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Abstract 

The application of conventional organic solvents is essential in several steps of bioprocesses in 
order to achieve sufficient economic efficiency. The use of organic solvents is frequently used 
either to partly or fully replace water in the reaction medium or as a process aid for downstream 
separation.  
Nowadays, manufacturers are increasingly requested to avoid and substitute solvents with 
hazardous potential. Therefore, the solvent selection must account for potential environmental 
hazards, health and safety problems, in addition to fulfilling the ideal characteristics for application 
in a process.  
For the first time, criteria including Environment, Health and Safety (EHS), as well as the technical 
requirements for reaction and separation have been reviewed, collected and integrated in a single 
organic solvent screening strategy to be used as a guideline for narrowing down the list of solvents 
to test experimentally. Additionally, we have also included a solvent selection guide based on the 
methodology developed in the Innovative Medicines Initiative CHEM21 (IMI CHEM21) project 
and applied specifically to water-immiscible solvents commonly used in bioprocesses. 
 

Keywords: Organic solvents screening, Bioprocesses, Biphasic systems, Downstream processing, 
In situ product removal 

1. Introduction 

There is currently significant interest in the application of biotechnology to chemical manufacture, 
driven in part by the need to replace (or at least minimize) existing fossil feedstocks by renewable 
and sustainable ones. Likewise the chemical industry, and perhaps even more importantly the 
pharmaceutical industry, needs to use ever cleaner processes, with reduced reagent use and waste 
generation. For example, while the E factor is a measure of the amount of waste produced in a 
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process (E factor = kg waste / kg product) (Sheldon, 2017), it is perhaps more useful to examine the 
composition of the waste from a given process. This quickly motivates the need to reduce or replace 
the use of organic solvents, applied primarily for product recovery and purification. For this reason 
several pharmaceutical companies, academic groups and organisations like the ACS Green 
Chemistry Institute (GCI) Pharmaceutical Roundtable have successfully driven an agenda of 
solvent reduction and replacement (Constable et al., 2007; Jessop et al., 2015; Tucker and Faul, 
2016). To a large extent this has been focused on chemical synthetic strategies. However, while this 
serves as a very valuable guidance for today, the range of industrial processes is changing. For 
example, already today several hundred small-molecule pharmaceutical production processes use 
one or more bioprocess steps (Buchholz et al., 2012; Meyer et al., 2013; Woodley, 2017). Indeed as 
industrial interest in cleaner synthesis grows it becomes clear that in the future many more 
bioprocesses will be implemented in industry (Cue and Zhang, 2009; Sheldon and Woodley, 2017). 
Even if fermentation and biocatalysis were to replace a significant fraction of the synthetic reactions 
in the fine chemical and pharmaceutical industry, it remains the case that the products still need to 
be recovered and purified. The downstream separation can include many potential unit operations 
which are dependent upon the product (as well as by-product and substrate) properties. 
Nevertheless, for most biocatalytic reactions and fermentations the product is often toxic (leading to 
an irreversible loss of activity) or inhibitory (leading to a reversible loss of activity) to the 
biocatalyst/microorganism at concentrations much lower than are the minimum required to feed a 
conventional downstream process. This has been the major motivation behind the implementation 
of in situ product removal (ISPR), where inhibitory or toxic products are removed during the 
reaction (either at the site of the reaction, or else in a recycle loop) (Van Hecke et al., 2014; 
Woodley et al., 2008; Zou, 2014). Various methods have been proposed including the use of 
adsorption, pervaporation, perstraction, and crystallization. Extensive reviews have been written on 
this topic and a number of industrial processes use the technology (Carstensen et al., 2012; Dafoe 
and Daugulis, 2014; Freeman et al., 1993; Lye and Woodley, 1999; Stark and von Stockar, 2003; 
Van Hecke et al., 2014; Woodley et al., 2008). Of particular interest is that polymers have been 
used in many ISPR solutions (Phillips et al., 2013) and can potentially be an effective, safer and 
cheaper alternative to the use of organic solvents (Dafoe and Daugulis, 2014). Regardless of the 
type of phase used to recover product it is clear that systematic selection methods are required. On 
this premise we recognized that one of the most used separation methods (aqueous-organic liquid-
liquid extraction) could in particular benefit from a more systematic screening procedure for the 
organic solvent. In this review, for the first time, the criteria to screen for solvents for a bioprocess 
are integrated in a single report, accounting for both the technical, as well as EHS requirements 
which as we have indicated earlier are a prerequisite for industrial implementation. The collection 
of these criteria forms the basis of a screening procedure in particular focused on biphasic systems 
in bioprocesses in order to narrow down the number of solvents to be tested experimentally. In this 
paper in contrast to previous publications (Elgue et al., 2006; Gani, 2006; Zhou et al., 2014), we 
deliberately restrict ourselves to bioprocesses using enzymes or microorganisms, to manufacture 
chemical products. We consider this screening procedure essential for the scientific community 
involved in the early stage development and research of new bioprocesses. Interestingly, this 
rationale is supported by journals such as ChemSusChem (Kemeling, 2012) which has specifically 
asked authors to justify their choice of solvents in submitted manuscripts and if possible to consider 
replacing harmful ones. 

2. Use of organic solvents in bioprocesses 

Whilst the use of water-miscible organic solvents (e.g. ethanol, dimethyl sulfoxide) to help 
solubilize poorly-water soluble organic compounds in single phase biocatalytic systems has been 
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widely reported in the scientific literature, such systems may give only a 10-20% increase in 
substrate and/or product concentration (Sheldon and Pereira, 2017). Additionally, with only a few 
exceptions, such polar solvents strip essential water from the biocatalyst resulting in a loss of 
enzyme stability (Gorman and Dordick, 1992; Kamal et al., 2013; Taher and Al-Zuhair, 2017; Yang 
et al., 2004). On the other hand, essentially water-immiscible organic solvents (containing only 
small amounts of water, at concentrations less than saturation) like n-hexane, t-butyl methyl ether 
etc. can be used for lipase reactions run in a synthetic direction (to avoid hydrolysis)(Bose and 
Keharia, 2013; Carvalho et al., 2015; Devi et al., 2017). In this paper we will focus on the third 
case, where water-immiscible solvents are used in a distinct phase from the aqueous phase, to form 
a two-liquid phase system. 
Here the organic solvents are used for substrate supply, or product removal, in order to overcome 
the low water-solubility of organic compounds and enzyme inhibition by substrate or product. 
Potentially, the solvent may also be used to overcome an unfavourable equilibrium, although this 
requires sufficient driving force to be effective. In this way, the application of two-liquid phase 
systems improves the bioreaction space-time yield (productivity) as well as the product 
concentration fed to the downstream process, and in some cases the selectivity (Boghigian et al., 
2011; Dafoe and Daugulis, 2014; Jung et al., 2013; Mutti and Kroutil, 2012).  
 
