

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Mar 29, 2019

Re-Factored Operational Support Systems for the Next Generation Platform-as-a-
Service (NGPaaS)

Veitch, Paul ; Broadbent, Adam; Van Rossem, Steven ; Sayadi, Bessem; Natarianni, Lionel ; Al Jammal,
Bilal ; Roullet, Laurent ; Kentis, Angelos Mimidis; Ollora Zaballa, Eder; Soler, José; Pinniterre,
Sebastien; Paolino, Michele ; Ramos, Aurora ; Du, X.; Flouris, M.; Mariani, L.; Riganelli, O.; Mobilio, M.;
Shatnawi, A.; Orru, M.; Zembra, M.
Published in:
Proceedings of 2018 IEEE 1st 5G World Forum

Publication date:
2018

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Veitch, P., Broadbent, A., Van Rossem, S., Sayadi, B., Natarianni, L., Al Jammal, B., ... Zembra, M. (2018). Re-
Factored Operational Support Systems for the Next Generation Platform-as-a-Service (NGPaaS). In
Proceedings of 2018 IEEE 1st 5G World Forum IEEE.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Online Research Database In Technology

https://core.ac.uk/display/189887571?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orbit.dtu.dk/en/publications/refactored-operational-support-systems-for-the-next-generation-platformasaservice-ngpaas(189deb3b-1a1b-438e-bbb9-bdb9787f9997).html

Re-Factored Operational Support Systems for the

Next Generation Platform-as-a-Service (NGPaaS)
Paul Veitch1, Adam Broadbent1, Steven Van Rossem2, Bessem Sayadi3, Lionel Natarianni3, Bilal Al Jammal3, Laurent Roullet3,

Angelos Mimidis4, Eder Ollora4, Jose Soler4, Sebastien Pinniterre5, Michele Paolino5, Aurora Ramos6, X. Du7, M. Flouris7, L.

Mariani8, O. Riganelli8, M. Mobilio8, A. Shatnawi8, M. Orru8, M. Zembra9
1BT, 2Ghent University-imec, 3Nokia Bell-Labs France, 4DTU Fotonik, 5Virtual Open Systems, 6ATOS, 7OnApp, 8Unimib, 9VM2M

Abstract – Platform-As-A-Service (PaaS) systems offer

customers a rich environment in which to build, deploy, and run

applications. Today’s PaaS offerings are tailored mainly to the

needs of web and mobile applications developers, and involve a

fairly rigid stack of components and features. The vision of the

H2020 5GPPP Phase 2 Next Generation Platform-as-a-Service

(NGPaaS) project is to enable “build-to-order” customized

PaaSes, tailored to the needs of a wide range of use cases with telco-

grade 5G characteristics. This paper sets out the salient and

innovative features of NGPaaS and explores the impacts on

Operational Support Systems and Business Support Systems

(OSS/BSS), moving from fixed centralized stacks to a much more

flexible and modular distributed architecture.

Keywords—5G; PaaS; BSS, OSS, Cloud Native, Microservices

I. INTRODUCTION

A crucial element of emerging software-defined 5G

networks is that they must support a very diverse range of

services, some having extremely stringent targets of end-to-end

latency approaching sub-millisecond, and others involving non-

human end user equipment such as autonomous vehicles, IoT

sensors, robots, etc. The wide range of diverse features and

types of end user equipment foreseen in 5G deployments, will

have to be supported at an unprecedented scale, which poses

significant challenges for traditional means of deploying

telecommunications infrastructure and services.

To make 5G possible, “cloud native” principles from the

more scalable and flexible networks that deliver cloud-based

services in IT companies need to be adopted. To realize this

vision, an alternative model to Infrastructure-as-a-Service

(IaaS) must be adopted, derived from the cloud service

providers themselves and made by developers for developers,

known as the Platform as a Service (PaaS) concept [1]. The

PaaS model has the potential to deliver network services with

higher agility and performance through “ancillary services” -

scalability, high availability, state management, controllers,

orchestrators, all of which can be provided once by the PaaS.

