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Ask not what you can do for machine learning.
Ask what machine learning can do for you.





Summary

Electroencephalography (EEG) records electrical activity from the brain by measuring
the resulting potential differences across the scalp. It has a long tradition in both
a clinical and neuroscientific setting, and recently it has also started being used for
consumer-oriented applications.
While EEG can be a useful tool, it can be difficult to decipher information from its raw
signals. In this thesis I will present three projects with the common goal of analysing
EEG in ways that both extract meaningful information and visualise it in intuitive
ways.
The first project describes how we took neuroscience out of the laboratory and into
the classroom. We reproduced an attention-tracking paradigm in a classroom and
simultaneously recorded the neural activity of up to nine people. We had a focus on
using equipment that was wireless and portable as well being relatively low-cost and
computational methods in a setup that is feasible to extend into everyday scenarios.
The second project revolved around creating a toolbox for the research field of
microstate analysis, with a focus on open access and transparency of the applied
methods. The toolbox is followed by a methodological guide that reviews the most
commonly applied algorithms in microstate analysis.
In the final project I investigated the feasibility of using the complexity of EEG as a
neural marker of conscious processing. This project spans two studies investigating
the capability of EEG complexity in two different scenarios; while people are sleeping,
and while navigating a helicopter simulator.
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Resumé

Elektroencefalografi (EEG) optager elektrisk aktivitet fra hjernen ved at måle forskelle
elektrisk potentiale på tværs af hovedbunden. EEG har en lang tradition både i klinisk
og neurovidenskabelig omgivelser, og for nylig er den også begyndt at blive brugt til
forbrugerorienterede applikationer.
Selvom EEG kan være et nyttigt værktøj, kan det være svært at afkode oplysninger
fra dets rå signaler. I denne afhandling vil jeg præsentere tre projekter med det fælles
mål at analysere EEG på måder, der både udtrækker meningsfuld information og
visualiserer det på intuitive måder.
Det første projekt beskriver, hvordan vi tog neurovidenskab ud af laboratoriet og
ind i klasseværelset. Vi reproducerede et paradigme måling af i et klasseværelse, og
optog simultant den neurale aktivitet af op til ni personer. Vi havde fokus på at bruge
udstyr, der var trådløst og bærbart, samt havde relativt lave omkostninger. Vi havde
også fokus på at bruge metoder der ikke kræver beregningsmæssig ressourcer, med
henblik på muligheder for at udvide det til hverdagens situationer.
Det andet projekt drejede sig om at skabe en toolbox til forskningsområdet for
microstate analysis med fokus på åben adgang og gennemsigtighed i de anvendte
metoder. Vores toolbox akkompagneres af en metodologisk vejledning, der gennemgår
de mest anvendte algoritmer i microstate analysis.
I det sidste projekt undersøgte jeg muligheden for at bruge kompleksiteten af EEG som
en neural markør for bevidst processering. Dette projekt spænder over to forskellige
forsøg, der undersøger brugsmulighederne af EEG-kompleksitet i to forskellige scenarier;
mens folk sover, og mens man navigerer en helikopter i en simulator.
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Preface

This thesis was prepared at DTU Compute in the section of Cognitive Systems in
fulfilment of the requirements for acquiring a PhD degree.
The thesis includes of a summary report of the experiments, the underlying theory, key
findings and perspectives on these. The thesis, furthermore, contains published articles
and draft manuscripts produced during the PhD. The thesis work was performed in
the period December 15, 2015, to April 10, 2018.

Kongens Lyngby, April 10th, 2018.
Andreas Trier Poulsen
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CHAPTER1
Introduction

This thesis covers projects in the intersection of two disciplines; machine learning and
cognitive neuroscience. The digital technological advances of the last couple of decades
have made it possible for many sub-fields of research to emerge in this intersection. In
general the machine learning/cognitive neuroscience intersection can be divided into
three sub-fields:

1. Creating theoretical models for how the brain functions based on mathematical
and statistical principles.

2. Using neuroscience to inspire the formulation of new machine learning methods.

3. Applying existing machine learning methods to neuroscientific data.

Though there is an overlap between these definitions, the projects presented here
mainly resides in the latter field.

1.1 EEG as a tool in cognitive neuroscience
A common tool in cognitive neuroscience is the electroencephalography (EEG), which
records electrical activity from the brain by measuring the resulting potential differences
across the scalp.
Clinically, EEG can be used to help diagnose afflictions such as epilepsy, sleep-disorders,
or brain damage. The clinical use of EEG is often preceded by research into how EEG
can be interpreted. In cognitive neuroscience, EEG can help investigate how our brain
works such as defining what consciousness and unconsciousness is. For example, by
looking at the strength of potentials at specific locations and specific times in the
EEG, it is possible to examine how the brain can analyse incoming visual or audio
information, in both a conscious or unconscious manner and how these differ (Dehaene
and Changeux, 2011). This information can then be extended to investigate when
the same processes are present in non-verbal infants and thereby infer presence of
consciousness in them (Kouider et al., 2013).
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Figure 1.1: Five seconds of EEG recorded from 14 locations on the scalp.

While EEG is a useful tool, it can be difficult to decipher information from the raw
signals. Figure 1.1 shows an example of raw EEG signals that, to the untrained eye,
might seem like noise. For trained physicians it takes several years to learn to decode
EEG, and even then there are limits to the amount of information they can read from
it.

Like every other tool, EEG has its strengths and weaknesses. EEG has a high
temporal resolution with sampling frequencies that can lie above 1,000 Hz and signals
of interest usually lying in the 0.5 - 100 Hz area (Lopes da Silva, 2013). Compared
to other neuroimaging techniques, EEG is relatively inexpensive, unobtrusive and
portable. Finally, the biophysical foundation of the recorded signals is well understood
(Buzsáki et al., 2012). These attributes makes EEG a good tool for a variety of clinical
and experimental applications and a good candidate for bringing neuroscientific
measurements out of the laboratory and into our everyday life.

Regarding the weaknesses of EEG, especially two aspects make it hard to decipher
visually. EEG usually has a low signal-to-noise ratio since the signals are attenuated
and distorted by the different layers between the electrical currents in the brain
and the surface-electrodes on the scalp. This attenuation means that the recorded
neural signals are so weak that they are easily contaminated by noisy signals from our
surroundings. A second issue is that it is difficult to visualise how spatial patterns of
neural activity across the scalp evolves in time.

Since the 1960s and 1970s, the digital age has helped alleviate some of these challenges
of EEG analysis. By designing experiments to be time-locked to a short stimulus and
repeating it multiple times, it became possible to average EEG to attenuate noisy
signals unrelated to the experiment, and thereby enhance the event-related potentials
(Hari and Puce, 2017). The advent of computers also made it possible to visualise the
spatial distribution of potentials over the scalp for a given time in the EEG.

These breakthroughs helped improve the usefulness of EEG, but also restricted much
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of the experiments to be short and repeatable. Additionally, analysis of temporal
waveforms was often restricted to one EEG channel at a time, followed by spatial
topographies at time points of interest. These constraints were not because there was
no more information to be found by analysing the EEG altogether, but because there
is a limit to how complex data can be, if it is a human who should find a pattern in it.

In the current phase of our digital revolution it is now possible to do high amounts of
computation in a short time, which makes it possible to implement machine learning
models to capture patterns in complex neuroscientific data, such as EEG. Patterns
that would be hard for humans to detect. In other words, by using machine learning
we can improve the efficacy of EEG as a tool in cognitive neuroscience.

1.2 Enhancing neuroscientific analysis with machine
learning

Humans excel in finding patterns in 2D images, but struggle when the dimensionality
increases. Machine learning, when wielded correctly, is a powerful tool in finding
patterns in data of both high and low dimensionality.

In these modern times we experience machine learning in many ways and many
times during our day. How we use our smartphones is a good example of how
machine learning finds patterns in information in order to help us. Our phones use
machine learning when they find patterns in the sounds we make during our speech to
understand what we are saying; when we ask our phones to find the fastest way to the
cinema; when social media estimates which story to put at the top of our news feed;
or when the patterns in our finger prints or facial structure are used to identify us.

In my PhD I have sought to use methods that are both able to increase the amount of
the information gained from EEG recordings, and able to visualise this information in
ways that are more easy to understand intuitively. Figure 1.2 shows three examples of
visualisations of EEG, from methods used in this thesis.

Some of the research results presented in this thesis might appear impractical to
apply in real life scenarios. However, apart from the fact that most research needs
technological refinement to bridge the gap into the hands of consumers, the results
presented here must also be seen in the light of a recent revolution in the size and
portability of EEG recording devices. It seems unrealistic that students would don
large caps filled with gel before a lecture, but envision a future where EEG can be
recorded from small devices that fit in the ear (Kidmose et al., 2013) or via thin
electrode-patches applied to the skin (Norton et al., 2015).

To summarise; the general goal of my PhD is to apply machine learning to neuroscien-
tific data in order to obtain information that is salient in describing its origin, but at
the same time is still easy to interpret.
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(a) Inter-subject correlation.
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(b) Microstate analysis. (c) EEG complexity.

Figure 1.2: Examples of visualisations of EEG analysis. (a): The inter-subject correlation
between subjects viewing the same film, with peaks coinciding with engaging scenes. The grey
area indicate chance levels for ISC (p > 0.01, uncorrected). This is covered in chapter 2. (b):
Microstate analysis of an event-related potential stemming from subjects viewing images with
faces on them. The global field power (GFP) is calculated across all electrodes.The colour
denotes which microstate the EEG samples has been assigned to with their corresponding spatial
map shown above. This is covered in chapter 3. (c): EEG complexity for a subject flying a
helicopter simulator. The complexity of each trial has been time-locked to an event and averaged
in two groups based on whether the pilot succeeded or failed the trial. This is covered in chapter
4.

1.3 Spatio-temporal models
Sometimes terminology can vary between different research fields, and the same word
can give different associations depending on which field a researcher is affiliated with.
For this reason I will briefly clarify in what sense the term spatio-temporal models is
used in this thesis.

When I define the different analysis methods presented throughout this thesis as
spatio-temporal models, I do so in the literal interpretation of the words. They are
models that in different ways incorporate information of both time and space. For
EEG, the spatial component of the information stems from the spatial distribution
of the electrodes on the two-dimensional surface of the scalp, and the underlying
three-dimensional activity in the cortex it represents.



1.4 Motivation 5

In the next section, I will give a short overview of the topic of each project, and how
the employed methods can be considered to be spatio-temporal.

1.4 Motivation
The overarching goal of this thesis is to use machine learning methods to increase
the information gained from recorded EEG. I have two motivations for pursuing this
increase of extracted information.
One motivation is to apply the methods to the emerging field of wearable EEG.
Neurotechnology develops fast and holds great societal promises in personalised
medicine and patient monitoring as well as for neuroprosthetics such as hearing aids
or brain-computer-interfaces. There is also a range of possible applications in more
consumer-related areas, e.g. neuromarketing or future brain-based augmented reality
interfaces.
These applications could be based on permanent or long-term mental state decoding,
i.e. estimating the perceptual or cognitive state of the human brain, whether it
is reflecting endogenous or external processes. With future EEG devices allowing
prolonged recordings in a natural everyday setting, a deeper understanding might
be obtained regarding the causal relationship between the frequency and times of
occurrence of different brain states and many important aspects of life such as mental
fitness (e.g. feelings of being energetic, stressed, unfocused) or mental focus (e.g.
lectures, mental tasks, emotional attention).
A second motivation is to improve the insights gained from experiments in the field
of cognitive neuroscience. Machine learning can either boost the results of classic
experiments or be taken into account from the start to create novel experimental
paradigms. For example, machine learning has been used in the study of variability in
audiovisual integration (Keil et al., 2012), track representational similarity in object
recognition (Cichy et al., 2014) and relate it to semantic processing using deep learning
models (Khaligh-Razavi and Kriegeskorte, 2014). Machine learning has also been used
for online decoded neurofeedback (Cortese et al., 2016), studying the neural coupling
in interactions between infants and adults (Leong et al., 2017), and the unconscious
maintenance of subliminal stimuli (King et al., 2016).
Most of these examples show an applied aspect of machine learning, where machine
learning is used as a tool to solve specific challenges, rather than studying the
performance of different models and comparing them to other models. It is examples
like these that have influenced me to gravitate from asking "what I can do for the field
of machine learning?" to "what can machine learning do for me and what I want to
achieve?"

1.5 Contributions
In my PhD project, I have been blessed by not only having scientific freedom through
a broad topic description, but also by having two inspiring supervisors. With a
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common interest in applying machine learning to neuroscientific data, they approach
the inter-disciplinary field with different backgrounds, and have challenged me to
improve from both a machine learning and a cognitive aspect. This has altogether
meant that I have had the opportunity to work on many different projects instead of
having a single goal for the entire PhD project.
My three years as a PhD-student have therefore been less like an essay over a topic
and more like a collection of short stories over a theme. This is also reflected in the
structure of the resulting thesis, that you are about to read.
I have taken a pragmatic, and somewhat unorthodox, approach to the structure of
this thesis, with the aim of keeping verbosity at a minimum. Each chapter will serve
as a short walk-through of the concept and motivation of a project, as well as present
selected relevant results. I will therefore refer to their associated articles for the full
scientific background of the results and a more formal presentation of them. Since
each chapter presents and summarises the results independently of each other, there
is no extra chapter dedicated to the re-summarising the results. Also, this thesis will
not contain a large theoretical chapter on the physics and physiology behind EEG.
This information has already been written many times before and I instead refer to
people who have explained it much better than I would be able to, such as Hari and
Puce (2017).
Though each project contains spatio-temporal models and cognitive neuroscience, they
are distinct both in the methods employed and how involved I have been in conducting
the experiments:

Chapter 2 - Classroom EEG
This chapter describes how we took neuroscience out of the laboratory and into the
classroom. We reproduced a previously published paradigm tracking attention with
inter-subject correlation (ISC, Dmochowski et al., 2012), using low-cost portable EEG
recording devices. We both reproduced the original offline-synchrony paradigm and
extended it by recording EEG from nine subjects simultaneously. Furthermore, we
investigated the neural origin of ISC.
In order to calculate ISC we used correlated component analysis. This method can
be considered spatio-temporal in the sense that it estimates spatial components so
they maximise the temporal correlation between components from different subjects.
Additionally, in our study we calculated the ISC in a moving window of 5 seconds
with a 80% overlap to obtain a one-second temporal resolution of the synchronised
spatial activity.
The presented work is covered in the article available in appendix A.

Chapter 3 - Toolbox for microstate analysis
This chapter describes how we developed a toolbox for microstate analysis and a
review of the methodology employed in the field. Since we focused only on the
methodology, this chapter does not present new data nor go into the possible cognitive
interpretations from microstate analysis.
The concept of microstate analysis is to cluster EEG into microstate clusters depending
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on the similarity of their spatial topography. This way the EEG can go from being a
multi-dimensional time series to be represented by a single-dimensional time series of
class labels. Once each EEG time sample has been assigned to a (spatial) microstate
class, the temporal dynamics of the changes in states can be analysed such that both
the temporal and spatial aspect of EEG is taken into account.
The presented work is covered in the article available in appendix B.

Chapter 4 - EEG complexity as a neural marker
This chapter contains two projects investigating the properties of using EEG complexity
as a neural marker. The complexity of the EEG is based on an algorithm for evaluating
the complexity or randomness of finite sequences (Lempel and Ziv, 1976). The first
project covers its usefulness for capturing characteristics of EEG recorded during sleep.
The second project investigates if complexity can be used in a learning paradigm for
subjects using a helicopter simulator.
In order to calculate complexity, the EEG first needs to be converted to a binary
string. It is this conversion that can include spatial information to the method, and
there are several approaches to do this. I use short windows (e.g. 1,500 ms), which is
converted to a string by concatenating the binarised EEG observation-by-observation.
It is the concatenation of the multi-dimensional channel activity of each observations
that, in principle, retains the spatial information.
The presented work is covered in the article and manuscript drafts available in
appendices C, D and E.
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CHAPTER2
Inter-subject correlation

in a classroom

This chapter covers the concept of using inter-subject correlation (ISC) from EEG as a
marker of attention. The chapter centres on how we showed that it is feasible to take
the method out of the laboratory and perform it in a classroom using consumer-level
devices to wirelessly record EEG on tablets (Poulsen et al., 2017). The article is
available to the reader in appendix A.
Parts of the work presented in this article was performed prior to the start of this PhD
project. The experiments were conducted in collaboration with Simon Kamronn for
our master thesis (Kamronn and Poulsen, 2013). However, due to time constraints we
were unable to spend enough time on the preprocessing and analysis of the recorded
EEG, resulting in mixed results. Therefore, the preprocessing and analysis was redone
from scratch for our article, and we additionally added new analyses as well as started
a collaboration with Lucas Parra and Jacek Dmochowski.

2.1 Motivation
What if we could measure attention? Imagine if during a lecture a professor could get
feedback, when the neural activity of her students became less synchronised, so she
knew when to make a joke or have a pop-quiz to catch their attention. What if the
students could get feedback, such that when their synchronisation with their peers
had a relative drop, their phone vibrated? Either when participating in an auditorium
or in an online course.
We are not there yet, but the progress in portable EEG devices and other bio-wearables,
means that we are close to making it technologically feasible to record the data needed
in real-time. The question is, are we able extract measures of attention from the data?
There are currently several approaches to solving the problem of tracking user at-
tention through their neural responses. Here I will focus on using ISC to estimate
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synchronisation between multiple users experiencing the same stimuli to track their
engagement, as well as describe how we sought to bring the science behind the method
out of the laboratory and into a real world scenario.
In this chapter I will start by outlining some background on the literature of measuring
ISC during film viewing and correlated component analysis (CorrCA), which is used
to calculate ISC for EEG. Furthermore, I will give an overview and a discussion of
the results of Poulsen et al. (2017), concluding with a brief review of current work on
the relationship between ISC and attention.
I will attempt to give the reader an overview of the field, as well as our contributions
to it, and refer to our article and the cited references for a more in-depth review of
the research.

