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Abstract 

Background 

The functional characteristics of hydrocolloids are mainly dependent on their physicochemical 

properties. Thus, it is essential to characterize the new sources of hydrocolloids.  

Results 

Quince seed gum (QSG) is a high molecular weight polysaccharide (9.61×106 g/mol) composed 

of 85.04±2.87% carbohydrate (6.39% L-arabinose, 40.43% D-xylose, 5.60% D-galactose, 5.75% 
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D- glucose and 31.11% D-mannose), 13.16±1.73% uronic acid, 5.77±0.83% moisture, 2.78±0.21 

% protein, 5.64±0.21% ash, and 0.75±0.09% fat. Our findings indicated that this gum could be 

introduced as a value-added by-product in the food and pharmaceutical industries. 13C NMR and 

FT-IR suggested a highly substituted xylan structure for QSG. In dilute regime, an increase in 

the ion concentration was accompanied by a decrease in intrinsic viscosity of QSG. When the 

salt concentration increased from 0 to 50 mM, the consistency coefficient (as a measure of 

apparent viscosity) declined. On the other hand, with further increasing of salt concentration, the 

consistency coefficient (as a measure of apparent viscosity) values increased. Similarly, G' and 

G'' values for 10 and 50 mM CaCl2 concentrations were less than control samples. 

Conclusion 

The rheological behavior of the QSG studied in this paper can provide insight into its potential 

application in food and pharmaceutical industries. 

Keywords: Chemical composition; Chemical structure; Dilute solution properties; Dynamic 

rheological behavior; Quince seed gum; Steady-state properties.  

1. Introduction 

The application of hydrocolloids in food and pharmaceutical systems is enormous, notably as 

thickener, stabilizer, edible coating and fat replacer 1. Additionally, because of their low cost and 

extensive functional properties, hydrocolloids are widely utilized in different applications  2. 

Quince is a member of the Rosaceae family, which is a native fruit of west Asian region. This 

fruit is widely distributed in Caucasus region, Dagestan, Afghanistan, and Antalya 3. Quince seed 

mucilage is used in Iran to prevent asthma, relieve a cough and chest discomfort. Jouki, 

Mortazavi, Yazdi and Koocheki 4 indicated that the optimum extraction condition of quince seed 

This article is protected by copyright. All rights reserved.
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gum (QSG) that achieved outstanding properties with highest yield (11.58%), antioxidant 

activity (29.88%), viscosity at shear rate of 46.16 1/s (1473.96 mPa.s), emulsion stability 

(94.89%), foam stability (21.36%) and lowest turbidity (068 ) and protein content (2.71%) were 

conducted with extraction temperature of 65 °C,  for 5 min, and the water/seed (W/S) ratio of 

25.1:1. Abbastabar, Azizi, Adnani and Abbasi 5 investigated the rheological behavior of QSG 

and found that the flow behavior of QSG was shear thinning. The dynamic rheological 

measurement showed that the viscoelastic range decreased with the addition of 0.2 NaCl 

solution, but elastic modulus showing an increasing trend. Dilute solution investigation 

demonstrated that QSG has high hydrodynamic volume, and as a result has high gelling ability in 

aqueous solution. 

There are numerous investigations on the physicochemical and structural properties of food 

hydrocolloids 6. The functional characteristics of biopolymers are profoundly dependent on their 

structural and chemical properties such as chemical composition, conformation, the sequence of 

monosaccharide, configuration, and position of glycoside linkage6. Therefore, it is necessary to 

investigate the physicochemical and structural characteristics of new sources of hydrocolloids.  

In the present research, the gum from quince seeds was extracted. After purification, dilute 

solution behavior, steady-state and dynamic rheological properties of this gum were evaluated. 

Furthermore, structural properties of QSG were analyzed by carbon-13 nuclear magnetic 

resonance (13C NMR), and Fourier transform infrared spectrophotometry (FT-IR) while its 

monosaccharides composition was analyzed using anion exchange chromatography (HPAEC). 

Gel permeation chromatography (GPC) was used to investigate molecular properties of QSG 

such as weight average molecular weight (Mw), number average molecular weight (Mn), and 

polydispersity index (PDI).  