In essence, an ideal 5G PaaS should break the inherent silos

that exist between connectivity and computing, by facilitating

the building, shipping and running of Virtual Network

Functions (VNFs) with “telco-grade” quality, alongside a blend

of third-party applications thus creating more versatile and

powerful cloud objects. This has significant ramifications for

the required architecture of NGPaaS and the associated

Operational Support Systems (OSS) and Business Support

Systems (BSS). This paper summarises the novel insights into

this new and exciting technology domain. A detailed expansion

of the architectural framework, use cases and OSS/BSS impacts

of NGPaaS, is provided in [2]. Section II describes unique

features that underpin the NGPaaS, using direct comparison

with existing “State-of-the-Art” PaaSes to elucidate the

distinctions; this section also introduces the proposed NGPaaS

architecture. Section III focusses on OSS and BSS in terms of

how NGPaaS will drive changes to the “legacy” models in

existing Telco, Mobile and IoT domains. In order to enable

modular and recursive support for “built-to-order” PaaSes

customised per use case, a new approach to BSS/OSS is

required. As will be explained, this involves the re-factoring, or

re-structuring of centralised and rigid OSS/BSS stacks. Section

IV concludes the paper.

II. REALIZING THE NGPAAS

A. Existing PaaS State-of-the-Art

The current PaaS ecosystem is extremely rich and diverse,

with a number of offerings from public clouds, such as Google

Cloud Platform, Amazon Web Services and Microsoft Azure.

These PaaSes offer a wide variety of configurations allowing

for a large number of technologies to be utilized, such as

Containers and Virtual Machines (VMs). Beyond offering

Container or VM-based platforms, cloud providers offer other

options such as serverless computing, cloud storage, databases

and load balancers. Assessing the distinct options offered

between the major cloud providers, there is arguably little

difference with the services they offer. The choice between

cloud providers will therefore boil down to the number of

available datacenters, support offerings, hosting costs and other

predominantly commercial decisions. A major drawback is that

it is simply not viable to create a completely customizable

'build-to-order' PaaS. Put another way, the desired PaaS must

match the often numerous, but sometimes limited offerings

available from cloud providers.

B. Next Generation PaaS Characteristics

This section will provide an executive summary view of the

salient features of NGPaaS which clearly differentiate it from

existing “State-of-the-Art” PaaS offerings.

This work has been performed in the framework of the NGPaaS project,
funded by the European Commission under the Horizon 2020 and 5G-PPP

Phase2 programmes, under Grant Agreement No. 761 557.

978-1-5386-4982-4/18/$31.00 ©2018 IEEE

1) General Overview- Platform of Platforms

The ancillary services offered by the PaaS to build, deploy

and run network services must encompass a very broad

spectrum of possible virtualization technologies, operational

support functions and infrastructure types. To tackle this, we

constitute NGPaaS as a “platform of platforms”, where

specialized PaaSs each target a specific share of the

infrastructure. The resultant modular NGPaaS architecture can

be subsequently looked at from different viewpoints (Fig. 1):

 Business View: The Business Layer on top is used to

register all stakeholders who cooperate in the NGPaaS

environment. The business-wise affiliation in this layer

determines the granted access and execution rights.

 Design View: The deployable softwareized components

must be delivered in a supporting format, and thoroughly

validated in pre-production [3]. The Dev-for-Operations

Layer serves this purpose, as will be explained later.

 Operational View: The main operational task of the OSS is

to deploy requested services and workloads on the

appropriate underlying PaaSs. This orchestration will be

discussed further in Section III.

Every underlying PaaS and IaaS provider should also offer

similar interface capabilities, to fully exploit the advantages of

combining many platforms under one NGPaaS, and allowing

manageable upgradability of the platform.

2) Building to Order and Re-Usable Function Blocks

In NGPaaS, we move away from a monolithic locked-in

platform with a fixed set of imposed features. Instead, specific

PaaSes can be customized to choose more freely the

functionalities and technologies needed to support a certain

business scenario (i.e. use case). Building to order involves the

use of components that best match the target service

requirements, in terms of business features, performance

requirements, service-level agreements, and so on. To achieve

this, NGPaaS adopts similar concepts to a microservice-based

architecture, which simplifies complicated software systems by

breaking them into sub-components and distributing these

components across many computing servers. In a general sense,

a Network Service can be implemented likewise, as a chain of

Virtualised Network Functions (VNFs) which are in turn

deployed as one or more softwarized components mapped to

the underlying compute/network/storage resources.

