding between two
independent channels or components

Cross-contamination
Leak between flow- or

control- channels and components

Pumps fail to generate pressure Missing transmission pressure
Block in flow channels

or control channels
Membranes of valves lose flexibility

or even get perforated
Valves cannot seal flow channels Block in control channels

Table 3.1: Examples of faults occurring in FBMBs

Permanent faults prevent operations from executing correctly and can result in recoverable

and irrecoverable faults. For example, a stuck close valve is blocking the access to a com-

ponent, making the use of this component impossible. If this is the only components of its

type, the fault is irrecoverable, otherwise the operations can also be executed on another

component and the fault is considered recoverable. Chips with permanent faults are always

discarded, even if they are considered recoverable as these fault will still have significant

negative impact on the execution of the application. Recovery from permanent faults is

therefore only of interest if discovered during the execution of an application, where error

recovery can allow the application to finish successfully, avoiding long experimental times,

wasting reagents and samples.

Transient Faults can occur during the execution of an operation, but are not permanent.

This means that neither previous nor following operations will necessarily undergo the

same fault. Such faults furthermore do not prevent the operation from executing, but will

cause the result of the operation to deviate from its specified solution. All transient fault

are therefore considered recoverable, for example by re-executing the operation from a

previous, correct state. The main issue concerning transient faults lies therefore in their

detection, as occurring faults might not be obvious, but can significantly alter the outcome of

an application. Faults occurring in flow-based biochips are dominantly permanent faults

as Table 3.1 shows. However transient faults might become more common due to newly

introduced functionality such as on-chip metering.

Having identified common causes for faults, preventive and reactive measures can be taken to

provide better reliability. To better distinguish between the application of each measure, Fault-

Tolerance can be split into four major areas, each allowing to increase the overall reliability of

biochips [50]. (1) Offline Fault Detection methods can determine the functionality of chips

before use. Fabrication errors as well as long term use or transport can introduce faults to
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Figure 3.6: Fault Tolerance through redundant architecture design [51]

biochips. Test routines are run prior to their use allowing to discard potentially erroneous

ones. (2) These methods furthermore need to be extended to allow Online Fault Detection

during the use of the chip. Uncovering faults that occur spontaneously or that were not

detectable before, assures that erroneous results are minimized. This also introduces the

possibility of (3) Error Recovery which can allow to finish current operations despite of an

occurring error, potentially saving reagents, data and time. Lastly (4) Fault Tolerant Designs

introduce alternative functionality to the base architecture, that can be used in case of an

occurring fault. This will aid to increase the yield of biochip fabrication, and furthermore also

improve the chance of error recovery [51].

The majority of work for flow-based biochips is focused on fault tolerant design and offline

fault-detection. While online fault-detection and error recovery options are available for

DBMBs [62], equivalent solutions for FBMBs are very limited to date. Looking more closely

into the four major areas of fault-tolerance in FBMBs we find that Fault-Tolerant Design in

flow-based biochips can be simplified into a routing and binding problem. All four fault

models in some way impact the routes and components on chip, and therefore risking erro-

neous execution of an operation. Current work in fault tolerant design therefore focuses on

providing redundancy within the chip, which allows faults to be tolerated. In a naive solution,

fault-tolerance is achieved by adding enough redundant channels and components to pro-

vide functional solutions for every possible occurring fault. This does however significantly

increase the design, fabrication and operation cost of the biochip. Assessing the likelihood
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of faults and the cost associated with fault tolerance is therefore important. One proposed

solution is to change the physical design of components to make them more fault-tolerant

instead of implementing additional redundant components [51]. These altered designs have

the advantage that high-risk parts can be backed up with redundant parts, while others are

not, which lessens the impact on the design, fabrication and operation cost. For example, as

shown in Fig. 3.6 the pump of a mixer, which is the highest-risk part of a mixer, can be made

fault-tolerant with the addition of a single valve, at low additional cost. If one of the pumping

valves fails, the fourth valve can replace it.

Figure 3.7: Fault Tolerant Components [29]

The possibility for offline fault detection has already been demonstrated by determining the

fault model [49, 50]. There the integrity of routes can be tested by applying pressure to a

flow-channel, attaching a pressure sensor at the predicted output and opening the valves

along the route. This only determines that some part of the biochip is damages, but does not

precisely identify the source. However, as chips with any kind of fault are significantly less

reliable, any fault warrens discarding the chip, making the specific source irrelevant.

Providing similar detection methods for online fault detection as proven to be more difficult,

as the channels are occupied by fluids, pressure based detection is no longer a straightforward

solution. Instead, optical detection using CCD cameras has been proposed to detect faults.

Fluid reaching certain components can be captured and even the volume can be determined

by analysing the length of the fluid occupied channel. Such measurements are however highly

reliant on the chip architecture, such as the channel depth and width which might be too

small to be accurately captured by the camera and therefore need to be provided. Additional

variables have to be accurately described such as the camera’s distance and angle to the

chip. Further difficulties arise due to the fact that both the chips components as well as most

reagents are transparent, resulting in very low contrast between them. So far, such optical

detection has mostly been done manually using microscopes, which has also proven difficult
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[45]. Alternatively, a pressure detection based fault detection using vents can potentially

capture certain faults, which is part of the contribution presented in Chapter 6.

3.4 Fabrication

Fabrication of FBMBs can be done using several methods. Due to the vast differences in

design and materials used for biochips, fabrication methods perform very differently depend-

ing on such parameters. Furthermore, while some techniques such as injection-molding

have been virtually perfected, others such as 3D printing still benefit from ongoing advances

leading to increasingly more efficient fabrication. The today most commonly used fabrication

methods for FBMBs are Injection-molding [46], 3D printing [118], micro-milling [124] and

laser-cutting [108].

Injection-molding has been used for decades not just for medical components, but anything

from gameboys to bottlecaps using metals, glasses and thermoplastics such as PMMA. It uses

masks (or moulds) commonly built from tool steels, into which the heated material is poured

(or forced). The material hardens as it cools down and retains the shape given by the mask.

While the design of the mask can be time consuming and the fabrication costly, once it is

done the production of the final product is trivial. The process is therefore very optimized,

allowing for cheap, high-quality and scalable fabrication. This technique is used dominantly

for passive biochips (Sect. 2.1), as the whole chip can be poured from a mask. The nature of

this process does however make it difficult to include moving parts in the chip. Some chips

have been demonstrated that include components such as mechanical switches [12].

3D printing is in many ways similar to injection-molding as the result is a biochip consisting

of a single piece. 3D printing makes it a lot easier to change design as it doesn’t require a mask,

but only a different design. However, other issues emerge, such as limitaitons in precision.

While the layer resolution of 3D printers has vastly increased over the last years, it cannot yet

rival the resolution of micromilling machines. Especially considering that the smallest layer

resolutions can only be obtained using larger nozzles [99].

For better access to active components on a biochip, for example through the use of Grover

valves (Sect. 2.2.2) a membrane needs to be introduced to the biochip. However, both

injection-molding and 3D printing are not well suited for such multilayer, multi-material
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designs. The most commonly used material for such membranes is PDMS due to its high

elasticity and tear resistance. At its glass transition temperature of −45 ◦C it can easily be

formed into any desired shape, which is why it has also been used as material to build entire

biochips from it. For multilayer design, thin, even sheets are required which are commercially

available at various thickness, down to 20 µm [61]. As we have shown in Sect. 2.2.2, this

membrane of PDMS is sandwiched between the two other layers, all three of which then need

to be bound together to form a single device. This so far marks the limit of injection-molding

and 3D printing. The PDMS is holding on to the other layers through Van der Waals forces

[58]. For enough of these weak interaction to occur, the surfaces need to be extremely even.

However, both injection-molding and 3D printing can only create surfaces with a roughness

several times of that of PMMA sheets [52, 56]. The reduced contact surface of this rougher

material make Van der Waals forces based bonds therefore very weak.

3.4.1 Multi-layer milling and bonding

Micromilling is an excellent choice for rapid prototyping and low quantity fabrication [44].

Since the design of the chip can be easily changed by adjusting the G-Code interpreted by the

machine, there is no additional cost for masks or similar when changing the design. While the

size and cost of micromilling machines can be high, smaller, tabletop version which also pro-

duce good results are available [114]. Scaling the production of biochips using micromilling

machines is however difficult at this time, as significant manual intervention is still necessary.

For most chip designs, multiple mills (of different size) are required and mills therefore need

to be changed part way through the fabrication process. Moving the chip between multiple

machines to avoid exchanging mills instead causes positioning issues. Position offsets caused

by moving the chip to another mill of just a few µm can cause alignment issues. Therefore

significant advancements that solve these issues still need to be made before micromilling

can rival the cost efficiency of techniques such as injection-molding.

To validate the work carried out for this thesis, prototypes have been built to test the sug-

gested features. All biochips fabricated for this thesis use Grover Valves (Sect. 2.2.2), therefore

having individually fabricated flow- and control-layers which are separated by a thin layer of

PDMS after bonding. For the flow- and control-layer we use cast plexiglass (PMMA) pieces

[100] sized 70x70x3 mm. While extruded plexiglass has some advantages such as better
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Figure 3.8: Minitech Machinery Mini-Mill/3 with PMMA piece aligned to a bracket

thickness tolerance and lower price, it also comes with various downsides. Lower resistance

to chemicals as well as to physical force (scratches easily) can cause problems for biochips.

However, most notably is the low melting point of about 80 ◦C which can easily cause parts

of the extruded plexiglass piece to warp or even melt during fabrication. Cast plexiglass on

the other hand has a melting point of about 160 ◦C and can sustain the heat created during

the fabrication process [100]. The poor thickness tolerance of cast plexiglass (±15% for 3mm

thick sheets) can be fixed by using a fly-cutter [21]. These layers are separated by a layer of

PDMS [61] of different thickness, typically 100 µm to 250 µm. Channels and components

are milled into the PMMA with a Minitech Machinery Mini-Mill/3 Micromilling machine

[63], using flat-end mills at 20000 RPM. Through holes are milled using a 3 mm diameter mill.

Channels are milled using a 800 µm mill at varying depths. For more precise milling (e.g. vent

groves in Chapter 6) a 200 µm mill is used. Fig. 3.8 shows the micromill with a piece of PMMA

aligned to a bracket for correct placement and a sacrificial piece underneath for through holes.

The PMMA layers are bound to the PDMS using a hydraulic press with heatable plates. To do

so, the PDMS sheet is placed on top of either PMMA layer and the second layer is placed and

aligned manually on top. This loose bonding is then strengthened in the heated hydraulic

press. The applied pressure removes most of the trapped air as it is pushed towards a channel
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(a) Basic G-Code example (b) Example of G-Code with macros

Figure 3.9: G-Code examples

Figure 3.10: Ambiguous assay description [7]

or the edge of the chip. The heating of the material aids this process as the material softens

and the air expands, making it more likely for air bubbles between the layers to be pushed

out of the chip. We heat the plates of the hydraulic press to 70 ◦C during the bonding process.

While the PMMA generally has a much higher melting point at 160 ◦C, the material already

softens significantly at temperatures well below. We found that even at 100 ◦C, the material

becomes soft enough that warping can occur under the pressure of the press. The duration of

the bonding process varies depending on the thickness of the PDMS and the PMMA, which

determines the time it takes for the material and the trapped air to warm up. Using PMMA

pieces of 3 mm thickness and PDMS membranes of 250 µm, thickness, a bonding time of 10

minutes has been sufficient. We have found that the applied pressure should not be higher

than about 8 kN. Applying more pressure causes the PDMS membrane to be squeezed into

channels and other open areas in the chip. While this does not cause the membrane to tear,

the additional material that was forced into the channel pushes back as soon as the pressure

is released, weakening the bonding. Furthermore should the chip undergo a cool-down

process while still under pressure. The sudden change in temperature of the material and

left over trapped air when exposed to room temperature can otherwise cause the bonding
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to fail immediately. We found that cooling the chip to about 45 ◦C while also decreasing the

pressure during the cooling phase resolves this issue.

(a) Aqua code example (b) AIS code exmaple

Figure 3.11: Code examples [6]

3.4.2 G-Code

The G-Code programming language is used to operate many computer aided fabrication

tools such as micromilling machines or laser cutters. Newer implementations include macro

language capabilities somewhat similar to those of a high-level programming languages. As

shown in Fig. 3.9b, this includes setting of variables (#), if-statements and go-to commands.

However, G-Code is also still commonly used in its more basic, sequential operation form

as shown in Fig. 3.9a. This only includes G-Code commands (starting with G and M) and

coordinates. While a significant number of G-Code commands are available (see a full list

here [19]), the main functionality it provides is the linear and circular interpolation between

two coordinates, allowing to create straight cuts or arcs. Where these coordinates are and at

what speed and order they should be connected is completely left to the programmer. Due
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to this low level exposure, it is impractical to write G-Code manually, unless for very simple

projects. Tools such as our Biochip Designer Tool presented in Appendix A or other available

tools [122] have therefore been developed which generate G-Code, for example using input

from a graphical user interface.

Figure 3.12: Biocoder code example [7]

3.5 Programmability

The continued advances in microfluidic technology allows us to recreate components from

computer- and electrical engineering for use in biochips. Previous research has demonstrated

the used of microfluidic logic gates, adders [54], shift-registers [22] and finite state machines

[87] in the past. Such advancements don’t only allow for more complex behaviour, but also for

more general architectures. Instead of application specific design, multi- or general purpose

biochips are being proposed, which can be programmed for many different uses. Similar

to programming languages like C++ or Java for computer programs, a more abstract way

to describe biochemical applications for biochips is necessary which hides the increasing,

underlying complexity of the architecture.

Furthermore do such languages remove all ambiguity from protocols as the code can only

be interpreted in a single way. This removes a source of possible errors as language based

protocols such as the example in Fig. 3.10 can be interpreted in multiple ways. High-Level

protocol Languages (HLL) such as Aqua [6] and BioCoder [7] have been proposed, to turn

the abstract information of the application into an assembly language, such as the MHDL

presented in 3.2.1. The Aqua language provides its own syntax and keywords from which
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(a) AND Gate (b) OR Gate

(c) XOR Gate

Figure 3.13: Gates

a source code can be constructed as shown in Fig. 3.11a. Creating such a domain specific

language makes it more accessible to non programmers which represent the majority of

biochip end-users. Besides the HLL, Aqua also provides its own instruction set called Aqua

Instruction Set (AIS) shown in Fig. 3.11b into which the aqua source code can be compiled.