This article is protected by copyright. All rights reserved.
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2. Materials and methods 

2.1. Extraction and Purification of polysaccharide 

Quince seed purchased from local markets in Mashhad, Iran. Quince seed gum (QSG) was 

extracted, at optimized conditions according to the method reported by Jouki, Mortazavi, Yazdi 

and Koocheki 4.  To purify QSG, extracted gum was dissolved in deionized water (200 rpm for 

60 min). The samples were then boiled in 80% ethanol to separate proteins with low molecular 

weight. The precipitated samples were dissolved in deionized water and stored at 4ºC overnight 

to complete hydration. Any insoluble materials were removed by centrifugation at 5000 g for 10 

min. H2O2 was added to the supernatant at 25 ℃ for 4h to oxidize and remove any colored 

compounds. Soluble substances were again precipitated with four volumes of ethanol, freeze-

dried and then stored in a desiccator with silica gel for further experiments. 

 

2.2. Analytical method 

Purification yield (%) was determined as the dry weight of the purified gum relative to seed 

weight. In order to determine moisture, fat, ash and protein contents of QSG samples, 

recommended methods by AOAC were used 7. The protein content was quantified using a factor 

of 6.25 (nitrogen to protein conversation factor). In order to determine total carbohydrate content 

in QSG samples, the phenol-sulfuric acid method was used. The uronic acid measurement was 

performed using the m-hydroxydiphenyl method 8.  
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2.3. Monosaccharide composition 

The monosaccharide analysis was performed by a well-established procedure recommended by 

the National Renewable Energy Laboratory (NREL) NREL with two-step acid hydrolysis and 

quantified using HPAEC-PAD. In brief, ca. 30 mg dry matter QSG material was mixed with 

72% H2SO4 and left to react at 30 °C for 1 h. The reaction mixture was then diluted to 4% H2SO4 

and hydrolyzed in an autoclave at 120 °C for 40 min. (Rhein-knudsen et al. 2017). HPAEC 

separation of the QSG was performed using an HPAEC-PAD, ICS5000 system (Dionex Corp. 

Sunnyvale, CA) equipped with a CarboPac™ PA1 column by a method principally as described 

by Arnous and Meyer 9. L-fucose, L-arabinose, L-rhamnose, D-galactose, D-glucose, D-xylose, 

D-mannose, D-galacturonic acid, and D-glucuronic acid were used as monosaccharide standards 

for quantification. 

 

2.4. Elemental analysis 

Quantification of elements was operated using an earlier explained method 10. 0.5 g gum sample 

was mixed with nitric acid and hydrogen peroxide (2:1) in perfluoroalkoxy (PFA) digestion 

vessel. Afterward, a microwave oven was used for decomposition of the sample (400 W for 15 

min). Finally, the samples were cooled to 25 °C, and the volume made up of deionized water. 

Mineral profile of QSG was determined using an inductively coupled plasma optical emission 

spectroscopy (ICP-OES) (SPECTRO ARCOS, Ametek. Germany).  

 

2.5. Molecular parameter measurements 

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rti
cl

e
The values of Mn and Mw of QSG sample were measured by gel permeation chromatography 

(GPC) equipped with a PL Aquagel-OH Mixed-H column. A solution of QSG sample was 

prepared with deionized water and filtered through a 0.2 μm filter, followed by injection at a 

constant flow rate of 1 ml/min. The eluent water was used and monitored with refractive index 

detector 1. For calibration, a standard curve was constructed using dextran molecular weight 

standards with a molecular weight between 5200 and 988,000 g/mol. 

 

2.6. Fourier transform infrared spectroscopy (FT-IR) 

The FT-IR spectrum of QSG sample was recorded on FT-IR spectroscopy (AVATAR 370 FT-

IR, Thermo Nicolet). The spectrum was obtained in a range of 400 to 4000 cm-1 at a 

resolution of 4 cm-1. 

 

2.7. 13C nuclear magnetic spectroscopy (NMR) 

5 mg of the polysaccharide sample was dissolved in D2O with continuous stirring for 2 h. With 

an Avance DRX-500 Bruker Spectrometers, equipped with a process controller, 13C NMR 

spectra were recorded. 

 

2.8. Intrinsic viscosity  

A range of QSG solution was prepared from a stock solution (0.3 g dL-1) to evaluate dilute 

solution properties. The measurements were carried out at 25 °C using a capillary viscometer 

(KPG Ubbelohde, K = 0.00753). 