Following closely the 12-factor cloud-based design

principles [4], our modular design model leverages the

Reusable Functional Block (RFB), introduced in the 5G-PPP

Superfluidity phase-1 project [5]. With NGPaaS, both the PaaS

ancillary services and the user-oriented workloads (which

could, for example, be VNFs) can be decomposed into RFBs,

and used as building blocks to create a tailored implementation

for any use-case. As shown in Fig. 2, both PaaSs and Network

Services can be described by RFBs.

Fig 2: Network Service (or PaaS) decomposed as tree of RFBs.

An RFB is defined by metadata and an associated

execution environment which describes the link between

RFB

RFB

RFB RFB

RFB

Network Service

PaaS1

PaaS2

Fig. 1: Overview of Baseline NGPaaS Architecture (Further Detail is Provided in Reference [2]).

Build - Develop

MANO (NFVO, VNFM, VIM)

Ship - Package

ext. PaaS n (e.g. with MANO framework)
ext.
PaaS

Business
Layer

IaaS
Business

Layer
Cloud/NFV Infrastructure

…
Build - Develop

Run - Operations

Ship - Package

Specialized PaaS 2
Build - Develop

Run - Operations

Ship - Package

Specialized PaaS 1

mobile network edge/metro/core network

-CI/CD
-Vendor Specific Monitoring (eg. dashboard,
performance profiling)

Dev-for-Operations Layer

NGPaaS Operations Support System (OSS)

Policy definition

services (or
workloads)

Infrastructure/ external
PaaS Registry

VNF1 VNFs type c

: customizable content
(per use-case)

Legend:

: external IaaS / PaaS
domain

fixed access network

Orchestration
-orchestrate PaaS to IaaS
-orchestrate Service to PaaS
-deploy Dev-for-Operations

user-
oriented
network
services

IaaS registration
Vendor registration
Vertical Service Provider registration

Business Layer onboard new IaaS/PaaS/ Services
(Access Control , License Management)

RFB a VNFs type bRFB b RFB c

onboard
updated
components

new
service
requests

monitor/
expose
external
IaaS or PaaS
capabilities

❶
❷

❸

functionality and the infrastructure. Within NGPaaS, the

Superfluidity notion of RFB is extended to allow additional

procedures of Build, Ship and Run. Build involves the

creation of components, Ship securely transfers the newly-

created component to the required execution environment

while Run deploys and runs the component on its final target.

3) Telco-Grade PaaS Features
 A number of significant enhancements to existing PaaS
frameworks will be required to support “Telco-grade” features:

 Specialized Hardware: In defining the requirements of
a “build-to-order” PaaS, it must be stipulated whether
the underlying IaaS can be based on general purpose
compute, or alternatively specialized hardware is
needed to meet much more demanding workloads and
associated Service-Level Guarantees (SLGs) such as
maximum latency. An example of specialized
hardware for such a purpose could be the use of Field
Programmable Gate Array (FPGA) offload[6].

 Custom Hypervisor Features: Acceleration of packet
forwarding can be achieved using specialized,
lightweight hypervisors such as the MicroVisor
platform[7]. This customized hypervisor technology
efficiently optimizes network and storage I/O.

 Integrated SDN Controller: In NGPaaS, the SDN
control layer allows for smooth integration of
heterogeneous network infrastructure and the specific
business and orchestration layer for the PaaS. In terms
of differentiated “Telco-grade” aspects, this would
include aspects such as access/programmability of
FPGA-based acceleration units, and application of
policy enforcement rules linked to the actual use case.

 Monitoring, Profiling & Healing: NGPaaS proposes to
extend in situ PaaS monitoring capabilities for the
purpose of performance profiling. The capture and
analysis of service-specific data metrics can be used to
build a profile, e.g. of a specific VNF, and performance
profiles can then be tracked to detect changes in
behavior and anomalies. To meet Service Level
Agreements (SLAs), NGPaaS proposes a two-step self-
healing process. The first step predicts failures and
localizes the likely responsible resources by exploiting
monitored KPIs. The second step activates
countermeasures to prevent or heal failures. Self-
healing uses online analytics techniques to analyze the
KPIs and identify anomalies, while Machine Learning
(ML) techniques filter actual anomalies from noise.