Biocoder on the other hand is created as a library for C++ and therefore integrated into this

well established programming language. This allows to use widely available IDEs, compilers

and debuggers to create code in standard C++ syntax as shown in Fig. 3.12.
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Figure 3.14: PCR Biochip with two Mixers, eight capacity storage and two in- and outputs, optimized
to reduce the number of required control-pins with on-chip control [48]

3.6 On-Chip Control

The complexity of biochip architectures is significantly limited by the necessity of external

hardware to actuate valves on-chip, and therefore provide the control logic. Recent work has

however allowed to move some or even all of this control logic on-chip, drastically reducing

the number of pressure sources required [86, 102]. Such control logic is build form logic

gates as they are also used in electronics. Due to the analogy of pneumatic valves and

electronic transistors, logic gates such as AND-Gates, OR-Gates, XOR-Gates, etc. can be

build in a similar fashion for biochips as they are for electronic microchips [54]. Fig. 3.13

shows examples of such pneumatic logic gates. The distinction of Flow-Layer (yellow) and

Control-Layer (blue) that previously indicated which channels would contain liquids and

which air pressure, is not accurate for control gates. Here, both layers are used for air pressure

transport, the distinction is merely kept to distinctly refer to the layers. This allows to restrict

air flow into certain channels and obtain an output of either high pressure or low pressure,

depending on the states of the gates. To build more complex control logic, multiple gates can

be connected, allowing to encode specific circumstances in which flow controlling valves

should be actuated.
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Figure 3.15: Schematic design of the use of Vias to avoid an intersection of two channels on the same
layer

Fig. 3.14 shows a PCR biochip which has been extended with on-chip control logic. Through

this, the 62 integrated valves (which otherwise would each need an independent connection)

can be controlled using only 20 control-pins. The required control logic, shown in red (flow-

layer) and blue (control-layer) far exceeds the biochip area (grey), which has to be considered

as a trade-off.

3.6.1 Layer Changes

A Layer Change (also called Via or Through Hole) allows to connect channels across the sepa-

rated layers. On biochips fabricated for Grover valves this means that the PDMS membrane

is penetrated to connect overlapping channels on the flow- and control-layer as shown in

Fig. 3.15. Fig. 3.14 in fact uses many such Vias, which are essential for successful and efficient

routing. When integrating vias into an architecture, the distinct roles of the flow-layer to carry

fluids and the control-layer to carry pressure to actuate valves overlap as both fluids and

pressure can be passed to the other layer. This extents to the possibility to place control-pins

as well as in- and outlets on either layer of the biochip.

For fabrication, vias simply represent holes in the PDMS membrane (and overlapping chan-

nels on both layers). Previous research has shown that it can be sufficient to punch the

holes into the PDMS using a needle or similar. However, during our own experiments we

encountered severely reduce air flow through vias punched using a needle, especially when

alternating between high and low pressure. The same research suggests the use of laser

cutters to burn holes into the PDMS [26]. As the material evaporates using this technique, it

is less likely for the via to be obstructed during use.
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Chapter 4

Pin-Count Reduction

This chapter is based on the contributions P1 and P2 as described in Sect. 1.4.

4.1 Introduction

Fluids in continuous flow biochips are moved by applying pressure to the flow channel con-

taining the reagents. In passive biochips as introduced in Sect. 2.1, such a single pressure

source is sufficient to drive the, be it limited, functionality of the biochip through intricate

design of channels and chambers. To manipulate the flow of fluid within the biochip for more

advanced functionalities, valves need to be actuated with additional pressure sources. Such

pressure is introduced to the chip through control-pins as shown in Sect. 3.4 and typically

generated by external pressure sources and controllers as explained in Sect. 2.6. The high

cost, weight and size of such external hardware only remains practical until a certain point,

which puts a limit on the complexity of biochips. We therefore propose a pin-count reduction

by means of valve control sharing. On a logical level, valve control sharing removes the

possibility for two or more valves to be in individual states (open, closed or don’t care, see

Sect. 2.6.1) and forces them to be in the same state at any time, forming a Valve Group (VG).

On a physical level, the control channels leading to each of the valves in a VG are connected

and all but one control-pin is removed, causing the pressure at every valve in the VG to be

identical at any time.
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Control-pin minimization using this general idea has been proposed before in [78, 102] based

on application mapping and scheduling [81]. Here, control-pin minimization is based on

the scheduled application. From the schedule, valves sharing the same state throughout the

application can be identified. Such valves have no need for individual actuation and can

form a valve group. However, with this approach, control-pin minimization is depended on

a specific schedule. This prohibits the formation of certain VGs, for example if two valves

V1 and V2 are in opposing states at any time, they can’t be part of the same VG. However, a

different schedule might exist where V1 and V2 are never in opposing states allowing them to

form a VG.

Figure 4.1: The proposed pin-count reduction technique is implemented in the three highlighted
design steps, control synthesis and the physical design on both layers

Given a solution space θ of all possible schedules, a scheduler will find an optimal solution γi ,

i.e. a solution with the shortest possible execution time, for the given application. Iterating

through the entire solution space θ to find all optimal solutions γ⊆ θ and determine which

allows for the most VGs is, however, computationally impractical. Therefore we base our

pin-count reduction algorithm on an earlier stage in the design process, looking at the Flow

Paths (FP) and Flow Path Segments (FPS) for the routes of the fluid through the biochip, to

determine viable VGs. Similar to how a fixed schedule limits the options to form VGs, so

do fixed VGs limit the options for viable schedules. For example, a VG consisting of V1 and

V2 invalidates all schedules that would require these valves to be in opposing states at any
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time. Therefore, every VG that is introduced to a given architecture, removes a subgroup

Mi from θ for viable schedules. As more VGs are introduces it is likely that (
∑i

x=1 Mx) ⊇ γ

meaning that all optimal solutions are removed from θ. From this point on, the reduction of

control-pins becomes a trade-off for execution time. As γ was removed from θ by
∑i

x=1 Mx ,

the new solution space θn has a new subgroup of optimal solutions γn which in turn can be

removed by VGs that remove subgroups M j for (
∑ j

x=1 Mx ) ⊇ γn . In this chapter we will explain

in detail how such VGs can be found and what the effects of this trade-off on the schedule

and execution time of applications are. In Fig. 4.1 we can see where this optimization affects

our design process. The changes are fairly substantial as significant changes are made to the

physical design as well as to the logical control of the valves.

Figure 4.2: IVD Architecture

Figure 4.3: Typical IVD application that mixes various samples, reagents and buffers and analyses the
results

4.2 Problem Formulation

Let us illustrate our problem using the In-Vitro Diagnostics application (IVD) from Fig. 4.3

that has to be mapped to the architecture from Fig. 4.2. We indicate with Oi the i-th operation

in the IVD. Let us assume that the binding of operations is as follows: O1, O2 and O5 are bound
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to Mixer1; O6, O9 and O10 are bound to Mixer2; O3, O4 and O7 are bound to Detector1 and

O8, O11 and O12 are bound to Detector2. Furthermore, let us assume that we schedule this

application such that the restulting schedule is the one shown in Fig. 4.4a leading to the valve

actuation sequence shown in Table 4.1. The schedule shows the start times and the duration

of operations as references on a timeline, and the four rows correspond to the FFUs in the

architecture from Fig. 4.2. We denote with Mi the fluid transport operations. The time units

are listed at the bottom, indicating the elapsed time since the start of the application. Note

that for space reasons we only show partial schedules in Fig. 4.4 and a partical valve actuation

table in Table 4.1. The rows of the table represent the valves and each column represents

a time step in which certain valves need to be actuated. As mentioned, related work [78]

performs control pin minimization after scheduling, thus using the data from Table 4.1 as a

starting point. There, Valve1 and Valve3 for example, can be in the same state throughout the

depicted time steps (at time step 18, Valve3 is in a don’t care state and can be opened to suit

Valve1) and their controls can therefore be combined.

(a) Partial IVD schedule before the pin-count reduc-
tion, all operations are executed as early as possible.

(b) Partial IVD schedule after pin-count reduction with
scheduling constraints in place, leading to a de-
ferred execution of O4

Figure 4.4: Impact of pin-count reduction on IVD schedule

Note that in the IVD schedule in Fig. 4.4a, the detection operations O3 and O4 are waiting for

the mixing operations O1 and O2 to finish respectively. The fluid transport M2 and the follow-
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ing detector operation O4 are started as soon as possible, in order to minimize the application

completion time. This however means, that the equivalent operations for Detector1 (M1, O1)

are not executed at the same time as for Detector2. This leads to the valves used by these four

operations to be in opposing states in time step 18 as highlighted with the corresponding

color coding in Table 4.1 and Fig. 4.4a, meaning their controls can’t be combined.

Valve No. / TS 8 10 12 14 16 18 20 22
1 0 0 0 0 0 0 X X
2 1 1 0 0 1 1 X X
3 0 0 0 0 0 X X X
4 1 0 0 1 1 X X X
5 0 0 1 1 0 0 X X
6 0 1 1 0 0 X X X
7 0 0 X X 0 0 1 1
8 0 X X 0 0 1 1 X
... ... ... ... ... ... ... ... ...

8A 0 X X 0 0 X 1 1

Table 4.1: Partial actuation Table for IVD. 0: Open. 1: Closed. X: Don’t Care

As we can see from this example, the scheduling step has introduced constraints that restrict

the valve sharing options. Let us assume that we have decided to combine the valves used by

Detector1 and Detector2 before scheduling the operations. This means that the two detectors

can only operate simultaneously, which creates a scheduling constraint. We can enforce this

constraint during scheduling, for example by postponing the execution of operation O4 until

operation O3 can be executed as well, the resulting schedule is shown in Fig. 4.4b. The result-

ing change in the control logic for V8 is stated as V8A in Table 4.1, which is now compatible

with V7. However, the introduced change in the schedule can affect the application execution

time, as Detector2 is now occupied by O4 until time step 24 instead of time step 22, potentially

postponing other operations by 2 time steps as well.

By determining the valve sharing before the scheduling step, we can reduce the number of

control pins required. For the complete IVD application, which has an initial pin-count of 31

we can reduce the pin-count from 14 using our proposed technique, compared to a pin-count

of 20 as determined by the technique from [78]. The scheduling constraints introduced

by our technique do however delay the operations, increase the application completion

time and possibly exceed the application deadline, which has to be satisfied for certain
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biochemical protocols. For this example the reduction of required control pins to 14 increases

the application execution time from 81 (as determined before the reduction) to 107 time

steps. In addition, we have to make sure that the application can still be executed successfully

as control pin combinations can force valves to be in states which are incompatible with

certain routes, which is explained in detail in Sect. 4.3.1.

We define the problem we address in this chapter as follows: Given an architecture and

application model, optionally including application deadline and available number of control-

pins, we want to determine the optimal number of VGs to form. The optimal number of

VGs is determined by the input. (1) If any deadline is given, the optimal number of VGs is

the smallest number of VGs that still allows the application to finish within the given time,

despite the scheduling constraints introduced by the VGs. (2) If an available number of

control-pins is given, the optimal number of VGs is the given number of control-pins. (3)

If neither deadline or available number of control-pins is given the optimal number of VGs

is the smallest number of VGs that still allow for the application to successfully execute,

regardless of the required time.

4.3 Proposed Method

We have indicated in Fig. 4.1 which parts of the design process we extend with our pin-count

reduction technique. The underlying steps to solve the problem outlined in the previous

section are also shown in Fig. 4.5.

In step 1, we bind and route the operations given by the application onto to the given

architecture model, using an alternate routing technique presented in Sect. 4.3.1 which is

based on the basic routing explained in Sect. 3.1. Step 2 performs a preliminary control

synthesis which determines the valve states for every created route. Contrary to the complete

control synthesis [78], this version does not yet contain any information about timing. The

determined valve states are then used as input along with the application deadline for our

proposed pin-count reduction algorithm from Sect. 4.3.1. The algorithm produces a grouping

of valves that can share the same control pin, which introduces scheduling constraints for the

next step. Since scheduling the whole application is time consuming, step 4 uses a prediction

function presented in Sect. 4.3.1 to determine the impact of the constraints introduced on
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Figure 4.5: Design steps used by the proposed method

the schedule. The application is scheduled in step 5. Step 6 concludes this process with

control synthesis, which in contrast to the one performed in step 2, does also incorporate the

schedule. To schedule the application we have implemented a List-Scheduling algorithm

[73] and extended it to take scheduling constraints into account. After the control synthesis is

performed, we know how many control pins are required and how they have to be connected

to valves. The physical design task for the control layer is responsible to determine the routing

of the control channels in the architecture [47]. Note that our approach is iterative (the back

arrow from step 4 to step 3) and allows the designer to control the trade-off between the

number of control pins and the application completion time. If the end-user already has a

control box with a given number of outputs, then this number can be given as an input, and

our algorithm in step 3 will stop when this is satisfied. Our algorithm also stops before the

application deadline (if given) would be exceeded. If non of these restrictions are given, a

solution using the smallest number of control-pins is determined.
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4.3.1 Reducing the Pin-Count

As shown in Fig. 4.5, binding and routing of operations has to be completed before our

pin-count reduction technique can be applied. We use a routing algorithm based on the

fundamental routing explained in Sect. 3.1. There we mentioned that, depending on the

architecture, it is possible that multiple paths connecting the source and target FFU exist

or multiple components of the same type to which an operation can be bound (e.g. Heater,

Detector) are available, meaning multiple options for all three routing steps are available. For

convenience, we use the same basic architecture from Fig. 2.11 in the upcoming Figs. 4.7

and 4.8. However, for optimal results of our pin-count reduction, we no longer necessarily

choose the shortest FP over longer FPs if presented with multiple options. Our strategy is to

choose the FP which blocks the smallest number of FFUs and switches on the chip, which

is not necessarily the shortest FP. A component is considered blocked if it is actively used

(e.g. routed through), or if it cannot be used by another FP, since an adjacent component is

used. Take FPS4 in Table 2.1 (In2, S2, S1, Heater1) for example. Even though it does not use

Filter1, the valve leading towards it has to be closed and the filter is considered blocked, since

it is not possible to form a FP that uses Filter1, while FPS4 is active. Choosing routes with the

lowest number of blocked components therefore allows a higher flexibility while scheduling,

since more components are still available to be used by another FP.