This article is protected by copyright. All rights reserved.
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Kraemer, Huggins, Higiro and Tanglerpatibul and Rao are most common models used to 

estimate intrinsic viscosity. Therefore, these models were used to facilitate comparison of the 

intrinsic viscosity obtained for QSG and other natural polymers. 

Kraemer model 11: 

 
 

Huggins model 12:  

 
 

where, kH, kK, and C are Huggins constant, Kraemer constant and solute concentrations, 

respectively. 

Tanglertpaibul-Rao’s equation 13: 

= 1+ [η] C  

Higiro’smodels14: 

 =   

 

=   

 

2.8.1. Estimation of the molecular conformation 

The slope of a double logarithmic plot of specific viscosity versus concentration is a measure of 

polysaccharides conformation 15, 16. Eq. 6 was used to determine this parameter: 

This article is protected by copyright. All rights reserved.
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 (6) 

  

2.8.2. Salt tolerance (S) and relative stiffness parameter (B) 

The intrinsic viscosity’s slope at different ionic strengths versus the inverse square root of ionic 

strength (I−0.5)  was plotted to determine salt tolerance parameter (S) 17: 

        (7) 

Where,  is the intrinsic viscosity of infinite ionic strength. S parameter is a measure of chain 

stiffness.  

Based on Smidsrød and Haug 18, S parameter is notably dependent on molecular weight of the 

polymer. Thus, they developed a semi-emperical assay (B value method) to overcome this 

problem. The relative stiffness parameter (B) was quantified from the intrinsic viscosity at an 

ionic strength of 0.1 according to the following formula: 

S = B                                             (8) 

In which, ν is usually ranged between 1.2 to 1.4 for most polyelectrolyte 19. An average value of 

1.3 was used in this paper.  

 

2.9. Steady shear measurements 

Steady shear evaluation of the gum solutions in the presence of CaCl2 was carried out by a 

rotational viscometer (R/S plus Rheometer) equipped with a heating circulator at 25 °C using an 

SC4-18 spindle. All the measurements were performed over a wide range of shear rate from 1 to 

300 .  

This article is protected by copyright. All rights reserved.
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Steady shear properties such as consistency coefficient and flow behavior index values were 

quantified using the power law equation: 

 (9) 

where is the shear stress (Pa),  is the shear rate (s-1), k is the consistency coefficient (Pa sn), 

and n is flow behavior index (dimensionless).  

 

2.10. Small amplitude oscillatory shear measurements 

Dynamic rheological measurements were conducted with a HAAKE MARS III rheometer 

(Thermo Scientific, Karlsruhe, Germany) equipped with a Peltier plate for temperature control. 

Each sample was transferred onto the rheometer plate using a “parallel plate sensor” PP35/1Ti 

(diameter of 35 mm) at the room temperature, and excess material was wiped off with a spatula. 

For equilibration, all samples were allowed to rest at the initial temperatures for 1 min. The 

RheoWin software 3.61 (Thermo Fisher Scientific) was employed for data evaluation.  

The linear viscoelastic region (LVR) was analyzed for detailed dynamic measurements to 

evaluate the sample's microstructure. The linear viscoelastic region (LVR) for QSG samples was 

determined by performing an amplitude sweep measurements (0.01–100%) at a constant 

frequency (1 Hz) and temperature of 25 °C.  

Frequency sweep tests at a constant strain in the LVR region were carried out to determine the 

viscoelastic nature of QSG (0.5%). In this test, a strain of 0.5 was applied in order to disturb as 

less as possible the network formation. The mechanical spectra were characterized by values 

of G′, G″ (Pa) as a function of frequency in the range of 0.01–10 Hz and temperature of 25 °C. 

The storage modulus can be used as a measure of the elastic component of the sample and 

similarly, the loss modulus – the viscous component of the sample. 

This article is protected by copyright. All rights reserved.
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2.11. Statistical analysis 

The experimental results were analyzed by one-way analysis of variance (ANOVA) using SPSS 

16 (SPSS Inc., Chicago, IL). The comparison of treatment means was carried out using Duncan's 

multiple range test. 

 

3. Results and discussions 

3.1. Chemical composition 

Chemical analysis and composition of QSG were presented in Table 1. On the average, the gum 

contains 85.04±2.87% carbohydrate, 13.16±1.73% uronic acid, 5.77±0.83% moisture, 2.78±0.21 

% protein, 5.64±0.21% ash, and 0.75±0.09% fat. Carbohydrates constitute the major component 

of the extracted QSG. Comparatively, the carbohydrate content of QSG was close to that 

reported for locust bean gum (85.1-88.7%) and was more when compared to those reported for 

some commercial gums like guar gum (71.1%), and gum ghatti (78.36%) 6.  