2.1 Bioreaction systems 
Several considerations are important in aqueous-organic two-phase biocatalytic systems. The 
organic phase may be deleterious to the biocatalyst in two ways; either by the presence of the 
interface (Martínez-Aragón et al., 2009; Perez-Rodriguez et al., 2003) or by the amount of organic 
solvent dissolved in the aqueous phase which may cause biocatalyst inactivation (Bes et al., 1995; 
Stepankova et al., 2013). Both appear to be important, but in many cases the biocatalyst needs to be 
kept away from the interface.  
Despite the downside described above the introduction of an organic solvent in the bioreaction 
system presents several advantages such as the dissolution of substrates and products at higher 
concentrations in the reactor than would otherwise be achievable. This means that the downstream 
process can be fed at high concentrations, while avoiding inhibitory concentrations of substrate or 
product in the aqueous reaction environment (Hua and Xu, 2011; Lima-Ramos et al., 2014). Easier 
product recovery may also result from the fact that the solvent has a low boiling point, facilitating 
evaporation (Dafoe and Daugulis, 2014). Likewise when designing an in-situ product removal 
(ISPR) process, the mode of contact (direct or indirect) between the biocatalyst and the organic 
phase which removes the product, should be considered (Stark and von Stockar, 2003; Woodley et 
al., 2008). A bioreaction system with direct solvent contact can be characterized by the direct 
exposure of the biocatalyst/cells to the organic solvent [Figure 1 a) and b)]. For a bioreaction 
system with indirect solvent contact [Figure 1 c) and d)] the biocatalyst is not in contact with the 
organic solvent (Stark and von Stockar, 2003; Woodley et al., 2008). 
In Figure 1, two possibilities for running systems with direct contact are presented: a) corresponds 
to the exposure of the biocatalyst to organic solvent within the reactor and b) corresponds to the 
direct contact in a different vessel to the reactor through an external loop. Configuration a) has the 
advantage that both reaction and product removal take place in the same vessel and therefore the 
equipment costs are lower. Configuration b) reduces the contact time between the biocatalyst and 
the organic solvent by introducing an external loop through a separation unit. However, the choice  
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Figure 1 – Three process configurations for a bioreaction in an aqueous-organic two-phase system. Figure adapted from 
Stark and von Stockar, 2003. 
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of solvent has to ensure that the solvent does not deactivate the biocatalyst/microorganism and the 
product has a high enough affinity and solubility. 
Additionally, two configurations for indirect contact are presented in Figure 1: c) corresponds to a 
biphasic reactor with a membrane which separates the two liquid phases and d) corresponds to the 
separation of the biocatalyst/cells from the reactor medium and use of another vessel for the product 
removal. In systems such as c) there is usually a physical barrier such as a membrane which 
prevents the contact of the biocatalyst with the solvent (Stark and von Stockar, 2003; Woodley et 
al., 2008). In the configuration d), the biocatalyst/microorganism is never in direct contact with the 
solvent. The biocatalyst/microorganism is separated from the product and is recycled to the reactor. 
The medium with product dissolved, in its turn, enters a liquid-liquid extraction unit where the 
product is partitioned to the organic solvent and the medium that exits the vessel is recycled to the 
reactor. 
The choice of solvent for a two liquid-phase system with direct contact is more difficult than for an 
indirect contact configuration since it must be compatible with the biocatalyst/microorganism and 
therefore requires a careful study of its toxic effects. 
 
2.2 Downstream processing  
Organic solvents play an important role as separation and purification agents for small-molecule 
chemical products from bioprocesses since they allow easy recovery of organic compounds. The 
use of water as a solvent may present some challenges for downstream processing such as 
separation difficulties, and its high specific heat capacity implies high energy consumption in 
distillation and difficulties rapidly heating and cooling (Adams et al., 2003). Moreover, the 
solubility of many of the most interesting compounds is often very low in water which implies 
excessive amounts of water in order to recover small amounts of product, resulting in high costs. 
When choosing an organic solvent, it should be possible to separate it from the aqueous phase as 
well as recover the desired products from the solvent as shown in Figure 1 e) (Gu, 2000; Koch, 
2015). This should also enable options for recycling the solvent if viable, which could help optimize 
the economic feasibility of a given process, due to lower overall solvent use. Nowadays, the 
recycling of solvents is a common practice in industry. Besides the advantages mentioned above, 
the separation costs for isolating a product from an organic solvent can be much lower when 
compared to an aqueous system.  
The determination of the exact downstream processing conditions depends not only on the nature of 
the product (solid or liquid) but also on the phase in which the product is primarily soluble. For a 
two-liquid phase system (i.e. with two immiscible phases), the operation unit mostly used to purify 
products is liquid-liquid extraction. Concerning energy consumption, liquid-liquid extraction can be 
more attractive since it is a less energy consuming process compared to distillation and gives a 
relatively high efficiency for product recovery (Kurzrock and Weuster-Botz, 2010; Stratakos and 
Koidis, 2016). 
 
3. Overview of criteria to screen solvents for an industrial bioprocess 
 
The list of solvents applicable to industrial processes is extensive and thus, the choice of the 
optimum solvent can be a significant challenge. Hence, at an early stage of process development, it 
is necessary to make a screening of solvents for evaluation of their suitability for the industrial 
process.  
Figure 2 shows a screening procedure which is divided in four evaluation categories: (1) 
environment, health and safety, (2) affinity, recovery and recyclability properties, (3) stability and 
(4)  
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  Figure 2 – Overview of criteria for choosing an organic solvent for a bioprocess divided in tabulated properties in scientific 
literature and experimentally determined properties which are dependent on system and compounds characteristics. 



7 
 

application. The screening is also divided between tabulated properties which are already available 1 

in the literature and experimentally determined properties, which are dependent on the 2 

characteristics of the system and have to be experimentally investigated in order to evaluate the its 3 

performance.  4 

The purpose of the screening procedure is to help narrowing the list of possible solvents to be 5 

applied in a bioprocess by evaluating the most important criteria first and eliminating those solvents 6 

which do not fulfill the requirements. The methodology starts by evaluating solvents in terms of 7 

environment, health and safety issues because this is the greatest concern for process development. 8 

Indeed, in order to implement a process it is necessary to fulfill legal and regulatory requirements in 9 

this category. Subsequently, solvents are evaluated in terms of recovery and recyclability properties 10 

and finally the list is shortened by considering those which fulfill the criteria for application in a 11 

given bioprocess. 12 

Ultimately an experimental investigation has to be performed since the solvent is selected according 13 

to the specific system under study. Nevertheless, some of the listed properties such as Log Po/w 14 

provide a direction for the search.  15 

 16 

3.1 Criteria to screen for organic solvents with low hazard environmental, health and safety (EHS) 17 

issues 18 

The adequate selection of solvents is dependent on their suitability for a given application. 19 

However, considerations regarding solvent recovery, solvent release as well as safety at an 20 

industrial site have particular importance. Hence, the primary category to assess is their impact on 21 

environmental, safety and health. It is necessary to take several parameters into account such as 22 

those quantifying the environmental impact (ecotoxicity, flammability, ozone depletion, 23 

incineration potential, etc). Regarding health and safety, some of the parameters are: toxicity & 24 

occupational exposure, auto-ignition temperature, boiling point, flash point, explosivity, reactivity 25 

and vapor pressure; these are particularly important considerations where a bioprocess is run in the 26 

presence of air or oxygen. Solvent selection guides are available, and some institutions and 27 

companies have also made studies to evaluate the hazards of the solvents and suggested alternative 28 

solvents which could substitute the most hazardous ones (Alfonsi et al., 2008; American Chemical 29 