2.2 Background
2.2.1 Neurocinematics: Watching films in neuroscience
Most neuroscientific experiments are constructed in a discrete manner, with short
stimuli that can be repeated many times. By time-locking the stimuli and averaging
over trials to obtain event-related potentials (ERPs), the signal-to-noise ratio can be
improved and the neural responses of interest can be studied better. This is a very
effective method to deal with the high levels of noise present in most brain imaging
modalities, but the format also sets some constraints on the experimental paradigms.
In Hasson et al. (2004), the authors wanted to investigate neural responses under more
"natural" conditions, namely while subjects viewed films, using functional magnetic
resonance imaging (fMRI). Since films are continuous, it wasn’t possible to average
over multiple trials in the manner of ERP analysis and they instead opted for using ISC.
By correlating the continuous responses of multiple subjects experiencing the same
film it was possible to find times of synchronisation that "consisted of a widespread
cortical activation pattern correlated with emotionally arousing scenes and regionally
selective components".
In Hasson et al. (2008), they sought to expand on these results and investigate how
ISC related to subject attention. They did this by introducing scrambled versions of
the shown films, such that the subjects were still exposed to the same audio-visual
stimulus, as subjects viewing the original films. The reasoning behind this is that
by changing the order of the scenes the narrative will be disrupted, become less
interesting, and thereby elicit a lower attentional effect in the viewers.
The authors found that a short by Alfred Hitchcock (Bang! You’re dead, 1961) elicited
the strongest and most spatially widespread synchronisation. This they speculated
could be "neuroscientific evidence for his notoriously famous ability to master and
manipulate viewers’ minds". This lead Naci et al. (2015) to use ISC and Hitchcock to
differentiate between degrees of awareness in comatose patients, by investigating their
conscious experiences of the film.
These studies were done using fMRI, which may have a high spatial resolution
(at the cost of a low temporal sampling frequency), but have considerable practical



2.2 Background 11

constraints. fMRI is expensive to record and require the user to lie in a tube surrounded
by super-cooled helium in a shielded room. This creates limitations with respect
to giving viewers a cinema-like experience in a natural environment (at least with
the present technology). Though the current laboratory-grade equipment used for
EEG experiments also has some practical limitations to recording under natural
and unobtrusive conditions, the advent of portable EEG devices and new types of
electrodes has even greater promise for bringing this research out of the laboratory
and into the real world.

In Dmochowski et al. (2012), Lucas Parra’s group investigated if the link between ISC
and attention (or user engagement) could be transferred to EEG analysis. To this end,
the authors introduced a new analysis method based on canonical correlation analysis
(see section 2.2.2). The authors used two of the same film clips as in the studies by
Uri Hasson, including the Hitchcock short. Focusing on the three components with
the highest ISC, they found that peaks of ISC coincided with scenes with high levels
of suspense, tension, or surprise. They furthermore found that the ISC was lower
when they sought to reduce engagement with the stimuli, either by scrambling the
scenes, showing the film a second time, or showing an uneventful control film (natural
outdoor scene of a college campus). Again the Hitchcock short proved to elicit the
strongest ISC.

In Dmochowski et al. (2014), the authors took a more applied approach to explore the
possible applications of using ISC to detect user engagement. They used stimuli from
popular culture in the shape of the pilot episode of the hit TV-series The Walking
dead and commercials aired during the sporting event, Super bowl, usually the most-
watched American television broadcast of the year. As a measure of user engagement
the authors used Twitter activity, viewership and user ratings. The result was that
the behaviour of thousands upon thousands of people, interacting with the stimuli in
their everyday lives, could be significantly related to the ISC of study groups from 12
or 16 subjects. The ISC could even be related to a drop in activity during commercial
breaks.

Lucas’ group has since then further investigated the relationship between attention
and ISC by manipulating attention further. They introduced audio-only stimuli as well
as paradigms where the subjects counted backwards or had their viewing constrained
by a fixation cross (Ki et al., 2016).

2.2.2 Correlated component analysis
Here follows a brief explanation of CorrCA. For a more thorough review of CorrCA
and its extensions I recommend Parra (2018) or Parra et al. (2018).

CorrCA was introduced in Dmochowski et al. (2012) in order to transfer the concept
of ISC in fMRI data to EEG analysis. Figure 2.1 attempts to illustrate the concept
of the method, where the goal is to find a common spatial filter that transforms the
multi-dimensional EEG into a single component, in a way such that the components
from the EEG of each subject are maximally correlated.
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Figure 2.1: Conceptual illustration of using CorrCA for estimating inter-subject correlation. Two
subjects see the same film, in this case a short film by Alfred Hitchcock, while they have EEG
recorded (X1 and X2). The EEG is usually synchronised offline, but could also be recorded
from subjects watching the film together. CorrCA then finds a spatial filter, w, in order to
maximise the correlation between the resulting components, y1 and y2. The ISC is calculated
as the average correlation between all subject pairs. Here the ISC is calculated for 5-second
windows of EEG with a 80 % overlap to ensure a temporal resolution of one second to obtain
an ISC time curve as shown at the bottom. The red dot on the ISC curve signifies the timing of
the scene shown on the screens as well as the five seconds of EEG shown for each subject.

CorrCA is derived as a special case of canonical correlation analysis (CCA, Hotelling,
1936), so we will start by looking at how this method works, and then how CorrCA
differentiates itself from it. CCA is conceptually related to principal component
analysis, using eigenvalue decompositions of covariance matrices. CCA is usually used
to model correlated sources in two different modalities, and therefore estimates spatial
filters, w1 and w2, for the input dimensions of each dataset.
If we denote the EEG from subject 1 and 2 as X1 and X2 the CCA components are
defined as y1 = Xᵀ

1w1 and y2 = Xᵀ
2w2. These filters are found such that they maximise

the correlation between the components:

ρ = arg max
w1,w2

yᵀ
1y2

‖y1‖‖y2‖
. (2.1)

Introducing the sample covariance matrix, Rij = 1
N XiXᵀ

j , (2.1) can be expressed as:

ρ = arg max
w1,w2

wᵀ
1R12w2√

wᵀ
1R11w1

√
wᵀ

2R22w2
, (2.2)

that can be solved with two eigenvalue decompositions (Hardoon et al., 2004). CCA
finds multiple components (dependent on the input dimension of X1 and X2), and
constrains the estimation of the weights with the condition that the components are
mutually uncorrelated (Klami, 2013).
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The concept of CorrCA can be seen as a simplification of CCA, by only having
one shared spatial filter, w. This assumption makes the method unusable for many
applications of CCA, where different types of datasets are compared. However, it
works when comparing EEG datasets where the electrodes are in general assumed to
be in similar positions.
Restricting the model to a common spatial filter has two benefits. It means that there
are more degrees of freedom to estimate the filters and it actually makes it easier to
calculate ISC for more than two subjects simultaneously. For CorrCA the equation
corresponding to (2.2) is changed to:

ρ = arg max
w

wT R12w√
wT R11w

√
wT R22w

, (2.3)

that can now be solved with a single eigenvalue decomposition:

(R11 + R22)−1 (R12 + R21) w = 2 · σ12

σ11
w , (2.4)

where σij = wT Rijw.
CorrCA is a relatively simple model machine learning-wise. In Kamronn et al. (2015)1,
we sought to make a more advanced model, Bayesian CorrCA (BCorrCA), that
combined the attributes of both CorrCA and CCA. Like CCA, BCorrCA estimates a
spatial filter for each dataset, but also estimates a common filter like in CorrCA. The
model was created with the rationale that, though the electrode positions and general
cortical structure can be assumed similar between subjects, there might be smaller
differences, e.g. due to the fitting of the EEG cap or slight differences in cortical
dipole positions. Using Bayesian inference BCorrCA seeks to estimate how similar
each subject-filter is to the shared filter and, unlike standard CCA, allows for analysis
of more than two datasets at a time. Also, being a Bayesian model enables BCorrCA
to estimate the forward model directly, unlike CCA and CorrCa that estimates the
backward model (see Haufe et al., 2014, for a discussion on the difference between
forward and backward models).
For the analysis in Poulsen et al. (2017) we decided to use the original version of
CorrCA, since its simplicity keeps the computational cost low, and for comparability
with the results of the original study. The low computational cost is a factor that will
be relevant for future real-time experiments.

2.3 EEG in the classroom
In our article we wanted to investigate whether it was possible to reproduce the results
of Dmochowski et al. (2012), but using wireless low-cost equipment in a classroom
environment. Additionally, we wanted to investigate the feasibility of simultaneously
recording EEG from multiple subjects, making it possible to create a shared experience.

1This work was performed during our master thesis and finished prior to this PhD.
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Figure 2.2: In the joint viewings nine subjects viewed films together, while we recorded EEG
from each of them simultaneously. (Left): The nine subjects where placed in a line to induce a
cinema-like experiences. (Right): The joint viewing subjects watched the films projected onto
a screen. The picture shows the tablets, that recorded the EEG, resting on tables behind the
subjects. Each subject had a designated tablet that the EEG was transmitted wirelessly to from
their cap. Figure from A.

2.3.1 Bringing EEG out of the laboratory
In our study we played two film clips and a control video for the subjects. As in the
original study we used Bang! You’re dead, and we added a clip from the film Sophie’s
Choice.
We had four groups of subjects that watched the films under three different conditions.
One group (N = 12) watched the films individually in an university office on a tablet
with a 7" (17.8 cm) screen using earphones. The second group (N = 12) was recorded
in the same environment as the first group, but with a different version of the films. In
this version the scenes were scrambled in time, to induce a loss of narrative. The final
two groups watched the films together in groups of nine on a screen in a classroom
(see figure 2.2), with sound projected through loudspeakers.
Instead of research-grade EEG equipment, like the 64 channel Biosemi system used in
the original study, we employed the Smartphone Brain Scanner (SBS) system. The
SBS is a modified 14 channel system, based on the Emotiv EPOC headset. In this
study the SBS was implemented on 2013 versions of the Asus Nexus 7 tablets.
Though the price of using a low-cost, portable system outside an electrically shielded
room is a loss in signal quality and lower temporal resolution2, the quality of the SBS
had already been proved sufficient for basic neuro-feedback paradigms (Stopczynski
et al., 2014a,b). In our study we sought to test whether the signal-quality was also
usable for more complex cognitive paradigms.
One of the issues we encountered with the SBS, was ensuring synchronisation of the
EEG with the stimuli. Since CorrCA correlates raw EEG without any temporal
smoothing, even a difference of a couple of samples in the synchronisation between
EEG datasets can have detrimental effects on the ISC. Among the 42 EEG datasets we

2The SBS system was based on the first generation of Emotiv EPOCs that had a sampling
frequency of 128 Hz.
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recorded, nine datasets had to be excluded due to instability of the wireless connection
that made it impossible to synchronise the data across subjects. To avoid imbalance
in the analyses due to unequal number of subjects in each group, we excluded five
additional subjects (selected at random), ultimately ending up with seven subjects for
each group with synchronisable EEG.
Another issue compared to the original study was that the SBS does not include an
electrooculogram (EOG), which the original study used to regress out eye related
artefacts. This, however, was not a significant drawback, as independent component
analysis (ICA) is effective for removing eye related artefacts. The EOG electrodes
might even be considered obtrusive and could break immersion in paradigms situated
in the everyday scenarios. To remove eye related components in a semi-supervised
manner we employed the Corrmap plug-in for EEGLAB, removing up to 3 of the 14
available independent components (Delorme and Makeig, 2004; Viola et al., 2009).
In our analysis we could reproduce a drop in ISC from the original to the scrambled
version of the films, as well as a lower ISC for an uneventful baseline video of people
descending an escalator. This showed that the the lower grade equipment was able
to get similar results as those obtained in Dmochowski et al. (2012). However, more
interestingly we tried to correlate the ISC curves we obtained with the ones from
the original study, resulting in very significant correlations (between 0.51 to 0.61,
depending on viewing group).
We interpreted these results as proving that neuroscientific methods can be moved
into the classroom.

2.3.2 Investigating the neural origin of ISC in EEG
We were curious as to how a film could elicit neural responses that were so similar
that the resulting ISC curves could be reproduced by lower grade equipment, in a
less controlled setting, and by an independent research group on another continent.
The previous studies indicated that there was a relation between ISC and attention or
engagement, but the physiological link between the two was not clear to us.
There are many types of stimuli when watching a film, such as the visual, auditory
or semantic content. One of the things we wanted to investigate was the relation to
something as basic as the variations in the brightness of the film. One of the things
we investigated was the frame-to-frame difference in pixel intensity of the videos. We
averaged over all the pixels of a frame to obtain the univariate feature, which can be
seen in figure 2.3(a). We could immediately see two things. First, the large peaks
in the luminance feature, that corresponds to scene cuts, co-occured with increases
in ISC. Second, it was hard to compare the feature with ISC due to differences in
sampling frequency and the large changes in the luminance feature for frames during
a scene and the ones following a scene cut.
In order to make it easier to compare the ISC with the changes in luminance we
calculated the average luminance difference (ALD). The ALD is calculated by a
non-linear down-sampling of the frame-to-frame difference to the sampling frequency
of ISC (1 Hz) by selecting the maximum value for each 1-second interval in order to
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Figure 2.3: ALD compared with the average frame-to-frame luminance difference of Bang! You’re
Dead, and with the ISC from subjects viewing the same film. (a): Comparison between the
ALD and the average frame-to-frame luminance difference calculated from Bang! You’re Dead.
The ALD is calculated from the frame-to-frame difference in pixel intensity by sub-sampling
it (fs = 1 Hz) and smoothing it to match the 5 s window of ISC. Each large value of the
frame-to-frame difference corresponds to a change in camera position (or scene cut). (b): The
ISC of the first CorrCA component is temporally correlated with the changes to luminance of
the film, as measured by ALD. Figures from A.

emphasise the large differences during scene cuts. Additionally, the ISC was calculated
in 5-second windows (with 80 % overlap). In order to make the ALD relate to a similar
window size, the down-sampled frame-to-frame difference was smoothed temporally
by convolving it with a Gaussian kernel with a variance parameter of 2.5 s2. This
resulted in the ALD curve seen in figure 2.3.

Figure 2.3(b) shows that there is a very strong relationship between the luminance of
the film viewed by the subjects, as measured by ALD, and the ISC calculated from
their neural responses. On the surface this is a "good news/bad news" situation for the
ISC as an indicator of attention. The good news is that this shows a link between ISC
and a very well established electrophysiological phenomenon: The strength of visual
evoked potentials (VEPs) are related to the strength of the stimulus. The bad news is
that these are low-level responses, as opposed to a high-level process like attention.

Our interpretation of this result is that there is not a direct link between ISC and
attention, as ISC seems to be driven by low-level responses. However, our results
indicate that there is an indirect relationship. Subjects that were exposed to the same
visual stimuli by watching the scrambled scenes exhibited lower ISC, which can be
attributed to lower attention due to the loss of narrative. Using this reasoning the
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Figure 2.4: Relationship between the ISC and the changes in stimulus luminance for different
conditions. Each point indicates a time point in the film with corresponding ISC and ALD value
as seen for Bang! You’re Dead in figure 2.3(b). It is evident that time points where the film
excibited a higher degree of changes in luminance (high ALD) resulted in higher correlation
of brain activity across subjects (high ISC). The indicated "slope" is calculated from a least
squares fit with the lines passing through (0,0), and indicates the strength of ISC for a given
ALD value. For both films there is a significant drop in the slope (p < 0.01: block permutation
test with block size B = 25 s), from the original narrative (blue) compared to the scrambled
version (red). Note that brightness of the scenes in Sophie’s Choice is much lower than in Bang!
You’re dead, resulting in an ALD that is lower by almost a factor 10. Figure from A.

ISC can be seen as an indirect marker of attention, through a top-down modulation
of the VEPs.
Various cases of attentional modulation of neural activity are well-established in the
scientific literature. It has been shown that VEPs are modulated by spatial attention
(Johannes et al., 1995) and that feature-specific attention enhances steady-state VEPs
25 s (Müller et al., 2006). Also, attentional modulation is not limited to either VEPs
or EEG as the concept is prevalent in speech attention (Mesgarani and Chang, 2012;
Mirkovic et al., 2015), and for ISC from fMRI (Lahnakoski et al., 2014).

2.3.3 Engagement to audio-visual stimuli modulates ISC
To further investigate whether ISC is modulated by subject attention to the stimulus,
we looked to the "scrambled" condition. This condition was introduced in order to
demonstrate that the correlation of neural responses across subjects was not simply
the result of low-level stimulus features. The original and scrambled films exposed the
subjects to identical audio-visual stimuli, so if the ISC was purely reflecting low-level
responses to changes in luminance, the two conditions should elicit the same degree
of ISC. However, in the original study a significant decrease in ISC was seen for the
scrambled condition, presumably because the disrupted narrative coherence decreased
the engagement of the subjects. As mentioned, we were also able to reproduce this
effect in our experiments.
From figure 2.3(b) it is evident that peaks in ISC for Bang! You’re Dead coincides with
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the intervals containing many scene cuts. The relationship between scene cuts, ISC
and attention could, however, also be due to more complex interactions, as fast-paced
cutting is a well-known cinematographic tool used by Hitchcock to induce suspense
and thereby increase the attention of the viewer (Bordwell, 2002). This interaction is
supported by post-experiment questionnaires, where we asked subjects to describe
the scenes that made the biggest impact on them. We quantified their answers by
assigning each answer to one of eight general scene descriptions. The most frequently
mentioned scene occurs around 2:25, where there is a peak in the ISC, and which was
also confirmed by the suspense ratings presented in Naci et al. (2015).
In an effort to disentangle the attentional modulation of ISC, we looked at the linear
relationship between ISC and the luminance fluctuations as quantified by ALD. Figure
2.4 shows the ALD and ISC for each time point in the two film clips from Bang! You’re
Dead and Sophie’s Choice. For both films we could register a significant decrease in
the ISC/ALD linear relationship. This drop can be interpreted as an attenuation
(or lack of amplification) of VEPs due to lower subject attention to the films with
scrambled scenes and disrupted narrative.

2.4 Current status of ISC as a marker of attention
Our study did not feature an actual educational scenario, but focused on the feasibility
of reproducing the results of laboratory experiments in a classroom, and to record
EEG from many subjects simultaneously. The experiments were conducted in late
2013, and simultaneous or subsequent studies have brought the EEG and attentional
measures further into the classroom in educational paradigms.
Dikker et al. (2017) used consumer grade devices to record EEG from high school
students during an entire semester of biology classes and related neural synchronisation
to teaching styles and group interactions in the classroom. Another study introduced
attention-related tasks in lectures to relate frequency-based neural markers to readiness
and attention (Ko et al., 2017).
Lucas Parra’s group has also been very productive in exploring the capabilities of using
ISC in learning paradigms, and not just in a strict attentional context. For example
Cohen and Parra (2016) showed that the strength of ISC is predictive of memory
performance after 3 weeks, using ISC to track how in-synch a subject was with other
subjects at any given time, and applying it as a marker of attention. This has been
expanded to an online learning paradigm, where ISC correlated with performance in a
subsequent test, even when subjects were unaware that they were going to be tested
(Cohen et al., 2018).
To summarise, our study is one of several current studies which show that EEG can
be used in a classroom. That it is possible to record EEG of sufficient quality and that
ISC is a viable marker in tracking attention. One of the next questions is whether ISC
by itself contains enough information to be used in an educational context, or if there
is a possible gain from combining ISC with other EEG neural markers. Examples of
relevant neural markers are the EEG complexity, as discussed in chapter 4, and the
methods being developed for tracking attention to speech (e.g. Mesgarani and Chang,
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2012; Wong et al., 2018). Or perhaps we should even combine ISC from EEG with
other biological signals?
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CHAPTER3
Microstate analysis

This chapter describes how we created a user-friendly toolbox for microstate analysis
with an emphasis on transparency of the underlying methods. The chapter also covers
how we, during this process, sorted through the methods employed in the relatively
old field of microstate analysis, and the methodological guide that resulted from it
(Poulsen et al., 2018). This chapter does not contain any new analysis methods,
though the toolbox did end up featuring an unpublished variational model by Frans
Zdyb and an optimised iteration scheme for modified K-means. This chapter will
therefore not include discussions on the interpretations of microstate analysis. The
article is available to the reader in appendix B.
This work was conducted in collaboration with Andreas Pedroni and Nicolas Langer
of Zürich university.