The monosaccharide composition in Table 1 showed that xylose (40.43 % of total carbohydrates) 

was the primary saccharide component followed by mannose (31.11% of total carbohydrates) 

with minor amounts of other monosaccharides (Table 1). The high amount of xylose and 

mannose in QSG composition may indicate that the structural make-up of this gum can consist of 

xylan and/or mannan backbone with the branching of arabinose, galactose, and glucose. 

The yield of the extracted gum from quince seed was found to be 9.63%, which was 

approximately close to that reported in the previous study (10.9%) 20. However, they also 

reported that QSG had 20.9% protein which indicates that the purified QSG in their research has 

a low degree of purity. In another research, the gum was extracted from quince seed 

This article is protected by copyright. All rights reserved.
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without purification yielding the yield value of 11.58% 4. In general, due to high carbohydrate 

content (85.04%) and high level of extraction yield (9.63%), it can be concluded that this gum is 

an appropriate alternative for commercial gums. 

The amount of protein in the polysaccharide composition is a determinant factor in food and 

pharmaceutical systems. For example, several properties of gum such as a film forming capacity, 

emulsifying and stabilizing features as well as foaming properties are dependent on protein 

fraction 6. Comparatively, the protein content of QSG in this study was 2.78 % which is 

comparable to that cited for xanthan gum (2.125%), and less than those reported for locust bean 

gum (5.2-7.4%), and guar gum (8.19%) 21, 22. The presence of proteins in the QSG composition 

reflects the ability of this biopolymer to reduce surface tension 23.  

Uronic acid content is an indicator of the relative degree of polyelectrolyte nature and amount of 

acidic polysaccharides 24. The uronic acid content of QSG (13.16 %) was less than those of 

flaxseed gum (21.0-25.1%) and xanthan gum (21.5%) and was more than those reported for gum 

ghatti (12.83%), and gum Arabic (15.0%) 6. Therefore, QSG has more negative charge than 

ghatti and Arabic gums. Based on the previous finding, the gums with a high amount of acidic 

polysaccharide indicate typical Newtonian-like behavior 21.  

Ash content of QSG samples was found to be 5.64 % which is in the range of other natural 

polymers. Comparatively, the ash content of QSG was more than those of locust bean gum (0.7-

1.5%), Arabic gum (1.2 %)  and xanthan gum (1.5%), and was less than that of guar gum 

(11.9%) 21, 22.  

The results of chemical analysis observed here were different from those reported in previous 

research 4, 20. Different factors can influence on chemical and functional properties of 

hydrocolloids like source, extraction and purification processes and growing conditions 1. It can 

This article is protected by copyright. All rights reserved.
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be suggested that the purification technique applied in the current research could be the main 

reason for this discrepancy in chemical composition. 

Mineral profile of gums can influence on some their physicochemical characteristics such as 

emulsifying properties (iron) 23, viscosity-enhancing feature and gel-forming ability of 

polyelectrolyte gums (Ca+2) 25, and enzyme activity (Ca2+ and Mg2+). Additionally, some 

minerals are essential for human health, whereas some of them like copper (Cu), nickel (Ni), lead 

(Pb), cadmium (Cd), and arsenic (As) may also have adverse effects at high concentration. 

Therefore, mineral composition of QSG was determined. The mineral composition of QSG is 

summarized in Table 1. QSG is gum with a considerable nutrient value due to the presence of 

high amount of calcium (7331.1 ppm), and magnesium (2632.8 ppm). Based on this result, this 

gum can be introduced as a value-added by-product in the food and pharmaceutical industries.  