Society (ACS), 2011; Elgue et al., 2006; Henderson et al., 2011; Prat et al., 2016, 2013).  30 

 31 

3.2 Criteria to evaluate the recovery strategies and affinity and stability of an organic solvent 32 

When screening for organic solvents for a particular application in a process there are initially 33 

several considerations to take into account including the affinity, stability and recovery of the 34 

solvent.  35 

The affinity of a given solvent towards a solute is a fundamental property to consider when 36 

choosing a solvent since it determines the viability of the solvent application. Even though this 37 

property is very specific for the process, it is possible to find data bases with information for 38 

specific solute-extractant pairs such as,(Dortmund Data Bank, 2018). In those cases where the 39 

information is not tabulated, the ternary phase behavior can be predicted using thermodynamic 40 

methods such as NRTL, UNIFAC and UNIFAQ. The successful application of these predictable 41 

methods has been widely reported in scientific literature (Abildskov et al., 2001; Brennan et al., 42 

2012; Bruce and Daugulis, 1991; Cheng and Wang, 2010, 2007; Domańska et al., 2015; Ellegaard 43 

et al., 2009; Janseen et al., 1993; Malinowski, 2001, 1999; Malinowski and Daugulis, 1994; 44 

Modarresi et al., 2008; Priebe and Daugulis, 2018; Scilipoti et al., 2014). The reader should also 45 

note that any solvent selected in this way will still need be experimentally tested, not only for 46 

affinity but also for emulsion formation and biocompatibility. 47 
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When choosing a solvent for a bioprocess it is also necessary to take into consideration parameters 48 

such as viscosity, vapor pressure and melting point (Martínez-Aragón et al., 2009; Tzia and 49 

Liadakis, 2003). The values of all these parameters should be low enough to ensure ease of handling 50 

and storage. For example, highly viscous solvents lead to problems effective liquid-liquid mass 51 

transfer. With respect to recovery and recyclability, the boiling point is an important parameter to 52 

consider, especially if the separation is done by distillation (Barwick, 1997). There are several other 53 

criteria to take into consideration as well, such as the ease of drying and azeotrope formation 54 

(Smallwood, 1996; Tzia and Liadakis, 2003). It is relevant to consider that all the factors mentioned 55 

above are very important in order to run a process with a solvent and solvent selection can be a 56 

delicate balance between the different parameters. The properties above are already tabulated and 57 

can be used for screening solvents and reduce the number of solvents to be tested.  58 

The non-precipitation, non-reactivity and chemical stability in the reaction system of the solvent are 59 

also important factors to consider (Tzia and Liadakis, 2003). Likewise the solvent should be stable 60 

and not interact with the reaction solutes (e.g. substrate(s) and product(s)) and cause secondary 61 

reactions. Needless to say, being able to operate the process safely is of paramount importance. 62 

Since most of these properties are dependent on the characteristics of an individual system, 63 

experimental work is necessary in order to assess the suitability of the solvent for the process. 64 

Therefore, these criteria should be evaluated in the end of the screening process to a very short list 65 

of solvents already chosen considering the tabulated properties. 66 

 67 

3.3 Criteria for screening organic solvents as part of a reaction medium in two-liquid phase systems 68 

with free or immobilized biocatalyst/microorganisms  69 

 70 

There are some specific challenges related to the use of solvents in bioreactions. As mentioned 71 

earlier, solvents can be damaging to the biocatalyst, causing degradation and inactivation. For an 72 

enzymatic reaction in a two-liquid phase system, there are some basic principles that can be 73 

followed in order to shorten the list of feasible solvent candidates for initial testing. The solvent 74 

should be as apolar as possible. Nevertheless, it should be noted that for such systems the aqueous-75 

organic interface can also have toxic effects on the biocatalyst. The Log Po/w value is the accepted 76 

parameter for defining the polarity of a solvent. Hence, Log Po/w is useful for describing the 77 

influence of a solvent on enzyme activity. In the scientific literature, high partition coefficients (Log 78 

Po/w > 4) are considered suitable, whilst those with lower values have frequently been found toxic to 79 

biocatalysts (Halling, 1994; Laane et al., 1987; Straathof, 2003).  80 

Solvents with Log Po/w values higher than 4 present a low solubility in water and, practically, the 81 

enzyme dissolved in the aqueous phase does not have contact with the solvent and is able to support 82 

effective product synthesis. On the other hand polar solvents with low Log Po/w values (Log Po/w <2) 83 

are more soluble in water and consequently remove the essential water from the enzyme and disrupt 84 

its conformation with attendant deactivation (Soo et al., 2003). Several authors have reported the 85 

effect of solvents on the performance of enzymes and have shown that enzymes present better 86 

activity in media containing solvents with high Log Po/w  values (Bemquerer et al., 1994; Koutinas 87 

et al., 2018; Lara and Park, 2004; Valivety et al., 1991; Zaks and Klibanov, 1985). 88 

Interestingly, whilst the partition coefficient (Log Po/w) is an important parameter to assess the 89 

suitability for an organic solvent for soluble enzymes, it has also been found useful for immobilized 90 

enzyme systems, although with a more relaxed requirements. For example it has been possible to 91 

achieve good enzyme performance in biphasic systems using immiscible organic solvents with 92 

lower Log Po/w values (range 1-3) (Chaplin et al., 2001; Reslow et al., 1987).  93 

This indicates that the immobilization of the enzyme results in a shift of the Log Po/w-activity curve 94 

as shown in Figure 3 (Laane et al., 1986; Mionetto et al., 1994).Consequently, with immobilized  95 
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 96 
 97 

 98 

 99 

 100 

enzymes there is a broadening of the solvent polarity range and an increased number of suitable 101 

solvent options. In these reaction systems, it is believed that the support retains the water molecules 102 

and therefore stabilizes a water layer around the enzyme molecules. The water layer protects the 103 

enzyme molecules and therefore makes them more stable even in organic solvents with lower 104 

partition coefficients.  105 

From the different studies reported, we can conclude that Log Po/w should only be used as a 106 

guideline for screening biocatalyst-compatible solvents. In fact, it is not possible to determine the 107 

suitability of the solvent without performing experiments. Some exceptions to the guideline have 108 

been reported (Cantarella et al., 1993; Geok et al., 2003; Gonçalves et al., 1997).  109 

Furthermore, the characterization of enzyme performance in organic media has often been reported 110 

in an inconsistent manner. So while some authors report the enzyme activity (Mionetto et al., 1994), 111 

or specific activity (Norin et al., 1988), other report the residual activity (Geok et al., 2003; Reslow 112 

et al., 1987) and others again, the reaction conversion or yield (Chaplin et al., 2001; Koutinas et al., 113 

2018; Lara and Park, 2004). These inconsistencies mean that drawing conclusions about the use of 114 

Log Po/w as a parameter for solvent selection is difficult.   115 

For whole-cell biocatalytic systems and fermentation, the relation between cellular activity of 116 

different microorganisms against Log Po/w is also represented by a sigmoidal curve, similar to that 117 

for soluble enzyme (Laane et al., 1987). Several authors (Bassetti and Tramper, 1994; Cruz et al., 118 