3.1 An introductory guide to microstate analysis
We originally intended this to be a small project, with the goal of enabling users of
the EEGlab toolbox for Matlab (Delorme and Makeig, 2004) to run an experimental
clustering method and compare it with modified K-means (Pascual-Marqui et al.,
1995). However, it ended up being a collaboration across universities that resulted in
a much more extensive and versatile toolbox and in a guide spanning 30 pages.
One reason for the expansion of the project was that our ambitions grew from a
very synergistic collaboration. I came into the project with a general experience with
machine learning and EEG analysis, but a naïve approach to the field of microstate
analysis, which enabled me to wonder about standard practises that were otherwise
taken for granted. Andreas and Nicolas had both the experience and methodological
interest, so that we together could build a transparent toolbox that both catered
to experienced users of microstate analysis and had a solid foundation in machine
learning.
The second reason for the expansion of our accompanying guide, was a wish to make a
general introduction to researchers that are new to the field, and who have earlier been
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hesitant due to a lack of tools for running microstate analysis in Matlab, and also due
to the somewhat opaque methodology. Our guide has therefore ended up containing an
overview of the different components of microstate analysis: Clustering methods and
their settings; measures of fit to select the number of clusters; backfitting microstate
prototypes to EEG; temporal smoothing of microstate labels; and microstate statistics.

Finally, while going through the microstate literature, that stretches more than four
decades, I encountered several inconsistencies, such as unpublished changes to standard
methods, citations of the wrong articles or even the wrong methods. We used the
guide as a means to address some of these inconsistencies.

3.1.1 The concept of microstates
Microstate analysis is a way to represent EEG in a compact manner based on the
topography of each EEG sample. Microstate analysis was founded by Dietrich Lehmann
and colleagues (see e.g. Lehmann et al., 1987), by observing topographies that remained
stable for 80 - 120 ms before rapidly transitioning to a different topography. These
periods of quasi-stable EEG topography have been called functional microstates, with
each spatial configuration representing a microstate class. Microstates are suggested
to reflect global functional states in the brain, with their EEG topographies being
the product of different configurations of neuronal generators (Khanna et al., 2015;
Michel, 2009; Lehmann et al., 1998). Microstates have been found to be related to
resting state networks from simultaneously recorded fMRI (see e.g. Van De Ville et al.,
2010; Yuan et al., 2012; Britz et al., 2010).

3.1.2 Clustering methods in microstate analysis
The common concept of the different topographical clustering methods employed in
microstate analysis, is the division of recorded EEG samples into microstate clusters,
such that EEG samples within the same cluster have as similar topographies as
possible. A prototypical topographical map is then calculated for each cluster, based
on all the EEG samples assigned to it. It is then assumed that these prototypes then
represents the spatial distribution and neural processes of all EEG samples assigned
to them.

In our guide we review the three most common clustering methods used in microstate
analysis, namely K-means, modified K-means and (Topographic) Atomize and Agglom-
erate Hierarchical Clustering - (T)AAHC.

As mentioned earlier, I encountered inconsistencies or methodological issues, while
reviewing the literature. Two of the areas of confusion, which we address in our
manuscript, are covered in sections 3.1.3 and 3.1.4.

3.1.3 Selecting the number of microstates
In microstate analysis, and in clustering in general, there is a challenge of selecting the
"correct" number of clusters to explain the EEG. In microstate analysis, this is often
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addressed by testing a range of different numbers of clusters, and then measuring how
well the resulting prototypes explain the data by using measures of fit.
Among these measures of fit, the Krzanowski-Lai (KL) criterion is quite popular. It
was introduced to select the number of clusters based on their dispersion measures, W.
W is calculated as the sum of squares between all possible pairs of members belonging
to the same cluster, and is supposed to decrease monotonously with increasing numbers
of clusters. KL seeks to find the "elbow" in the W curve, that signifies that adding
another cluster will give a relatively low increase in fit.
However, microstate analysis is sometimes conducted using polarity-invariant methods1,
and we argue that for these methods theW, and thereby the KL criterion, is an ill choice
as a measure of fit. This can be explained using a simplified example, with a microstate
cluster that consists of a prototype, a, and two members, {x1, x2}. Assuming an ideal
situation where the members are equal to their prototype, x1 = a = x2, the dispersion
will then be:

W = ||x1 − x2||2 = ||a− a||2 = 0. (3.1)

For a polarity-invariant method an, in principle, equally ideal situation would allow
one of the members to have opposite polarity with respect to its prototype; x1 = −a.
However, for this case the dispersion does not reflect a good fit:

W = ||x1 − x2||2 = || − a− a||2 = 4||a||2. (3.2)

Contrary to standard practises in microstate analysis, I would therefore not recommend
using the KL criterion for selecting the number of clusters for polarity-invariant
methods. At least not using the standard dispersion measure. The dispersion measure
could easily be modified to be polarity-invariant, e.g. by multiplying cluster members
by the sign of their correlation with their prototype, which would make it suitable.
Another area, where the field of microstate analysis could benefit from an update, is
with respect to cross-validation. Even though one of the measures of fit is called the
cross-validation criterion, cross-validation, defined as dividing the data into a test and
training set, is not common in microstate analysis. Instead, in microstate analysis one
typically uses four common measures of fit to estimate how well the EEG samples fit
the microstates they are assigned to. This could also be called training errors, and the
question is whether the improvement of computational power and the current surge
in machine learning, means that we are ready to introduce cross-validation using test
errors to microstate analysis?

3.1.4 Confusion regarding the ( T )AAHC methods
AAHC is a modification of agglomerative hierarchical clustering (AHC) in the tradi-
tional sense, where the main difference is how clusters are removed and agglomerated.
Instead of merging the two most similar clusters, as in standard AHC (Rokach and
Maimon, 2005), AAHC finds the "worst" cluster, which it then disbands (atomises)

1Modified K-means, AAHC and TAAHC are all polarity-invariant methods.
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and assigns its members to the cluster prototypes they are individually most similar to.
AAHC decides which cluster is the worst by measuring its global explained variance
(GEV), which is one of the microstate-specific measures of fit mentioned in 3.1.3. The
GEV is calculated as;

GEVn = (Corr(xn, aln
) ·GFPn)2∑N

n′ GFP2
n′

, (3.3)

where GFPn is the global field power, which for each EEG sample is calculated as
the standard deviation across all electrodes. The GEV can be seen as the squared
correlation between an EEG sample and its microstate prototype weighted by that
EEG sample’s fraction of the squared GFP of all EEG samples:

GEVn = Corr(xn, aln
)2 · GFP2

n∑N
n′ GFP2

n′

. (3.4)

To calculate the GEV for a specific cluster, you sum the GEV of all of its members.
The higher the GEV the better the cluster.
All of this is quite nicely explained in Murray et al. (2008). However, subsequent
to the publication of that article, the TAAHC was introduced. From a conceptual
point of view, TAAHC only changes the measure of fit, that is used to find the "worst"
cluster, from GEV to the summed correlations between a cluster prototype and its
members;

CorrSum(k) =
N∑
n

Corr(ak, xn) =
N∑
n

|xn · ak|
||xn|| · ||ak||

, for ln = k, (3.5)

assuming average referenced EEG. This has only been described by the authors in the
help pages for the stand-alone program, Cartool, by Denis Brunet. To my knowledge
the first published explanation of the methodology behind TAAHC came in Khanna
et al. (2014).
An issue for the TAAHC method is that neither of these two sources mentions, that
by changing the measure of fit for the clusters, the TAAHC in principle becomes
stochastic, unlike the deterministic AAHC. The source of the stochasticity lies in the
initialisation of the agglomerative clustering methods, where each EEG sample has
their own cluster. Therefore, the correlation between the cluster prototype and its
single member will be exactly one for all clusters, and the first "worst" cluster would
have to be chosen at random.
The reason why the stochasticity is only in principle, is that Cartool features an
intermediate initialisation step, where all clusters start out with two members. The
EEG samples are paired based on their correlation, and using this extra step the
TAAHC becomes deterministic again. The issue, however, is that this step, to my
knowledge, has not been published anywhere. I only became aware of it, because Denis
Brunet was gratuitous with his time and explained it to us, when we contacted him
after we became aware of the inconsistency while working on the guide and toolbox.
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This, unfortunately, is not the only confusion surrounding the TAAHC method, as there
seem to be some confusion in the field over which articles to reference for the method:
Tibshirani and Walther (2005) is often referenced when the (T)AAHC methods are
used, even though this article actually does not explain how agglomerative hierar-
chical clustering works. Also the (T)AAHC methods are also sometimes erroneously
referenced to Pascual-Marqui et al. (1995), which pre-dates the methods and instead
introduces the modified K-means algorithm, that has an entirely different approach to
clustering. I also have a suspicion that some of the implementations of TAAHC, that
are kept local at the different laboratories are either missing the determinism-ensuring
initialisation step, or unknowingly use AAHC instead of TAAHC.
It is issues like these that motivated us to create an extensively documented toolbox
for Matlab, so the methodology is transparent in the sense that it is easy to check
the underlying code. It was also one of the reasons why our open-access guide to
microstate methodology achieved its current considerable length.

3.2 Open-source toolbox for microstate analysis
Our motivation for creating a toolbox was to add transparency to the methods
employed in the field of microstate analysis. With our guide we wanted to add clarity
of the theoretical aspect of the methodology, and with our toolbox we wanted to
ensure transparency in practical aspect of how the methodology was implemented.
We wanted to achieve this transparency by ensuring that the code of our toolbox is
open to scrutiny. Finally we wanted the toolbox to be an easy way to get started for
newcomers, as well as increase the customisability and ability to run batch processes
for advanced users of microstate analysis.
Though there are several programming languages, and accompanying neuroscientific
toolboxes, that could fulfil these requirements, we chose to use Matlab and make an
extension for the EEGlab toolbox. EEGlab has the benefit of being an established
platform for EEG analysis and has both a user-friendly graphical user interface
(GUI) as well as the ability to create scripts for batch processing of several datasets.
Additionally, the eegh function makes it easy to make the jump from using the GUI to
writing batch scripts, by printing the calls required to make the analysis just performed
with the GUI.
We have made an emphasis on thoroughly documenting the code of the toolbox, both
to make it easier to understand how the methods are implemented, and to be able to
customise the toolbox e.g. by adding new clustering methods.
The toolbox is able to run microstate analysis on both ERP and spontaneous (e.g.
resting state) EEG, using the following clustering algorithms:

• K-means.

• Modified K-means.

• Atomize and Agglomerate Hierarchical Clustering (AAHC).
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Figure 3.1: Illustrative figure of microstate segmentation for a 1,500 ms period of resting state
activity. The EEG is represented by its GFP and the colours denote the active microstates for
each time point. Prior to submitting the EEG to microstate analysis, the EEG was filtered with
a high-pass filter of 1 Hz and a low-pass filter of 30 Hz using the standard settings of FIR filter
of EEGLAB (v14.0.0). The figure is from B, and I refer to this article for more details regarding
the steps in the microstate analysis.

• Topographic Atomize and Agglomerate Hierarchical Clustering (TAAHC).

These four clustering methods are most commonly used in microstate analysis. Even
though the motivation for the guide and toolbox is not to add new methods to the
field, the toolbox did end up including two new additions to clustering microstates: An
unpublished variational model by Frans Zdyb and an optimisation of iteration scheme
in the modified K-means. In our preliminary experiments, the optimised modified
K-means offered similar or slightly better performance2 and a computational speed-up
by a factor between 4 and 5 depending on the dimensionality of the dataset.
In addition to containing functions to perform statistics on the acquired microstates,
the toolbox also contains the functionality to visualise EEG, as represented by its
estimated microstates. Figures 3.1 and 3.2 show the microstate prototypes, GFP, and
the most active microstates for each EEG sample.
Figure 3.1 shows an example of visualising spontaneous EEG, using the datasets of
the tutorial in B, which consisted of resting state EEG from 4 subjects. The EEG
originated from the data sharing paper by Langer et al. (2017).
An example of how to visualise and compare different conditions in an ERP analysis
can be seen in figure 3.2. The data stems from Wakeman and Henson (2015) and
consists of EEG from 16 subjects watching pictures of either famous faces or scrambled
faces. For this example, the EEG was represented using few microstates to focus on

2Measured using the scaled mean square error between the noise free signal and the reconstructed
signal, for simulated data. See B for more information.
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(b) Scrambled faces.

Figure 3.2: ERP analysis of EEG from subjects watching pictures of either famous faces or
spatially scrambled faces. Prior to submitting the EEG to microstate analysis, the EEG was
filtered with a high-pass filter of 0.5 Hz and a low-pass filter of 30 Hz using the standard settings
of FIR filter of EEGLAB (v14.0.0). The following microstate analysis steps were performed
using the microstate toolbox: A grand average ERP was calculated for each condition. The
ERPs from the two conditions were then concatenated and submitted to K-means using three
clusters, to estimate the prototypes visualised above the microstate segmentations. In order
to assign each EEG sample to a microstate, the prototypes where backfitted to each condition
individually and smoothed using the reject small segments method.

differences in the N170 peak, which is captured by microstate 2. It can be seen that
there is a clear difference in GFP amplitude between the two conditions around 170
ms, and that the prototype of this microstate can be seen to have a topography that
is similar to the condition contrast presented in Ashburner et al. (2014, chapter 42)
for 155 ms.
Both datasets were preprocessed using the Automagic3 tool for artefact correction
(with standard settings). See the figure captions for further information on the
preprocessing of the data.
In summary, we have contributed to the field of microstate analysis with an open
access guide and toolbox. We have created these with emphasis on transparency
and thoroughness in the methodology, and we hope they will help make it easier for
newcomers to get started in this field of EEG analysis.

3Available on its Github at: https://github.com/amirrezaw/automagic

https://github.com/amirrezaw/automagic
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CHAPTER4
EEG complexity as a neural marker

of cognitive processing

This chapter covers my work with EEG complexity. Unlike the other chapters, this
work spans more than one study. The chapter starts with an introduction to the
concept of calculating complexity of EEG and then covers my contribution to a study
on semantic processing during sleep (Andrillon et al., 2016). Finally, my work on using
EEG complexity to track user performance and difficulty in a helicopter simulator is
covered. This work has not yet been published, but a draft manuscript and conference
abstract describing our results has been added to the appendix. Because this study has
not yet been published, I will present these results in greater detail. The manuscripts
are available to the reader in appendices C, D and E.

4.1 EEG complexity

“You should call it entropy (...) nobody knows what entropy really is,
so in a debate you will always have the advantage.”

– John von Neumann (1903 - 1957)

Complexity, when used in neuroscience, can be both an exotic and abstruse concept.
The fact that Lempel Ziv complexity can also be used as an estimator of entropy
(see e.g. Jensen et al., 2010), does not make the concept less esoteric, as the quote
above also indicates. However, the underlying calculations in EEG complexity are in
principle quite straightforward, and I hope that this section can help demystify the
measure and give some intuition on how it works.
There is, however, a clear distinction between how a method works and what the
resulting measures mean for the underlying neurophysiology. Take for example
the Fourier transform, that is often employed for frequency analysis. A simplified
explanation of how the Fourier transform works, is that it seeks to explain a time series
as a sum of sinusoids with different frequencies. Thereby it is possible to estimate
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which frequencies dominate in this time series. It is much more difficult to give a
definite answer to what changes in the frequency spectrum of EEG means. There
exist many results from countless studies using frequency analysis for EEG but, to my
knowledge, there is no consensus for a unifying theory that explains what frequency
means with respect to the underlying neurophysiology. And this in spite of the fact
that frequency analysis of EEG is almost as old as EEG itself (Hari and Puce, 2017).
It is the same situation for EEG complexity. I can explain how the method works
and show how EEG complexity correlates with different mental states or levels of
conscious processing. But I am not able to say with certainty, what EEG complexity
means, as we lack both more results and a general consensus on this topic. However,
I will give my personal intuitions on the matter when summarising the results.

4.1.1 Compressing EEG
EEG is an intricate multi-dimensional measure, and there are many approaches to
analyse EEG or compare it with the stimuli that subjects are interacting with. In
order to be able to interpret EEG it is usually necessary to transform the EEG into a
more manageable measure, preferably a scalar value which e.g. can then be correlated
with a given stimulus or contrast of conditions.
One such measure is EEG complexity, which gives an estimate of how compressible
the EEG is. This compressibility can be related to entropy, or to the degree of
predictability of the EEG. In general, a lowering of predictability of EEG has been
attributed to higher states of awareness or conscious processing (see section 4.1.3).
To calculate the complexity, the Lempel-Ziv algorithm is used. Since this algorithm
performs better with coarse or binary data, the EEG needs to be transformed into a
binary string. There are different approaches to this, which will be covered in section
4.1.4, but first I will briefly explain the main steps.
Figure 4.3A illustrates the main steps of the pipeline to transform EEG into a binary
string used in the studies presented in this chapter: A short segment of the EEG is
selected and binarised based on a threshold calculated for each channel. This binary
matrix is then "stretched" into a string by concatenating the observations one-by-one.
Finally, the binary string is given to the Lempel-Ziv algorithm, which estimates the
complexity of the string.
In the following section I will give an introduction to the concept of calculating
complexity of EEG and how this method has been applied in neuroscience.

4.1.2 Lempel-Ziv complexity
The Lempel-Ziv algorithm can be used to calculate complexity of a signal by estimating
how much it can be compressed without loosing any information (Lempel and Ziv, 1976).
This is a well-known algorithm that is also used in known file lossless compression
programs such as WinZip.
The algorithms examines a time series for repeated patterns, and can be said to
estimate how predictable a time series is, based on past observations. It works by
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seeing how few sub-strings of data that can be used to explain the entire time series.
To do this it creates a "codebook" of all the sub-strings necessary, and the size of the
codebook is then defined as the complexity for the time series.
For the results presented in this chapter I have used the implementation employed in
Schartner et al. (2015)1. I denote complexity calculated from this implementation as
LZc.
The algorithm starts at the first element in the time series, making sub-strings of
the elements in the order they appear. Once a sub-string has been created, that
does not exist in the codebook, the sub-string is added to the codebook, and a new
sub-string is created starting at the element it had reached in the time series. In this
implementation, the algorithm keeps the previous element in memory, and includes it
when starting on a new entry for the codebook.
As an illustration of how the algorithm works, (4.1) shows how the codebook and
complexity for a short binary string:

string = 001111000011100001111001100011110. (4.1)
Codebook = { 0 | 00 | 01 | 11 | 111 | 10 | 000 | 001 | 1110 | 0000 | 011 |

11100 | 0110 | 0001 | 1111 }.
LZc(string) = length(Codebook) = 15.