To operate our example architecture from Fig. 2.11, 32 valves are required. A partial enumer-

ated example of where those valves are located in this architecture is shown in Fig. 4.6.

Figure 4.6: Valves

Our goal is to form VGs from these valves which incorporate as many individual valves

as possible, which as a result are actuated synchronously from a single control-pin. We

distinguish between two distinct sets of valve combinations into VGs, according to their effect

on the schedule.

The first set of combinations performed differs from other combinations, as they will never

introduce any constraints onto the schedule. Those combinations can be made, regardless of

the architecture, for all valves which are located in a channel between two switches, an input
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and a switch, or an output and a switch. Consider In1 and S1 in Fig. 4.6. They are connected

by a channel which contains Valve1 and Valve2. Only two possibilities exist in which this

channel can be used: Either the channel is routed through, in which case both valves have to

be opened, or it is not routed through, in which case both valves can be closed. Therefore,

the valves have no need to be actuated individually. The same principle applies to the valves

which close off any given FFU, along with other valves that are located in this channel (e.g.

valves 4 to 7 in Fig. 4.6). Therefore, these valves’ controls can be combined and share a control

pin, meaning that these valves will always work in unison as a VG. Fig. 4.7 shows the result

of applying this to the presented architecture, where the previously mentioned Valve1 and

Valve2 now form VG1, valves 4 to 7 form VG2 and so on. Further combination of VGs means

that all valves of both groups share a single control pin and are therefore activated in unison.

Figure 4.7: Valve Groups

Figure 4.8: Routes

Additional combinations will introduce scheduling constraints, which may affect the applica-

tion execution time negatively. To ensure that the application deadline will not be exceeded,

it is therefore necessary to determine combinations that introduce constraints with minimal

effect on the schedule. To clarify the effects of such constraints we map the application from
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Fig. 2.12 to our example architecture in Fig. 2.11. The three resulting routes can be seen in

Fig. 4.8.From these routes we can extract the valve states for each route, which is illustrated

in Table 4.2. Each route has sets of VGs in the previously explained states open, closed and

don’t care.

Table 4.2: Valve Group Configuration

Route Open VGs Closed VGs Don’t Care VGs
1 1, 2, 3 4, 5 6, 7, 8, 9, 10, 11, 12, 13
2 6, 9, 12, 13 4, 7, 10, 11 1, 2, 3, 5, 8
3 7, 8, 9, 11 4, 5, 6, 10, 12 1, 2, 3, 13

Given this data, the application graph, the desired number of control pins and (if relevant)

the maximum application execution time, Algorithm 1 can determine the potential effect on

the schedule for each combination of VGs and hence choose the appropriate combinations

that have the minimum impact on the application execution time.

Algorithm 1 Pin-count reduction

1: for each possible combination of VGs comb do
2: if valves in comb have to be in opposite states for at least one route then
3: Combination not possible without invalidating such routes
4: else if all valves in comb are in the same state at any given time then
5: Combination valid and no increase in schedule length
6: else
7: for all possible pairings of given routes do
8: if combining the valves in comb can increase the schedule length then
9: Use prediction function to determine by how much

10: end if
11: Store the prediction for this pair of routes, or 0 if no prediction was necessary
12: end for
13: end if
14: end for
15: Sort all combs according to the predicted increase in execution time
16: Combine VGs according to the sorted list until the application deadline is exceeded

Algorithm 1 starts with the assumption that all VGs can be combined, hence all permuta-

tions of combinations are iterated through in line 1. However, several combinations can be

discarded right away as they would invalidate at least one of the given routes, meaning the

application could no longer be correctly executed. This is the case whenever some of the

valves in questions are in the open state, while another part is in the closed state for a single

route, as shown in Example 1 in Table 4.3 and checked in line 2 in the algorithm.



4.3 Proposed Method 57

Figure 4.9: Multi-purpose architecture

If this is not the case, the algorithm continues in line 4, determining whether this combination

introduces a scheduling constraint. This is similar to how valve groups are determined in the

related work in [78]. However, the related work only determines whether the combination is

valid for an already given schedule. We determine if the combination is valid for any possible

schedule, meaning no scheduling constraint is introduced. This is the case if all potentially

combined valves can be in the same state for all routes, i.e. all valves are either in the open or

don’t care state, or in the closed or don’t care state, for all routes, as it is the case in Example 2.

If a combination of valves does introduce a scheduling constraint, the algorithm continues

on to determine the impact on the application execution time for this constraint in lines

7-12. A scheduling constraint prohibits two or more routes to be executed in parallel, because

parallel execution would cause unintentional mixing of fluids, leading to a potential increase

in application execution time as these routes have to be executed in sequence. Hence we

iterate through all pairs of routes in line 7 in order to determine the effect on them. First,

some routes were never able to be executed in parallel anyway, since they partially overlap, as

demonstrated in Example 3. In this case, which is checked in line 8, the scheduling constraint

does not have any effect on this pair of routes. In other cases such as in Example 4, the

scheduling constraint does impact the parallelism of the application as routes 1 and 3 can

no longer be executed at the same time. When such a case arises, the algorithm determines

how much this scheduling constraint affects the application execution time in line 9. Exact

results can however only be determined by scheduling the application and comparing the
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execution times. Since this is too time consuming, we propose a cost function to predict

the effect on the schedule. This prediction is based on how many parallel executions of

routes are prohibited by a scheduling constraint. E.g., Example 5 prohibits route 1 from being

executed at the same time as either route 2 or 3. Example 4 on the other hand only prohibits

parallel execution of routes 1 and 3, leaving the possibility to execute routes 1 and 2 at the

same time, leading to a prediction of a smaller increase in execution time than for Example 5.

Additionally the execution time of each route (how long it takes to transport the fluid along

the FP) is taken into account. The cost function predicts that constraints affecting routes with

long execution times have a larger impact on the schedule. This can be seen in Examples

6 and 7 where we assume that routes 1-3 have an execution time of 10, 8 and 6 time steps

respectively. Both examples prohibit one pair of routes from parallel execution, yet Example

7 results in a shorter execution time, since the longest routes are not affected by constraints.

Figure 4.10: Multi-purpose architecture application

Once the impact on the application execution time has been predicted for all combinations

of valves, these combinations are sorted from smallest to largest impact in line 15 and then

applied to the architecture until a stopping criteria is reached. The end user can specify the

stopping criteria: Stop the pin-count reduction when a given application deadline is reached,

or stop when a given target number of control pins is reached. By varying the stopping
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criteria, an end-user can trade-off the number of control pins and the application completion

times, as discussed in the experimental results.

Example Combined VGs Result Reason
1 VG1 and VG4 Combination

not valid
Route 1 is invalidated, since VG1 has to be
open to allow fluid transport while VG4 has
to be closed to prevent leakage

2 VG1 and VG2 Combination
valid and
no increase
in schedule
length

VG1 and VG2 are open for Route 1 and in a
don’t care state for Routes 2 and 3. There-
fore no matter which routes are executed in
parallel, VG1 and VG2 can always be open

3 VG6 and VG13 Combination
valid and
no increase
in schedule
length

Even though this combination does prohibit
routes 2 and 3 from being executed in paral-
lel, no increase in schedule length will occur
since these routes were not able to run in par-
allel in the first place, due to their partially
overlapping FPs

4 VG1 and VG12 Combination
valid and pos-
sible increase
in schedule
length

VG1 has to be open for Route 1, while VG12

has to be closed for Route 3, prohibiting par-
allel execution of these routes

5 VG1 and VG10 Combination
valid and pos-
sible increase
in schedule
length

VG1 has to be open for Route 1, while VG10

has to be closed for routes 2 and 3, prohibit-
ing parallel execution of these routes

Example Constraint Result Exec. time
6 Routes 1 and 2 restricted from be-

ing executed at the same time
Routes 1 and 3 are executed
in parallel Route 2 is executed
as soon as Route 1 finishes

18

7 Routes 1 and 3 restricted from be-
ing executed at the same time

Routes 1 and 2 are executed
in parallel Route 3 is executed
as soon as Route 1 finishes

16

Table 4.3: Valve Group combination examples: Examples 1-5 show the outcome of combining certain
VGs regarding the architecture and routes from Fig. 4.8. Examples 6 and 7 show how
different constraints can have varying effects on the schedule length. For these examples,
10, 8 and 6 time units are assumed for routes 1, 2 and 3 respectively.
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4.4 Experimental Results

We were interested to evaluate the proposed Pin-Count Minimization (PCM) strategy. The

evaluation has been performed for 4 biochips with the corresponding biochemical applica-

tion. We have compared our PCM approach with the Control Synthesis Optimization (CSO)

from [78], which performs pin-count reduction after the scheduling step, using a Graph-

Coloring algorithm. We have used the following test cases for the evaluation:

Test Case 1 (TC1): We use an architecture capable of IVD (In-Vitro Diagnostics), which has

various real life applications [25].

TC2: We have used the processing part of the MOA (Mars Organic Analyser) [84], and for TC3

we have modified it to an alternate design for the same application.

TC4: We have created a Multi-Purpose (MP) architecture to test the effects of our pin-count

reduction technique. The corresponding architecture- and application model for our MP-

Architecture can be seen in Figs. 4.9 and 4.10. The number of FFUs and valves in the

architectures as well as the number of operations in the applications are given in columns

2-4 in Table 5.2. The architecture and application models are available as supplemental

materials.
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Figure 4.11: Trade-off for TC4 using PCM (blue, squares and line). CSO result reference for TC4 (red
dot)
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For all experiments we assume that it takes 1 time step for fluid to pass through any given

channel (e.g. from one switch to another) and 4 time steps for an operation (e.g. mixing)

to finish. Table 5.2 shows a direct comparison between the CSO presented in [78] and our

PCM. The table contains the number of valves and FFUs in the architectures, the number

of controls required and the corresponding execution times for both methods, for each of

the tested architectures. As expected, the pin-count reduction comes at the expense of an

increase in application completion time. However, for most cases, the minimum number

of pins is obtained without a significant increase in completion time. The advantage of our

approach is that it allows for a direct, stepwise trade-off between the number of control pins

and the application completion time.

Test Case PCM CSO [78]

Name FFUs Valves Pin count Completion time Pin count Completion time
TC1 8 46 14 (30%) 107 (32%) 20 81
TC2 13 84 17 (14%) 119 (0%) 21 119
TC3 15 74 14 (30%) 96 (13%) 20 85
TC4 13 66 14 (44%) 70 (56%) 25 45

Table 4.4: Comparison between PCM and CSO. The percentage values in PCM indicate the reduction
of the pin count and the increase in completion time compared to CSO respectively.

Hence, in our second experiment, we were interested to evaluate the ability of our proposed

PCM approach to support such a trade-off. Thus using TC4 (TC1-3 are available in the

supplemental material) we show in Fig. 4.11 how PCM enables the trade-off between the

number of required control pins and the application completion time. The figure shows the

number of control pins, starting at 31, which is the initial number of VGs created, on the

Y-axis and the completion time on the X-axis. As we can see from the figure, the end-user

can choose which trade-off is most appropriate, considering the constraints of their control

solution in terms of number of control pins available versus the application completion

time, which may be constrained by a deadline for certain applications. Such a trade-off is

non-trivial, since the impact of a certain valve-sharing solution on the schedule is not easy

to determine. For example, there are combinations which do not affect the schedule length,

for reasons as shown in Examples 2 and 3 in Table 4.3. This is however only true for this

particular order in which the combinations have been made. E.g., the combinations that

reduced the control count from 24 to 16 do not generally have no effect on the schedule

length. Instead, the scheduling constraints introduced by the combinations before, create

a scenario similar to Example 3 for the following combinations. Especially for applications
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with few operations, such large jumps can occur frequently after multiple constraints have

already been introduced. This is due to the fact that most of these few operations are already

executed in sequence after a small number of constraints is applied, providing more options

for combinations such as Example 3 in Table 4.3, which constrain the schedule no further.

Additional combinations bring the control pin count to 14, which is the minimum number

of control pins required to run the application as determined by the pin-count reduction

algorithm. We have also validated our method on the AquaFlux biochip controlled by a

36-controls box from Microfluidic Innovations, LLC. Our method was able to determine the

same pin-count as the one currently used by the manually designed AquaFlux biochip.

4.4.1 Actuation of multiple valves

We have verified the possibility to actuate multiple valves using a single pressure source

with prototypes. As shown in Fig. 4.12, we have built mixers with several valves that share

pressure sources, as suggested in this chapter. Additional tests such as shown in the video

named “SharedValves” in our video repository [105] further prove the functionality of shared

valves. In this video, four valves which are positioned in different locations on the biochip

and therefore varying distance to the control-pin, are actuated from a single pressure source.

However, the number of valves connected to a pressure source directly impacts the required

pressure to actuate them. Additionally, large distances and therefore long control channels

between valves sharing a pressure source do not only further increase the required pressure,

but can also introduce a latency in valve actuation. We use the architecture in our video as

example: Providing -5 kPa, which has been sufficient to actuate a single valve in other chips,

has no effect on the four connected valves. An increased pressure of -10 kPa will actuate the

two valves close to the control-pin, but not the other two. Further increased pressure of -15

kPa will open all four valves, however, while the close-by valves actuate instantly, a noticeable

latency (of about 1 second) occurs before the other two, further away valves actuate. Applying

even more pressure of -20 kPa as in the video will open all four valves without any noticeable

delay.