(Table 1) 

3.2. FTIR analysis 

FT-IR analysis of QSG was carried out to identify the organic functional groups in gum 

structure. The FT-IR analysis of QSG is consistent with the compositional analysis described 

above. FTIR spectrum of QSG is presented in Fig. 1, which illustrates all typical bonds and 

peaks characteristic of the polysaccharide. The region between below 700 cm-1 is related to the 

skeleton vibration of the gum with two modes consisting of angle deformation formed by heavy 

atoms (CCO, COC) and internal rotations around CO bonds 26. The peaks diagnosed between 

800 to 1200 cm-1 is called fingerprint or anomeric area for carbohydrates. This region is sensitive 

to conformational and configurational transformations of polysaccharides 27 and can be used as a 

measure of structural differences in the various polymers. For example, Guiliano, Asia, Chatel 
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and Artaud 28 differentiated Acacia Senegal gum and Acacia seyal using the relative intensities 

of this region. The signal at 897.70 cm-1 is evidence for the presence of β-D-glycosidic linkages 

types of the aldopyranose in biopolymer structure 29. It also suggested that the peak at 1025 cm-1 

is due to the presence of uronic acid in the polysaccharide structure 30. Accordingly, it can be 

found that QSG is a polysaccharide comprising uronic acid which was supported by the result 

observed for proximate analysis observed above. 

The observed signals between 950 and 1200 cm-1 refer to stretching vibration of alcoholic C-O in 

COH bands in carbohydrates 31. The range between 1200-1500 cm-1 results from coupling of the 

deformation vibrations of groups containing hydrogen atoms, namely CCH, HCH, COH and 

HCO 27. As it can be seen in Fig. 1, these bands in this range were 1249.61, 1375.02, and 

1424.40, cm-1. The peak observed at 2920 cm-1 is related to C-H stretching, symmetric and 

asymmetric of the free sugar and also the vibration of symmetric stretching of CH2, indicating 

the existence of grafting 32. This peak also could be assigned to the doubles overlapping with O-

H 33.  

The wave numbers between 3000 to 3500 cm-1 are referred to free, inter, and intramolecular bond 

O-H groups 34, and also reveals several properties such as free O-H groups stretching bonds that 

occur in the vapor phase and bonded with hydroxyl bands in the structure of carboxylic acid 35. 

Therefore, it can be realized that this gum contained carboxyl groups, which can act as a binding 

site for ions and as a result leads to improve viscous-enhancing properties and gel-forming 

capacity. Additionally, Sharma and Mazumdar 36 stated that this broad absorbance peak is related 

to hydrogen bonding involving the O-H groups of glucopyranose ring in the structure of 

polysaccharide chain.  
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3.3. NMR analysis 

In order to investigate the structure of QSG, NMR analysis was conducted. The 13C NMR 

spectrum of this gum indicated it has a highly branched structure. The spectrum of QSG 

contained the signals corresponded to (1→4)→β-D-Xylp, (1→4)-β-D-Xylp-2-o-GlcpA, and 4-o-

Me-α-D-Glcp (Table 2). The resonance for carbonyl groups of the terminal non-reducing D-

glucuronic acid was observed at 176.17 ppm 37. The anomeric region includes various glycoside 

linkages in polysaccharide structure. The peak observed at 97.52 ppm is related to 4-o-Me-α-D-

Glcp (1← residues and the main one at 101.64 ppm is due to (1→4)-β-D-Xylp-2-o-GlcpA. The 

peak at 104.19 is related to (1→4)→β-D-Xylp. Therefore, it can be suggested that QSG has a 

highly substituted xylan structure. Additionally, the signal at 109.53 ppm and 62.21 ppm arise 

from C-1 and C-2 of residual α-L-Araf units.  

(Fig. 2) 

(Table 2) 

 

3.4. Analysis of macromolecular weight and its characteristics 

The molecular weight of a biopolymer is considered as an important parameter due to its effect 

on functional characteristics of polysaccharides 38. Therefore, molecular properties of QSG were 

analyzed. GPC elution profile of QSG is depicted in Fig. 3. Weight average molecular weight of 

QSG (9.61×106 g/mol) was more when compared to commercial gums such as xanthan gum 

(4.05×106 Da) 39, guar gum (1.45×106 Da) 40, gellan gum (1.64×106 Da) 41 and locust bean gum 

(1.6×106Da) 42. The molecular weight is a determinant factor for thickening and gelling 

properties of hydrocolloids. For example, xanthan has a molecular weight (4200 kDa) and as a 

result impart a high level of viscosity-enhancing property 43, 44. Therefore, QSG can be 
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introduced as a good thickening agent because it has high molecular weight. Rheological 

properties of QSG will be discussed in the continuation of this research. Moreover, high 

molecular weight polysaccharide does not have much tendency to be adsorbed at the air-water 

interface, but they can profoundly reinforce the protein foams stability due to thickening or 

gelling characteristics 45.  Thus, QSG can be introduced as a good stabilizing agent in protein 

foams. Number average molecular weight (Mn) of QSG (4.153×106 g/mol) was more when 

compared to most hydrocolloids that have been studied so far. 