To illustrate the difference in complexity between predictable and random strings,
imagine three strings with 1000 elements each:

s1 = 00000000000000000000 ...
s2 = 10101010101010101010 ...
s3 = 01111000010110011110 ...

Here, the constant string, s1, has an estimated complexity of: LZc(s1) = 45; s2, which
alternates between 1 and 0 has a complexity of LZc(s2) = 63; and the random s3 is
estimated to have a much higher complexity of LZc(s3) = 195. See Jing Hu et al.
(2006) for methodological review regarding complexity for strings of finite length.
One thing that is noticeable between the two examples is that the estimated complexity
is very dependent on the length of the string. To be able to compare different
lengths of strings, and ease interpretation, complexity is often sought normalised to
values between 0 (fully compressible, low degree of randomness) and 1 (minimally
compressible, high degree of randomness).
This normalisation can be done using Shannon entropy, which should make strictly
random sequences asymptotically equivalent to 1 for sequences of infinite length (see
e.g. Casali et al., 2013). However, in my experience this asymptotic behaviour requires

1The authors have shared their python code for the algorithm, which I have translated into a
Matlab script.
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more samples, than available in the short windows of EEG, which I use in my analyses.
I have therefore employed the normalisation scheme of Schartner et al. (2015) in which
the LZc is normalised by the complexity of the same string, where the elements have
been shuffled randomly.

4.1.3 Complexity applied in neuroscience
Recent research has shown that the complexity of EEG signals is correlated with the
levels of consciousness in comatose patients (Casali et al., 2013) as well as healthy
subjects under anaesthesia or during sleep (Schartner et al., 2015; Andrillon et al.,
2016; Schartner et al., 2017).
However, the Lempel-Ziv algorithm is more than four decades old, and many studies
have used it to calculate complexity of EEG signals earlier. Some of the findings
were that EEG complexity was influenced by anaesthesia or neurological diseases (see
e.g. Zhang et al., 2001; Abasolo et al., 2006; Li et al., 2008). However, these studies
calculated the complexity on individual electrodes, and therefore left out any spatial
information in the EEG.
By including the spatial information, Casali et al. (2013) could interpret the EEG
complexity in terms of loss of integration (reduced interaction among cortical areas)
and loss of differentiation (many interacting areas all react to the perturbation in a
stereotypic way). The authors also investigated the effect of transposing the binary
EEG matrix before calculating complexity and found a very strong correlation with the
complexity of the original matrices. They interpreted this correlation to demonstrate
that the complexity "is sensitive to both the spatial and temporal dimensions (...)".
In a study using intracranial EEG, the authors investigated the effect of including
spatial information by calculating LZsum, the sum of complexity of each individual
channel (Schartner et al., 2017). LZsum was in principle calculated on the same binary
matrix as LZc, but excluded the spatial information. They found that LZsum was
still able to contrast sleep stages, which is unsurprising as sleep stages in large part
are defined by their temporal waveforms (see e.g. Iber et al., 2007). However, they
also reported that the LZc was slightly better than the LZsum at separating sleep
stages, based on the same EEG. This indicates that it is beneficial to calculate EEG
complexity in a manner that includes spatial information.
To summarize, while there are not many methodological investigations into the spatial
component in EEG complexity, the few available studies indicate that there is a benefit
from calculating the complexity on EEG channels together.

4.1.4 Approaches to binarising EEG
There exist different experimental paradigms with respect to recording conditions and
what type of EEG is passed to the Lempel-Ziv algorithm. In Casali et al. (2013),
the authors use complexity in their perturbational complexity index (PCI). Briefly,
they stimulate subjects several times with transcranial magnetic stimulation (TMS),
averaging over the events to get an ERP. Using source modelling and non-parametric
statistics, they binarised the ERP matrix before calculating its complexity.
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Schartner et al. (2015) was inspired by this study, but diverged by calculating com-
plexity on spontaneous EEG in 10-second segments. They also used a more common
approach to binarise the EEG. For each segment, the mean of the EEG signal was
subtracted from each channel and linearly de-trended. The Hilbert transform was
then applied, and samples above the channel-average were set 1, and 0 otherwise.
There are obvious possible modifications to this binarisation-scheme, and their influence
on the resulting complexity is an interesting avenue of research, that I unfortunately
were unable to investigate due to time-constraints.
If LZc is to have a more widespread application in the field of neuroscience, more
methodological investigates of what LZc captures are needed. For example, how is
the complexity influenced by the sampling frequency or the choice of binarisation
threshold (or binarisation method in general)?
Some of these questions have already been investigated for complexity of single-
dimensional time series of biomedical origin (see e.g. Aboy et al., 2006; Jing Hu et al.,
2006), and King et al. (2013) showed how the sampling frequency determined the
frequency reflected by their weighted symbolic mutual information measure. However,
it has not been investigated how these questions are affected for complexity methods
including spatial information. For example, I hypothesise that there might exist a
trade-off between the number of electrodes to include, and the length of the temporal
window and the sampling frequency.
In the studies presented in this chapter, I have used a paradigm that is close to the
one presented in Schartner et al. (2015), with the important modification that we
investigated shorter segments of EEG. With a window length of 500 or 1,500 ms slid
50 or 100 ms per LZc sample, we were able to investigate the temporal changes in
complexity with respect to the experimental paradigms.
In both studies we pre-processed the EEG before binarisation. First, the raw EEG
was filtered using a 85 Hz lowpass and a 50 Hz bandstop FIR filter to ensure linear
phase and avoid phase distortion in the EEG. Finally, we used surface Laplacian, to
reduce the influence of volume conduction (BCILAB plug-in for EEGLAB, Delorme
and Makeig, 2004; Kothe and Makeig, 2013).

4.2 Complexity in sleep
Sleep is an interesting phenomenon. Even though researchers are continuously learning
more about how and why we sleep, there is still much we are unsure of. In this project
I was lucky enough to be part of a brilliant2 study tackling the question: Does
unresponsiveness to external stimuli during sleep mean that sleepers are isolated from
sensory input from their environment?
In order to examine how connected the sleeping brain is from its environment, Kouider
et al. (2014) devised a paradigm to study the ability of the sleeping brain to conduct
semantic processing.

2I was not part of the planning, nor execution of the experimental paradigm, so I can say this
without being smug.
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Figure 4.1: Illustration of experimental protocol. Subjects were instructed to classify words
through left or right hand responses according the semantic category of the word (animal
or object). Different lists of words were played depending on which stage of sleep they were
currently in. One list for NREM sleep (NREM2 and NREM3, blue), one for REM sleep (green),
and wake list (red) was played otherwise. Using lateralisation of motor-related brain activity
(EEG), it was possible to examine whether the subjects were able to process the semantics of
the words up to the level, where their cortical area, of the corresponding hand, was activated.
Figure from C.

In Andrillon et al. (2016) this study was expanded to a full night experiment, to how
the brain’s responsiveness to its environment changes through the different stages of
sleep. Specifically, the sleep was divided into rapid eye movement (REM), light and
deep non-REM (NREM) and wakefulness.
As my role in this study was limited to the complexity analysis of the recorded EEG,
I will focus on this aspect of the results, and in general keep this section brief. I refer
to the article for a full description of all the results.

4.2.1 Experimental setup
The basic concept of the experiment is visualised in figure 4.1. Different words were
played for the subject, who was instructed to make semantic decision task by indicating
the category of each word through a response with the right or left hand. The two
categories of words were objects and animals. This lasted for a full night of sleep,
while the subjects lay in bed and had their EEG recorded.
The subject was awake when the experiment started, and was encouraged to fall a
sleep during the experiment. The subject was also instructed to continue to make a
button-response if they woke during the night.
While this sounds simple, the execution was not so. To be sure that the responses
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Figure 4.2: LZc across sleep stages, with error bars indicating the SEM over subjects. a: Baseline
complexity varies with sleep stages. The baseline was calculated using prestimulus activity
(-1.5 to 0 s) averaged across trials. b: EEG complexity is modulated by stimulus presentation.
Evoked complexity was calculated by locking LZc to stimulus onset and expressed as a ratio of
the baseline level. Horizontal lines denote significant deflections using cluster permutation at a
pcluster < 0.05 level. Figure from C.

were due to semantic processing and not simply stimulus-response associations learned
while awake, three lists of words were used during the night. Words from each of the
three lists were only played during a specific sleep stage.
This meant that Thomas (the lead author of the article) had to monitor the EEG of
the sleeping subjects to conduct sleep-scoring in real-time, so he could switch between
the word lists being played.
Twenty-three subjects participated in the study ensuring many sleepless nights for
Thomas. Of these five participants were discarded from our analyses due to either
technical issues or because subjects experienced difficulties falling asleep.

4.2.2 Results
Semantic processing of the words played during sleep was examined using an EEG
marker of motor preparation, the lateralised readiness potential (LRP). The LRP is
calculated by contrasting EEG from the motor area of the hand assigned to the word
category with the EEG related to the other hand. I contributed to the study with an
additional analysis based on the EEG complexity. The main results from the LZc are
summarised in figure 4.2.
The LZc calculated from the baseline EEG prior to stimuli allowed to unambiguously
separate the different states of sleep (and vigilance). The statistical significance of the
separation was shown with a one-way ANOVA (p < 2 · 10−5), N = 18 subjects) and
paired t-tests between states (p < 0.005, uncorrected for multiple comparisons).



36 4 EEG complexity as a neural marker of cognitive processing

Furthermore, I calculated the evoked LZc by using short windows of 500 ms and
high overlap, giving a temporal resolution of 50 ms. From the resulting LZc time
curves, we could calculate the event-related complexity by averaging across trials
in the same manner as for ERPs. A cluster permutation test showed that stimuli
robustly modulated the complexity of the EEG with an initial decrease after stimulus
onset (pcluster < 0.05), except for REM sleep). This initial decrease was followed by an
increase in complexity in light NREM, deep NREM, and REM sleep (pcluster < 0.05).
By correlating the baseline LZc with the LRP magnitude, we could show that there
was a relationship between the EEG complexity prior to stimuli and the strength of
the motor-related response. Computed across the entire night, we found a significant
correlation for the wake, light NREM, and REM sleep trials (p < 0.005 for all).
However, for the REM stage the relationship was inverted compared to wake and light
NREM.

4.3 Tracking user performance and task difficulty in
a helicopter simulator

In this study we investigated whether LZc can be used in fully aware, healthy people
as an index of how focused they are on a given task.
Twenty subjects (hereof 10 were female) were recruited for an experiment, where
they had to use a helicopter simulator to navigate through courses with varying
difficulty with the goal of flying through circles. While the subjects interacted with
the simulator, we recorded their EEG in order to investigate whether their neural
activity reflected their performance of navigating the helicopter, as well as the varying
difficulty of the simulator.
Figure 4.3 illustrates the concepts of the experimental setup and complexity analysis
of the EEG.

4.3.1 Experimental setup
The experiment was constructed in the following way: A trial is defined as the time
spent until reaching a circle, with a block consisting of eight trials. The subjects
were instructed to take small breaks between the blocks when needed. The subject
navigated the helicopter in three different navigational modes, that alternated in a
fixed order. The three navigational modes were then repeated ten times as can be
seen in figure 4.3, summing to a total of 240 trials per subject. The order of blocks
and modes is illustrated on figure 4.3D.
The helicopter simulator was designed specifically for this experiment, and featured
three different and independent ways to vary the difficulty. Each difficulty had a hard
and an easy setting, giving eight possible combinations of the three types of difficulty.
Each block started with a "warm-up" trial and the remaining eight trials consisted
of all possible difficulty combinations in random order. The three types of difficulty
were: Angle difficulty determined the angle between the next circle and the one just
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Figure 4.3: Experimental setup and EEG complexity analysis pipeline. A: From EEG to LZc.
EEG is recorded from a subject interacting with the helicopter simulator (shown in B). In
windows of 1,500 ms, the EEG is binarised based on the envelope amplitude of each channel. The
binary matrix is "stretched" into a string observation-by-observation and given to the Lempel-Ziv
algorithm. By using a moving window (with steps of 100 ms) and averaging across trials, we
can compare the difference in complexity leading up to a successful or failed navigation. C: The
objective for the subject was to navigate a helicopter successfully through circles, where a trial
is defined as the time leading up to reaching a circle. In total, the subject had to navigate
the helicopter through 240 trials divided into blocks of eight trials. Each trial was affected by
three independent types of difficulty, each with an easy and a hard setting. Each block of trials
contained all eight difficulty combinations in a random order. Trial 4, in the illustrated block,
has a hard angle between the circles, the circle is large (easy) and there is turbulence from the
hard wind difficulty. D: In the helicopter simulator the subject had to control the helicopter in
three different navigational modes, where the control scheme differed. The modes were played
in a fixed order and repeated ten times. Figure from D.
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completed. A hard difficulty therefore forced the subject to take sharper turns with
the helicopter. Size difficulty determined the size of the circle the helicopter needed
to be navigated through, thus a hard difficulty required the subject to have a better
and smoother control over the helicopter. Wind difficulty decided whether or not
there would be turbulence, which made it harder to have a controlled navigation of
the helicopter. The difficulties are illustrated on figure 4.3C.

4.3.2 EEG acquisition and extra preprocessing
During the experiment, we recorded EEG from subjects using a 64 channel Biosemi
system with active electrodes at a sampling frequency of 256 Hz. All subsequent
preprocessing and analysis of the EEG was conducted digitally in Matlab.
As we intended to measure the information shared between brain areas, we opted not
to employ digital re-referencing to avoid inducing signals between distant electrodes.
Therefore, the only interactions between electrodes were with the CMS and DRL
electrodes, which are placed in the occipital-parietal area in the Biosemi system.
The subjects used a joystick to interact with the helicopter simulator, which meant that
this study contained a higher degree of movement than normally seen in experiments
where EEG is recorded. EEG can be sensitive to movement artefacts, which in our
experiment could create false positives for difficult trials, where the subject might
move their arm more or even unintentionally moving their entire body.
To ensure that movement artefacts didn’t influence the LZc, we implemented an
aggressive preprocessing using independent component analysis (ICA). Dipole-fitting
and automatic classification of the ICs, using plug-ins for the EEGLAB toolbox, was
used to help identify non-cortical sources and remove them from the EEG (Delorme
and Makeig, 2004; Oostenvelt et al., 2003; Frølich et al., 2015). This preprocessing step
was performed between the filtering and the surface Laplacian described in section
4.1.4.
For the analysis we decided to use a subset of eight electrodes from the occipital-
parietal area. This subset was selected based on tests from pilot experiments on an
early version of the helicopter simulator.

4.3.3 LZc increases during failed trials
With our experiment we wanted to investigate the capacity of EEG complexity to
reflect neural changes leading up to failures while navigating a helicopter. To this
end, we time-locked the LZc to when the helicopter reached a circle and averaged
across trials. On the subject level, we could see a clear difference in the LZc between
successful and failed trials, but we also identified a strong difference in subject-specific
offsets in the LZc.
For some subjects the lowest measured LZc was still higher than largest LZc from
other subjects. Such subject offsets in LZc have been reported in other complexity
studies (see e.g. Schartner et al., 2015), and appear unrelated to the experimental
conditions. The variation in offsets appeared more pronounced in our study, which
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Figure 4.4: (a): LZc time-locked to the time point when the helicopter reached a circle (defined
as t = 0 s) for the contrast between failed and successful trials. The LZc contrast was calculated
by subtracting the average of successful trials from the average of failed trials for each subject.
The contrast was then averaged across subjects, with shaded areas signifying SEM. Note that
the two groups of trials were not balanced with respect to the number of trials. The dashed
grey square indicates the temporal ROI used to average into single LZc values for each trial.
The ROI LZc has been averaged across subjects in (b). Error bars signify the standard error of
the subject mean. Figure from D.

might be an effect of the more aggressive preprocessing. We were unsuccessful in
removing subject-specific offsets through normalisation, without confounding our
experimental paradigm. We solved this by calculating condition contrasts within each
subject, which we then averaged across subjects.

For each subject we calculated the average LZc for failed trials and subtracted them
by the average LZc from successful trials, resulting in the graph shown in figure 4.4(a).
From this contrast it can be seen that the EEG on average is more complex in trials
where the subject is about to fail a navigation compared to successful trials. It can
also be seen that there is a continued contrast after the circle has been reached. This
is likely driven by the 1,500 ms width of the window used to calculate the LZc, which
ends in the time point it is designated to. E.g. the LZc designated to t = 1,000 ms is
calculated from the EEG between -500 ms to 1,000 ms relative to reaching a circle.

To test the significance of this contrast we selected a temporal region of interest
(ROI) from -2,000 ms to 1,000 ms. For each trial we averaged the LZc in this ROI,
excluding LZc samples influenced by an ERP generated immediately after the cirle in
the previous trial. We then calculated the subject-averages for the two trial subsets.
A paired t-test showed that the LZc in the ROI was significantly higher in failed trails
than in successful trials (p = 0.001).
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Figure 4.5: (a): LZc time-locked to the time point when the helicopter reached a circle (defined as
t = 0 s) for three contrast between difficult and easier trials. The LZc contrasts were calculated
by subtracting the average of easy trials from the average of hard trials for each subject. The
contrasts were then averaged across subjects, with shaded areas signify SEM. The Angle, Size,
and Wind contrasts were calculated using the hard and easy difficulty and the members of the
two groups are therefore balanced. The dashed grey square indicates the temporal ROI used to
average into single LZc values for each trial, which have been averaged across subjects in (b).
Error bars signify the standard error of the subject mean. Figure from D.

4.3.4 LZc is sensitive to increased difficulty
In a real-world scenario, a flight-simulator would in most cases not need neural
measures to register, when a navigational failure was made. As in the helicopter-
simulator created for this experiment, failures could simply be detected, when the
subject failed to complete a task, such as flying through a circle. However, it is much
harder for a simulator to register, when the user is struggling with navigating the
helicopter without failing. To investigate this, we looked at how the LZc varied with
the changes in the three types of difficulty.
In order to examine if changes in LZc was related to the various possible changes in
difficulty, we conducted a repeated measures ANOVA with the LZc in the temporal
ROI as the response variable and a within-subject design. The ANOVA showed that
the subjects, the Size difficulty, and the navigational mode had significant effect on the
LZc variation (psubject < 0.001, psize < 0.001, pmode = 0.0191), whereas the Angle and
Wind difficulties had low or no effect on the variation in LZc (pangle = 0.077, pwind =
0.977).
Figure 4.5 shows the contrasts between the trials with a hard and an easy setting,
calculated in a manner similar to the failure contrast. For example, for the Angle
difficulty we subtracted the average LZc across all trials with an easy angle from
the average of trials with a hard angle. Paired t-tests supports the conclusion of the
ANOVA with similar p-values (pangle = 0.077, psize < 0.001, pwind = 0.977).
The temporal waveform of the failure contrast curve on figure 4.4(a) appear similar to
the Size contrast in figure 4.5(a). This had us asking the question, whether the Size
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contrast was simply a product of subjects failing the hard trials? To probe this, we
divided the trials into two subsets. One subset for all the failed trials, and one for the
successful trials. We then calculated the Size difficulty contrast for each subset.