4.5 Conclusions 63

Figure 4.12: Mixer with three pairs of valves using shared pressure sources

4.5 Conclusions

With new advances in biochip fabrication, the number of valves integrated on a single chip is

rising fast. The external hardware required to operate a biochip is however not as scalable,

resulting in further increase in size and cost of this hardware, which is already magnitudes

larger and more expensive than a biochip. In this chapter we have proposed a new technique

to reduce the required pin-count for flow-based biochips, effectively reducing the complexity

of external hardware required. Contrary to previous work, this method is able to trade off

execution time to reduce the pin-count even further. Experimental results have shown that

our algorithm is capable of reducing the pin-count significantly, while keeping the extension

of the schedule length acceptable. To produce realistic results, the current state-of-the-art

routing model has been extended.
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Chapter 5

Waste-Aware Volume Management

This chapter is based on the contribution P3 as described in Sect. 1.4.

5.1 Introduction

The problem of fluid management is often ignored for microfluidic applications, assuming

that all fluidic constraints are satisfied during the execution of an application [3]. However,

dispensing more fluid than needed (overflow) can be expensive, while shortages of fluid (un-

derflow) can interrupt the execution and even require manual replenishment. Furthermore,

hardware restrictions can impose constraints on the amount of fluid that can be passed on

from one operation to another, details of which are presented in Sect. 2.4. Additionally, non-

deterministic events such as errors [62] or conditional execution [34] can further complicate

fluid management. Our experimental results show how wasteful microfluidic operations are

in many cases. While this issue is often masked by the fact that extremely small volumes can

be used in biochips, it becomes very apparent when the output volume is predetermined, for

example for master-mixes or as minimum volume for certain detection methods.

Research so far has provided multiple solutions for optimizing mixing operations, both for

droplet and flow based biochips [23, 34, 59]. These techniques however are focused on op-

timizing mixing operations to require as few mixing steps as possible, which can increase

fluid consumption and require high computational complexity. The waste-aware mixing
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algorithm proposed in [112] allows to minimize the consumption of one input fluid, but is

restricted to a mix of only two fluids and drastically increases the consumption of the other

fluid. Furthermore, [112] focuses on optimizing single mixing operations as opposed to the

application-wide fluid management problem we address in this paper. Previous research

on automatic volume management has proposed a linear programming solution, which is

capable of avoiding over- and underflow for systems with arbitrary mixing ratio hardware.

However, the execution time is infeasible for large assays, hence a fast heuristic is proposed

for an over-constrained version of the problem, which in turn does not guarantee to provide

a valid solution [5]. Furthermore, the authors are interested in a solution that maximizes the

sum of the output volumes and ignore the waste produced during the execution. We consider

that the output volumes are given and we are interested in providing solutions that satisfy all

constraints while minimizing the total fluid volume required. Wasted fluids are to be reused

whenever possible to further decrease the fluid consumption. Furthermore, we are interested

to design a low computational complexity algorithm, to allow for non-deterministic events

such as conditional execution or errors to be solved during the execution of the biochemical

application.

Fig. 5.1 shows that the proposed application graph optimizations are applied at an early stage

of the design process during the application graph generation. This allows for significant

changes to be made, without the need to reiterate through any other parts of the design

process.

To apply our volume management technique to our design process, we extend some models

introduced before, as well as introduce additional constraints that are present in any given

FBMB. We extend our architecture model from Sect. 2.4 by a Maximum Hardware Capacity

(MHC) parameter for every FFU as shown in Fig. 5.2. The FFUs might also be able to function

with a smaller volume, but if a volume larger than the MHC is transported to an FFU, part

of the fluid will remain outside the FFU, potentially blocking channels and other FFUs.

Furthermore we introduce a Minimum Volume Requirement (MVR) which is the smallest

volume of fluid a component requires to function properly, for example a detector requires a

certain volume of fluid to allow for a reliable optical detection. An additional, architecture

wide restriction on fluid volumes is the Hardware Transport Resolution (HTR). This describes

the smallest volume of fluid that can be handled reliably by the architecture. For many

architectures this describes the smallest volume necessary to fill the channel depth and width
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Figure 5.1: The proposed volume management optimization is implemented in the highlighted design
step application graph generation

for a sufficient length to avoid faults, occurring due to air bypassing fluid in a channel due

to its small volume. The HTR can however also be imposed by functional components, for

example the smallest volume that can be accurately metered.

Fig. 5.3 shows an example using a metering chamber, used to obtain a certain volume of

fluid from the input reservoir. While it is possible to fill the metering chamber multiple times

and combine the fluid to create larger volumes, it is not possible to determine whether the

chamber is filled to a certain degree, making it impossible to reliably meter volumes smaller

than the size of the metering chamber. To assure correct functionality of the chip, all volumes

Figure 5.2: Architecture netlist including two mixers and detectors with a maximum hardware capacity
(MHC) of 10 nl each.



68

used therefore have to be multiples of the HTR.

(a) Step 1 (b) Step 2 (c) Step 3

Figure 5.3: Metering example using a metering chamber

We extend the use of the application model introduced in Sect. 2.5 by adding discrete and

fractional volumes to the edges, indication the minimal amount or ratio of fluids that have

to be transported to the following operation. An example of such an application is shown

in Fig. 5.4, where red operations indicate mixing operations which do no require a specific

volume of fluid (regarding the application, architecture restrictions still apply), but rather a

certain ratio of multiple fluids. Green operations indicate other operations such as heating,

detection or filter, which have a MVR.

5.2 Problem Formulation

Given the application from Fig. 5.4 as input, we are interested in determining the Fluid

Volume Assignment (FVA) for each operation of the application such that all the fluidic

constraints are satisfied and the total fluid volume is minimized. This is achieved by advanced

mixing algorithms and reuse of waste, generated by the operations. In addition to the

application graph, we use the component library and technology file as inputs as shown in

Fig. 5.1. These provide information about the available hardware (e.g. 1:1 or arbitrary ratio

mixers) as well as the MHC and MVRs of the component and the HTR of the architecture.

The architecture from Fig. 5.2 is not required as an input, but only used to clarify the process.
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Figure 5.4: Application graph showing the input requirements of the operations as ratios for mixing
operations (red) and as discrete values for the other type of operations (green).

5.3 Mixing

For many biochemical applications the most common operation is mixing, be it in prepara-

tion of an experiment to produce a Master-Mix, preparation for detection requiring to add

dye to the samples or long term experiments requiring additional reagents at various times.

At the same time, mixing operations are the main source of fluid waste in continuous-flow

biochips as mixing operations are prone to produce excess fluid.

The 1:1 mixing architecture as shown in Fig. 2.7a mixes two equal volumes of fluid. To achieve

ratios other than 1:1, multiple sequential mixing steps are necessary. Fig. 5.5 shows how a 1:3

mixing ratio can be achieved by adding a second mixing operation which mixes the result of

the first operation with additional fluid from the input. However, the architecture of 1:1 mixers

makes sequential mixing such as this especially wasteful. The output volume of a mixing

operation is the sum of both input volumes, therefore if O1 receives 1 nl from each input,

it produces an output volume of 2 nl. Assuming the same size of mixer for all operations,

only 1 nl can be passed on to O2 to be mixed with more fluid from the input, leaving the

other 1 nl to be discarded. Using mixers of increasing sizes is infeasible. While using a mixer

that takes two inputs of 2 nl for O2 would allow O1 to pass on all its output volume, it would
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Figure 5.5: Example of achieving a 1:3 mixing ratio using 1:1 mixing hardware and the unavoidable
byproduct of fluid (i.e. waste) not in the target ratio.

also require Input B to dispense 2 nl instead of 1 nl to this operation, increasing the overall

fluid consumption and furthermore just passing on the problem to a potential next mixing

operation which would then require an even larger mixer.

(a) Min-Mix (b) REMIA (c) NFB

Figure 5.6: Comparison of mixing trees for a target ratio of 5:11 created by Min-Mix, REMIA and NFB

Furthermore, not all mixing ratios are obtainable by chaining multiple 1:1 mixing operations

together. Ratios which are unreachable using 1:1 mixing hardware are approximated and the

quality of the approximation can be controlled as it is directly linked to the number of mixing

operations performed, also called precision level [23]. As mentioned before, sequential

mixing is wasteful and should therefore be done as efficiently as possible. Multiple solutions
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have been proposed to find optimized mixing trees, such as Min-Mix (MM) [111], REMIA

[59] and the Network Flow Based (NFB) algorithm [23]. We have compared and evaluated

each of the techniques and a basic example outcome for each can be seen in Fig. 5.6 which

also provides a direct comparison. While MM and NFB focus on minimizing the operation

count, REMIA also considers the difference in cost of the inputs (e.g. sample and buffer)

and minimizes the use of the expensive fluid. As Fig. 5.6 already indicates, NFB performs

superior regarding fluid consumption compared to MM and REMIA, as it solves an Integer

Linear Programming (ILP) problem optimally, which can be visualized with network graphs

such as shown in Fig. 5.7. Solving an ILP program does however require significantly more

computation time than MM or REMIA. This can be tolerated to some extent, since the

application graph optimization is generated during the design phase as shown in Fig. 5.1,

but large applications or very high approximation precision levels can still lead to infeasible

calculation times.

(a) Network graph with precision level 4 (b) NFB solution for Fig. 5.6c

Figure 5.7: Comparison of mixing trees for a target ratio of 5:11 created by Min-Mix, REMIA and NFB

Figure 5.8: Application from Fig. 5.4 with fluid volume according to each operations MVR assigned,
leading to shortage of fluid at O6.
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We therefore apply a pruning technique to the Network Graph, which removes a significant

amount of vertices which are unlikely to be in the optimal solution. The resulting Network

Graph is shown in Fig. 5.8. The applied restriction is that no more than four vertices at any

level X can be used as input for any vertex at level X +1. While this alteration no longer

guarantees an optimal outcome, the results are still significantly superior to both MM and

REMIA, and keeps the execution time feasible even for high precision levels as discussed in

Sect. 5.5.

The computational complexity of NFB does therefore not pose an issue and we consider that

the NFB4 (NFB pruned to 4 vertices) version of NFB provides the best solution to the mixing

problem for our case and the mixing trees of our following examples have been created using

this technique.

An alternative to 1:1 mixing architecture are arbitrary ratio mixers as proposed in [4]. Such

mixers can drastically reduce the amount of excess fluid created during sequential mixing

operations since most ratios can be mixed in a single operation. This is possible because

the mixer does not require to be completely filled with fluid, but can be partially filled with

air. Air which is picked up by the fluid during the mixing process can then be expelled

through vents [31]. A ratio of 1:3 as shown in Fig. 5.5 can be mixed in a single operation as

any volume of fluid (up to the mixers maximum capacity) can be dispensed into the mixer.

While this eliminates the wasteful in-between step which is necessary when using 1:1 mixers,

the outcome is not necessarily more efficient. Due to the MHC as explained in Sect. 5.1 larger

volumes may have to be dispensed. In the example in Fig. 5.5 a total of 1 nl Input A and 2 nl

Input B is required to achieve the 1:3 mixing ratio and results in 2 nl of the target 1:3 ratio and

1 nl of byproduct in 1:1 ratio. Considering the MHC to be 1 nl, then using an arbitrary ratio

mixer results in the mix of 1 nl of Input A and 3 nl of Input B. The overall fluid consumption is

therefore higher, however 4 nl of the target 1:3 ratio is produced. In addition to the prolonged

exposure of the reagents to air, arbitrary ratio mixers come with other downsides. Longer

execution times (due to slow venting), more complex fabrication and the possibility of air

bubbles getting trapped in the fluid make this technology infeasible for some assays. This

leads to the conclusion that no mixing architecture is inherently superior, but rather the

context of the application and how much fluid is required for further operations determines

which architecture is more efficient.
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Our automatic volume management algorithm presented in this paper can therefore be

applied to architectures using either mixing technology, examples for both are shown in

Sect. 5.4.

5.4 Volume Management

In this section we will present our automatic volume management algorithm in detail and

provide examples using arbitrary mixing ratio architectures. Our algorithm can be applied

to architectures with 1:1 mixing hardware as well, which however provides some additional

challenges which are presented in Sect. 5.4.2.

Let us consider the application from Fig. 5.4 to be executed on the biochip from Fig. 5.2. We

assume a MHC of 10 nl for all FFUs and a HTR of 1 nl. We propose a method that calculates the

minimal FVA for every operation and then optimize the input fluid consumption by reusing

waste. This method is implemented in Algorithm 2. Applying this algorithm to the application

in Fig. 5.4 results in FVAs as shown in Fig. 5.9. In lines 1-12 the algorithm determines the

minimal FVA for every operation in the application in reverse topological order.

Figure 5.9: Application from Fig. 5.4 with fluid volume according to each operations MVR assigned,
leading to shortage of fluid at O6.
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To determine the minimal FVAs, every operations MVR has to be known. A MVR represents

a local minimal volume assignment as it is the smallest amount of volume required to

successfully execute a single operation. While MVRs of FFUs such as detectors are already

discrete amounts that can be dispensed, for mixing operations the MVRs that obey the

hardware restrictions have to be determined from the given mixing ratios first. We calculate

the MVR for mixing operations as follows: The smallest amount of fluid that satisfies both

the HTR as well as the target mixing ratio is the sum of the products of the HTR and the ratio

numerators, e.g. for O1 from Fig. 5.4 which requires 1/4 Input A and 3/4 Input B we calculate

HT R ∗Numer ator A+HT R ∗Numer ator B = 1nl ∗1A+1nl ∗3B resulting in an MVR of 1

nl of Input A and 3 nl of Input B.

Algorithm 2 Fluid Volume Assignment
Input: Application graph, HTR, MHC, MVR for each FFU

1: for each node n of the application in rev. order do
2: for each outgoing edge e of n do
3: RF += e.RequiredFluid
4: end for
5: FVAs = n.MVRs
6: for X = 1; FVAs < RF; X++ do
7: FVAs = MVRs ¦ (HTR * X)
8: end for
9: if FVA > MHC then

10: Cascading or Static Replication
11: end if
12: end for
13: for each node n of the application do
14: if n.Combi ned Input > n.Combi nedOut put then
15: Le f tOver F l ui d s.Add(n.Le f tOver F l ui d s)
16: end if
17: end for
18: for each leftover fluid LOF in Le f tOver F l ui d s do
19: if At least one input of another operation can be completely or partially replaced by the

LOF then
20: remove LOF and update volume assignments and application graph
21: end if
22: end for

Output: Optimized application graph

The MVR does however not consider how much fluid other operations in the application

will require to successfully execute. Fig. 5.9 shows the application from Fig. 5.4 with MVRs
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assigned to each operation. This however leads to underflow at O6 since this operation

requires 4 nl of fluid from O3, but O3 only has a combined input, and therefore maximum

output, of 2 nl. To prevent such scenarios, Algorithm 2 first determines, for every operation,

how much fluid they have to pass on to following operations in lines 2-4. The algorithm does

so in reverse topological order, making a single pass over all operations sufficient. Leafs of

the application, which are calculated first, never have to pass on any fluid. Therefore they

receive FVAs which are identical to their MVRs. For example O4 in Fig. 5.4 receives 2 nl from

O1 and similarly O7 receives 2 nl from O5 and 3 nl from O6 which is the MVR calculated from

the mixing ratios and shown in Fig. 5.9.