2001; Fragnelli et al., 2012; Neumann et al., 2005; Rojas et al., 2004; Silva et al., 2010) have 119 

studied the relationship between cellular activity and Log Po/w. From their results, unsurprisingly it 120 

is possible to conclude that the inflection points between toxic and non-toxic solvents vary 121 

significantly between different microorganisms. Bruce and Daugulis have proposed that the 122 

tolerance of the microorganism is dependent on the characteristics of the cellular membrane (L J 123 

Bruce and Daugulis, 1991).  Whole-cells biocatalysis using organic media has been reviewed and 124 

the authors concluded that the inflection point of the sigmoidal curve is in general above the value 125 

Log Po/w 2 (Heipieper et al., 2007; León et al., 1998). Nonetheless, it is still necessary to perform 126 

experimental screening work for the microorganism of interest. Some authors have engineered the 127 

microorganisms, in order to improve microorganisms tolerance to solvents, and in this way have 128 

Figure 3-Schematic representation of enzymatic activity for both free enzyme and immobilized enzyme on a hydrophilic support 
plotted against Log Po/w of the solvent. Figure adapted from Mionetto et al. 1994. 
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adapted a specific cell to have tolerance to a specific solvent  (Mukhopadhyay, 2015; Volmer et al., 129 

2014; Zhang et al., 2015).  130 

Regarding bioreactions in  water-organic solvent two-phase systems with immobilized enzymes or 131 

cells, the toxicity of the solvent to the biocatalyst/microorganism is a crucial factor to consider 132 

when screening for organic   solvents. However, the interaction of the solvents with the 133 

immobilization matrix is also an important factor to take into consideration. Immobilization by 134 

adsorption is the simplest method and is characterized by reversible surface interactions between 135 

enzyme/cells and the support material. The interaction forces can be van der Waals forces, ionic and 136 

hydrogen bonding interactions. Since these forces are weak, desorption can occur in the presence of 137 

organic solvents (Brena et al., 2013; Dwevedi, 2016). Synthetic polymer resins can be prone to 138 

swell with certain classes of solvent. On the other hand, porous silica and porous glass have been 139 

shown to be durable and resistant to solvent destruction (Datta et al., 2013). Entrapment, 140 

encapsulation and cross-linking are more resistant methods to solvent interactions. In fact, it has 141 

been reported that these methods are often used to retain catalytic activity in harsh conditions 142 

(temperature and pH extremes and exposure to organic solvents) (Kourkoutas et al., 2004).  143 

 144 

3.4 Criteria for screening organic solvents as extraction agents in downstream processes 145 

Crucial criteria to consider when choosing a solvent as an extraction agent are the solubility of the 146 

target compound to be extracted, affinity towards this compound and the ease of subsequent phase 147 

separation. For instance, when extracting the product with a solvent it is important that the product 148 

is highly soluble in the solvent in order to efficiently recover most of the product from the outlet 149 

stream of the reactor (Kolář et al., 2002). The ease of separation of the solvent from the aqueous 150 

phase is also important, since a complete separation reduces costs. Hence, a large density difference 151 

between the extract phase and raffinate phase (from which the components of interest have been 152 

removed) allows high capacities particularly in liquid-liquid extraction (Gu, 2000; Koch, 2015). 153 

Likewise, the higher the interfacial tension (Gu, 2000; Tzia and Liadakis, 2003), the more readily 154 

coalescence of emulsions will occur and the easier phase separation will be. 155 

In some cases, the direct recovery of a product may not be possible using solvents alone and it is 156 

necessary to use a reactive liquid-liquid extraction which involves a reversible reaction between the 157 

desired chemical compound and the extractant or a host chemical species present in the extractant. 158 

Examples include the removal of carboxylic acids (acetic acid (Mahfud et al., 2008), lactic acid 159 

(Wasewar et al., 2003, 2002), pyruvic acid (Marti et al., 2011), citric acid (Poposka et al., 1998)) by 160 

amines. The extractions involve the complexation reaction of the undissociated acids and amines. 161 

The complexation reaction improves the distribution coefficient. The reaction promotes the 162 

migration of the product to the organic phase. The choice of the solvent is also important when 163 

establishing a reactive liquid-liquid extraction because it has to solvate the amine-acid complex to 164 

avoid its precipitation (Yang et al., 2007). 165 

Another solution, in case direct extraction is not possible, is to manipulate other properties such as 166 

modifying the pH of the output aqueous solution can be useful for separation. An excellent example 167 

of this is the downstream processing for penicillin production. After filtration of the mycelium, the 168 

pH of the broth is adjusted to pH 2-2.5 in order to convert penicillin acid carboxylate into 169 

penicillanic acid. The acidification of the broth increases the partition coefficient of penicillanic 170 

acid (Najafpour, 2007). However, penicillanic acid is unstable in aqueous solution, and this 171 

compound is recovered by an organic solvent, e.g. butyl acetate. The decision regarding the pH 172 

value to be selected should be a compromise between the partition coefficient and product stability 173 

(Wennersten, 2004) and acidification of the broth should be performed in order to minimize product 174 

degradation (Hook, 2006).  175 

 176 
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4. Solvent selection guide for biphasic bioreaction systems 177 

 178 
An overview of the criteria to take into account when selecting a solvent for a specific application 179 

in a process has been described in the preceding sections. In this section, a selection guide for 180 

solvents that are, or could potentially be, used in biphasic biocatalytic/fermentation reactions is 181 

described. The evaluation procedure used to rank the different solvents is similar to the CHEM21 182 

solvent selection guide published by Prat et al. (Prat et al., 2016). 183 

Although there are many beneficial uses for organic solvents in bioprocesses, the use of solvents 184 

presents several environmental, health and safety challenges. When choosing a solvent for the 185 

development of a process it is important to take into account the environmental impact of the 186 

chosen solvent, and the potential safety and health risks associated with handling and using the 187 

given solvent (Clark and Tavener, 2007). Solvents having significant issues should of course be 188 

avoided, if at all possible. There are several solvent selection guides in the scientific literature. 189 

GlaxoSmithKline (GSK) (Alder et al., 2016), the American Chemical Society, Green Chemistry 190 

Institute Pharmaceutical Roundtable (ACS GCIPR) (American Chemical Society (ACS), 2011) and 191 

the solvent guide from CHEM21 (Prat et al., 2016) have presented guides with numerical rankings 192 

and dividing solvents in categories. Pfizer’s (Alfonsi et al., 2008) and Sanofi’s (Prat et al., 2013) 193 

guides present the evaluation results solely in the form of a color code for each solvent, without a 194 

numerical ranking. In addition, the solvent guide from Pfizer presents an overall summarized 195 

evaluation for all solvents, rather than divided in categories.  196 

The survey by Prat et al. (Prat et al., 2014) presents a summary and a comparison of the Health, 197 

Safety and Environment assessments of several solvent guides. The solvent guides considered were 198 

Astra Zeneca’s, ACS GCIPR’s, GSK’s 2011 guide (Henderson et al., 2011), Pfizer’s and Sanofi’s. 199 

The main purpose of this survey was to compare the evaluation criteria across the different solvent 200 

guides and compare the consistency of solvent evaluation across the various guides. 201 