(Fig. 3) 

 

3.5. Rheological properties 

3.5.1. Dilute solution properties 

Before intrinsic viscosity measurements, master curve (log ηsp against log C× intrinsic viscosity) 

was plotted to confirm that tested solutions are in a dilute domain. When the slope of the master 

curve is less than 1.4, it can be found that there are no coil overlaps. In a concentrated regime, 

the slope increase to 3.3 46. The results indicated that slopes of master curves for QSG at salt 

concentration were in the range of 0.98 to 1.99, exhibiting that QSG solutions were in the dilute 

domain without molecular entanglements.  

Intrinsic viscosity is a property related to the hydrodynamic volume occupied by the polymer 21. 

The high determination coefficient and low mean square error revealed that Tanglertpaibul-

Rao’s equation might be adequate to estimate intrinsic viscosity of QSG (Fig. 4). This result is in 

line with those reported in previous studies23, 46-49. The intrinsic viscosity of QSG was 16.96 dl/g 

(in deionized water at 25 ºC) which was more than the data obtained for gum arabic (0.6 dl/g at 
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20 ºC) and guar gum (9.25 dl/g), and smaller than that estimated for Tragacanth gum (19.2 dl/g), 

6. 

Following an increase in the ion concentration, the intrinsic viscosity of QSG decreased which is 

due to the shielding influence of charges on macromolecular chains 50. With increasing the ion 

concentration, the impact of shielding of charges reinforced and consequently the molecular 

repulsions, followed by intrinsic viscosity diminished 51. The similar results have been reported 

for sodium alginate 52, Balangu seed gum 51, xanthan 14, Prunus armeniaca 49 and hsiantsao leaf 

gum 16. 

Salt tolerance parameter is related to polymer chain stiffness. The less ionic strength dependency 

of intrinsic viscosity demonstrates a high level of chain flexibility 19. The value of relative chain 

stiffness (B) of QSG in the presence of CaCl2 (0.24) was less than those of sage seed gum 

(0.381) 53 and Balangu seed gum (0.346) 51. Accordingly, QSG has a stiffer conformation in 

comparison to these biopolymers. On the other hand, the value obtained for B number was more 

than that of reported for rigid helices gum like xanthan (0.00525) 54.  

(Table 3) 

(Fig. 4) 

 

3.5.2. Steady shear behavior 

Hydrocolloids foods are occasionally processed under different environmental conditions such as 

mineralized solutions. Hence, the evaluation of salt addition influence on rheological properties 

of QSG is important to appointment mucilage function as a polyelectrolyte. The viscosity of 
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charged macromolecules is considerably affected by ionic strength. In the absence of counter 

ions, a negative charge reinforces the electrostatic repulsion and as a result, produces a more 

expanded molecule. The results of the compositional analysis indicated that QSG had negatively 

charged polyelectrolyte molecules. Therefore, it is expectable that this gum can produce a high 

viscous solution in deionized water, because of high repulsive forces. The effect of CaCL2 

addition on consistency coefficient of QSG solution is summarized in Table 3. The steady shear 

flow behavior of QSG solutions at all tested ion concentrations can be described by non-

Newtonian profile characterized by a flow behavior index less than one. Following an increase in 

ionic strength from 0 to 50 mM, the consistency coefficient (as a measure of apparent viscosity) 

decreased. The reason for that may be related to decreasing in the electrostatic repulsion and 

molecules expansion which leads to a reduction inconsistency coefficient 55. Furthermore, 

inorganic cations have a high degree of hydration and as a result of compactness of the hydrated 

layer around polyelectrolyte molecules. Therefore, an increase in ionic strength led to a decrease 

in consistency coefficient of solutions 56. These observations are consistent with those of hsian-

tsao leaf gum 57 and Opuntia ficus-indica gum 55. Surprisingly, when the CaCl2 concentration 

increased from 100 to 500 mM, the magnitude of consistency coefficient increased from 12.21 to 

14.88 Pa.sn, indicating CaCl2 can reinforce the structural network of QSG. The experimental data 

of log apparent viscosity vs log shear rate is also presented as Fig. 5 which confirmed the effect 

of CaCL2 on steady shear behavior of QSG. 