We found that for the subset only containing trials with successful navigations,
the LZc was still significantly higher when the Size difficulty contrast was hard
(psize,success < 0.001). This is evidence that LZc not only reflects externally measurable
events such as navigational failures, but also reflects more endogenous processes, such
as a user successfully completing a task, but struggles with it.

A change in LZc over time, could reflect a learning process taking place, as subjects
got more comfortable with the helicopter simulator. We therefore included time,
represented by the block number, as a predictive variable in the repeated measures
ANOVA. This showed time to have a significant effect on LZc (p < 0.001), as well as
having a significant interaction with the navigational mode (p = 0.002). We therefore
investigated the difference of LZc in the temporal ROI between the first and the last
block for each navigational mode, looking only at successful trials.

We found a drop in complexity between the first and last block for all three navigational
modes. The contrast was strongest for the Horizontal mode, and it was also the only
mode to have a significant drop in complexity as measured be a paired t-test (p = 0.003).
This result corroborated post-experiment questionnaires, where the Horizontal mode
was reported by subjects to be the easiest navigational mode. Additionally, the
subjects reported that the Horizontal mode was the mode they learned first, using
self-scored learning curves.

4.4 Summary of complexity studies
For better or for worse I am an engineer and not a philosopher. I therefore have
a rather pragmatic approach to the interpretation of the results presented in this
chapter.

4.4.1 EEG complexity as a neural marker
We have shown that LZc correlates with changing stages of sleep, and the ability
to process external information during sleep. Furthermore, we found the the EEG
complexity prior to a stimulus was significantly correlated to the strength of an
ERP marker for motor responses for all sleep stages, but the deep NREM stage. In
REM sleep, there was a reversal of correlation between complexity and motor indices,
which was interpreted to indicate "drastically different gating mechanisms across sleep
stages".

While subjects interacted with our helicopter simulator, LZc was able to distinguish
between successful trials and moments leading to failure consistently across subjects.
Furthermore, in successful trials LZc was able to contrast the trials based on the
difficulty of the task. This suggests that LZc is sensitive to moments where the subject
is struggling, perhaps due to a higher mental workload.



42 4 EEG complexity as a neural marker of cognitive processing

Combined the results support studies reporting EEG complexity’s capability at
indexing states of consciousness. Additionally our results show the promises of using
complexity as an implicit marker of performance.

4.4.2 What does EEG complexity reflect?
In Koch et al. (2016), the authors have a model for the relationship between complexity
and consciousness. In this model high complexity is related to high degrees of causal
cortical integration and/or high spatial differentiation.
However, the model is based on their PCI variant of complexity, where the main source
of information is externally and artificially introduced through TMS. Furthermore,
the PCI is calculated by averaging over several TMS events, thereby averaging
out endogenous processing. Therefore, the PCI mainly looks at how the induced
information is integrated throughout the brain.
The ratio between the TMS and other signals (both observation noise and endogenous
neural processing) is very high, essentially meaning that there is no activity in areas
that does not react to the TMS pulse. So a decrease in integration means that a
larger area of cortex shows no activity. This causes the averaged EEG to be more
compressible and the complexity to decrease.
This model is therefore not easy to extend to complexity calculated from EEG without
TMS stimulation. One reason is that the model does not take into account that in
states of high awareness it is likely that multiple sources of activity contribute to the
EEG.
I propose that complexity reflects something else for spontaneous EEG. In a state
of high neural activity, where multiple sources contribute to the EEG, a high degree
of integration could decrease the complexity. With many active sources of activity,
an increase in integration across the brain could mean that a single, or few, sources
dominated the recorded EEG. This would make the topographical information more
compressible and lead to a decrease in complexity.
This view is supported by data from both studies presented in this chapter. By
using short time windows with a high overlap, we ensured a high temporal resolution
that enabled us to study evoked complexity. Figure 4.2b shows a large drop in LZc
immediately after a sound has been played, eliciting an ERP due to information being
propagated through the brain.
For the subjects using the helicopter simulator a similar ERP-like drop in LZc could
be seen. For some individual subjects a sudden decrease in LZc occurred immediately
after navigating through a circle (see figure S1 in D).
This model for spontaneous complexity could collaborate well with the global neuronal
workspace (GNW) model (Dehaene and Changeux, 2011). The GNW model describes
that when we have a conscious experience of a stimulus, the related information is
broadly shared and broadcasted throughout the cortex. Conscious perception would
cause a single information stream to dominate the EEG by being integrated through
the cortex. This would hypothetically cause a larger decrease in complexity, compared
to the lower integration of subliminal perception.
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Thereby EEG complexity can be seen as a measure of cognitive integration, with a
possible link to theories of consciousness.
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EEG in the classroom: Synchronised 
neural recordings during video 
presentation
Andreas Trier Poulsen1,*, Simon Kamronn1,*, Jacek Dmochowski2,3, Lucas C. Parra3 &  
Lars Kai Hansen1

We performed simultaneous recordings of electroencephalography (EEG) from multiple students in 
a classroom, and measured the inter-subject correlation (ISC) of activity evoked by a common video 
stimulus. The neural reliability, as quantified by ISC, has been linked to engagement and attentional 
modulation in earlier studies that used high-grade equipment in laboratory settings. Here we reproduce 
many of the results from these studies using portable low-cost equipment, focusing on the robustness 
of using ISC for subjects experiencing naturalistic stimuli. The present data shows that stimulus-
evoked neural responses, known to be modulated by attention, can be tracked for groups of students 
with synchronized EEG acquisition. This is a step towards real-time inference of engagement in the 
classroom.

Engagement and attention are important in situations of learning, but most methods for measuring of attention 
or engagement are intrusive and unrealistic in everyday situations1–3. Recently, inter-subject correlation (ISC) of 
electroencephalography (EEG) has been proposed as a marker of attentional engagement4–6 and we ask in this 
work whether it can be recorded robustly with commercial-grade wireless EEG devices in a classroom setting. 
Furthermore, we address two other issues related to the robustness of the signal: The potential neurophysiological 
origin of the measure and the robustness of the detection scheme to inter-subject variability in spatial alignment.

User engagement has been defined as ‘…  the emotional, cognitive and behavioural connection that exists, 
at any point in time and possibly over time, between a user and a resource’7. Traditional approaches to measur-
ing engagement are based on capturing user behaviour via user interfaces, self-report, or manual annotation8. 
However, tools from cognitive neuroscience are increasingly being employed9. Recent efforts in neuroscience 
aim to elucidate perceptual and cognitive processes in a more realistic setting and using naturalistic stimuli4,10–14. 
From an educational perspective such quantitative measures may help identify mechanisms that make learning 
more efficient9, align services better with students needs7, or monitor critical task performance15. The poten-
tial uses of engagement detection in the classroom are numerous, e.g., real-time and summary feedback for the 
teacher, motivational strategies for increased student engagement, and screening for impact of teaching materials. 
Before the findings of tracking attentional responses with neural activity4–6 can be employed in a real-time class-
room scenario, several issues must be addressed first, including: (1) Is it possible to reproduce the ISCs to natural-
istic stimuli under the adverse conditions of a classroom? (2) Are the ISCs robust to inter-student variability of the 
spatial information processing networks? And (3) can ISCs be recorded with equipment that is both comfortable 
and affordable enough to make it a realistic technology for schools?

Here we investigate the feasibility of recording such neural responses from students who are viewing videos. 
We use an approach developed by Dmochowski et al.4 that uses inter-subject correlation (ISC) of EEG evoked 
responses. The basic premise is that subjects who are engaged with the content exhibit reliable neural responses 
that are correlated across subjects and repetitions within the same subject. In contrast, a lack of engagement  
manifests in generally unreliable neural responses6. ISC of neural activity while watching films have been shown 
to predict the popularity and viewership of TV-series and commercials5, and shows clinical promises as a measure  
of consciousness levels in non-responsive patients16 (fMRI study). We argue here that the neural reliability of 
students indeed may be quantified on a second-by-second basis in groups and in a classroom setting, and we seek 
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to investigate the robustness of measuring it with electroencephalography (EEG) responses during exposure to 
media stimuli.

To enable correlations between multi-dimensional EEG, correlated component analysis (CorrCA) was intro-
duced4. CorrCA finds multiple spatial projections that are shared amongst subjects, such that their components 
are maximally correlated across time. Here we are interested in the reproducibility of using CorrCA as a measure 
of inter-subject correlation, and will focus predominantly on the first component, which captures most of the 
neural responses shared across students.

The main goal of the present work is to determine whether student neural reliability can be quantified in a 
real-time manner based on recordings of brain activity in a classroom setting using a low-cost, portable EEG sys-
tem – the Smartphone Brain Scanner17. With regard to the robustness of the detection scheme, we report on both 
theoretical and experimental investigations. First, we show that ISC evoked by rich naturalistic stimuli is robust 
enough to be reproduced with commercial-grade equipment, and to be recorded simultaneously from multiple 
subjects in a classroom setting. This opens up for the possibility of real-time estimation of student attentional 
engagement. Secondly, we show mathematically that the CorrCA algorithm is surprisingly robust to variations 
in the spatial patterns of brain activity across subjects. Finally, we demonstrate that the level of ISC is related to a 
very basic visual response that is modulated by narrative coherence of the video stimulus.

Results
To monitor neural reliability we used video stimuli as they provide a balance between realism and reproducibility11.  
We recorded EEG activity using the Smartphone Brain Scanner while subjects watched short video clips of 
approximately 6 minutes duration, either individually or in a group setting (Fig. 1). To measure reliability of EEG 
responses, we used correlated components analysis (CorrCA, see Methods) to extract maximally correlated time 
series with shared spatial projection across repeated views within the same subject (inter-viewing correlation, 
IVC), or between subjects (inter-subject correlation, ISC).

One of our main points of interest is to investigate the robustness of ISC from EEG recorded in a classroom 
through comparisons with results previously measured in a laboratory setting4. We therefore employed similar 
methods of analysis and calculated ISCs and IVCs in 5 second windows with 80% overlap to investigate their 
temporal development in a 1-second resolution. We chose to analyse the EEG with CorrCA in a broad frequency 
band (0.5 and 45 Hz), instead of investigating specific frequency bands, to keep the analysis methods comparable 
with the prior lab-based study. Moreover, CorrCA is a method used for robustly measuring ISC with low compu-
tational costs; hence making it a good candidate for long term real-time analyses on small devices in a classroom 
setting.

The subjects watched three video clips, which were presented twice in random order. The first video was a 
suspenseful excerpt from the short film, Bang! You’re Dead, directed by Alfred Hitchcock. It was selected because 
it is known to effectively synchronize brain responses across viewers4,18. The second video was an excerpt from 
Sophie’s Choice, directed by Alan J. Pakula (1982), and the third was an uneventful baseline video of people 
silently descending an escalator. For both the joint and individual recording scenarios, the time course of the 
ISC, based on the first CorrCA component from subjects watching the film, closely reproduces results obtained 
previously in a laboratory setting (Fig. 2a and Table 1).

An indication of the stability of the technique is provided by the spatial patterns of the neural activity that 
drives these reproducible responses. Similar to other component extraction techniques, such as independent 
component analysis or common spatial patterns19,20, CorrCA reduces the signal of multiple electrodes to a few 
components. The ISC is then computed for the first few components, which capture most of the correlation 
between recordings. The strongest three correlated components show a stable pattern of activity across the dif-
ferent groups and recording conditions (Fig. 2b), all three obtaining significant spatial correlations between 
groups (rcomp1 =  0.97, rcomp2 =  0.91, rcomp3 =  0.79, all with p <  0.002 for uncorrected permutation test), for Bang! 
You’re Dead. The robustness to recording conditions is also apparent for the second film clip from Sophie’s Choice 
(rcomp1 =  0.51, p <  0.002; rcomp2 =  0.48, p =  0.008; rcomp3 =  0.36, p =  0.033), albeit with a lower average correlation, 
which for the first two components may be due to noisy scalp maps for the Joint 1 group and Individual group, 

Figure 1. Experimental setup for joint viewings. (Left) 9 subjects where placed on a line to induce a cinema-
like experiences. (Right) Subjects seen from the back, watching films projected onto a screen. Tablets recording 
EEG are resting on the tables behind the subjects. The signal is transmitted wirelessly from each subject.
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respectively (see Supplementary Fig. S1). For the baseline video, only the first component achieved significant 
average correlation between groups (rcomp1 =  0.46, p =  0.014). The lower stability in the scalp maps obtained for 
Sophie’s Choice and the baseline video could be explained by the lower ALD of these stimuli (see below), since 
these films obtain lower average IVC compared to Bang! You’re Dead for all groups (Fig. 3).

Previous research has indicated the potentials of ISC as a marker of engagement of conscious processing4,5,6,12,16.  
To further investigate this, we asked subjects post-experiment to describe the film segments (or “scenes”) that 
made the biggest impact on them. We quantified their answers by assigning each answer to one of eight general 
scene descriptions. Table 2 shows that the scenes most frequently mentioned are “Boy pointing gun at mother” 
or “Boy pointing gun at people”, and 29 out of 30 subjects mentioned one or both of the scenes as having had 
high impact on them. The most frequently mentioned scene occurs around 2:25, where a peak in the ISC can be 
seen (Fig. 2a). The high impact of this particular scene was confirmed by the suspense ratings presented in Naci  
et al.16. See Dmochowski et al.4 for additional descriptions and examples of scenes eliciting high ISC in Bang! 
You’re Dead.

To determine if the portable equipment, which uses only 14 channels, can detect varying levels of neural reli-
ability, a second group of subjects watched the same two film clips individually, but now with scenes scrambled 
in time. This intervention is a widely used tool to create a baseline with similar low-level stimuli, yet reduced 
engagement4,18,21,22. See Methods for more information on the definition and time scales of the scrambled scenes. 
Despite using consumer-grade EEG we find that IVC is significantly above chance for a large fraction of the 
original engaging clip, but drops dramatically when the scenes are scrambled in time (mean IVC, Fig. 3, p <  0.01, 
for Bang! You’re Dead). Also the baseline video, which subjects reported not to engage them at all, only obtained 
significant ISC (p <  0.01, uncorrected) in 2.3% of the 354 tested time windows, compared to the 54.1% significant 
windows obtained for Bang! You’re Dead.

For experiments conducted in less controlled, everyday settings as in this study, it is important to assess 
across-session reproducibility. To test this, we recorded a second group of subjects in a classroom setting who 
watched the material together (Joint 1 and 2). These two groups obtained mean IVCs comparable to the individ-
ual recordings (Fig. 3, Bang! You’re Dead: p >  0.49, Sophie’s Choice: p >  0.26), and also showed reproducibility 
between the groups of simultaneous recordings (Fig. 3, Bang! You’re Dead: p >  0.49, Sophie’s Choice: p >  0.08).

Figure 2. ISC of neural responses to naturalistic stimuli are robust across different groups of subjects and 
reproducible in a classroom setting. (a) Comparison between the ISC obtained by Dmochowski et al.4 and the 
present study for the first CorrCA component and the first viewing of Bang! You’re Dead. The ISC is calculated 
with a 1-second resolution (5 s windows, 80% overlap). The grey area indicates chance levels for ISC (p >  0.01 
estimated with time-shuffled surrogate data, uncorrected for multiple comparisons). (b) The corresponding 
scalp projections of the first three components obtained from the correlated component analysis (CorrCA) 
of each of the four subject groups watching Bang! You’re Dead the first time. For each component, CorrCA 
finds one shared set of weights for all subjects in the group. Four distinct groups of subjects watched videos in 
different scenarios: individually on a tablet computer (Individual), individually with order of scenes scrambled 
in time (Scrambled), and jointly in a classroom as seen in Fig. 1 (Joint 1 and Joint 2). For each projection, the 
polarity was normalized so the value at the Cz electrode is positive.

ISC v1 ISC v2 IVC

Individual 0.64** 0.33** 0.49**

Joint group 1 0.51** 0.15** 0.44**

Joint group 2 0.61** 0.28** 0.54**

Table 1.  Correlation coefficients between the ISC time courses obtained in a laboratory setting4 and 
those obtained in the present study (groups Individual, Joint 1 and Joint 2). Inter-subject correlation (ISC) 
measures similarity of responses between subjects for the first and second viewings (v1, v2), and the inter-
viewing correlation (IVC) measures similarity within-subject between the two views. Coefficients are calculated 
for the first CorrCA component recorded while watching Bang! You’re dead. **p <  0.01.
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Robustness to inter-subject variations in the spatial brain structure is a basic question when applying CorrCA 
to classroom data. CorrCA is derived under the assumption that the spatial networks of subjects are identical. 
This assumption could be challenged by inter-individual differences, however, it turns out to be surprisingly 
robust to such variability23. To demonstrate this, we briefly analyse a ‘worst case’ scenario in which the true mix-
ing weights of two subjects form a pair of orthogonal vectors. The observations are assumed to consist of a single 
true signal, z, mixed into D dimensions with additive Gaussian noise; X1 =  a1z⊤ +  ε, X2 =  a2z⊤ +  ε. Given a large 
sample, the covariance matrices are given as  σ= ⋅ +PR a a I11 1 1

2 , = ⋅PR a a12 1 2
, where P is the variance of z 

and σ2 signifies the noise variance. For simplicity the weight vectors are assumed to be unit length. The two matri-
ces in Eq. (3) can then be written as
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Figure 3. Distribution and mean of IVC calculated from the first CorrCA component for subject groups 
and films. Violin plots show distributions of IVC estimated using a squared exponential (normal) kernel with 
bandwidth of 0.00541. Horizontal black bars denote distribution means. For visualisation purposes, the extreme 
2.5% values at either end of the distributions were left out of the violin plots (but were kept for estimating mean 
and p-values). A block permutation test (block size B =  25 s) was employed to estimate statistical significant 
differences in the mean IVC between viewing conditions (uncorrected for multiple comparisons). For both 
films there were significant differences in mean IVC between groups with normal narrative and the Scrambled 
group (Bang! You’re Dead: pIndividual =  0.006, pJoint1 =  0.033, pJoint2 =  0.004; Sophie’s Choice: pIndividual =  0.059, 
pJoint1 =  0.37, pJoint2 =  0.012). However, there were no significant differences between groups with the original, 
unscrambled narrative. Note that the Scrambled group did not watch the baseline video.