Figure 5.10: Application from Fig. 5.4 with optimal assignment of fluid according to the calculated
FVAs.

All other operations have to assure that they process enough fluid to satisfy the following

operations FVA which is checked in line 6-8. O6 receives a total of 5 nl as input using its

MVRs which is enough to satisfy the input of O7. O3 however would only produce 2 nl

of fluid using its MVRs of 1 nl from Input B and 1 nl from Input C as shown in Fig. 5.9.

The algorithm then scales these inputs in line 7. We solve for x in the following equation:

Requi r edOut put <=∑numMV Rs
n=1 MV Rn ¦ (HT R ∗x),for x ∈N where ¦ stands for multipli-

cation for mixing operations, which scales the input while keeping the mixing ratio, and

addition for other operations which determines the smallest multiple of HTR that satisfies

the required output. For our example of O3 we can see in Fig. 5.10 that both inputs have been

scaled by a factor of two, keeping the mixing ratio as well as providing enough fluid to pass on
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Figure 5.11: Application from Fig. 5.4 with optimal assignment of fluid according to the calculated
FVAs and leftover fluid from O1 has been reused as input for O2.

to O6. After determining the FVA the algorithms assures that no overflow will occur in lines

9-12. Overflow occurs whenever more fluid than the MHC has to be dispensed i.e. the FVA is

larger than the MHC. This issues can be resolved through cascading or static replication as

described in detail in [5].

5.4.1 Optimizing the mixing process

Accurately determining the FVA prevents dispensing of excess fluids to the inputs and thereby

reducing waste, however fluids are also wasted during the applications execution, whenever

an operation processes more fluid than it passes on. This is mostly the case for mixing

operations, as large amounts of fluids may be needed to obtain the desired mixing ratio.

1:1 mixing hardware [98] has an inherit issue of producing waste for all ratios except for

1:1, as illustrated in Fig. 5.5. However, also variable mixing ratio hardware [4] can produce

excess waste. Reusing these Left Over Fluids (LOF) does not only reduce the required volume

of input fluids further, but can also remove the need to route such fluids to a waste port.

Doing so can optimize our application even further as is shown in Fig. 5.11. O1 has 2 nl of

fluid left over after passing 2 nl on to O4, which is composed of 0.5 nl Input A and 1.5 nl

Input B. By moving this LOF to O2 and adding 1 nl of Input B, O2 still satisfies its FVA and
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mixing ratio while requiring less fluids from inputs. As this example shows, reusing LOFs

can completely and/or partially replace previous inputs. LOFs can potentially be assigned to

any operation that is not a predecessor of the operation that created it and that contains the

same basic reagents. E.g. the LOF from O1 in Fig. 5.11 can be reassigned to O2 because both

operations require reagents from Input A and Input B. O3 would never be considered as a

target for the same LOF since this operation is not supposed to contain any amount of Input

A. To successfully reassign as much LOFs as possible, a thorough analysis of all given data

is necessary as we will show using the example from Fig. 5.12. This example consists of an

application graph of a glucose test where black labels indicate the MVR and the red labels the

FVA. Here, O2, O3 and O4 produce LOFs. Our algorithm determines these LOFs in lines 13-17.

The data required for optimal LOF reassignment consists of the LOF volume, the operation

that creates it and the fluid composition regarding the applications original inputs, i.e. for

the glucose example, how much Glucose, Reagent and Sample the LOF contains. O3 from

Fig. 5.12 for example, receiving a total of 5 nl as input and passing 2 nl on to O8, creates a LOF

with a volume of 3 nl, containing 1.5 nl Glucose and 1.5 nl Reagent.

Figure 5.12: Application graph for a glucose test. Black labels indicate the required ratios and discrete
volumes, red labels indicate the FVAs.

Our algorithm assigns the LOFs to operations in lines 18-22. As previously mentioned, a LOF

can be used whenever it allows to partially or completely remove one or more incoming edges

of an operation, if the resulting volume still obeys the target operations FVA and the ratios

of the contained fluids remains correct. However, it is also possible to only use part of the

LOF, or combine multiple LOFs in order to meet these requirements. The assignment of LOFs

containing multiple fluids is made possible by a large extend due to acceptable error margins

when mixing fluids [62]. One of these cases is shown for our example from Fig. 5.12. Using

the initially calculated FVAs, operations O2, O3 and O4 produce LOFs. The algorithm iterated
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Figure 5.13: Optimized application graph from Fig. 5.12, where left over fluid from O2 and O3 are used
in O4. All values indicate FVAs.

through all possibilities to reassign these LOFs and determines that the LOF produced from

operations O2 and O3 can be used as partial input for O4, as shown in Fig. 5.13. Here, O4

no longer receives 1 nl of Glucose (G) and 8 nl of Reagent (R) from inputs, but instead 0.33

nl G and 0.66 nl R from O2, 0.6 nl G and 2.4 nl R from O3 and 4 nl R from an input. This

corresponds to a total of 0.93 nl G and 7.06 nl R, or a ratio of 0.93:7.06 which is 0.6% off the

desired ratio of 1:8, which is within acceptable error margins. As a result O4 consumes 1 nl G

and 4 nl R less from inputs, reducing the overall volume requirements of the application as

well as the need to route LOFs from O2 and O3 to waste ports.

5.4.2 Deriving mixing trees for 1:1 mixing hardware

Assuming 1:1 mixing hardware is used instead of arbitrary mixers, some extra steps are

necessary for the fluid consumption to be optimized. We determine mixing trees as explained

in Sect. 5.3 to obtain our target ratios. NFB provides a solution that requires the smallest

volume of input fluids. However, multiple solutions consuming the same amount of fluid

might be available. These solutions differ in the ratio of the LOF that they create during

the production of the target ratio. Fig 5.14 shows an example of this where the overall fluid

consumption and result are the same, but different ratios of the input fluids are left over.

We therefore have NFB calculate all solutions that require the same amount of input fluid

allowing our volume management algorithm to choose the mixing tree that produces the

most useful LOFs.
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(a) Mixing of ratio 3:13 creating excess fluid
of ratios 1:3 and 3:5

(b) Mixing of ratio 3:13 creating excess fluid
of ratios 1:1 and 1:7

Figure 5.14: Two mixing trees using the same input fluids to produce the same output fluids, but
creating different LOFs due to different mixing order.

(a) Mixing tree created by NFB for ratio 1:1 (b) Optimized mixing tree for ratio 1:1 storing the LOF
of O1 for use in another mixing tree

Figure 5.15: Mixing trees for target ratio 1:1 which can be precisely mixed and no approximation is
necessary

We apply this technique to our previous example from Fig.5.12, but only focus on the four

required mixing ratios of G and R. As mentioned previously, 1:1 mixing hardware has the

inherent problem that not all mixing ratios are obtainable. Some ratios therefore have to



80

(a) Mixing tree created by NFB for ratio 5:11 (b) Optimized mixing tree for ratio 5:11 using LOF
from O1 and O6 to reduce the use of G and R

Figure 5.16: Mixing trees for target ratio 1:2 which is approximated using a maximum of 4 operations
to ratio 5:11

be approximated. The resulting error is dependent on the number of consecutive mixing

operations, where more mixing operations allow for a smaller error in the approximated ratio.

For our example, we choose a maximum number of mixing operations, or precision level, of

4 for each approximation. The resulting mixing trees are shown in Figs. 5.15a, 5.16a, 5.17a

and 5.18a. The target ratio 1:1 can be produced correctly, while the ratio 1:2 is approximated

to 5:11, ratio 1:4 is approximated to 3:13 and ratio 1:8 is approximated to 1:7. These mixing

trees are independent from each other and produce the target ratio by mixing reagents

from the G and R input reservoirs. In most cases, the mixers output will not exactly match

the detectors requirement and some fluid is discarded, e.g. a mixer with a capacity of 4 nl

will pass on 2 nl to the detector and discard 2 nl. Our algorithm now minimizes the fluid

consumption by reassigning the discarded fluids. The resulting mixing trees are shown in

Figs. 5.15b, 5.16b, 5.17b and 5.18b. The mixing trees are no longer independent and the

operation sequence is now shared across all mixing trees. However, using this setup and

reassigning LOFs, the combined consumption of all four mixing trees is only 2 units of G and

6 units of R. In comparison, supplying the results of NFB with the required inputs without

reassigning LOFs requires 4 units of G and 9 units of R.
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(a) Mixing tree created by NFB for ratio 3:13 (b) Optimized mixing tree for ratio 3:13 storing the
LOF of O3 for use in another mixing tree

Figure 5.17: Mixing trees for target ratio 1:4 which is approximated using a maximum of 4 operations
to ratio 3:13

5.5 Experimental Evaluation and Discussion

We have shown in our examples in Sect. 5.4 that we can reduce the volume of waste created by

both arbitrary and 1:1 mixing hardware. For 1:1 mixing hardware, the result is reliant on the

mixing tree optimization used as explained in Sect. 5.3. We have implemented and compared

Min-Min (MM), REMIA, and the Network Flow Based (NFB) algorithms. The results are shown

in Table 5.1, which incorporates the data of multiple test cases at three different precision

levels for all three optimization techniques. We determined that NFB, even if pruned to four

vertices, and therefore no longer optimal but significantly faster, noticeably outperforms

both MM and REMIA in both number of operations and fluid consumption.

In the next set of experiments, we have evaluated our Fluid Volume Assignment (FVA) solution

on real-life assays to validate the results and determine the efficiency of our technique.
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(a) Mixing tree created by NFB for ratio 1:7 (b) Optimized mixing tree for ratio 1:7 using LOF from
O3 to reduce the use of G and R and storing the
LOF of O6 for use in another mixing tree

Figure 5.18: Mixing trees for target ratio 1:8 which is approximated using a maximum of 4 operations
to ratio 1:7

Precision Level 8 Precision Level 9 Precision Level 10
Algorithm MM REMIA NFB4 MM REMIA NFB4 MM REMIA NFB4
Fluid Cost 219.3 135.2 49.3 278.7 169.7 56.1 334.6 178.9 56.2
Operations 59.4 76.2 41.4 73.0 100.6 51.3 85.3 107.9 59.3

Time (s) 0.01 0.02 1.19 0.01 0.03 1.36 0.01 0.04 6.74

Table 5.1: Comparison of fluid consumption, number of operations and execution time for MM,
REMIA and NFB4 (NFB pruned to 4 vertices), at precision levels 8, 9 and 10. All results
represent the average outcome of 10 test cases, 8 synthetic and 2 real world applications

We present the results of two additional assays, namely a Colorimetric Cholesterol Assay

(CAA) as described in [93] and a Proteasome Activity Assay (PAA) as described in [95]. The

experimental results for these assays can be seen in Table 5.2. For simplicity, we refer to the

fluids used in both assays as Reagent (R) and Buffer (B), the actual components used in these

assays can be found in the respective assay protocols. Both assays require 5 samples of R

and B mixed at different ratios. For CAA the desired output volume for each sample is 50 µl

and for PAA 100 µl. The table data shows: 1) The assay name. 2) Minimal requirements of

Reagent (R) and Buffer (B) to satisfy the target ratios and output volumes. 3) Consumption

of R and B after approximation using NFB4 and assuming mixing hardware size that fits the

required output volumes (i.e. 50 µl for CCA and 100 µl for PAA). 4) Same as 3, but assuming

mixing hardware that fits double the volume. 5) Consumption of R and B after applying our
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FVA, assuming mixing hardware size that fits the required output volumes. 6) Same as 5, but

assuming mixing hardware that fits double the volume.

The CCA target ratios have been approximated to a precision level of 4, resulting in the ap-

proximated ratios: 1:3, 1:15, 3:13, 5:11 and 3:5 of R:B respectively. The PAA target ratios have

been approximated to a precision level of 6, resulting in the approximated ratios: 1:7, 3:29,

5:59, 1:15 and 1:31 of R:B respectively. As Table 5.2 shows, our FVA technique can reduce

the required volumes significantly, for CAA the use of R and B are reduced to 60% and 75%

and for PAA to 40% and 62%, respectively, compared to the results obtained using the mixing

trees obtained from NFB without optimization. These experiments assume mixing hardware

which has a capacity that exactly matches the desired output volume for each assay, marked

M1 in the table (i.e. 50 µl for CCA and 100 µl for PAA).

We also determined the results for the same assays for the case when larger capacity mixing

hardware is available, with a volume double to the desired output volume of the assays

(i.e. 100 µl for CCA and 200 µl for PAA). While the absolute fluid consumption rises as is to

be expected when using larger mixing hardware, the optimization factor increases as well

compared to the previous results. Using these larger mixers (the results marked M2 in Ta-

ble 5.2) we obtain a reduction of R and B in CAA to 40% and 50% and for PAA to 20% and 43%

respectively, compared to unoptimized NFB results, using such larger mixers as well. This

increased optimization is an advantage if architectures are used which are not specifically

designed for one assay, but are general purpose and might therefore use larger mixers.

While the required fluid volumes compared to the naive NFB solutions are significantly

smaller, there is still a noticeable gap to the minimal requirements. The M1 solution of CCA

requires 25% more R than the minimum and the M1 solution of PAA requires more than 300%.

This is essentially the same Hardware Transport Resolution (HTR) issue as discussed before.

Due to the mixers fixed chamber size, only multiples of a certain volumes can be used. For

example, CAA requires an output volume of 50 µl. The used mixers therefore have a capacity

of 50 µl total, or 25 µl per mixing chamber, which can be considered the HTR for this case.