With increasing salt concentration from 0 to 50 mM, flow behavior index increased from 0.28 to 

0.30, indicating that hydrocolloid solutions tend to be lower shear thinning in the presence of 

salt. On the other hand, with further increasing of salt concentration, flow behavior index values 
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decreased. This trend may be due to the reinforcement of electrostatic interaction between 

calcium ions and polymer macromolecules and as a result increasing molecular entanglements. 

(Table 3) 

(Fig. 5) 

 

3.5.3. Dynamic rheological behavior 

3.5.3.1. Strain sweep measurements 

With increasing stain, two distinct domains namely linear viscoelastic region where G' and G'' 

were almost constant, and nonlinear region in which G' and G'' started to decrease were 

distinguished. In the strain sweep tests, G' remained constant until the strain reached a critical 

point at which G' started to decrease sharply, as demonstrated in Fig. 6-a. The strain at which G' 

decreased sharply is defined as the critical strain. Therefore, critical strain reflects the 

deformability of the gum 58. Strong gum solutions maintain longer at linear state compared to 

weak gum solutions 59; in other words, viscoelastic moduli can be linear in a wide strain range. 

The linear region for dilute solutions is less than concentrate solutions and this is less than gels. 

While the strain value at the limit of LVE rarely exceeds 0.1 for colloidal gels, a larger LVE 

region with a strain equal to or exceeds 1 is for natural biopolymer gels 60.  

(Fig. 6) 

At low salt concentrations (10–50 mM), the elastic modulus remained constant at strain up to 

about 20%. With increasing in salt concentration, the strain at which the elastic modulus 

decreases, increased to more than 100%. While in the absence of salt, elastic modulus remained 

stable at strain up to about 3% (Table 3), which indicates that increasing salt concentration 
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increased the strength of the system and got more rigid. The values of G' and G'' at LVE region 

also increased with increase in salt concentrations (Table 3). Increasing salt concentration from 

10 to 500 mM increased the structural strength (G' at LVE) of gum solution at constant 

concentration. It should be noted that, at low salt concentrations (10 – 50 mM), compared to the 

absence of salt, the values of G' and G'' were decreased. This shows that at low concentrations of 

salt, structural strength (G' at LVE) of gum solution was weakened. This kind of experiment also 

reveals the upmost deformation that a system can tolerate without structural failure; in another 

word, determination of the critical strain as corresponding of the linear viscoelastic range is a 

yardstick of structural strength and shape maintenance factor versus the mechanical stresses 

58.The critical strain values for QSG were 3.7, 74.5, 75.1, 110.6 and 131.1% for 0, 10, 50, 100 

and 500 mM salt concentrations, respectively. At this point, G' diminished aggressively, which 

exhibits the strain that led to the first non-linear changes in the structure of aqueous gum 

dispersion.  

 

3.5.3.2. Frequency sweep measurements 

Frequency sweep data can be applied to determine or categorize dispersions. The four most 

ordinary and common classifications are that of a dilute solution, an entanglement network 

systems (or a concentrated solution), a weak gel and a strong gel 60. Fig 6-b shows the frequency 

dependence of G′ for QSG in the presence of Ca2+ ions at ambient temperature. At any 

concentration of CaCl2 from 0 mM to 500 mM, G′ was larger than G′′ (Data not shown), and 

both moduli were only slightly frequency dependent throughout the accessible frequency range. 

This behavior is classified rheologically as that of a weak gel 61, 62. Therefore, the gel-like 
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behavior was observed at all various concentrations of CaCl2. According to Martínez-Ruvalcaba, 

Chornet and Rodrigue 63, in weak gels, both moduli display light frequency dependency, with G' 

exceeding G'' at all frequencies. However, G' and G'' values for 10 and 50 mM CaCl2 

concentrations were lower than that of the blank sample without salt (Fig. 6), showing that the 

elastic properties can be decreased at the special concentration. This result is consistent with that 

observed in steady shear behavior. 