Scene Approx. times
No of times 

mentioned (%)

The boy shoots (or points gun at) mother 2:25 and 3:00 16 (53%)

The boy shoots (or points gun at) at people 2:10, 3:30 and 5:30 15 (50%)

The boy loads another bullet into gun 6:10 8 (27%)

The uncle discovers his gun is gone 4:35 4 (13%)

The boy finds and loads gun 0:25 and 1:40 4 (13%)

The boy points at mirror or shoot towards camera 0:40, 1:50 and 5:25 4 (13%)

When the father did not run after the boy 3:00 1 (3%)

The abrupt ending 6:14 1 (3%)

Table 2.  Scenes described by the subjects as having the strongest impression on them. Based on the 30 
subjects which saw Bang! You’re Dead with uninterrupted narrative. In a post-experiment questionnaire, 
subjects were asked to describe the scenes that made the strongest impression on them. Their answers were 
collected in the eight groups. The subjects each mentioned 1.77 scenes on average (0.77 std.). 29 subjects (97%) 
mentioned either scenes where the boy points the gun at his mother or at other people.
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An eigenvector of matrix (2) takes the form αa1 +  βa2, with α =  ± β and ±
σ +

P
P2 2  as eigenvalues. By applying 

this eigenvector to observations, X1 and X2, we see that CorrCA still identifies the relevant time series, z.
For the first CorrCA component, the channels weighted most heavily are the ones positioned over the occip-

ital lobe (see Fig. 2b). To estimate how much of the ISC was driven by basic low-level visual processing, we 
analysed the relation between ISC and a measure of frame-to-frame luminance fluctuations (average luminance 
difference, ALD; see methods). Note that to avoid synchronised eye artefacts and to ensure that only signals of 
neural origin contributed to the measured correlations, we removed independent components related to eye 
artefacts from the EEG (see methods).

Figure 4 and Table 3 show that there is a significant correlation between the ISC and the ALD for both Bang! 
You’re Dead and Sophie’s Choice for the first CorrCA component. This suggests that this portion of the correlated 
activity may indeed be driven by low-level visual evoked responses. However, the degree of engagement, here 
represented by narrative coherence, appears to modulate the amplitude of the ISC time course, since even though 
the scrambled stimulus was driven by the visual stimulus, it was so to a lesser extent. Previous research has shown 
that visual evoked potentials (VEP) are modulated by spatial attention24 and that even feature-specific attention 
enhances steady-state VEPs25. We quantify the effect of scrambling the narrative by comparing the sensitivity 
(slope) of ISC to ALD in both the normal and scrambled conditions by fitting a simple linear model (Fig. 5). For 
both films we found significant reductions of the ISC/ALD slope in the scrambled version (p <  0.01; block per-
mutation test, with block size B =  25 s).

Discussion
We have demonstrated that student neural reliability to media stimuli may be quantified using EEG in a class-
room setting. For educational technology cost and robustness are key features, hence, we aimed at establishing 
a realistic scenario based on low-cost consumer grade equipment, the Smartphone Brain Scanner, focusing on 
several potential sources that could degrade robustness.

We have provided evidence that salient aspects of the neural reliability previously detected with laboratory 
grade equipment can be reproduced in a realistic setting. We recorded fully-synchronized EEG with nine subjects 
in a real classroom and found that the level of neural response reliability matched prior laboratory results. The 
robustness of CorrCA and ISC is granted by the reproducibility between recording conditions, both of the ISC 
time-courses throughout the film clips and of the spatial topographies of the first three CorrCA components. For 
the film clip from Bang! You’re Dead we saw that seven subjects were enough to obtain stable topographies for all 
three components, whereas for Sophie’s Choice and the baseline video the results were more noisy, suggesting that 
more subjects are needed to obtain stable results. Previous research shows that ten subjects provided for stable 
results in a case involving non-narrative baseline videos or films with lower ISC and IVC in a laboratory setting4.

Mathematically, we have shown that our detection scheme, CorrCA, is robust to inter-subject variability in 
spatial configurations of brain networks, or induced by cap misalignment. In the calculations, we assumed two 
subjects in a worst case scenario where the subjects’ spatial projections are orthogonal. This result conforms well 
with simulations that show that, even for multiple subjects with randomly drawn spatial projections, CorrCA 
was able to find the relevant times series23. The simulations also showed that increasing the number of subjects 

Figure 4. The ISC of the first CorrCA component is temporally correlated with the average luminance 
differences (ALD) of the film stimulus. ALD is calculated as the frame-to-frame difference in pixel intensity, 
smoothed to match the 5 s window of ISC, and mainly reflects the frequency of changes in camera position. 
Data computed from the neural responses of subjects watching Bang You’re Dead.

ISC v1 ISC v2 IVC

Bang You’re Dead 0.71** 0.61** 0.56**

Sophie’s Choice 0.50** 0.24** 0.23**

Bang You’re Dead (Scr) 0.54** 0.45** 0.35**

Sophie’s Choice (Scr) 0.42** 0.01 − 0.22**

Table 3.  Correlation coefficients between the ALD and the ISC for the two viewings (v1, v2) as well as the 
IVC for the first correlated component. The correlation is presented for Bang You’re dead and Sophie’s Choice 
for the Individual and Scrambled (Scr) groups. **p <  0.01.
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decreased the signal-to-noise ratio, presumably due to the estimated common projection not being able to fit with 
the different projections of each subject.

We have presented results that further indicate a relationship between changes in ISC and viewer engagement. 
Through a basic analysis of questionnaires on scenes of high impact, we found that high ISC indeed is associated 
with high impact. We have also showed a relationship between neural responses to luminance fluctuations and 
coherence of stimulus narrative. For both the films presented, we saw a significant drop in the average IVC for 
subjects watching the film sequences in which the narrative had been temporally scrambled. At the same time no 
significant difference was found between the groups watching the film sequences that had not been scrambled, 
which further underlines the robustness of the measure.

It may appear surprising that there exists a significant correlation between the raw EEG signals of various 
students in the classroom. However, it is well-known that eye scan patterns in a film audience follow a specific 
pattern after a scene change, activating the dorsal pathway26. A valid assumption could therefore be that the 
correlation is due to synchronised artefacts from eye movements, but this has recently been shown not to affect 
attentional modulation of ISC6. Also, it is known that stimuli in the form of flashing images elicit VEPs, which are 
modulated in amplitude by the luminance27. When recorded with EEG, the spatial distribution of the early VEP 
at 100 ms (P100) is similar to the scalp maps of the first correlated component (C1 in Fig. 2b)24,28.

We investigated whether low-level visual processes could be a driving force behind the measured ISCs by 
correlating the ISC with changes in luminance in the video stimuli, as measured by the ALD. We found that lumi-
nance fluctuations drive a significant portion of the ISC.

In all four groups of subjects Sophie’s Choice obtained lower IVC compared to Bang! You’re Dead. This differ-
ence could be explained by the fact that the film clip also had a much lower ALD. Also, Fig. 4 indicates that the 
passage in Bang! You’re dead with the highest and most sustained ISC (around 1:20 to 1:50) coincides with the 
interval with the most scene changes. This relationship could, however, also be due to more complex processes, as 
fast-paced cutting is a known cinematographic tool used by Hitchcock to induce suspense and thereby increase 
the attention of the viewer29.

The strong link between ISC and luminance fluctuations due to scene cuts has also recently been presented in 
a fMRI study30. This is something that would be interesting to take into account for future studies investigating the 
applicability of ISC. Baseline videos could be created in ways to achieve similar ALD features as the target stimuli. 
The baseline video, created for this study, consisted of one continuous scene of people entering and exiting an 
escalator in a relaxed manner, which did not produce any significant correlation. Future studies might use a base-
line video containing scene cuts of faces and body parts, to also take the effect of editing into account.

To investigate the possibility of higher level processes also being at play, we analysed the linear relationship 
between ISC and luminance fluctuations at a given time in the video stimulus. The scrambling operation aimed to 
test for a change in attentional engagement while controlling for low level features. The premise was that subjects 
would be less attentive to the stimulus, i.e. less “engaged”, if they did not follow the narrative arch of the story. 
With that in mind, Figs 4 and 5 suggest that ISC is driven by stimulus-evoked responses that are modulated by 
attentional engagement with the stimulus.

We have demonstrated the feasibility of tracking inter-subject correlation in a classroom setting; a measure 
that has been related to attentional modulation6. We have shown that ISC is robust to recording equipment and 

Figure 5. Relation between the ISC and the ALD for different conditions. Each point indicates a point in the 
ISC time course as seen in Fig. 2a (5 s windows, 80% overlap) and the corresponding ALD calculated from the 
visual stimulus. It is evident that time points with higher luminance fluctuations (hight ALD) result in higher 
correlation of brain activity across subjects (high ISC). The indicated “slope” is a least squares fit of the slope 
of lines passing through (0, 0). The slope indicates the strength of ISC for a given ALD value. For both films 
there is a significant drop in the slope (p <  0.01: block permutation test with block size B =  25 sec), thus the 
original narrative (blue) elicits higher ISC than the less engaging scrambled version of the films (red). Note that 
brightness of the scenes in Sophie’s Choice is much lower than in Bang! You’re dead, resulting in an ALD that is 
lower by almost a factor 10.
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conditions, and we have presented evidence that the amplification of ISC in films that have a strong and coher-
ent narrative is due to attentional modulation of visual evoked responses. Thus ISC may be used as an indirect 
electrophysiological measure of engagement through an attentional top-down modulation of low-level neural 
processes. Recent research has shown that attentional modulation of neural responses takes place in speech per-
ception31,32, which lends credibility to a similar process occurring in the visual system. The evidence that such a 
basic and well defined mechanism could be at play further adds to the robustness of the approach in real everyday 
scenarios.

Methods
Protocol. Four groups of subjects watched the video stimuli in different scenarios. The first group (N =  12, 
Individual) watched videos individually in an office environment on a tablet computer (Google Nexus 7 tablet, 
with a 7″  (17.8 cm) screen) with earphones. The second group (N =  12) saw the videos in the same manner, but 
the scenes of the film stimulus were scrambled in time resulting in the narrative being lost (Scrambled). The objec-
tive of this condition was to demonstrate that the similarity of responses across subjects is not simply the result of 
low-level stimulus features (which are identical in the Individual and Scrambled conditions), but instead, is mod-
ulated narrative coherence, which presumably engages viewers. Two additional groups (N =  9, N =  9) watched the 
original videos on a screen in a classroom (Fig. 1, Joint 1 and Joint 2), with sound projected through loudspeakers. 
An attempt was made to create viewing conditions for the subjects in the joint groups, that were similar to the 
viewing conditions for the individual group, i.e., lights were dampened and the projected image produced approx-
imately the same field-of-view (see Supplementary materials). The central question was whether the viewing 
condition (i.e., in a group versus individually) influences the level of ISC across subjects.

Stimuli. The first video clip was a suspenseful excerpt from the short film Bang! You’re Dead (1961) directed 
by Alfred Hitchcock. It was selected because it is known to elicit highly reliable brain activity across subjects in 
fMRI11 as well as EEG4. Our second stimulus was a clip from Sophie’s Choice, directed by Alan J. Pakula (1982), 
which has been used earlier to study fMRI activity in the context of emotionally salient naturalistic stimuli33. A 
third non-narrative control video was recorded in a Danish metro station of several people who were being trans-
ported quietly on an escalator. Each video clip had a length of approximately six minutes and was shown twice 
to each subject. For each viewing the order of the clips was randomized, while the same random order was used 
the second time the clips were shown. A combined video was created for each of the six possible permutations 
of the order of the clips, starting with a 10 second 43 Hz tone for use in post processing synchronization, and 
20 seconds black screen between each film clip. The total length of the video amounted to 39 minutes. An addi-
tional control stimulus (Scrambled) was created by scrambling the order of the scenes in Bang! You’re Dead and 
Sophie’s Choice in accordance with previous research4,18. In these studies, scene segments were defined in varying 
temporal scales (36 s, 12 s, and 4 s) that consisted of multiple camera positions, “shots”. For this study we defined a 
scene as a single shot (i.e. the segment between two scene cuts) with the added rule that a scene must not exceed 
250 frames (~10 s) to reduce subjects’ ability to infer the narrative from long scenes. This procedure resulted in 73 
scenes lasting between 0.5 and 10 seconds and corresponded to the intermediate to short time-scales employed 
in previous studies18.

Subjects. A total of 42 female subjects (mean age: 22.4 y, age range: 18–32 y), who gave written informed 
consent prior to the experiment, were recruited for this study. Non-invasive experiments on healthy subjects 
are exempt from ethical committee processing by Danish law34. Among the 42 recordings, nine were excluded 
due to unstable wireless communication that precluded proper synchronization of the data across subjects (five 
from the Individual group, one from the Scrambled group and three from the two Joint groups). The difference in 
the number of recordings in the different groups could give unfair advantages with respect to noise when using 
CorrCA or calculating ISC. We therefore decided to randomly choose four subjects from the Scrambled group 
and one from Joint 2 group and excluded these from the analyses. This was to ensure that each group had seven 
fully synchronized recordings.

Portable EEG – Smartphone Brain Scanner. Research grade EEG equipment is costly, time-consuming 
to set up, and immobile. However, recently consumer grade EEG equipment that is more affordable and has 
increased comfort has appeared. Here we use the modified 14 channel system, ‘Emocap’, based on the EEG 
Emotiv EPOC headset. For details and validation, see refs 17 and 35. In this study it was implemented on Asus 
Nexus 7 tablets. An electrical trigger and associated sound was used to synchronize EEG and video signals in 
the individual viewing condition, while a split audio signal (simultaneously feeding into microphone and EEG 
amplifiers) was used to synchronize the nine subjects EEG recordings and the video in the joint viewing condi-
tion (see Supplementary materials for further information on synchronisation). The resulting timing uncertainty 
was measured to be less than 16 ms. The EEG was recorded at 128 Hz and subsequently bandpass filtered digi-
tally using a linear phase windowed sinc FIR filter between 0.5 and 45 Hz and shifted to adjust for group delay. 
Eye artefacts were reduced with a conservative pre-processing procedure using independent component analysis 
(ICA), removing up to 3 of the 14 available components (Corrmap plug-in for EEGLAB36,37).

Correlated component analysis to measure ISC and IVC. CorrCA was presented in Dmochowski  
et al.4, as a constrained version of Canonical Correlation Analysis (CCA). CorrCA seeks to find sets of weights 
that maximises the correlation between the neural activity of subjects experiencing the same stimuli. For each 
neural component, CorrCA finds one shared set of weights for all subjects in the group.

Given two multivariate spatio-temporal time series (termed “view” in CorrCA), ∈ ×X X{ , } D N
1 2 , with  

D being the number of measured features (EEG channels) in the two views and N the number of time samples, 
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CCA estimates weights, {w1, w2}, which maximize the correlation between the components, =y X w1 1 1
  and 

=y X w2 2 2
 . The weights are calculated using two eigenvalue equations, with the constraint that the components 

belonging to each multivariate time series are uncorrelated38. CorrCA is relevant for the case where the views are 
homogeneous, e.g., using the same EEG channel positions, and imposes the additional constraint of shared 
weights w =  w1 =  w2. This assumption can potentially increase sensitivity involving fewer parameters. In CorrCA 
the weights are thus estimated through a single eigenvalue problem;

ρ+ + =−R R R R w w( ) ( ) , (3)11 22
1

12 21

where, =R X Xij N i j
1 , is the sample covariance matrix4. To illustrate the spatial distribution of the underlying 

physiological activity of the components, we use the estimated forward models (“patterns”) as discussed in refs 39 
and 40.

Average luminance difference (ALD). Video clips were converted to grey scale (0–255) by averaging 
over the three colour channels. We then calculated the squared difference in pixel intensity from one frame to 
the next and took the average across pixels. These signals were non-linearly re-sampled at 1 Hz by selecting the 
maximum ALD for each 1 s interval to emphasise the large differences during changes in camera position (see 
Figure S2 in Supplementary materials for an comparison between frame-to-frame and smoothed difference). 
These values were then smoothed in time by convolving with a Gaussian kernel with a “variance” parameter of 
2.5 s2. This down sampling and smoothing was aimed at matching the temporal resolution of the ALD to that of 
the time-resolved ISC computation (5 s sliding window with 1 s intervals).

Statistical testing. In order to evaluate the statistical relevance of the correlations, we employed a simple 
permutation test (P =  5000 permutations)4. To test the robustness of the obtained weights for the spatial pro-
jections, we calculated the average correlation of all possible pairings of the four conditions groups for a given 
component. Again, we employed a permutation test (P =  5000 permutations) to evaluate statistical relevance by 
randomly permuting the channel order for each group and recalculating the average correlation. When testing 
differences in average IVC between conditions, we used a block permutation test (block size B =  25 s, P =  5000 
permutations) to account for temporal dependencies.
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S1 Supplementary Tables and Figures

(a) Sophie’s Choice (b) Baseline video

Figure S1. The corresponding scalp projections of the first three components obtained from the correlated component analysis
(CorrCA) of each of the subject groups watching Sophie’s Choice and a baseline video for the first time. For each component, CorrCA
finds one shared set of weights for all subjects in the group. Four distinct groups of subjects watched videos in different scenarios:
individually on a tablet computer (Individual), individually with order of scenes scrambled in time (Scrambled), jointly in a classroom
as seen in Fig. 1 (Joint 1 and Joint 2). For each projection, the polarity was normalized so the value at Cz is positive. Note that the
scrambled group did not watch the Baseline video.

Table S1. Correlation coefficients between the results obtained in a laboratory setting1 and those obtained in the present study (groups
Individual, Joint 1 and Joint 2). Inter-subject correlation (ISC) measures similarity of responses between subjects for first and second
viewings (v1,v2) and the inter-viewing correlation (IVC) measures similarity within-subject between the two views. Values are
calculated using the second correlated component recorded while watching Bang! You’re dead. **: p < 0.01, *: p < 0.05.

ISC v1 ISC v2 IVC
Individual 0.05 0.08 0.10*
Joint group 1 0.20** 0.12* 0.28**
Joint group 2 0.27** 0.00 0.10*
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Figure S2. Comparison between the frame-to-frame average luminance difference calculated from Bang! You’re Dead and the one
which have been smoothed with kernel smoothing. Each large value corresponds to a change in camera position.

Table S2. Scenes described as having the strongest impression by subjects. Based on the 30 subjects which saw Sophie’s Choice
with unscrambled narrative. Subjects were asked, in a post-experiment questionnaire, to describe the scenes that made the strongest
impression on them. Their answers have here been collected in the nine groups. The subjects mentioned 1.67 scenes on average (0.76
std.). ∗: Note: only the girl is taken away from her mother, however 47 % of the subjects indicated that both children were taken.

Scene Number of times mentioned (%)
When both children are taken∗ 14 (47 %)
The mother is forced to choose between her children 11 (37 %)
The girl is taken from her mother 8 (27 %)
When the girl is screaming at the end 8 (27 %)
When the mother cries at the end 3 (10 %)
Panorama of Jews in lines 2 (7 %)
When the Nazi officer speaks to the mother 2 (7 %)
When I recognised Meryl Streep 1 (3 %)

S2 Experimental setup

To avoid gender having a factor in the results 42 female subjects were recruited with an average age of 22.4 years, distributed
with minimum, median, and maximum ages of 18, 22, and 32 respectively. All subjects signed a consent for the use of data,
video and image.