With 75 µl being the smallest multiple in the HTR that is larger than the minimal requirement

of 60 µl, the optimization is only hindered by the hardware restriction. The PAA optimization

suffers from the same issue, however as it occurs multiple times throughout its mixing tree,

the fluid consumption is significantly higher than the minimal fluid requirements. To improve
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Assay Minimal NFB M1 NFB M2 Opt M1 Opt M2

CCA 60 R; 190 B 125 R; 300 B 250 R; 600 B 75 R; 225 B 100 R; 300 B
PAA 30 R; 470 B 250 R; 1050 B 500 R; 2100 B 100 R; 650 B 100 R; 900 B

Table 5.2: Experimental results for optimization of a Colorimetric Cholesterol Assay (CCA) and a
Proteasome Activity Assay (PAA).

these results, additional mixing hardware would be required with different capacities (e.g.

one mixer of 50 µl and one of 25 µl capacity) and/or different ratios (e.g. one mixer with 1:1

ratio and one with 1:2 ratio). This would however negatively impact the experiment in several

ways, such as number of operations, architecture complexity and execution time.

Arbitrary ratio mixers can provide superior results in certain circumstances, for example CAA

can be solved using the minimal fluid requirements if sufficiently large arbitrary ratio mixers

and a HTR of 4 µl are available, as all required volumes can be approximated to multiples

of 4 µl. While this would seem like the preferable solution for volume management, the

significant disadvantages of arbitrary mixers mentioned previously make it unlikely that they

can completely replace fixed ratio mixers.

5.6 Conclusion and Future work

The proposed fluid volume assignment technique allows for a more autonomous use of

FBMBs by reducing the need for user intervention by determining required fluid volumes

beforehand, preventing over- and underflow. Additionally, the application’s fluid consump-

tion is minimized by reusing waste generated during its operation. Our application graph

optimizations are carried out early in the biochip’s design process, allowing the required

complex computations, such as determining mixing trees, to be done at a none time critical

stage. On the other hand, the necessary fluid assignments and LOF reassignments can also

be determined during runtime if necessary, for example as part of the recovery from an error.

We have shown that the fluid consumption of applications as well as the volume of generated

waste can be reduced for architectures using either 1:1 or arbitrary mixing ratio technologies.

Determining an optimal architecture, potentially utilizing both technologies in parallel, to

further optimize the fluid consumption is possible using our presented algorithm, but is left
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for future work. While this paper focuses on determining the required volume, the same

technique can also be used to determine possible actions, given a volume of fluid. In cases

where the volume of fluid available is unknown beforehand, such as after an error or when

reagents are gathered on-site, the algorithm can be used to determine which operations can

be executed, given the available volume.
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Chapter 6

A Novel Metering Component for Volume

Management

This chapter is based on the contribution P5 as described in Sect. 1.4.

6.1 Introduction

The continuous flow microfluidic biochips market is so far still dominated by simple, mostly

passive biochips as described in Sect. 2.1. Due to their simplicity, they are cheap to fabricate

and highly reliable, but also limited in their functionality. A proper transition to active,

multi-purpose biochips capable of complex functionality requires at the very least a similar

level of reliability, to allow their use in a broad range of applications. In this chapter we

specifically look at the possibility to align and meter fluids inside the chip, as well as online

error detection for insufficient volumes. The possibility to align fluids to a precise location is

either assumed or the issue ignored in most publications about routing or scheduling [70, 77],

but is clearly necessary to transport fluids to the desired location specified by the routing

and scheduling algorithms. The ability to precisely meter volumes has several advantages

regarding volume management as explained in detail in Chapter 5. Metering is furthermore

necessary for reliable execution of most multi-operational assays, as volumes of fluids can

change through operations such as mixing, separation and incubation (expanding fluids)
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or through faults such as evaporation and leaks. Finally, as discussed in detail in Sect. 3.3,

fault detection plays an important role in reliable biochips. The ability to detect occurring

faults during the execution of an application is very limited at the time. A reliable detection

of insufficient fluid volumes during runtime can prevent further operations from executing

with an erroneous fluid volume, potentially saving time, reagents and data.

All three functions are made possible by venting air from the biochip through the gas perme-

able PDMS. We use venting technology which was previously introduced in [4] [31]. However,

in contrast to the chip presented there, which are fully made from PDMS, we adapt this

technology to our biochip design presented in Sect. 3.4.

In our design process shown in Fig. 6.1 we can see that our proposed component extents

the currently existing component library. Assuming that no components for alignment,

metering and error detection were available before, this extension allows to start the physical

synthesis process for application graphs which require one of these operations, of which

so far no component was capable. If individual components with such functionality have

already been included in the component library, this addition allows to reduce the number of

required components in the architecture, as all three operations can be executed in a single

component.

6.2 Venting

The gas permeability of PDMS has previously been discussed in different disciplines, in-

cluding microfluidics [4] [31] [55]. While this effect is often the subject of fault analysis as

liquids can evaporate through the PDMS, we are interested in actively using this effect to

expel unwanted gases. The gas permeation effect through PDMS is described in different

forms, such as the gas permeation equation [55] [38], or Darcy’s Law [4, 85], which however

also point out that it is difficult to develop a generalized expression for the permeation of gas

through PDMS in microfluidic biochips. This is partially due to the diverse features of PDMS

based biochips, but other factors such as the non linear behaviour of gas permeation through

PDMS [123] or permeability thickness dependence [36]. We use Darcy’s Law (Equation 6.1) to

describe the permeation process for this paper. While Darcy’s law can be use to estimate the

venting time to some degree, it is important to note that Darcy’s Law describes the flow of a
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Figure 6.1: The proposed component is added to the component library, allowing other design steps
to make use of it

fluid through a porous medium. Therefore it does not incorporate all parameters required

in our situation. For example, while air is vented through the membrane, liquid of higher

viscosity is pushed though the channel, in addition to the previously pointed out issues re-

garding permeation prediction. However, Darcy’s Law clearly lays out all possible adjustable

parameters to alter the venting duration. Fig. 6.2 shows where these parameters are applied

on a PDMS membrane as used in FBMBs. The intrinsic permeability of the PDMS k measured

in m2 and the viscosity µ in Pascal-seconds of the vented air is considered constant in this

paper. This leaves the membrane thickness L in meters, the pressure difference across the

membrane P A and PB in Pascal and the area of exposure A in m2 as adjustable parameters

leading to the discharge Q in m3/s. In this paper we propose three uses for gas permeability

in FBMBs (1) Alignment, (2) Metering and (3) Erroneous Volume Detection and show in

experimental results how the before mentioned parameters effect the duration required to

perform these actions.

Q = (k ∗ A∗ (P A −PB ))

(µ∗L)
(6.1)
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Figure 6.2: Visualization of Darcy’s Law parameters applied to a PDMS membrane.

6.3 Alignment and Metering

Accurate metering of volumes in FBMBs remains a difficult task. Previous work has intro-

duced small scale pumps, which are capable of displaceing very small volumes of about 100 pl

[41]. However, displaced volumes would vary depending of the fluids viscosity. Furthermore,

correct alignment would, in addition to accurate displacement, require precise knowledge of

the current location of the fluid on-chip (e.g. through previous fluid alignment). Finally does

this restrict the type of pressure sources to such on-chip pumps.

To obtain a less restrictive method of on-chip metering, we make use of the venting tech-

nology introduced in [4] [31], which has shown that trapped air, which would otherwise

hinder operations such as mixing of fluids, can be expelled from a channel using vents. This

is possible through the gas permeability of the PDMS that the chip is build from. We use

the same principle to vent air from our chip, however in our design only a thin membrane

is made from PDMS, which separates the two layers of the chip which are made out of non

gas permeable PMMA. We propose a venting structure in Fig. 6.3. The trapped air is vented

from the Flow-Layer, through the PDMS membrane into the Control-Layer. There, control

channels with access holes to the atmospheric pressure outside the chip are milled, allowing

the vented air to dissipate outside of the chip. Venting occurs by introducing a pressure dif-

ference in the flow- and control channel at the vent. This pressure difference can be achieved

by pushing fluid onto the closed valve, compressing the air trapped between the fluid and

the closed valve. Alternatively, vacuum pressure can be applied to the control channel side of

the vent, leading to a pressure difference between the layers as well.
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Figure 6.3: Metering channel containing an alignment vent. Fluid is pushed towards the closed valve
(e.g. by an off-chip pressure source) and the trapped air is vented out of the chip through
the PDMS membrane.

Using such Alignment Vents (AV) allows to align the fluid on-chip to a precise location. We

furthermore propose to use this novel component to meter fluid volumes on-chip. A metering

channel has to be fabricated to hold a specific volume of fluid which is adjustable though the

channel length, width and depth. Such a channel requires a valve on one end and an adjacent

vent. Fig. 6.4 shows how such a metering channel can be used: The metering channel is filled

with fluid from a source in Fig. 6.4a. Once the trapped air between the fluid and the closed

valve has been vented, the connection to the source is interrupted as shown in Fig. 6.4b. This

assures that only the metered volume is moved and no excess fluid is added to the metered

volume.

6.4 Detecting missing fluid

As a step towards more reliable FBMBs we propose an extension to the metering channel to

enable detection of missing fluids as well. Biochemical assays have precise fluid requirements,

and any errors that reduce the fluid volumes will lead to failure. The design of the previously

proposed metering channel introduced in Fig. 6.3 is extended by another vent located on

the opposite end of the AV in the metering channel as shown in Fig. 6.5. This Volume Error

Detection Vent (VEDV) is fabricated the same way as the AV.

When this metering channel is filled with fluid and excess fluid is available, i.e. more than

the metering channel’s capacity, the addition of the VEDV has no effect on the metering

channel as it is covered by fluid throughout the metering process. However, if too little fluid
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(a) Fill the metering channel with
fluid from a source

(b) Close off the fluid source and
move metered fluid

Figure 6.4: Metering using an Alignment Vent

is available, i.e. less than the metering channel’s capacity, the VEDV will not be covered by

fluid once the available fluid is aligned at the closed valve. The pressure that moved the

liquid into the metering channel will now compress the air behind the fluid, causing some

of the air to be vented through the VEDV. By detecting this venting of air through the VEDV

(e.g. with a micro pressure sensor [106]) we can conclude that too little fluid is available

to provide the desired volume. Depending on the architecture, dedicated VEDVs might be

omitted. The normally-closed Grover valves as described in Sect. 2.2.2 are opened by applying

vacuum pressure to their control channel. However, sufficient pressure at the flow channel

will cause the PDMS membrane to deflect as well, opening the valve without any applied

vacuum pressure. Therefore, the valve at the chamber’s input can be repurposed as VEDV, as

shown in Fig. 6.6. The pressure applied to the flow channel forces the valve open and in case

the valve is not covered with fluid (i.e. insufficient fluid is available), some of the compressed

air vents through the valve. As no vacuum pressure had to be applied to the valve control, the

increasing pressure in the control channel can then be detected by a pressure sensor.
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Figure 6.5: Volume error detection enabled metering component. In addition to the alignment vent, a
volume error detection vent is added at the opposite end of the metering channel. If too
little fluid is available to fill the metering channel completely, air escapes though the VEDV
which is detected by a pressure sensor.

6.5 Experimental results

To test our proposed component that combines alignment, metering and fluid volume error

detection features, we have fabricated prototypes, such as the chip shown in Fig. 6.7. To

determine the functionality and advantages of architecture and material variations we have

performed multiple tests and report the results in Table 6.1. We report the outcome of the

experiments as fluid displacement in nanolitres per minute, which is calculated from the

channel width and depth, and the duration it takes to move fluid 10 mm within the channel

(unless specifically noted differently). Videos of the experiments and detailed information

about the shown architectures are available online [105].

6.5.1 Setup

Our chips are fabricated from 70x70x3 mm cast plexiglass [40] pieces. Channels on both

layers of the chips are milled using a Minitech Machinery Mini-Mill/3 [63]. We use 800

µm flat-end mills for the chip’s channels, a 2.5 mm flat-end mill for control-pin holes and

a 200 µm flat-end mill for smaller structures such as the grooves introduces later in this

chapter. Even though much more shallow channels are possible to fabricate, we use a

channel depth of at least 120µm to assure than minor variations, for example cause by

the thickness tolerance of the plexiglass, gave no significant impact on our measurements.

Valves are formed by interrupting the channel on the Flow-Layer for a length of 1 mm. The
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Figure 6.6: Pressure in the flow channel forces a grover valve open, with out any applied vacuum
pressure. Air vented through the membrane at the valve can be detected by a pressure
sensor.

corresponding displacement chamber on the Control-Layer measures 1.5 mm width and 2.5

mm length. The two layers are separated by a 100 µm or 250 µm thick PDMS membrane [61].

The plexiglass pieces are bonded to the PDMS membrane using a hydraulic press with heated

plates at 7 kN of pressure and 70 degrees Celsius for 10 minutes, followed by a cool down

phase to 50 degrees Celsius at 3 kN of pressure for approximately 15 minutes. The vacuum

and pressure required to operate the chips is provided by a compressor and a vacuum pump.

Each can provide an adjustable amount of pressure, which is split into multiple, individually

controllable tubes using solenoid valves. These tubes can then be connected to the chip.

More detailed information about the fabrication process can be found in Sect. 3.4.

For our tests we used architectures similar to the one shown in Fig. 6.7, containing a metering

chamber and a 3-way switch, allowing to place fluids within the chip before using the meter-

ing chamber. Once the fluid is placed in the chip, vacuum only venting can be performed by

applying vacuum pressure to the AV and V2. If pressure is applied to In1 for faster venting,

pressure also has to be applied to V1 and V3 to assure the pressure in the flow channel does

not unintentionally open these valves. The vacuum pressure at the V2 control can be omitted

in this case, as the pressure from the flow channel forces the valve to open as explained in

Sect. 6.4, resulting in a total requirement of 1 vacuum and 3 pressure sources.
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Figure 6.7: Prototype of a metering chamber with a large vent (19 mm vent length, 22 mm chamber
length) for fast venting. Fluid is introduced through In1 or In2 by opening V1. Alignment of
the fluid in the chamber can be started by opening V2 and applying vacuum pressure to
the venting pin.