In the present article a new selection guide for solvents commonly used, or of potential use, as 202 

reaction media in biphasic biocatalysis is presented. Some of the included solvents have never been 203 

assessed in previous solvent selection guides due to their specific application in biocatalytic 204 

reaction systems. Other solvent selection guides focus strongly on solvents used in the main for 205 

synthetic organic chemistry applications (Alfonsi et al., 2008; American Chemical Society (ACS), 206 

2011; Henderson et al., 2011; Prat et al., 2016, 2013). An accurate and detailed comparison of all of 207 

the required properties of solvents is not an easy or exact task, since the level and quality of data 208 

available for each solvent is different. This is especially true for the comparison of older solvents 209 

that might have a large amount of data available e.g. substances fully registered under REACH 210 

(ECHA 2016), and newer solvents where very little data is available (at least available in the public 211 

domain). A key feature of the CHEM21 methodology is that it allows a high level ranking of all 212 

solvents where basic physical/safety data and the Globally Harmonized System of Classification 213 

and Labeling of Chemicals (GHS) is known (Prat et al., 2016). The solvents in the guide presented 214 

here have been classified based on the methodology developed within the CHEM21 project. CHEM 215 

21 is a collaborative project between European universities and companies and aims to develop 216 

sustainable biological and chemical alternatives to finite resources and more environmentally 217 

friendly processes. The guide presented here is targeted at process chemists and engineers charged 218 

with operating bioprocesses. In this guide we also provide some examples from the literature which 219 

document the use of the solvents in biocatalytic systems and additionally, the enzymes which have 220 

been used. Other useful data such as solubility in water, Log P and CAS number are also included. 221 

We hope these data will be useful for looking for greener solvents where similar Log P and/or water 222 

solubility values are needed for a successful bioprocess. For large scale processing, solvents which 223 

are solid close to ambient temperature can present specific logistical challenges, so solvents with 224 
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mp ≥ 10 °C have been marked in the table. The solvents included in the guide were chosen from a 225 

literature survey of biphasic bioreactions, or by looking for newer solvents that may have similar 226 

properties and could be good candidates for this type of transformation. Generally solvents have 227 

been chosen which have 10% or lower solubility in water as a cut off point for a water-immiscible 228 

organic solvent. In certain circumstances, solvents such as tetrahydrofuran and acetonitrile that are 229 

fully water-miscible can form biphasic mixtures with water (high aqueous solute content), but these 230 

were excluded. Data on water-miscible solvents can be found in other published guides (Alfonsi et 231 

al., 2008; American Chemical Society (ACS), 2011; Henderson et al., 2011; Prat et al., 2016, 232 

2013). Solvents that are common to this guide and CHEM21 used the data collated for the 233 

CHEM21 guide (Prat et al., 2016). The data required to assess the new solvents were obtained from 234 

manufacturer’s safety data/material safety data sheets – freely available from suppliers, and from 235 

the European Chemicals Agency, Registered Substances Data (ECHA-RS), 2016. In the case of the 236 

less common solvents and newer solvents, not all of the required data was available or found. In 237 

particular, it was difficult to find values for resistivity (the ability to accumulate a static charge). 238 

Under the methodology solvents likely to build up a static charge (> 108 Ω.m) incrementally add 1 239 

to the safety score. For the additional solvents here, ethers and hydrocarbons were scored as 240 

resistive, and the other solvents as non-resistive. Needless to say, before using any solvents at scale, 241 

a full assessment needs to be made of all operational and safety hazards, including resistivity. 242 

Where air is used for bio oxidation and/or for transformations with living cells, appropriate care 243 

needs to be taken to avoid the formation of an explosive head space if a flammable solvent is used. 244 

Since the processes under consideration here are all biphasic, the production of aqueous waste 245 

streams containing low levels of the organic solvent needs to be considered. Some calculated data 246 

on persistence, bioaccumulation and toxicity has been included in the table. Thus the solvent 247 

selection guide includes an evaluation of persistence in the environment, bioaccumulation in food 248 

chains and toxicity to fish. The persistence, bioaccumulation and toxicity (PBT) evaluation follows 249 

the criteria established by New Chemicals Program (EPA (U.S. Environmental Protection Agency), 250 

2012). The persistence evaluation is performed by investigating the half-life of the compound in 251 

water and air. In relation to the water criteria, if the compound’s half-life is less than 2 months it is 252 

considered recommended (green). If the compound’s half-life is between 2 and 6 months it is 253 

considered problematic (amber). Solvents with a half-life greater than 6 months are considered 254 

hazardous (red). Persistence in air is also evaluated by the half-life; compounds with a half-life 255 

lower or equal to 2 days are considered harmless, those with a half-life greater than 2 days are 256 

considered hazardous (EPA (U.S. Environmental Protection Agency), 2012).  257 

The bioaccumulation criterion corresponds to the bioconcentration factor of a chemical uptake from 258 

the surrounding media by an organism living in that media. If the range of bioconcentration factors 259 

is less than 1000, the solvent is considered recommended for industrial applications (green). 260 

Solvents with bioconcentration factors greater than or equal to 1000 and less than 5000 are 261 

considered to be problematic (amber). Solvents with bioconcentration factors higher than 5000 are 262 

considered hazardous and not advised to be applied in industrial applications (red) (EPA (U.S. 263 

Environmental Protection Agency), 2012). 264 

Toxicity to fish is evaluated by the concentration of the solvent which is chronically toxic to fish, 265 

chronic toxicity value (ChV). Solvents with a ChV greater than 10 mg/L and that do not present any 266 

toxic risk are considered harmless (green). ChV in the range of concentrations 0.1-10 mg/L present 267 

moderate concern and are considered problematic (amber). Solvents with ChV less than 0.1 mg/L 268 

are considered hazardous (red) (EPA (U.S. Environmental Protection Agency), 2012).  269 

Table 2 is the compilation of the assessment of the solvents which are commonly applied, or could 270 

be applied, in bioreactions as a medium. The guide contains a score for each parameter [1 (good) to 271 

10 (bad)] and is color coded for easy reference. The guide is divided into safety, health and 272 
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environmental sections, with an overall recommendation. Scoring is based on physical parameters 273 

such as boiling point, auto ignition temperature etc. and GHS statements. Full details of the 274 

methodology are given in the CHEM21 publication (Prat et al., 2016). For easy comparison in 275 

tabular form, the output is color coded. Green (recommended) indicates that the solvent can be used 276 

with few issues (given normal safe operating procedures are in place to deal with issues such as 277 

flammability, etc). Yellow (problematic) indicates that there may be some issues, but the solvent 278 

should be usable with appropriate mitigation strategies. Red - solvents labeled hazardous or highly 279 

hazardous should be replaced or avoided in developing new processes. In the overall ranking 280 

column, some solvents have a split ranking. This is due to current industrial thinking and practice 281 

that would generally move a solvent into a higher hazard band than that given by the 282 

ranking/scoring process. 283 

For newer solvents that are not fully registered in REACH (thus potentially lacking in some data 284 

sets), the CHEM21 scoring methodology defaults to 5 (problematic/yellow). This is why solvents 285 

such as diethyl succinate and butyl butyrate rank as problematic when compared to very similar 286 

structures like ethyl, tert-butyl or isopropyl acetate, which are fully registered. When full datasets 287 

are available, these materials may become more harmonized in the guide. The REACH process is 288 

generating a lot of data on solvents and the overall picture is constantly changing. Looking into the 289 

future, before using any newer solvent, it would be advised to search for any new data or change in 290 