The subjects were divided into two groups, with one group of 24 subjects watching the films alone (Individual viewing)
and another group of 18 subjects subdivided into two groups of nine, which watched the films together (Joint viewing). There
were taken precautions to ensure that the subjects participating in the same joint viewing, did not know each other beforehand
to avoid unwanted confounding factors. The group with individual viewings were additionally evenly divided into a group
watching the films with the order of the scenes scrambled and a group watching the film clips normally.

S2.1 Stimulus
One of the goals of the experiments presented here was to recreate the results in (1), where the subjects were shown clips from
three different films; Bang! You’re Dead (1961) directed by Alfred Hitchcock, The Good, the Bad, and the Ugly (1966), a
western directed by Sergio Leone, and a control film of a natural outdoor scene on a college campus. The Hitchcock film
produced great results and the same clip was therefore included in the experiments presented here. The western, however, did
not produce as many significant times of correlation, and it was decided to replace this clip with one from Sophie’s Choice

(1982) directed by Alan J. Pakula.
The clip from Sophie’s Choice depicts a young Polish mother on her way to concentration camp during World War II,

with her two children. She is accosted by a German officer, who forces her to choose which of her children lives or dies.
The dialogue in the film clip is in German. The same film clip was used by (2), where the subjects were investigated for
emotion-related changes using fMRI and viewer feedback rating. The study found a monotonic increasing response with the
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Figure S3. Experimental setup for single viewings.

highest scoring emotions being ”horror”, ”hate”, ”fear”, and ”anger”.
To act as a control, a video was recorded of the escalators Kgs. Nytorv metro station in Copenhagen. This setting was

chosen to eliminate the argument that the joint engagement is found for vision of a body versus non-body stimulus. The metro
station was chosen as it was rationalised that the passengers getting on the metro in this station, were in less of a hurry compared
to other stations, thereby reducing any excitement of people running to catch their train.

Each clip had a length of approximately 6 minutes and were shown twice to each subject. For each viewing the order
was randomised, but the same order was used the second time the clips were shown. A combined video was created for each
of the six possible permutations of the order of the clips, starting with a 10 second 43 Hz tone for use in post processing
synchronisation, and 20 seconds black screen between each film clip. At the end of the video the subject was presented with a
text announcing that the video was over, to avoid the subject wondering if they just saw the last clip, between each clip. The
total length of the video amounted to 39 minutes.

In (1) the order of the scenes in Bang! You’re Dead were scrambled to investigate the response when the meaning of the film
was lost. The same approach was used in this thesis for both Bang! You’re Dead and Sophie’s Choice. Since the control video
was intended not to carry any meaning, this was left out of the video with scrambled scenes resulting in only two permutations
and a length of 23 minutes.

S2.2 Individual viewings
24 subjects were used for the individual viewings, which were conducted in a small office as seen on figure S3. The film was
shown on a Google Nexus 7 tablet, with a 7” (17.8 cm) screen with the subject hearing the films through in-ear headphones
to avoid wires crossing the head. The headphones had a noise dampening effect which was important due to some of the
recordings being made in office hours. Subjects was instructed to sit straight, and avoid movements which could cause artefacts
in the EEG, such as chewing, heavy breathing, and limb movement. They were also instructed to look within the frame of the
screen to reduce eye artefacts, but was also told to relax and watch the film.

Before the viewing started, each subject drew without replacement for whether the films should be scrambled or not, and
afterwards used a dice to decide the order of the film clips.

The subjects were filmed with a camera receiving sound input directly from the tablet as well as from an external microphone.
An electric spark was used for post processing synchronisation between the spark showing in the EEG and its clicking sound on
the camera recording. As the camera also recorded the sound output from the tablets, the time interval between the spark and
the time of the 43 Hz tune could be calculated, and from this the time of start for each film clip.

The lighting in the room was controlled by blacking out the office window and only having an architect lamp on, to ensure
the subjects were visible on the camera in the dim light.

4/11



S2.3 Joint viewing
The joint viewing experiment is an expansion of the single viewing experiment presented by (1). Since recording EEG from
nine subjects simultaneously is relatively new territory and presents new obstacles, the experimental setup deviates from the
one in the single viewing in some areas.

Different approaches to the placement of the subjects in the room in relation to the screen and to each other were considered.
It was decided to go for a ”cinema experience”, with all nine subjects sitting on a line of chairs. By instructing the subjects to
keep their eyes within the screen, as in the single viewings, they were not able to directly see the facial expressions of one
another. As the films were watched on a projector it was possible to both regulate the distance from the subject to the screen
and the length of the diagonal of the picture projected on the screen. It was decided to keep the viewing angle from one corner
of the screen to the opposite corner similar to the one in the single viewings. By assuming the line of sight was orthogonal to
the screen the relation

angle = tan−1 screen diagonal
distance to screen

(1)

was used to find the maximal angle the eye could move while still viewing the screen. In the single viewings the distance
from head to screen varied from 70-90 cm, giving angles of maximal eye movement of 11.2◦ to 14.3◦. The distance from the
subject in the centre chair to the screen was measured to be 450 cm and 490 cm for the outermost placed subjects. With a
screen diagonal of 102 cm this resulted in angles of maximal eye movement between 11.8◦ and 12.8◦.

The recordings were done in a larger room, to accommodate all the subjects, and the sound from the films was played
through loudspeakers, to avoid the emotional distance which noise dampening headphones might produce. On the basis of
creating similar lighting conditions as in the single viewing experiment the windows were blacked out and four lamps placed
strategically to avoid shining a light in the eyes of the subjects, but still illuminating them for the purpose of filming them. For
the joint viewings the subjects were filmed using a GoPro Hero 2. The image and sound quality of the GoPro was not as good
as the original camera (especially in the dim lightening), but it had the benefit of being unobtrusive and could be placed directly
in front of the subjects. The recording tablets were placed on tables directly behind the subjects to avoid loss of connection
from transmitters with poor transmitting distance.

S2.4 Questionnaires and general information about the subjects
Before the EEG recordings all subjects were asked to fill out a questionnaire. Apart from asking relevant physiological
questions, it was also chosen to ask the subjects to evaluate their level of proficiency in German, because of the German
dialogue in Sophie’s Choice.

After viewing the films the subjects were asked to answer another questionnaire regarding whether they knew the scenes
beforehand and which scenes had the biggest impact on them. Subjects viewing the films with scrambled scenes were also
asked to describe the plot in the two films. This was both done to evaluate and possibly subdivide the subjects based on their
understanding as well as for a comparison with the results gained from the EEG.

S3 Hardware

Research grade EEG equipment is often very expensive, time-consuming to equip, and immobile. Using smaller consumer
grade hardware has thus many advantages if it is able to measure the required signals adequately. Part of the motivation for the
experiment presented in this article was to validate if the hardware used is sufficient for the paradigm, in what areas it may be
advantageous, and in what areas it is lacking.

S3.1 Emocap
To conduct the experiments the mobile 14 channel consumer EEG headset Emotiv EPOC was rebuild to a wireless cap based
on EasyCap, the Emocap. The sampling frequency of the ADC is 2048Hz but since the EPOC only have one ADC the data is
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(a) Individual viewing. (b) Joint viewing.

TV

Amplifier

Subjects

(c) Joint viewing setup.

Figure S4. Illustration of the synchronisation paradigms for the individual and joint viewing experiments.

sampled sequentially which means that the effective sample frequency of each channel is 128Hz (including Common Mode
Reference and Driven-Right-Leg electrodes).3 Each sample is assigned a number from 0 - 128 in the EPOC in order to ensure
detection of packet loss on a sub-second time-scale. The EPOC has previously been validated against the Biosemi Active-II
device with 64 channels using an imagined finger tapping paradigm.4

The electrode placement of the Emocap follows the 10-20 system in naming and placement, but with only 14 measurement
electrodes the configuration is specific to this setup.

S3.2 Tablet
To acquire and record data from the Emocap it is possible to use a computer or a mobile device supporting direct access to the
USB port. In this experiment tablets of the model Asus Nexus 7 were used. The processing power of the device is much greater
than needed for this application and the tablet has previously been shown to work well with the EPOC.4

S3.3 Synchronisation
Experiments involving a stimulus are highly dependent on temporal alignment if the objective is to compare the results across
modalities or recordings. To synchronise EEG recordings with the film, two methods were employed based on the experimental
condition.

S3.3.1 Individual viewing

For the subjects viewing the films alone the method of synchronisation was based on the theory that the electro magnetic wave,
generated by creating a powerful spark, would induce a small current in the wires from the electrodes. This was confirmed
using a piezoelectric spark generator normally used to ignite a Bunsen burner. Based on the length of the spark it was estimated
that the spark was around 2 kV and very low amperage. When used approximately 2 centimetres from the electrodes a spike
with much higher amplitude than the surrounding artefact free EEG was observed. Generation of the spark also emitted a noise
that was distinguishable in the audio track of the recorded video. This method was hence used to synchronise the EEG with the
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recorded video in single subject experiments. To synchronise the recorded video with the film showed on the tablet, the audio
output from the tablet was connected to the input of the camera in parallel with a microphone. At a fixed time before the first
film clip a 43Hz sine wave was played to make this part of the synchronisation easier, as illustrated in figure S4a.

S3.3.2 Joint viewing

In the experiments involving simultaneous EEG recordings of multiple subjects, a method of inducing a current simultaneously
in all EEG recordings was necessary. Though experiments with creating more powerful sparks with estimated voltages of up to
60 kV, the field from the circuit was not visible in the EEG, meaning that either the signal strength was not adequate or the DRL
circuit in the Emocap managed to suppress the signal.

S4 Questionnaires
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Table S3. Information regarding the subjects, under which condition they saw the movies, and how they perceived them. Self-reported
German proficiency rates is scored from 1 to 4, with 1 being equal to ”None”. S = Scrambled scenes, NS = Non-scrambled scenes, J1
= The first joint viewing, J2 = The second joint viewing.

Subject 

no. Condition

Order of 

movies Age

Hours of 

sleep

German 

proficiency

Right 

handed

Seen the 

movies before

Understood 

the movies

16 S 1 20 7 3 Yes No Yes

10 NS 2 21 9 3 No No Yes

9 S 1 19 9 2 Yes No Yes

15 S 1 22 6 2 Yes No Yes

3 NS 2 20 7,5 2 Yes No Yes

6 NS 1 20 7,5 3 Yes No Yes

11 S 1 18 10 2 Yes No Yes

2 NS 5 20 9 3 Yes No Yes

4 NS 6 21 7 2 Yes No Yes

5 NS 1 21 9 2 Yes No Yes

14 S 1 20 9 2 Yes No Yes

12 S 1 21 8,5 2 No No Yes

13 S 2 20 8,5 1 Yes No Yes

7 NS 3 21 7 2 Yes No Yes

1 NS 2 19 8 1 Yes No Not Sophie's

8 S 2 19 8 1 Yes No Not Bang!

23 NS 4 24 7 2 Yes No Yes

22 S 1 25 8 2 Yes No Not Bang!

24 NS 3 25 8 2 Yes No Yes

21 S 1 25 5 2 Yes No Yes

17 S 1 21 7 1 Yes No Yes

19 S 1 21 7 2 No No Yes

18 NS 6 22 7,5 1 No No Yes

20 NS 6 23 8 2 Yes No Yes

33 J1 6 32 7 3 Yes No Yes

28 J1 6 25 8 2 Yes No Yes

30 J1 6 24 8 2 Yes No Yes

31 J1 6 26 8 1 Yes No Yes

27 J1 6 25 5,5 2 Yes No Yes

25 J1 6 21 8 2 Yes No Yes

29 J1 6 25 10 2 Yes No Maybe

26 J1 6 21 8 1 Yes No Yes

32 J1 6 25 7 2 Yes No Yes

34 J2 6 22 10 2 Yes No Yes

36 J2 6 20 9 1 Yes Sophie's Yes

35 J2 6 25 8,5 2 Yes No Yes

41 J2 6 25 8 2 Yes No Yes

37 J2 6 25 9 2 Yes No Yes

42 J2 6 22 6 3 Yes No Yes

40 J2 6 22 6,5 3 No No Yes

39 J2 6 24 8 2 Yes Sophie's Yes

38 J2 6 23 8 1 Yes No Yes
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Questionnaire before EEG-measurement 

 

Name:                subject no.: 

Movie:  

 

1. Are you right handed?       

2. Normal sight/corrected to normal vision 

3. Normal hearing:   

4. How many hours have you slept last night? 

5. Age 

6. Do you have a psychiatric record? 

7. Do you have a neurologic record? 

8. Have you ingested drugs or medication the last 24 hours? 

a. If yes, which? 

9. Level of German proficiency 

a. Fluent 

b. Good understanding of the language 

c. Basic understanding of the language 

d. None 

10. Are you interested in participating in future experiments? 

If you answer ”Yes”, your sex, age and contact 

information will be saved for future use. 

11. Can we use pictures of the experimental setup, where you 

appear for our Master thesis, article or other things that 

regard this experiment?  

Yes        No    

Yes        No    

Yes        No    

_____________ 

_____________ 

Yes        No    

Yes        No    

Yes        No    

 _____________   

 

 

 

 

 

 

 

Yes        No    

 

 

Yes        No    

 

 

Mobiles and other electric equipment have to be removed before the experiment. 

 

 

 

I hearby confirm, that I agree to participate in a experiment with EEG recordings during viewing films. I 

am informed that I participate voluntarily and that I can, at any time and without reasons, can redraw my 

consent to participate. 

 

 

 

Date : __________________    Signature : ___________________________________________________ 

  

 



Questionnaire after EEG-measurement 

 

Name:         Subject no.: 

 

 

1. Had you seen the movies before 

a. The black/white movie 

b. The movie in colour 

2. Did you understand the movie in german? (the one in 

colour) 

 

Yes        No    

Yes        No    

 

Yes        No    

  

3.  Which scenes made the strongest impression in the black/white movie? 

__________________________________________________________________________

__________________________________________________________________________

__________________________________________________________________________

__________________________________________________________________________ 

 

4. Which scenes made the strongest impression in the movie in colour? 

__________________________________________________________________________

__________________________________________________________________________

__________________________________________________________________________

__________________________________________________________________________ 
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Abstract

EEG microstate analysis offers a sparse characterisation of the spatio-temporal features of
large-scale brain network activity. However, despite the concept of microstates is straight-forward
and offers various quantifications of the EEG signal with a relatively clear neurophysiological
interpretation, a few important aspects about the currently applied methods are not readily com-
prehensible. Here we aim to increase the transparency about the methods to facilitate widespread
application and reproducibility of EEG microstate analysis by introducing a new EEGlab toolbox
for Matlab. EEGlab and the Microstate toolbox are open source, allowing the user to keep track
of all details in every analysis step. The toolbox is specifically designed to facilitate the develop-
ment of new methods. While the toolbox can be controlled with a graphical user interface (GUI),
making it easier for newcomers to take their first steps in exploring the possibilities of microstate
analysis, the Matlab framework allows advanced users to create scripts to automatise analysis for
multiple subjects to avoid tediously repeating steps for every subject. This manuscript provides
an overview of the most commonly applied microstate methods as well as a tutorial consisting of
a comprehensive walk-through of the analysis of a small, publicly available dataset.
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1 Introduction

Multichannel electroencephalography (EEG) is used to assess the spatio-temporal dynamics of the
electrophysiological activity of the brain. Traditionally, researchers analyse EEG by characterising
the temporal waveform morphology and/or frequency distribution of recordings at certain preselected
electrodes. Even though this method provides a wealth of insights into the electrophysiology of the
human brain at work and at rest, this approach still misses out on large parts of the information in the
EEG signal and neglects the multivariate characteristics of the measurements. A different approach,
that takes into account the information of all electrodes, is to characterise the EEG signal by the
spatial configuration of the electric fields at the scalp that can be conceptualised as a topographical
map of electrical potentials. The widely used EEGLAB toolbox (Delorme and Makeig, 2004) has
promoted the use of independent component analysis (ICA) for such multivariate modelling.

Microstate analysis is an alternative, and increasingly applied, EEG-representation based on to-
pographic analysis. Microstate analysis has its foundation in the work of Dietrich Lehmann and
colleagues (e.g. Lehmann, 1971; Lehmann et al., 1987), who observed that the time series of topogra-
phies in ongoing EEG are comprised of a discrete set of a few prototypical topographies that remain
stable for around 80 - 120 ms before rapidly transitioning to a different topography. These periods of
quasi-stable EEG topography have been called functional microstates and the discrete spatial config-
urations microstate classes. Following the argument that different EEG topographies are generated
by different configurations of neuronal generators, microstates have been suggested to reflect global
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functional states of the brain (Khanna et al., 2015; Michel et al., 2009; Lehmann et al., 1998) and
have been found to be tightly coupled with functional Magnetic Resonance Imaging (fMRI) resting
state networks (Britz et al., 2010; Yuan et al., 2012; Musso et al., 2010; Van de Ville et al., 2010).

Microstate analysis is increasingly recognised as an innovative method offering straight-forward
characterisations of brain-states. Its usefulness in gaining insights into brain functions has been
demonstrated in healthy (e.g. Koenig et al., 2002) and clinical populations (e.g. Lehmann et al.,
2005). Microstates have been examined when subjects are at rest (e.g. Khanna et al., 2015), as well
as both during and in between active tasks (e.g. Pedroni et al., 2017). More recently, microstate
analysis has been devised in event-related study designs, examining characteristics of pre-and post-
stimulus time-locked microstates (e.g. Schiller et al., 2016; Ott et al., 2011).

The output parameters of microstate analysis (described in sections 2.6 and 3.9) quantify the
statistical properties of the microstates. They include parameters summarising the variability in the
spatial configuration and strength of the topography of microstate classes, parameters pertinent to the
temporal dynamics of microstates such as the average duration of a microstate class or the frequency
of occurrence, as well as statistics on the transition probabilities between microstate classes. In
addition, parsing the EEG into microstates can be used to select epochs of interest (that correspond
to a certain microstate class), which can be further examined using other analysis methods such
as time-frequency analysis. Also from a practical point of view, compared to functional magnetic
resonance imaging (fMRI), microstates analysis of EEG offers a readily applicable and cost-worthy
method to investigate temporally coherent network activity.

The core of microstate analysis is to segment the EEG recordings into microstates using a clus-
tering method. There are currently several cluster methods being used for microstate analysis, such
as (modified) K-means clustering (Lloyd, 1982; Pascual-Marqui et al., 1995), Topographic Agglomer-
ative Hierarchical clustering (Murray et al., 2008; Khanna et al., 2014), principal component analysis
(Skrandies, 1989), or mixture of Gaussian algorithms, with each method reflecting rather a class of
clustering algorithms than a completely defined algorithm.

Microstate analysis could arguably have been even more widely adopted had it not been for the
relative lack of transparency regarding the methods applied in the field. So far, established toolboxes
for microstate analyses have been implemented in compiled software1, which therefore not revealing all
information of the methods. However, transparency about the exact method is in our view important
to grant replicability because, as our experience has shown, even small changes in the settings of
clustering algorithms sometimes lead to substantial differences in the outcome of the analysis.