6.5.2 Vent Architecture

Two vent architectures have been fabricated. (1) Channels on the Control-Layer used for

venting are placed directly over the channel in the Flow-Layer and are connected to indi-

vidual outlets. This solution is easy to fabricate and provides maximum surface area for

gas permeation as the vent covers the whole width of the flow channel. However, as tests

have shown, the vacuum pressure can cause the PDMS membrane to bend into the control

channel as shown in Fig. 6.8. As part of the membrane is pressed against the top of the

control channel, part of the surface area is lost. The data in rows 2 to 5 in Table 6.1 show

that as a result, an increase in the vent’s surface area does not have the desired outcome

using this straight forward vent design. Doubling the surface area only results in a <50%

increase in fluid displacement. It is possible to counteract this, by milling significantly deeper

control channels, providing additional space for the membrane to deflect into. Tests on

the same architecture with control channel depths of 1 mm show a significant increase in

fluid displacement as shown in rows 6 and 7 in Table 6.1 with vent areas marked “(D)”. This

alteration does however require the chip to be sufficiently thick, and increases the chance

of bonding failure and even tears in the membrane at high pressures due to the significant
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deformation.

Figure 6.8: Vacuum pressure at the vent causing the PDMS membrane to deform into the control
channel, onto the control layer, effectively reducing the surface area.

Figure 6.9: Control-layer part of a groove vent. Small parts of PMMA are left in the vent, keeping the
PDMS membrane from significantly deforming into the control channel when vacuum
pressure is applied

Such deeper control channels furthermore put more emphasis on the Chamber Volume

Extension (CVE) caused by the deflected membrane. As the membrane is deflected into the

control channel as shown in Fig. 6.8, the chambers volume increases. While this does not

necessarily affect the components basic alignment and metering functionality, it does cause

other issues. The increased chamber volume requires more fluid to be available to fill the

chamber completely. Once the alignment is finished and the chamber is filled, cutting the

vacuum pressure from the vent will cause the membrane to quickly return to its relaxed state,

causing significant backflow of the excess fluid from the chamber into the chip. While the

amount of backflow depends on the vent size and control channel depth, we have observed

that even regular depth control channels allow for enough volume increase, that the resulting

backflow is able to force open valves, if not actively kept shut.

(2) Alternatively, we milled rectangular grooves of 200 µm thickness in the control layer,

leaving small parts of PMMA between them as shown in Fig. 6.9 and schematically in Fig. 6.10.

This keeps the PDMS membrane from significantly deforming into the control channel, while
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Figure 6.10: Grooves are left in the vent, keeping the PDMS membrane from deforming with minimal
impact of the surface area.

minimizing the decrease in surface area relative to the occupied area. Results in rows 1, 8 and

11 in Table 6.1 (with vent areas marked “(G)”) show that grooved vents perform significantly

better, even at smaller vent areas or lower pressure compared to our previous solution. This

design does not only allow for faster venting, but also alleviates the problem of CVE, by only

allowing minor deflection of the membrane into the small grooves.

6.5.3 Fluid displacement

The necessary pressure difference at the vent can be achieved by two means. (1) Applying

pressure to the flow channel, i.e. pushing the fluid towards the vent, which creates high

pressure in the flow channel between the fluid and the vent. (2) Applying vacuum pressure at

the vent outlet (on the control-layer) causes the pressure to drop in the flow channel as well,

creating suction to move the fluid towards the valve. It is possible to apply both techniques at

the same time, resulting in a faster venting as shown in rows 9 and 12 in Table 6.1. However,

using only vacuum pressure to align the liquid has proven beneficial, as faults are unlikely

to occur due to the applied pressure. Even at high pressure (-60 kPa), no component failure

was detected. Applying high pressure at the flow layer is far more likely to cause faults

such as leaks as it puts a direct strain on the chip’s bonding. Furthermore, Grover valves

are susceptible to unintentional opening by high pressure on the flow-layer, without any

activation pressure at the control-layer. Even low pressures (< 5 kPa) in the flow channel can

be enough to force a valve open. To avoid this, the same pressure has to be applied to the

valve control as well, forcing the valve to stay shut.

As the fluid fills the chamber and starts to partially cover the vent, the effective vent area

decreases, causing the fluid displacement to slow down. Rows 12, 13 and 14 in Table 6.1 show
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Row No. PDMS Thickness Vent Area (mm2) Vaccum Pressure Fluid displacement
1 250 µm 1.5 (G) -40 kPa - 115 nl/min
2 250 µm 5 (S) -40 kPa - 90 nl/min
3 250 µm 10 (S) -40 kPa - 130 nl/min
4 100 µm 5 (S) -40 kPa - 200 nl/min
5 100 µm 10 (S) -40 kPa - 290 nl/min
6 100 µm 10 (D) -20 kPa - 160 nl/min
7 100 µm 10 (D) -40 kPa - 400 nl/min
8 100 µm 6 (G) -40 kPa - 500 nl/min
9 100 µm 6 (G) -40 kPa 10 kPa 670 nl/min

10 100 µm 6 (G) -60 kPa - 740 nl/min
11 100 µm 6 (G) -20 kPa - 220 nl/min
12 100 µm 6 (G) -40 kPa 10 kPa 200 nl/min *
13 100 µm 6 (G) -40 kPa - 140 nl/min *
14 100 µm 6 (G) -60 kPa - 220 nl/min *
15 100 µm 11 (G) -40 kPa - 250 nl/min @
16 100 µm 11 (G) -40 kPa (pre) - 300 nl/min @

Table 6.1: Experimental results for vents using various vent designs and sizes. Vent areas marked
(S) use basic, normal depth control channels at the vent, (D) indicated deeper (1 mm)
control channels to allow increased membrane deflection and (G) marks vents using a
groove design. * Marks the average flow while covering the vent from no cover to full cover.
@ Marks tests filling a complete chamber.
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the average fluid displacement from the vent being uncovered to the vent being fully covered

(complete alignment). The used architecture is identical to the one used for rows 8, 9 and 10,

showing the significant decrease of fluid displacement in relation to the decreasing effective

vent area.

6.5.4 Increasing the throughput

Our final prototype contains a chamber that is mostly covered by the vent (19 out of 22 mm

chamber length) to provide optimal venting speed. As shown in row 15, the large vent allows

for significantly faster average venting than in row 13. To put in perspective, this architecture

vented a channel of approximately 2.1mm3 in 8 minutes and 30 seconds.

The fluid displacement rate can further be increased if the chamber is “precharged”. Applying

vacuum pressure to the vent of a closed metering chamber, containing only air causes the

air pressure in the closed flow channel to drop. Opening the input valve of the metering

chamber then causes the fluid to rapidly fill part of the metering chamber. Rows 15 and 16 in

Table 6.1 show the average fluid displacement for an identical architecture. As a result the

same 2.1mm3 chamber is vented in 7 minutes, after 2 minutes of precharging.

If faster venting is required, our data in Table 6.1 shows how adjustments of the membrane

thickness, vent area and higher pressure differences can decrease the venting duration. In

particular we want to point out that our test-setup in Section 6.5.4 uses a channel depth

of 120 µm to minimize the impact of fabrication irregularities on the data. Channels can

however be fabricated at 10-20 µm depth [4] [32], allowing to significantly increasing the vent

area in relation to the venting volume, thereby speeding up the venting process. Furthermore,

PDMS sheets significantly thinner than 100 µm are available [61] which can also drastically

increase the throughput of our vents.

6.5.5 Detecting insufficient volumes

As mentioned in Section 6.4 and shown in Fig. 6.6, we use our architectures valve that is

placed in front of the metering chamber (i.e. V2 in Fig. 6.7) as the VEDV instead of a dedicated

vent. After aligning an insufficient volume of fluid in the chamber, leaving the chamber
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partially empty, we apply pressure to the flow channel. The video “VEDV” in [105] shows

proof of concept, as air builds up form the vent and pushing through the water droplet.

Accurate detection of such pressure and an adequate feedback loop are left for future work.

6.5.6 Arbitrary ratio mixing using vents

The venting technology and resulting metering and alignment capabilities can benefit several

operations. We showcase this by extending a mixer with vents and thereby improving its

functionality. Mixing architectures as introduced in Sect. 2.3 present major drawbacks. As

shown in a video available here, missing alignment and metering options result in the need

to discard fluids. Furthermore does the mixer require additional channels to dispose of this

fluid. We therefore extend our use of vents to mixing architectures as shown in Fig. 6.12a.

Placing vents at the end of each chamber allows to align fluid to their location instead of

pushing fluid into the chamber. Valves 7 and 8 which are located at the same position in

a regular mixer usually assure that while filling one chamber, no fluid is pushed into the

other. Since our vents align the fluid to a specific point without pressure, these valves are no

longer necessary. A video called “MixerTop” demonstrating the alignment process without

separating valves is available in the video repository [105].

(a) Vents replace valves 7 and 8 (b) Vent at a different position in the mixing
chamber for mixing ratios other than 1:1

Figure 6.11: Metering using an Alignment Vent

Furthermore, common mixers only allow the mixing of two fluids at a fixed ratio, the result of

which having to undergo additional mixing operations to reach other mixing ratios. While the

size of one mixing chamber can be adjusted to allow a different ratio to be mixed, each mixer

is limited to the ratio its architecture is build for. The introduction of vents allows mixing

ratios to differ while keeping a uniform architecture size by placing the vent at a different
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position in the chamber as shown in Fig. 6.12b and in video “MixerBottom” in [105] which

aligns fluid to a vent, filling the bottom chamber to 3/4. However, each mixing chamber is

not limited to a single vent. Placing multiple vents along a chamber as shown in Fig. 6.12a

allows a single mixer to achieve several mixing ratios with a single mixing operation. In this

example the top chamber can only be filled completely. The bottom chamber can be filled

completely, or half for a 2:1 mixing ratio as shown in Fig. 6.12a. In this case, the second part of

the chamber can also be filled with a third fluid achieving a 2:1:1 mixing ratio of three fluids.

Introducing a small number of vents to a mixer therefore allows for high flexibility in mixing

ratios using a single component.

(a) Additional vents allow for flexible
mixing ratios

(b) Filling the top chamber completely and
the bottom chamber to the first vent for a
2:1 mixing ratio

Figure 6.12: Mixer with additional vent

If a mixing operation commences with part of the mixer empty (i.e. filled with air), the mixing

process will cause air bubbles to form in the liquid. This trapped air can however be removed

using a vent in an identical fashion as a metering channel introduced before.

6.6 Conclusion

We have proposed a novel concept that combines fluid alignment, metering and fluid volume

error detection in a single component. Aligning and metering fluids on-chip enables the

execution of more complex, multi-operational applications without loss of precision. We

have demonstrated through several experiments that venting of volumes commonly used

in microfluidics is possible within minutes, using vacuum and / or pressure to drive the

air through adjustable vents. It is difficult to put this duration into context as scheduling
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papers [24, 77] have so far omitted metering or alignment operations all together (or are

considered part of transport operations). Operations such as incubation and mixing are

shown to only take seconds, making several minutes long alignment as demonstrated in this

paper seem impractical. However, no relation of these durations to original assay protocols

can be found where such operations take minutes to tens of minutes and waiting times

of hours might be involved [27, 93, 95]. Even if the duration of assays can be significant

shortened, execution times of minutes are more realistic than seconds. For example the

duration of DNA amplification has been cut down from several hours to 4 minutes, mostly

due to very fast heating circles enabled by microfluidics [39]. In this experiment 1.7 µl of fluid

are used, which if compared to our data in Sect. 6.5.4 can be aligned into a chamber within a

similar time frame. We therefore conclude that the required time for alignment and metering

is reasonable.

Error detection in FBMBs is so far limited to specific testing phases which are run prior to an

application [50]. To the best of our knowledge, the fluid volume error detection feature of our

component is the first that could detect erroneous behaviour at runtime for FBMBs. While the

current experiments only provide prove of concept for detectable pressure through VEDVs,

we are confident that future work can provide suitable detection methods. The combination

of these features into a single component minimizes the impact to the design complexity of

the chip, allowing to continue the trend of increased integration density in FBMBs.



Chapter 7

Discussion and Conclusions

Microfluidic biochips have the potential to revolutionize both industrial and academic fields

by replacing current technologies from bioanalysers in laboratories to advancing point of

care treatment and diagnostics. With increasing traction in both research and commercial

applications, biochips will quickly evolve to execute more complex tasks while also becoming

more commonly available to the public. The contributions in this thesis are meant to help

this development and provide basic tools that are necessary to overcome the issues that arise

along this way.

Microfluidics is a very interdisciplinary field, and receives an increasing amount of atten-

tion from the computer science community, likely due to its similarities to electrical- and

computer-engineering. Many common solutions in design, optimization and automation

can be applied to biochips to determine their architecture, routing, scheduling and more.

However, it is common for researchers and developers in computer science to be among the

end-users, or at least share a broad spectrum of the end-users knowledge. The application for

the product that is being developed is therefore clear to the developer, making it easier to un-

derstand the needs and possible issues. When it comes to microfluidic biochips however, the

computer science developer has usually very little understanding of the desired applications.

There have already been attempts to start bridging this gap [53], but many publications do

not focus on the usability of their contributions. While the targeted issues are legitimate, the

number and broadness of assumptions that need to be made bring into questions whether
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certain contributions can ever be integrated into realizable systems.

Such assumptions are for example, that fluid movement can happen without pressure sources

and unlimited outlets are available for individual pressure sources.

About the application execution time for assays run on biochips: The execution time is often

stated as one of the advantages of biochips over conventional methods. Examples such

as DNA amplification PCR [39] have shown tremendous decrease in execution time made

possible by the small volumes of fluids used and the resulting extremely short heating cycles.