 

 

 

 

 

 

 

4. Conclusion 

QSG is a high molecular weight polysaccharide contains 6.39% arabinose, 40.43% xylose, 

5.60% galactose, 5.75% glucose and 31.11% mannose. By using FT-IR and 13CNMR analysis, 

the characteristics of functional groups and structural properties of QSG were identified.  The 

results of monosaccharide composition and 13C NMR analysis showed that the structural make-

up of this gum could consist of xylan and/or mannan backbone with the branching of arabinose, 

galactose, and glucose. FT-IR analysis indicated the presence of carboxyl group, which can 
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improve rheological properties of QSG. The dilute solution behavior of QSG in the presence of 

CaCl2 was evaluated.The value of salt tolerance parameter of QSG exhibited that this gum has a 

stiff conformation. Based on the steady and dynamic behavior of QSG, it was found that 

rheological properties of this gum improved in the special concentration of CaCl2. 
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Table 1. Chemical composition of QSG* 

Composition (%)  QSG* 
Carbohydrate  85.04±2.87 

Monosaccharide   
 L-Arabinose 6.39±0.18 
 Rhamnose <MDL** 
 D-Xylose 40.43±0.47 
 D-Galactose 5.60±0.08 
 D-Glucose 5.75±0.08 
 D-Mannose 31.11±0.48 
 Galacturonic acid 0.81±0.08 
 Glucuronic acid 8.54±0.20 
Uronic acid  13.16±1.73 
Protein  2.78±0.21 
Moisture  5.77±0.83 
Fat  0.75±0.11
Ash   5.64±0.48 

Elements (ppm)   
 Calcium (Ca) 7333.1 ± 1.32 
 Magnesium (Mg) 2632.8 ± 2.21 
 Manganese (Mn) 11.2 ± 0.21 
 Potassium (K) 74.12 ± 1.40 
 Zinc (Zn) 96.03 ± 2.00 
 Cobalt (Co) <MDL 
 Copper (Cu) 2.01 ± 0.08 
 Aluminum (Al) 2.28 ± 0.44 
 Nickel (Ni) 0.06 ± 0.01 
 Lead (Pb) <MDL 
 Cadmium (Cd) <MDL 
 Arsenic (As) <MDL 
*Values are means ± SD of triplicate determination 
**MDL: Method detection limits 
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Table 2. 13 C signals of QSG. Chemical shift is expressed in ppm. 

Residue C-1 C-2 C-3 C-4 C-5 C-6 O-CH3 
(1→4)→β-D-Xylp 104.79 72.27 71.94 73.47 6.21 - - 
(1→4)-β-D-Xylp-2-o-
GlcpA 

101.64 75.11 71.02 73.17 62.16 - - 

4-o-Me-α-D-Glcp 97.52 70.67 75.26 81.49 71.26 176.17 59.29 
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Table 3. The effect of ionic strength on steady shear parameters of QSG solutions (0.5%, at 25 °C) and 
viscoelastic properties (quantified by strain sweep experiments at frequency of 1 Hz). 

Steady shear test k (Pa sn) n (-) R2 RMSE 

CaCl2 (mM)     

0 7.62 ± 0.44c 0.28 ± 0.00ab 0.999 0.000 

10 6.11 ± 0.33d 0.29 ± 0.01a 0.999 0.003 

50 6.01 ± 0.23cd 0.30 ± 0.01a 0.998 0.009 

100 12.21 ± 0.18b 0.21 ± 0.01c 0.998 0.011 

500 14.88 ± 0.96a 0.20 ± 0.02c 0.994 0.012 

     
Strain sweep test G’LVR (Pa) G”LVR (Pa) yLVR

 (%) Tan δLVR 

0 15.01±0.26a 6.94±0.19a 3.7±0.35d 0.46±0.01b 

10 4.97±0.67d 2.62±0.14b 74.5±1.18c 0.53±0.01a 

50 5.10±0.56d 2.16±0.23e 75.1±4.17c 0.42±0.02c 

100 12.69±0.23c 3.77±0.11d 110.6±3.12b 0.29±0.01d 

500 14.32±0.22b 4.36±0.22c 131.1±6.14a 0.30±0.02d 

a, b, c, d, and e Different letters in the same column indicate significant differences at 5%.  
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Figures caption 

Fig. 1 FT-IR spectrum of QSG. 

Fig.2. 13C NMR spectrum of QSG.  

Fig. 3 Molecular properties of QSG. 

Fig. 4 The plot of relative viscosity against solution concentration 

Fig.5 The experimental data of log apparent viscosity vs log shear rate 

Fig. 6 Changes of storage modulus in strain sweep (a) and frequency sweep (b) tests at various 

ion concentrations. 
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Fig. 1 
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Fig. 2 
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Fig. 3 
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Fig. 4 
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Fig. 5 
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Fig. 6 
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