 These “Telco-grade” PaaS features should be considered
optional as required by specific use cases. In line with the “build-
to-order” ethos of NGPaaS, the appropriate features are defined
as part of customized properties of the PaaS itself, and the
service-oriented workloads that run on top.

4) Operational Maintenance and Dev-for-Operations
 The preceding section discussed how to overlay “Telco-
grade” features into the PaaS domain. At the same time, there
are certain operational cloud-oriented practices that can be
incorporated into the NGPaaS architecture. The adoption of

microservices opens the door to maintenance practices such as
partial updates and hot-swapping of components. These
methods can greatly improve operational stability if executed
properly and permit quicker maintenance cycles. Two main
areas that can be upgraded are the platform services, such as the
hypervisor or FPGA framework, and application services. In
NGPaaS, we aim to allow upgrades of each individual platform,
as dictated by the business logic layer. Actual upgrades can be
carried out by live upgrade, rolling upgrade or cold upgrade.

While DevOps is adopted in the IT industry to permit closer

collaboration between development and operational teams

inside a single organization, NGPaaS extends this “in-house”

flow to a wider range of stakeholders. The goal is to apply

DevOps practices to cross-organizational virtual work-teams, a

paradigm we call “Dev-for-Operations”. Beyond the IT-

oriented requirements usually associated with DevOps, we will

support Telco-grade requirements to meet the needs of 5G. To

support this, the NGPaaS architecture provides a customizable

Dev-for-Operations layer, tailored to each vendor allowing

custom access and execution rights (Fig 1). These layer

instances can be deployed to allow customizable access to the

PaaS where services are deployed, with Continuous

Integration/Delivery (CI/CD) enabling automatic integration of

the components after validation tests have been executed.

III. OSS RE-FACTORING

A. Addressing Limitations with Existing OSS/BSS Models

Legacy monolithic platforms have no simple way of

interpreting high level business level requirements, then

translating them into scalable and distributed resource and

service offerings, especially from the OSS/BSS perspective.

They therefore tend to solve all problems by requiring more

low-level complexity and lack of flexibility. NGPaaS aims to

define a new cloud-stack which galvanizes open collaboration

between all stakeholders involved in network service

provisioning (vendors, service providers, etc), thus moving

away from a hierarchical cloud stack with a fixed set of features,

to a modular and distributed stack. Transforming from a ‘one-

size-fits-all’ solution, generates some obvious ramifications for

OSS/BSS. Taking Fig.1 as a base, the re-factored OSS is now

distributed across two levels:

1) From the over-arching NGPaaS OSS, a two-phased

orchestration mechanism arises. The first phase deploys the

specialized PaaS plus its ancillary services (e.g. “add-ons”

like auto-scaling, monitoring, etc) to a set of allocated

resources. The second phase deploys service-oriented

workloads onto an already-deployed PaaS.

2) The PaaSes themselves offer ancillary services which

enhance the OSS further on the PaaS level (e.g. specialized

monitoring or autoscaling).

In the NGPaaS context, we focus on the OSS at the top level.

There are three main interfaces which the OSS must support, as

illustrated in Fig. 1. Using ❶, the IaaS providers can expose

any available infrastructure which can be used by the OSS to

deploy a PaaS. The OSS should then first deploy one or more

specialized PaaSes, linked to the specific business use-case, on

the infrastructure. The interface at ❷, allows a service provider

to request a service or impose a workload to the NGPaaS

Operator from a use-case tailored catalog. The orchestration

mechanism in the OSS must now decompose the request into

RFBs and map them to an available PaaS. The interface at ❸

is used complementary to operation, to assist an external

vendor. The interface allows custom monitoring, access and

execution rights to onboard new or updated service or PaaS

components. As explained before, the Dev-for-Operations layer

can implement a CI/CD function to validate components before

they are on-boarded in the production environment. In this

context, the OSS needs to be addressed by the Dev-for-

Operations layer. Primarily, the OSS must orchestrate the

software component under test, to deploy it in a CI/CD test (an

isolated PaaS or IaaS slice should be targeted). Furthermore,

metrics gathered by the OSS can be requested by the Dev-for-

Operations layer to assess functionality or feedback (filtered)

data back to the vendor.

The next section explores and introduces in more detail how

NGPaaS’s distributed and modular OSS can be practically

implemented using Reusable Function Blocks (RFBs).