REACH status that could change the ranking in the table. It is worth noting that especially in the 291 

context of this guide, the methodology scores high boiling solvents (especially > 200 °C, e.g. 292 

diethyl succinate b.p. = 218 °C) poorly in the environmental section since these materials will be 293 

very energy intensive to purify or recover by distillation. 294 

Lastly, the reader should note that the limits of the CHEM 21 selection algorithm define the 295 

assessment of each solvent. There are other solvent selection guides available in the literature and 296 

there are some differences in the classification of the solvents (Prat et al., 2014). Moreover, the 297 

assessment limits might also change with future legislation. In line with this, we are aware that 298 

some solvents which present some toxic and flammable properties (e.g. n-butanol) currently fall 299 

into the category of “Recommended” due to the limits of the evaluation. Moreover, azeotrope 300 

formation was not considered in the selection guide, although in principle it should also be taken 301 

into account when screening for solvents due to separation problems with the recovery of the 302 

solvent or waste water treatment. 303 

  304 
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Table 1 – Compilation of organic solvent selection guides and potential substitution solvents. 305 

High Level Solvent Guide for Biphasic Biocatalysed Reactions 

Solvent, (CAS No), 
mp if ≥ 10 °C 

Solubility in 
water 

g litre-1* 
Log P* 

Precedent for 
use in biphasic 

bioreaction 
Reference 

In 
published 
guides** 

Safety 
Score 

Health 
Score 

Environment 
Score 

PBT 
profile*** 

Overall Ranking 
using CHEM21 

methodology**** 
P B T  

Alcohols 
n-Butanol 
(71-36-3) 63.2 0.79 Dehydrogenase (Cremonesi et 

al., 1973) 
P, G, S, 
C21, RT 3 4 3    Recommended 

Isobutanol 
(78-83-1) 70 0.79 Oxidase (Zaks, 1988) G, S, C21, 

RT 3 4 3    Recommended 

n-Pentanol 
(71-41-0) 2.03 1.44 Decarboxylase (Rosche et al., 

2004) No 3 2 3    Recommended 

n-Heptanol 
(111-70-6) 1.63 2.2 None found  No 1 2 5    Recommended 

tert-Amyl alcohol 
(75-85-4) 98 0.77 Oxidase (Zaks, 1988) S 4 2 3    Recommended 

Isoamyl alcohol 
(123-51-3) 21.2 1.35 None found  G, C21 3 2 3    Recommended 

1-Octanol 
(111-87-5) 0.5 3.15 Oxygenase (Hüsken et al., 

2002) 
No 1 2 5    Recommended 

Benzyl alcohol 
(100-51-6) 40 1.05 None found  G, S, C21, 

RT 1 2 7    Problematic 

1-Dodecanol 
(112-53-8) mp 22 °C 0.0019 5.13 Reductase (De Wulf and 

Thonart, 1989) No 1 5 7    Problematic 

1-Decanol 
(112-30-1) 0.021 4.5 Dehydrogenase (Pinheiro and 

Cabral, 1992) No 2 2 7    Problematic 

Esters 
Ethyl acetate 

(141-78-6) 87.9 0.68 Dehydrogenase 
(Cremonesi et 

al., 1973) 
P, G, S, 
C21, RT 5 3 3    Recommended 

tert-Butyl acetate 
(540-88-5) 6.7 1.64 ω-Transaminase 

(Meadows et 
al., 2013) G 4 1 3    Recommended 

n-Butyl acetate 
(123-86-4) 5.3 2.3 KRED (Ye et al., 

2010) 
G, S, C21, 

RT 4 2 3    Recommended 

Isobutyl acetate 
( 110-19-0) 5.6 2.3 None found  S, C21, RT 4 2 3    Recommended 
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n-Propyl acetate 
(109-60-4) 18.7 1.27 None found  G 4 2 3    Recommended 

Isopropyl acetate 
(108-21-4) 31.9 1.03 None found  P, G, S, 

C21, RT 4 2 3    Recommended 

Isoamyl acetate 
(123-92-2) 2 2.7 None found  C21 3 1 5    Recommended 

n-Butyl butyrate 
(109-21-7) 0.31 2.83 None found  No 3 5 5    Problematic 

n-Octyl acetate 
(112-14-1) 0.033 3.81 P450 (Toda et al., 

2012) G 1 5 7    Problematic 

Diethyl succinate 
(123-25-1) 19 1.26 None found  G, S, C21 1 5 7     Problematic 

Lauryl acetate 
(112-66-3) 0.00036 5.88 P450 (Garikipati et 

al., 2009) No 1 5 5    Problematic 

Ethyl decanoate 
(106-33-2) 0.00041 5.71 P450 (Tan and Day, 

1998) No 1 5 7    Problematic 

Ethyl oleate 
(111-62-6) 6x10-7 8.51 P450 (Kuhn et al., 

2012) No 1 5 7    Problematic 

FAME-Fatty acid 
methyl esters (67762-

38-3) 
0.000023 >6.2 P450 (Schrewe et 

al., 2014) No Mixture  Problematic 

Bis n-butyl phthalate 
(84-74-2) 

0.011 4.46 KRED (He et al., 
2006) No 1 9 7    Hazardous 

bis(2-ethylhexyl) 
phthalate (117-81-7) 

3x10-6 7.86 P450 (Park et al., 
2007) No 1 9 7    Hazardous 

Tricaprylin 
(538-23-8) 1.5x10-8 9.2 Plant cell culture (Dutta, 1994) No 1 5 7    Problematic 

Ketones 
Methyl Isobutyl ketone 

(MIBK) (108-10-1) 14.1 1.9 α-Galactosidase (Bennett et al., 
1992) 

S,G,C21, 
RT 4 2 3    Recommended 

Cyclohexanone 
(108-94-1) 90 0.86 Imidase (Ogawa et al., 

2000) 
G, S, C21, 

RT 3 3 5    R P 

2-Octanone 
(111-13-7) 0.9 2.5 KRED (Kohlmann et 

al., 2011) No 3 5 5    Problematic 

2-Undecanone 
(112-12-9) mp 15 °C 0.04 4.1 Oxidation 

(Collins and 
Daugulis, 

1997) 
No 1 5 7    Problematic 

Ethers 
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Dimethyl ether† 
(115-10-6) 335 0.07 KRED 

(Lu et al., 
2004) G 9 2 7    H HH 

Diethyl ether 
(60-29-7) 43.1 1.05 Dehydrogenase 

(Cremonesi et 
al., 1973) 

P, G, S, 
C21, RT 10 3 7    H HH 

Diisopropyl ether 
(108-20-3) 3.1 1.52 

Enoate 
reductase 

(Hall et al., 
2012) 

P, G, S, 
C21, RT 9 3 5    Hazardous 

Dibutyl ether 
(142-96-1) 0.11 3.35 ω-Transaminase 

(Meadows et 
al., 2013) S 5 2 5    Problematic 

2-
Methyltetrahydrofuran 

(96-47-9) 
140 1.1 Benzaldehyde 

lyase 

(Shanmuganat
han et al., 

2011) 