Many publications that deal with scheduling, routing or similar topics that closely relate

to the duration of the application’s operations are assuming similarly short or even shorter

execution times for all their operations [14]. However, referenced assay such as Glucose

Assays [94], Cholesterol Assays [93] or Proteasome Activity Assays [95] contain operations

that require significantly longer durations (i.e. minutes to tens of minutes as stated in

their assay protocols) than the mere seconds they are given in a biochip schedule. With no

distinct source for these short durations they are likely to be assumptions that are made from

experience regarding scheduling as presented in computer science. There, many operations

of similar duration are given which makes the outcome of the schedule so important. While

extremely fast assay exist that suit such schedules, especially when using very small volumes

in biochips, this should not be considered the norm. This reiterates the importance of

bringing this interdisciplinary field closer together, so that issues and their parameters are

communicated by the actual end user and do not have to be assumed by the developer, and

opens many other future work directions.

In this thesis, three mayor contributions, pin-count reduction, volume management and a

novel metering component, have been described in detail. Additionally, a design tool has

been developed which allowed for the fabrication of prototypes to verify the functionality of

proposed techniques. In general, all these contributions aim to make FBMBs easier to use,

i.e. the setup of the biochip, and make them more efficient in their use. This allows other

contributions to overcome limitations and so far unrealisable assumptions, to take the step

from virtual models to physical prototypes.

The presented pin-count reduction technique allows to significantly reduce the number of

individual outside pressure sources that are required for a biochip. This in turn reduces

the need for bulky and expensive external hardware which stands in direct contrast to key
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features of biochips such as their portability. At the same time, this reduces the number of

required control-pins and control channels on the chip, reducing the required chip size. In

contrast to previous techniques, we do not base our pin-count reduction algorithm on data

gathered from scheduling the application to the architecture. Instead only the architecture

design is used as input and the application is scheduled onto the pin-count reduced design.

This potentially increases the overall execution time of the schedule. However, if an extension

to the execution time is feasible for the desired application, the pin-count can be reduced to

a significantly higher degree.

Our waste-aware volume management algorithm offers more efficient use of the available

mixing technology and reagents, while satisfying all constraints that prevent underflow and

overflow. As examples have shown, certain biochemical assays will be significantly more

wasteful when applied to a biochip than when using conventional (i.e. pipettes, tubes,

etc.) tools. We have determined efficient mixing operations that minimize the volume of

waste created. Furthermore, fluid that is leftover from mixing operations, which usually is

considered waste, is reused in future mixing operations whenever possible, further reducing

the amount of actual waste created. Besides the conventional mixing architecture which only

allows for fixed ratio mixing operations, we have also investigated the effects of our volume

management on arbitrary ratio mixers and have applied similar optimization techniques to

their use. The architectural design and functionality of such arbitrary ratio mixers has then

been investigated in detail in our contribution on a novel metering component.

The novel metering component for volume management has shown promising results for

various applications. Exploiting the gas permeability of the PDMS used as a membrane in our

biochips, allows to expel trapped air, enabling the fabrication of vents in our architectures.

The use of vents allows to align and meter fluids, but also to potentially detect insufficient

volumes during the metering process, which are crucial features for accurate fluid transport

within a biochip. We have shown that the same principle can be extended to other applica-

tions such as mixers. To overcome the limitations of fixed ratio mixers, vents can be placed in

the mixing chambers, enabling a single components to achieve various mixing ratios of two

or more input fluids.



106

7.1 Outlook and Future Work

While the conclusions of each chapter include some possible future work, several other con-

tributions become possible through the combined use of recent work. Pin-count reduction

for example has seen another promising solution in on-chip control [97, Chapter 10]. Similar

to our presented technique, on-chip control can significantly reduce the number of required

control-pins to operate a biochip. However, instead of additional execution time, on-chip

control requires complex systems of flow- and control-channels, valves and layer changes,

which besides being challenging to design, can occupy multiple times the original chip size.

Finding a suitable combination of both techniques is likely to offer substantial pin-count

reduction while keeping the trade-off of each technique at an acceptable degree.

Much of the outlined future work in Chapter 5 is made possible through the contribution in

Chapter 6. As shown, arbitrary ratio mixers require fewer mixing operations and can reduce

the volume of waste created, compared to fixed ratio mixers. However, other adaptations to

the architecture are possible as well using this venting technology. As proposed in Chapter 5,

biochips could be built without waste outlets, if all fluid volumes that are introduced to

the chip during runtime can be accounted for beforehand. Using venting technology, such

waste-storage components could be filled efficiently, leaving the biochip with fewer external

hardware.

The venting technology offers promising solutions to issues such as the described alignment

and metering of fluids on the chip. The versatility of this technology however offers potential

functionality not explored so far. For example, when applying pressure to a vent instead of

vacuum, fluids can be moved from instead of to a precise location as shown in the video

“ReverseVent” in our video repository [105]. This can offer an additional metering solution as

fluid is be split at a precise location or simply provide additional pressure sources for fluid

transport. In a similar manner, vents can be used to provide controllable amounts of oxygen

or other gases, necessary for certain biochemical reactions.
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Biochip Designer Tool and Fabrication

This appendix presents a tool we created to aid in the design of biochip prototypes fabricated

for this thesis. Related work has proposed tools that simplify or even automate parts of

the biochip design process [104, 119]. This work focuses on the biochip architecture in

regard of the target biochemical application and aids in design and functional efficiency of

the architecture. Related work for DBMBs also indicates crucial functional necessities and

limitations of CAD tools applicable to FBMB design as well. While single steps in the design

process can be handled individually and sequentially, it has been shown that prediction and

incorporation or “Co-Design” of steps is beneficial [16]. This previous work however misses

the link between the biochip design and the biochip fabrication for biochips without design

limitations such as the grid design [119]. Furthermore is it not possible to adapt the design

according to different technologies (e.g. valves) or fabrication methods which heavily impact

the design for example because of precision and spacing limitations. It is therefore necessary

to allow interchangeable technology files and component libraries to dictate a large number

of design details, leaving the design tool with the tasks of visualization, functional verification

and design automation.

The Biochip Designer Tool (BDT) is programmed in QT/C++ and the source files are available

here [105]. The main intention of the BDT is to generate G-Code from a graphical biochip

design to be manufactured in a micromilling machine or similar (e.g. laser cutter). However,

it also provides aid in the design process. (1) In a graphical designer, many low level details

such as component design or channel dimensions can be hidden from the user and instead
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be determined from component libraries and technology files which have been created by

experts and apply to the vast majority of users. (2) Tedious tasks can be automated such as the

placement of valves and the connection of control channels to control-pins. (3) Furthermore,

any kind of optimization can be integrated into the BDT, such as pin-count reduction. All

features are accessible from the GUI as shown in Fig. A.1 and no programming or scripting is

necessary for the design process.

Figure A.1: GUI of the BDT

At the current stage, the BDT covers all design steps except netlist generation of our physical

synthesis part of the design process as indicated in Fig. A.2. The user creates a netlist accord-

ing to the needs of the desired application. The only other part of the Physical-Synthesis that

is left to the user is the location of each component on the chip. Future work on the BDT can

expand the extent of automation that is offered to the user to earlier steps than netlist gener-

ation. Allowing the user to define an application, for example according to the application

model introduced in Sect. 2.5 can allow for optimizations regarding the application itself,

and lead to automatic netlist generation. An additional step is the automatic generation of
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the application graph from an assay. However, as pointed out before in Sect. 3.5, interpreting

assay protocols is no simple feat, to a large extent due to ambiguities in the description.

Figure A.2: Biochip design process overview with yellow borders indicating the steps covered by the
BDT

The tool provides the option to design the chip at a very basic level, placing channels or other

geometric forms manually for both the flow- and control-layer as shown in Fig. A.3. This

allows for fast changes in architectures with non standard components or technology. Even

in this mode, technical details about the fabrication process are handled automatically such

as multi-pass milling for deep channels or the mapping of the design from the design area in

the tool, to any desired size of biochip.

If this low level design is not required, component libraries and technology files are used to

provide the information that is masked in a more abstract view as shown in Fig. A.5. Here,

predefined components are placed into the graphical design area, which only tell the user

which functionality they will provide to the architecture. The physical design of the compo-

nents remains hidden. Fig. A.4 shows a partial example from our component library available
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Figure A.3: Low level design view

to the BDT. Components can be designed at a scale that the designer determines sufficient

to place the required subcomponents within. The actual dimensions of the component can

then later determined by the BDT, where the component can also be scaled as a whole. All

subcomponents used in our component library are basic components used in the BDT such

as valves, channels or chambers. This allows for components to also be changed or extended

within the BDT, if persistent changes to the component library are unwanted. In either mode,

many settings of individual components can be adjusted if necessary such as their depth or

used milling tool.

With these features the BDT allows to significantly speed up the design of biochips, especially

to untrained users. At the same time, no design details are lost as any higher abstraction can

be turned off to gain precise control of every component.
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Figure A.4: Component library used by the BDT

The BDT generates basic, sequential G-Code without macros (see Sect. 3.4.2) as manual

editing of the G-Code is not necessary. The generated G-Code is then transferred to the

Minitech Machinery Mini-Mill/3 micromilling machine using a software tool called Mach

3 [1]. Using this tool, the micromilling machine can be operated manually, to automated

according to a G-Code file.

A.1 Fabrication Example

Our fabrication example begin with an empty project in our BDT. We design a simple ar-

chitecture that allows us to test the venting functionality from Chapter 6. Since this is a

novel component, no corresponding entry is available in the component library, therefore

we design the architecture using basic components. The finished design is shown in Fig. A.6,

which uses channels on the flow- and control-layer, through holes, valves and a vent. As

mentioned before, many technical details can be ignored and left to the provided technology

file to fill in. This includes properties such as mill sizes for the used components (e.g. 800 µm



112

Figure A.5: Abstract view of the architecture design showing a mixer and heater but hiding component
details and control connections

for channels, and 200 µm or vents) and channel depth (i.e. 120 µm). Furthermore, the sizes

of the components only matter relative to each other. The BDT will determine the physical

size according to the available space on the PMMA piece.

With the design finished, the BDT generates the G-Code that represents the architecture

design. Multiple G-Code files are generated, which splits the G-Code according to what can

be milled without interruption. Interruptions in the milling process are necessary whenever

the mill, or the PMMA piece has to be changed. For example, our design will generate a

G-Code file, as partially shown in Fig. A.7, for the channels and valve displacement chambers

on the control-layer, which are milled using the same mill. The G-Code for the vent however

is located in another file, as a smaller mill has to be used.

Next, a piece of PMMA of the desired size in secured in the micromilling machine. The mill

can be aligned to the PMMA using the Mach 3 micromilling software tool. As discussed before,
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Figure A.6: BDT design for a vent testing architecture

the alignment can be done manually, using a probe (as available on our Minitech Machinery

Mini-Mill/3 as shown in Fig. A.8) or using more precise alignment measures. The G-Code files

are then loaded into the same software tool. The order in which the G-Code files are executed

is irrelevant, as long as the correct mill and PMMA piece (for the flow- and control-layer) are

in place. Once both layers are fully milled, a sheet of PDMS is placed on one and the other

layer aligned on top. For prototyping with component sizes as stated here, alignment of the

layers by hand is sufficiently accurate. The assembled biochip is then bonded in a hydraulic

press as shown in Fig. A.9 and explained in Sect. 3.4. After bonding the biochip is ready to use,

it is however recommended to let the chip cool to room temperature before use, to assure

maximum bonding strength.

A.2 PMMA preparation

We use PMMA pieces which were cut from a sheet using a table saw. As this can damage

the edges of the resulting pieces and does not guarantee 90° angles we prepare the PMMA

pieces using the micromilling machine. By milling in a rectangular motion through the full

depth of the PMMA, we can not only assure precise corners and clean edges but also scale

the pieces to the desired chip size. The outer part of the original piece can later be used as a

sacrificial piece if required. A sacrificial piece can be useful to optimize the distance of the

mill-head to the surface of the PMMA. Optimally, the mill-head should be aligned directly to
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Figure A.7: Code snipped of the control-layer G-Code used in the example

the surface of the PMMA, resulting in a depth precisely as described in the G-Code. However,

the mill-head is often adjusted optically, using the naked eye or a microscope. This can result

in the mill-head resting slightly above the PMMA, causing more shallow channels as desired.

On the other hand, the mill-head might also be pressed onto the PMMA, causing deeper

cuts. Many micromills come with integrated sensors or attached probes which are used to

determine the mill-heads Z-axis location. However, even such probes are limited in their

precision, and can cause a offset of several µm. To optimize the mill-head location after

setting it using optical or automatic methods first, a sacrificial part of the same PMMA piece

can be used. The mill is run over a long distance (as far as possible) while slowly descending

a predetermined amount. Assuming the mill-head started slightly above the PMMA, the mill

will intersect with the PMMA part way through this run as shown in Fig. A.10. The point at

which the mill and the PMMA intersected will be clearly visible as the mill starts removing

material from this point on. By measuring the distance the mill travelled before intersecting

with the PMMA and the total drop in the Z-axis, the distance of the mill in its original position

to the PMMA can be calculated with high accuracy. This offset can then be taken into account

by the micromilling software program.

Other parts of the milling process need to be setup accurately as well to achieve accurate

results. As pointed out in Sect. 3.4, cast PMMA has a thickness tolerance of ± 15 %, which
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Figure A.8: Minitech Machinery Mini-Mill/3

needs to be corrected using for example a fly cutter. Lastly, the method that holds the

PMMA piece in place during the milling process can interfere with depth precision. If the

PMMA piece is secured using this squeeze thingy, it has to be assured that not too much

pressure is applied, as this can cause the PMMA to bend. If this is not available, double-sided

tape has become a popular choice as a quick and easy solution. While tape is usually of

uniform thickness, it is important to note that the pressure applied by the mill to the PMMA

causes enough force the bend the PMMA downwards, as the PMMA is basically “standing”

on the tape, providing empty space between the PMMA and the milling platform. These

optimizations do however require a significant amount of time and are likely unnecessary for

many experiments. For most prototyping work done for this thesis, the components scale

was chosen so that small inaccuracies would not cause a noticeable alteration of experiments.

For example, using channel depths of 100 µm and more, a misalignment of the mill-head

on the Z-axis by a few µm is inconsequential. Once the design in finalized, a highly accurate

version can be fabricated to obtain more accurate data.
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Figure A.9: Hydraulic bonding press with heated plates

Figure A.10: Aligning the mill’s Z-Axis to the PMMA using a sacrificial piece to determine the misalign-
ment
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