B. Implementing Distributed & Modular OSS with RFBs

RFBs are by nature highly distributed and designed to be

deployed in heterogeneous infrastructure [5]. Fig. 3 describes

our RFB-based OSS/BSS model. There are two significant parts

to the model, one which operates in “PaaS-agnostic” fashion

above the PaaS, and the other working within a specific PaaS

environment. At the top level, an RFB OSS/BSS Master

(ROBM) manages the entire infrastructure and handles BSS

requests from the business layer; this is “PaaS-agnostic”. It runs

the initial deployment and acts upon information received from

PaaS-specific OSS, named the RFB OSS/BSS Agent (ROBA),

through a global message bus. This hierarchical design enables

new capabilities. Autonomy is maintained at different levels so

the ROBA may take its own decisions about its PaaS and react

accordingly. The RFB Service layer enables service providers

to share architectural components (PaaS-level RFB) from

different vendors, which can then work together seamlessly,

independent of which company supplies them. High level

Service RFBs are delimited by Domains, which are

namespaced and allow for projects to have a reasonable scope,

and not forced to span the entire set of ROBM requirements.

The ROBM is a meta-OSS/BSS in charge of managing top-

level NGPaaS OSS/BSS tasks such as business layer policy

execution and dynamic inventory supervision. For service

deployment, the ROBM checks first the availability of

resources in the inventory, starts instantiation of the RFB

service domain, the head RFB service descriptor, and then the

dedicated ROBA through the global pub/sub bus. The ROBA is

a microservice attached to the RFB service descriptor. Service

domain deployment is then delegated to the ROBA which is in

charge of instantiating PaaS Platform level RFBs, initializing

the Execution Environment (EE), the local pub/sub bus, and

then deploying RFB leafs. The ROBA communicates locally

with domain components using the local pub/sub bus. The

ROBA then receives a delegation for doing local OSS

supervision and operation tasks as well ensuring local BSS

executions. Since our system is fully recursive, the previous

scenario can be repeated. As depicted in Fig 3, ROBA can

instantiate a service RFB sub-domain with the ROBA2 as the

local OSS/BSS agent, delegate sub-domain OSS/BSS tasks,

then in turn act as Master for the ROBA2.

Fig. 3. RFB Hierarchical Architecture Overview

Fig 4 shows the key internal components. The ROBA uses

OSS and BSS APIs to communicate with upper and lower

OSS/BSS components. A public shared interface is used for

ROBM-ROBA communication, and ensures inter-ROBA

communication and connectivity with external OSS/BSS. At

the ROBA Domain level, a private API serves to interconnect

intra-Domain internal components and to communicate with the

EE (the EE proxy registers and connects to the local Execution

Environment), while the analytics plugin provides an extension

to external analytics microservices. In the ROBM, the

“Inventory proxy” registers and connects to the Dynamic

Inventory to manage real-time global resource and

infrastructure usage. The ROBM then delegates local resource

management to ROBAs. The “OSS/BSS proxy” component

maintains connectivity with existing legacy OSS/BSS systems.

Fig. 4. ROBM (left) and ROBA (right) Internal Architecture

Fig. 5 shows the hierarchical OSS/BSS task distribution.

Determining where tasks should be first executed and how to

react and where to check in case of failure, can be complex to

model with such a distributed and hierarchical system.

OSS/BSS tasks are therefore split into three families (Table I).

OSS Operation covers deployment and updates, while OSS

Supervision covers performance monitoring, health checking

and alarm monitoring. BSS Validation covers SLA and KPI

validation. As indicated in Table I, task execution should first

be initiated locally, then globally, to avoid any scalability and

performance issues that could arise by executing globally first.

Fig. 5. Hierarchical OSS/BSS Task Distribution

TABLE I. OSS/BSS Task Categorization

 OSS

Operation

OSS

Supervision

BSS

Validation

Execution Locally Locally then
Globally

Locally then
Globally

Result

interpretation

Locally then

Globally
(downstream)

Locally then

Globally

Locally then

Globally

Acting upon

result

OSS Operation:

Locally then

Escalate

(upstream)

OSS Operation:

Locally then

Globally

OSS

Operation:

Locally then

Globally

All underlying PaaS agents (ROBAs) should offer similar

interface capabilities to fully exploit the advantages of

combining many platforms under one common NGPaaS API

and allow manageable upgradability of the platform. Finally,

from the orchestration perspective, it should be stressed that the

framework using our RFB model is natively distributed by

design choice. Each orchestration task is first executed locally

then delegated to an underlying orchestrator (ROBA). We then

provide on each domain an automated system that is aware of

its execution environment and responds dynamically and

locally to observed changes. This enables fine grained

orchestration leveraging domain-based and context-based data

extracted in real-time from the local pub/sub bus.