P, G, S, 
C21, RT 6 3 3    R P 

Cyclopentyl methyl 
ether (CPME) (5614-

37-9) 
3.1 1.59 Benzaldehyde 

lyase 
(Wiedner et 
al., 2015) 

G, S, C21, 
RT 7 2 5    Problematic 

tert-Butyl methyl ether 
(TBME) (1634-04-4) 41.9 1.23 

Hydroxy nitrile 
Lyase 

(Wiedner et 
al., 2015) 

P, G, S, 
C21, RT 8 3 5    Hazardous 

Ethyl tert-butyl ether 
(ETBE) (637-92-3) 2.37 1.48 None found  G, S, C21 7 3 3    Problematic 

tert-Amyl methyl ether  
(TAME) (994-05-8) 10.7 1.55 None found  G, C21 6 2 3    Recommended 

Diisoamyl ether 
(544-01-4) 0.028 5.08 Dehydrogenase (Hocknull and 

Lilly, 1990) No 4 2 7    Problematic 

Anisole 
(100-66-3) 1.71 2.11 Lipase (Wells, 2010) G, S, C21, 

RT 4 1 5    P R 

Halogenated 
Dichloromethane 

(DCM)  
(75-09-2) 

13.2 1.25 Dehydrogenase (Cremonesi et 
al., 1973) 

P, G, S, 
C21, RT 1 7 7    Hazardous 

Chloroform 
(67-66-3) 

8.7 1.97 Protease (Ogino et al., 
1995) 

P, G, S, 
C21, RT 2 7 5    P HH 

Carbon tetrachloride 
(56-23-5) 

0.65 2.64 Oxidase (Liu et al., 
1996) 

P, G, S, 
C21, RT 2 7 10    H HH 

1,2-Dichloroethane 
(107-06-2) 7.9 1.45 None found  P, G , S, 

C21, RT 4 10 3    H HH 

Chlorobenzene 
(108-90-7) 0.21 2.98 Dehydrogenase 

(Cremonesi, 
1975) 

G, S, C21, 
RT 3 2 7    Problematic 

Methoxyperfluorobutane 
(163702-07-6) 0.01 3.93 Nitrile hydratase 

(Zhu et al., 
2015) 

No 3 6 5    Problematic 

Benzotrifluoride 0.21 3.01 None found  G, RT 5 5 7    Problematic 
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(98-08-8) 
Aromatic hydrocarbons 

Benzene 
(71-43-2) 

1.78 2.1 KRED (Shi et al., 
2008) 

P, G, S, 
C21, RT 6 10 3    H HH 

Toluene 
(108-88-3) 

0.52 2.73 Nitrile hydratase (Cull et al., 
2001) 

P, G, S, 
C21 5 6 3    Problematic 

Xylene 
(1330-20-7) 

0.16 3.15 Oxidase (Aono et al., 
1994) 

P, G, S, 
C21, RT 4 2 5    Problematic 

p-Cymene 
(99-87-6) 0.03 4.1 Lipase 

(Paggiola et 
al., 2014) G, S, C21 4 5 5    Problematic 

Tetralin 
(119-64-2) 0.045 3.78 Reductase 

(Ferrante et 
al., 1995) S 3 6 7    Problematic 

Cumene 
(98-82-8) 0.05 3.55 None found  S, G 5 2 7    Problematic 

Aliphatic hydrocarbons 
n-Pentane 
(109-66-0) 0.039 3.45 None found  

P, G, S, 
C21 8 3 7    Hazardous 

n-Hexane 
(110-54-3) 0.01 4 KRED (de Gonzalo et 

al., 2007) 
P, G, S, 
C21, RT 8 7 7    Hazardous 

n-Heptane 
(142-82-5) 0.0024 4.5 Dehalogenase (Zou, 2014) P, G, S, 

C21, RT 6 2 7    Problematic 

n-Octane 
(111-65-9) 0.0007 5.15 Nitroreductase (Meyer et al., 

2006) S, C21 5 2 7    Problematic 

Isooctane 
(540-84-1) 0.0022 4.08 Lipoxygenase (Kermasha et 

al., 2002) G, RT 6 2 7    Problematic 

Cyclohexane 
(110-82-7) 0.052 3.44 Esterase (Lee, 1997) P, G, S, 

C21, RT 6 3 7    Problematic 

Methylcyclohexane 
(108-87-2) 0.014 3.88 None found  P, G, S, 

C21, RT 6 2 7    Problematic 

Petroleum ether 60/80 
(101316-46-5) As n-hexane As n-

hexane KRED (Pathan et al., 
2012) G Mixture P H 

Paraffin oil 
(8012-95-1) Insoluble >4 Oxidase (Oda et al., 

1996) No Mixture P H 

Decane 
(124-18-5) 

0.000083 5.86 Expandase (Gao and 
Demain, 2001) No 4 2 5    Problematic 

Dodecane 
(112-40-3) 

0.000005 6.98 KRED (Huang et al., 
2005) No 2 2 7    Problematic 

Tetradecane 2.8x10-7 7.2 Dioxygenase (Collins et al., No 2 2 7    Problematic 
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(629-59-4) 1995) 
Hexadecane 

(544-76-3) mp 18 °C 0.000001 8.20 P450 (Furuhashi, 
1986) No 2 2 7    Problematic 

D-Limonene 
(5989-27-5) 0.006 4.4 Hydratase (Savithiry et 

al., 1997) S, C21 4 2 7    Problematic 

Turpentine 
(8006-64-2) 0.002 to 0.35 3 to 6 None found  S, C21 4 2 7    Problematic 

 306 
* Data from ECHA database [(ECHA-RS), 2016], literature values (sourced from the Reaxys database, Chemspider) or calculated. Values between 20 and 30 °C. 307 
** Solvent listed in other guides P=Pfizer (Alfonsi et al., 2008), G= GSK (Alder et al., 2016), S= Sanofi (Prat et al., 2013), C21= CHEM21 (Prat et al., 2016), RT= ACS GCI 308 
Pharmaceutical Roundtable (ACS 2011). 309 
Grey shading indicates scoring is not appropriate due to mixtures, or values cannot be calculated for PBT profiler (Environmental Health Analysis Center, 2012) 310 
*** Calculated environmental fate http://www.pbtprofiler.net/ 311 
P = Persistence 312 
B = Bioaccumulation 313 
T = Toxicity to fish 314 
**** Recommendation as an output from the CHEM21 solvent selection methodology (Prat et al., 2016). Where a cell is split, the first column represents the output from the 315 
tool. However, for certain solvents, a second column has been added to reflect current industrial practice and thinking. 316 
† solvent used under pressure, the boiling point of dimethyl ether -24 °C at atmospheric pressure. 317 

  318 
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5. Concluding remarks and future perspectives 319 

This article summarizes water-immiscible solvent applications in bioprocesses and enumerates the 320 

different criteria to take into account in order to select a solvent. The criteria have been compiled 321 

and organized in a screening procedure which helps to narrow down the number of potentially 322 

feasible solvents to be tested experimentally during early stage process development, and to help 323 

guide chemists and engineers towards solvents with the best EHS profiles. The most important 324 

properties that are necessary to consider when screening organic solvents for a process are related to 325 

their environment, health and safety impact, recoverability and stability and their application in the 326 

process, as a reaction medium or applied to downstream processing. 327 

Unfortunately, an ideal solvent is not always available from the shortlist of solvent options, and it is 328 

not always possible to fulfill all of the requirements. For example solvents with high Log P values 329 

are favored for two-liquid phase systems with free, immobilized biocatalysts or whole cells, 330 

whereas these are the very solvents which tend to persist in the environment and score poorly in the 331 

environmental assessment of the solvent guide. More lipophilic solvents also tend to have higher 332 

resistivity and consequently a higher safety score. Therefore, when making the final choice it is 333 

necessary to take a decision about the importance of the evaluation categories and to set strategies 334 

to overcome the constraints of the unfulfilled requirements. These strategies should still establish a 335 

safe and environmentally friendly process with reasonable acceptable costs.  336 

Moreover, sometimes there are also process challenges to overcome such as deactivation of the 337 

biocatalyst in the presence of an organic solvent. This can often be overcome by using an indirect 338 

solvent contact process. In fact, it is also possible to avoid the contact of the biocatalyst with the 339 

solvent by making the extraction outside of the reactor without recirculation of the aqueous phase to 340 

the reactor – Figure 1. 341 

The selection of solvents for application in industrial processes has been changing over the past two 342 

decades. In fact, today there is a tendency both in industry and in research to choose a solvent 343 

taking greater consideration of the environmental impact and also an impact on health, safety and 344 

costs aspects. As an example GlaxoSmithKline Pharmaceuticals’ most frequently used solvents list 345 

has changed towards greener solvents. Solvents such as toluene, dichloromethane and 346 

tetrahydrofuran, which were applied greatly in industry in the 90’s, are presently being replaced. 347 

The three top ranked solvents for industrial application were 2-propanol, ethyl acetate and 348 

methanol. The list of the 10 top ranked solvents includes also ethanol, n-heptane, tetrahydrofuran, 349 

toluene, dichloromethane, acetic acid and acetonitrile (Constable et al., 2007). Moreover, a survey 350 

of solvent usage in development of processes revealed that although there is some room for 351 

improvement on substituting solvents of concern, there is already some reduction of chloroform and 352 

n-hexane applications. Additionally, this investigation shows that the usage of dipolar aprotic 353 

solvents at larger scale (>100 kg scale) is much smaller than in processes at smaller scale (Ashcroft 354 

et al., 2015). Another factor driving industry towards more benign solvents is legislation, especially 355 

Registration and Evaluation of Chemicals (REACH) in the EU which seeks to limit and eventually 356 

remove from use substances with carcinogenic, reprotoxic and mutagenic properties, as well as 357 

materials with a high environmental impact (European Chemicals Agency (ECHA), 2016).  358 

The scientific community has focused research to find greener solvents for bioprocesses and these 359 

efforts are centered on the application of ionic liquids, deep eutectic solvents and supercritical 360 

carbon dioxide (Jessop, 2011). Ionic liquids have been extensively studied by the scientific 361 

community as possible reaction media for biocatalysis. Ionic liquids are mixtures of cations and 362 

anions which do not pack well and therefore, these mixtures are in liquid phase at room 363 

temperature. Several enzymes have been tested having ionic liquids or a mixture of ionic liquid and 364 

water as reaction media. From the scientific literature, it is possible to conclude that in ionic liquids 365 
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several enzymes present good stereoselectivity, reaction yield, activity and stability (Lou et al., 366 

2005; Lozano et al., 2001). For example, Lozano and coworkers have studied α-chymotrypsin and 367 

verified an increase of its half-life and the conversion of the substrate when compared to 1-propanol 368 

(Lozano et al., 2001). The implementation of ionic liquids in industrial processes will require more 369 

information regarding their toxicity, ecotoxicity and their life cycle impact. Moreover the 370 

ecotoxicity of the ionic liquid seems to be related to the branching of the alkyl chain and to 371 

hydrophobicity of the cation (Docherty and Kulpa, Jr., 2005). Some of the ionic liquids have EC50 372 

(acute toxicity value) values much lower than for example toluene, which means they are more 373 

ecotoxic. Another aspect to consider when evaluating the environmental impact of ionic liquids is 374 

the environmental impact of their synthesis. The synthesis of an ionic liquid sometimes requires the 375 

use of harmful organic solvents (Deetlefs and Seddon, 2010; Zhang et al., 2008). There have also 376 

been efforts to decrease the toxicity of ionic liquids. In fact the third generation of ionic liquids has 377 

been considered cheaper, sustainable, non-toxic and biodegradable (Domínguez de María and 378 

Maugeri, 2011; Fukaya et al., 2007). 379 

Supercritical carbon dioxide (scCO2) is also considered a sustainable solvent since it is non-380 

flammable, has low toxicity, is broadly inert limiting unwanted reactions, and is present in 381 

abundance as a by-product of industrial processes like fermentation and thermal cracking. Although 382 

scCO2 presents several advantages at safety and process level, it has also some associated 383 

disadvantages. Some organic substrates have poor solubility in scCO2, requiring the use of a co-384 

solvent. A process which uses supercritical carbon dioxide requires high pressure equipment and 385 

therefore it is necessary to consider carefully the safety aspects. Furthermore, another constraint of 386 

the application of scCO2 in a process is the cost of operation and equipment capital cost which is 387 

much higher compared to a standard organic solvent since the process has to operate at high 388 

pressure (Beckman, 2004). Concerning application in bioprocesses, studies have demonstrated that 389 

scCO2 can improve reaction rates and control reaction selectivity by pressure. Many enzymes have 390 

been demonstrated to have a high performance in scCO2 compared to organic solvents. Examples 391 

include hydrolases, oxygenases and dehydrogenases, and have been reviewed by Wimmer and 392 

Zarevúcka, 2010. In addition, lipases seem to have been extensively studied and reported in the 393 

scientific literature (Khosravi-Darani and Mozafari, 2009). However, the enzyme is not always 394 

stable in a biphasic CO2/H2O system due to the dissolution of CO2 in water which causes the 395 

formation of H2CO3. Consequently, pH will decrease (2.85) and the enzyme can be deactivated. In 396 

addition, carbon dioxide is a Lewis acid and reacts with strong bases and nucleophiles (Beckman, 397 

2004). Therefore, it is necessary to take this fact into account when considering the application of 398 

scCO2 in processes in which these compounds are substrates or products.  399 

The solvent for a process can be chosen from several categories of solvents: water, organic solvents, 400 

ionic liquids and supercritical fluids. Jessop has consulted top academic experts in green solvents 401 

about which solvents they would choose for industrial application, and the choice fell on water, 402 

supercritical carbon dioxide and carefully-selected organic solvents (Jessop, 2011).  403 

In conclusion, the choice of a solvent for a bioprocess should comprise a balance between the 404 

effects on the environment, effects on human health, safety hazards, biocatalyst/microorganism 405 

activity, solubility and selectivity of substrates and/or products and recovery. This balance is 406 

important because it is not always possible to find a solvent which fully covers all these criteria. 407 

Problems regarding the impact of a solvent on Environment, Health and Safety are increasingly 408 

being taken into account in process development when considering the application of a solvent as a 409 

reaction medium or as part of downstream processing in new processes. Moreover, in recent years, 410 

there has been more focus to substitute the hazardous solvents in already running processes.  411 
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