C. Extensive Scope of Recursion Principles in NGPaaS

Recursion is an underlying principle that we leverage at

different levels of the NGPaaS architecture. In specific relation

to RFBs as detailed in the preceding section, we implement an

OODA loop. Observe: we monitor and collect the data. Orient:

we perform some data analysis and build model. Decide: we

plan an action and target some resources. Act: acting upon the

resources, we then observe again. In a broader sense, a recursive

structure in 5G can be defined as a design, rule or procedure

that can be applied repeatedly [8]. In a network service context,

this can either be a specific part of a network service or a

repeated part of the deployment platform permitting a service

to be built from existing services. A recursive structure in the

5G software architecture can be instantiated and linked

repeatedly. It improves scalability, as the same instance can be

deployed many times, at different places at the same time.

Recursive orchestration in the NGPaaS OSS, requires

extension to interface ❶ in Fig. 1. Not only IaaS, but also third-

party PaaS providers can now register with the NGPaaS

platform. Similar to IaaS providers, external PaaS providers can

expose a set of resources in the form of supported services or

workloads to be deployed. A higher-level orchestrator can then

offer and combine these exposed third-party services or

workloads into its own catalogue. The ability to generically

accept any external service request, will present notable

challenges. Firstly, the requested service software needs to be

trusted (or adequately isolated), and secondly the external PaaS

must also be trusted, and have appropriate OSS capabilities to

deploy and operate any delegated software components. Since

an external PaaS can be another NGPaaS platform on its own,

a MANO platform (like SONATA, OSM or ONAP) provided

by a third-party, or another commercial cloud platform, it will

invariably have limited or specialized capabilities regarding

available infrastructure and OSS functionality. For practical

reasons therefore, it is proposed that only a pre-defined set of

supporting services would be exposed by the external PaaS.

IV. CONCLUSION AND FURTHER WORK

The vision of the H2020 5GPPP Phase 2 Next Generation

Platform-as-a-Service (NGPaaS) project is to enable “build-to-

order” customized PaaSes, tailored to the needs of a wide range

of use cases with Telco-grade 5G characteristics. This paper has

introduced the salient features of NGPaaS and described the

impacts on Operational Support Systems and Business Support

Systems (OSS/BSS). A novel architectural framework is under

development which moves from fixed centralized stacks to a

much more flexible and distributed model. During 2018, these

innovations will be further refined and a number of Proof-of-

Concept testbeds built to practically demonstrate a range of use

cases covering Telco, Mobile and IoT industry verticals.

REFERENCES

[1] S. Kolb, C. Röck, “Nucleus - Unified Deployment and Management for
Platform as a Service”, Otto-Friedrich-Universität Bamberg, 2016.

[2] NGPaaS, “Deliverable 2.1: “Baseline Next Generation PaaS: Use Cases
Architecture and Interfaces”, May 2018.

[3] S.Van Rossem,W. Tavernier, D. Colle, M. Pickavet, P. Demeester.”
Introducing Development Features for Virtualized Network Services.”
IEEE Communications Magazine. Dec 2017.

[4] Adam Wiggins "The Twelve-Factor App" [online].

[5] Superfluidity, “Deliverable D3.1: Final system architecture,
programming interfaces and security framework specification”, Dec
2016.

[6] M. Paolino, S. Pinneterre, S.D. Raho. “FPGA virtualization with
accelerators overcommitment for Network Function Virtualization”, 2017
International Conference on Reconfigurable Computing and FPGAs.

[7] X. Ragiadakou M. Alvanos J. Chesterfield J. Thomson M. Flouris
“Microvisor: A scalable hypervisor architecture for microservers” 2015.

[8] 5G PPP Architecture Working Group, white paper revision 2.0, “View on
5G Architecture”, Dec 2017.