The present work aims to facilitate microstate analysis in Matlab by providing a toolbox that
is fully transparent with respect to all the steps of analysis and which allows the integration of
any clustering algorithm. The toolbox is made of a set of functions that can be used and modified
independently or as an interactive plug-in for the widely used, open-source EEG analysis software
EEGLAB (Delorme and Makeig, 2004).

We encourage the reader to give suggestions for improvement or self-developed extensions that
may be of interest for a broader community. As the development of clustering algorithms is a rapidly
advancing field of research, an open and easily modifiable platform to implement new clustering
methods for microstate analysis may also foster new approaches to the idea of EEG microstates. For
instance, we see potential in advancing methods to select an adequate number of clusters.

The remainder of this article is structured as follows: Section 2, starts by outlining the gen-
eral methods to conduct a microstate analysis and then provide detailed explanations about three
clustering algorithms (i.e. K-means, modified K-means and (Topographic) Atomize and Agglomerate
Hierarchical Clustering) that have been commonly used in microstate analyses. We then outline some
of measures of fit that can be used selecting the number of microstates, which is followed by a discus-
sion on the settings of microstate clustering. We conclude the methodological part of this guide with

1But see: Koenig et al. (2011) for a Matlab implementation of microstates analyses for ERP data, or Milz (2016)
for a Python implementation.
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by explaining the back-fitting procedure and with an overview of the output of a microstate analysis;
the microstate statistics. Section 3 is dedicated to provide an easy entry point into microstates anal-
ysis in the form of a tutorial that uses the GUI of the toolbox along with a Matlab script, allowing
to automatise and adapt the analysis to new datasets.

2 Microstate methods

This section contains the theoretical part of the guide, where we will walk through the concepts and
differences between the methods employed in microstate analysis. We will cover some of the most
common clustering algorithms and their settings, as well as approaches on how to select the best
solution and how to evaluate it.

In microstate analysis it is the goal to segment the recorded EEG time samples into microstate
classes, so EEG samples that belong to the same class have as similar topographies as possible.
The segmentation is commonly done using topographical clustering methods, where each cluster of
EEG samples denotes a microstate class. For each cluster, the methods calculate a prototypical
topographical map based on all the EEG samples assigned to it. The assumption of the clustering
is that EEG samples assigned to the same cluster, all originate from the neural processes underlying
the prototype topography of that cluster.

In general there are different mathematical and statistical approaches to cluster data, resulting in
different clustering methods. How large a differences there is in the resulting clusters, between the
clustering methods, depends on the data of interest, and the underlying assumptions of the methods.
For example, where some methods ignore the polarity2 of the topographies, other methods take it into
account and assign EEG samples with similar but opposite polarity to different clusters. In section
2.1 we go through the most common clustering methods used in microstate analysis.

After deciding on a clustering method there is, however, still factors that affect the clustering,
such as; How to measure the similarity between two EEG samples, should the cluster assignment of
a sample be affected by its temporally neighbouring samples, and what is the right amount of clusters
(microstate classes)? And after clustering the data it may be relevant to reduce noise by temporal
smoothing of the obtained microstate sequence, before calculating statistics from them.

Another thing to note about clustering is that often there is not one true solution that segments
the EEG perfectly. In the same way that it is necessary to decide which amount of microstate clusters
gives the best result (see section 2.2), some clustering algorithms can converge on different solutions
even when using the same number of clusters. This means that using the same method with the
same number of clusters might result in different segmentations, when it is run multiple times. See
section 2.3.1 for more information on initialisation of algorithms and using ‘multiple restarts’ to reduce
variability.

In the following sections we will describe the different methodological choices that can be made
in microstate analysis, with the intent of increasing the understanding of the effect of these choices
and how they work. For a walk-through of an example microstate analysis we refer to the tutorial in
section 3.

During our review of the methodological side of microstate literature, we encountered several
examples of citation of articles that were irrelevant for the cited method, or even citation of articles
featuring a completely different method. We have therefore made an emphasis on referencing the
relevant articles during the review of microstate methods, with the intention that this section can be
used to look up the proper references for specific methods.

2see section 2.1.2 for more information on polarity
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Table 1: Definitions of the notation employed in this article and in the toolbox.

Notation Dimensions Definition

C N Number EEG channels.
N N Number of time samples.
K N Number of clusters (microstate classes).
X RC×N Recorded EEG.
xn RC The n’th time sample of the recorded EEG.
A RC×K Prototypical maps for K clusters.
ak RC The prototypical map for the k’th microstate cluster.
l NN ∈ [1;K]N Labels assigning each EEG sample to a cluster.
ln N ∈ [1;K] The microstate label of the n’th EEG sample.
Z RK×N Microstate activations/amplitude.
zn RK×N Microstate activations for the n’th time sample.
dkn R Distance between xn and microstate k for the n’th time sample.
bkn R Amount of samples with label k in a window around the n’th time sample.
εn RC EEG recording noise for the n’th time sample

(assumed to be zero-mean i.i.d. Gaussian).

2.1 Clustering algorithms

This section contains a short review of the methods implemented in the Microstate toolbox. The
toolbox contains the three most commonly used clustering methods for microstate analysis; K-means,
modified K-means and Topographic Atomize and Agglomerate Hierarchical Clustering. The toolbox
also contains a subgroup of new experimental methods under Experimental algorithms.

To help explain the methods we introduce the notation in table 1. The same notation is used in
the Matlab code of the toolbox. Note that in microstate literature it is in general assumed that the
EEG has been referenced to the average reference.

2.1.1 K-means

K-means clustering (Lloyd, 1982) is a well-established clustering method and also the most basic
method employed in the toolbox. It belongs to one of two main groups of clustering methods named
the partitioning methods, which generally require that the number of clusters (or microstate classes)
are pre-set by the user. These methods start with partitioning the EEG samples into the fixed number
of clusters, which they relocate the EEG samples to in iterations, until an optimal cluster assignment
have been achieved (Rokach and Maimon, 2005).

K-means clustering starts by defining K cluster centres (also known as prototypes), e.g. by
choosing K EEG samples at random. It iterates through two steps: First it assigns each EEG sample
to the cluster whose prototype it is most similar with. It then re-calculates cluster prototypes,
which is often done by averaging over the newly assigned samples. The algorithm continues iterating
over these two steps until a convergence criterion has been reached. Two examples of criteria of
convergence could be: Stopping when the change in assignments of EEG samples between iterations
are low enough to reach a pre-set threshold or when a fixed number of iterations are reached.

From a probabilistic point of view K-means is consistent with the generative model

xn = aln + εn, for n = 1...N, (1)

where aln signifies the topographical map assigned to nth EEG sample.
K-means clustering can be customised e.g. by changing its way of initialising prototypes or how

similarity is measured. The K-means clustering implemented in this toolbox employs Matlab’s default
built-in function kmeans.m (Statistics and Machine Learning toolbox required), that uses the k-
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means++ algorithm (Arthur and Vassilvitskii, 2007) for cluster prototype initialisation and the
squared Euclidean metric to determine similarity.

See e.g. Bishop (2006) or Rokach and Maimon (2005) for a more detailed introduction to K-means
clustering.

2.1.2 Modified K-means

The modified K-means introduced in Pascual-Marqui et al. (1995) adds a number of features to
clustering.

On a practical level there are mainly two differences compared to conventional K-means. The
first is that the topographical maps of the prototypical microstates are polarity invariant. This
means that samples with proportional, but opposite, topographical maps (e.g. ak and −ak) are
assigned to the same cluster. The second difference is that modified K-means models the activations
of the microstates, i.e. models the strength of the microstates for each time point.

At the conceptual level, microstate classes (or clusters) are now being viewed as ‘directions’
in a multi-dimensional topographical space. The activations would then quantify how far along a
microstate-orientation the EEG signal is at a given time point. It makes it easier to imagine this using
only two EEG channels, which would draw an asterisk in 2D-space. Here each line is a microstate,
and time points with a strong EEG signal would be placed further along its microstate line.

Again, taking a probabilistic view point modified K-means is consistent with the generative model

xn = Azn + εn, for n = 1...N, (2)

with the important constraint that only one microstate can be active for each time point, i.e. all K
elements of zn are zero except for one, i.e. the model can be written

xn = alnzlnn + εn, for n = 1...N. (3)

The microstate label of an EEG sample is found as the microstate index, k, that minimises the
orthogonal squared Euclidean distance,

ln = argmin
k

{
d2kn
}

(4)

d2kn = xᵀ
n · xn − (xᵀ

n · ak)2. (5)

See appendix A for details on this relation as well as an introduction of a new and optimised iteration
scheme, for modified K-means. This new iteration scheme upholds the same model assumptions,
but preliminary tests show that it is much faster and even slightly better at representing EEG with
microstates compared to the original iteration scheme.

The modified K-means method is also accompanied by a scheme for temporal smoothing mi-
crostates label sequences to avoid short segments. See section 2.5 for more information on temporal
smoothing.

The seminal publication on modified K-means (Pascual-Marqui et al., 1995) contains additional
explanation, motivation and pseudo-code.

2.1.3 Topographic Atomize and Agglomerate Hierarchical Clustering

The Topographic Atomize and Agglomerate Hierarchical Clustering (TAAHC) method belongs to the
second of two main groups of clustering methods, hierarchical clustering. TAAHC was developed for
microstate analysis and is a modified version of its precursor, atomize and agglomerate hierarchical
clustering (AAHC). The (T)AAHC methods differ in significant ways from traditional hierarchical
clustering, and even though the only conceptual difference between TAAHC and AAHC is in how
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they measure the quality of their clusters, their resulting algorithms are significantly different from
each other. See section 2.1.4 for a deeper description of these differences.

In TAAHC, the user does not have to pre-set the number of clusters. It starts out with all EEG
samples having their own cluster and then one cluster is removed at a time. Each iteration of the
algorithm consists of finding the "worst" cluster, and then remove (atomise) it and reassign each of
its members to the cluster they are most similar with. This process is then continued until there are
only two clusters remaining (or a pre-set minimum number of clusters).

The "worst" cluster is defined as the cluster that has the lowest sum of correlations between its
members and prototype (Khanna et al., 2014)3:

CorrSum(k) =
N∑

n

Corr(ak,xn) =
N∑

n

|xn · ak|
||xn|| · ||ak||

, for ln = k, (6)

assuming average referenced EEG, i.e. that for each time sample, the channel mean has been sub-
tracted. Note that using the absolute value of the correlation makes TAAHC polarity-invariant4.
Though the TAAHC is a specialised hierarchical clustering, it can also be seen as a specialised K-
means in the way it models the EEG.

By using the correlation to find the worst cluster, the TAAHC is not deterministic (see section
2.1.4) unless an extra step is included in the initialisation of the algorithm. To ensure determinism the
clusters are initialised by creating two-sample clusters from the most correlated pairs. In the toolbox
this is done by calculating correlations between all sample-pairs, assigning the most correlated pair to
the first cluster, and removing the two samples from the sample-pool. This process is then repeated
on the remaining sample-pool, until all pairs have been found and the number of clusters has been
halved. In the case of an odd number of samples, the leftover sample is assigned its own single-sample
cluster.

As a side note on references, Tibshirani and Walther (2005) is often referenced when the (T)AAHC
methods are used, but this article actually does not explain how agglomerative hierarchical clustering
works. Instead it investigates the relevant question of how to validate the correct number of clusters,
when using hierarchical clustering. (T)AAHC is also sometimes erroneously referenced to Pascual-
Marqui et al. (1995), which pre-dates the methods and instead introduces the modified K-means
algorithm.

For more information on different types of hierarchical clustering we recommend Rokach and
Maimon (2005). We suggest using Murray et al. (2008) as a reference for AAHC. Being a new method,
the TAAHC unfortunately hasn’t, to the knowledge of the authors, been thoroughly introduced in
a published article. Though Khanna et al. (2014) introduces TAAHC, its determinism-ensuring
initialisation scheme is not covered.

2.1.4 The difference between AAHC and TAAHC

Each word, from right to left, in the (Topographic) Atomize and Agglomerate Hierarchical Clustering
methods denotes a specialisation of hierarchical clustering. Agglomerative hierarchical clustering is
also known as bottom-up hierarchical clustering, since it starts from the bottom with single-member
clusters (Rokach and Maimon, 2005).

Conventionally, in agglomerative hierarchical clustering the two most similar clusters are merged
in each step, meaning that all of their members now belong to the same merged cluster. However,
Murray et al. (2008) argues this may lead to a "snowball effect", inflating the size of a few clusters.
This effect is deemed unwanted as it might interfere with the detection of short periods of stable
topography. The AAHC method is specifically designed to counteract this snowball effect.

3This is also described in the Cartool help pages by Denis Brunet.
4In the toolbox we have made polarity invariance optional, to enable customisation.
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Instead of merging similar clusters, AAHC finds the "worst" cluster, disbands (atomises) it, and
assigns each of its members to the cluster they is most similar with. In AAHC the worst cluster is
defined as the one that has the smallest contribution to the quality of the clustering, as measured by
the sum of global explained variance5 (GEV) of its members (Murray et al., 2008):

GEV(k) =
N∑

n

GEVn, for ln = k. (7)

In other words, what makes AAHC different from standard agglomerative clustering is that the
members of the removed cluster can join different clusters. This unfortunately also means that you
are not able to straightforwardly create a dendrogram, which, though not vital for selecting how many
microstates to use, could be used to analyse the structure of the clustered data.

As mentioned earlier, the only difference between TAAHC and AAHC is in how they measure the
quality of the clustering. Where the AAHC uses the GEV, TAAHC uses the sum of correlations as
seen in (6). This means that TAAHC does not account for the strength of the maps, but only for the
similarity of their topographies. Though their definition of cluster quality is the only conceptual
difference, it has the effect that the single-member initialisation of TAAHC becomes stochastic,
instead of deterministic like AAHC (see section 2.3.1).

TAAHC is stochastic when it initialises using single-sample clusters since all clusters will have a
correlation of 1 with their prototypes (because the prototypes are equal to their single member). All
clusters are therefore equally bad (or good) and the first "worst" cluster to atomize has to be chosen
at random. The AAHC method uses GEV, that weighs the correlation by the global field power
(GFP, see section 2.2.1), to find the worst cluster. It is unlikely that two samples have precisely
similar GFP, which makes AAHC deterministic. Because of these differences the AAHC has been
made available in the toolbox. To ensure determinism, a special initialisation scheme was introduced
for TAAHC, as described in section 2.1.3.

Compared to traditional hierarchical clustering it is also an important difference in how the
(T)AAHC methods measure similarity (or determine the worst cluster). In standard hierarchical
clustering, it is common to use at either the similarity between the cluster prototypes or use the
average of all pairwise similarities between cluster members, making the similarity measures indepen-
dent of the amount of members a cluster has. However, in (T)AAHC the worst cluster is found by
summing the correlation or GEVn (see (6) and (7)) for each cluster member. This way clusters are
"awarded" for having more members, even if they are a bad fit.

So even though AAHC was introduced with the aim of preventing a snowball effect (of large
clusters absorbing smaller clusters) it might have inadvertently created a different kind of snowball
effect in its method for deciding which cluster to atomise. To our knowledge the effect of these
differences have not been investigated in published articles.

2.1.5 Experimental algorithms

We have chosen to collect clustering methods that are not known in the microstate community in
a submenu, to avoid cluttering the algorithm selection menu. Currently an unpublished method,
Variational Microstate Analysis, is implemented in the toolbox, and is selectable under Experimental
algorithms. This submenu is also intended for future experimental clustering methods for microstate
analysis.

2.2 Selecting the number of microstates using measures of fit

Though selecting the number of microstates to use is an important choice, it is not a straightforward
choice to make. In many situations there is not a single correct answer, but instead many numbers

5See section 2.2 for more information on GEV

8

.CC-BY-NC 4.0 International licensenot peer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/289850doi: bioRxiv preprint first posted online Mar. 27, 2018; 



of microstate clusters that are able to explain your data well. One of the issues is deciding how
to measure and validate how well your clusters explain your data (see e.g. Tibshirani and Walther,
2005).

Measures of fit are used to estimate how well different microstate segmentations explains (or fit)
the EEG, used to estimate the prototypes. In microstate analysis one of the common approaches
to decide on the amount of microstates clusters, is to calculate four measures of fit and then make
a qualitative decision based on these measures and the quality of the topographical maps of the
microstates (e.g. do they look physiologically feasible?).

Since the toolbox makes microstate analysis available in Matlab, it is also possible for users to
create their own tests for selecting the amount of microstate prototypes. This would also make it
possible to use cross-validation6, which is a way control that your segmentation reflects neural activity
related to the condition the EEG was recorded under, instead of unrelated recording noise. Briefly,
in cross-validation one divides the EEG into a training set (e.g. 90% of the EEG), for estimating the
microstate prototypes, and a test set to test how well the prototypes fit this unrelated data7.

Below, we will briefly describe the five measures of fit available in the toolbox and refer to Murray
et al. (2008) for further discussion on this topic.

2.2.1 Global explained variance

Global explained variance (GEV) is a measure of how similar each EEG sample is to the microstate
prototype it as been assigned to. The higher the GEV the better. It is calculated as;

GEVn =
(Corr(xn, aln) ·GFPn)

2

∑N
n′ GFP2

n′
, (8)

where GFPn is the global field power, which is calculated as the standard deviation across all elec-
trodes of the EEG for the n’th time sample (Murray et al., 2008). The GEV can be seen as the
squared correlation between the EEG sample and its microstate prototype weighted by the EEG
sample’s fraction of the total squared GFP:

GEVn = Corr(xn,aln)
2 · GFP2

n∑N
n′ GFP2

n′
. (9)

To calculate the GEV for a given cluster, you sum the GEV of each of its members. To use GEV
as a measure of fit for a microstate segmentation, you sum the GEV of all samples included in the
segmentation.

2.2.2 Cross-validation criterion

The cross-validation criterion (CV) was introduced in Pascual-Marqui et al. (1995). This measure is
related to the residual noise, ε, and the goal is therefore to obtain a low value of CV.

CV = σ̂2 ·
(

C − 1

C −K − 1

)2

, (10)

where σ̂2 is an estimator of the variance of the residual noise calculated as:

σ̂2 =

∑N
n xᵀ

nxn −
(
aᵀlnxn

)2

N(C − 1)
. (11)

6Be careful not to confuse cross-validation with the CV criterion, which is a measure of fit.
7We recommend reading up on cross-validation before attempting it, as it is possible to make unintentional mistakes,

that breaks the division between training and test set.
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2.2.3 Dispersion

Dispersion (W) is a measure of average distance between members of the same cluster. For a mi-
crostate segmentation with K clusters, the dispersion,WK is calculated as the sum of squares between
the members of each microstate cluster:

Sk =
N∑

n

N∑

n′
||xn − xn′ ||2, for ln = k ∧ ln′ = k (12)

WK =
K∑

k

Sk
2Nk

. (13)

WK can be considered as an error measure, where the lower the better. It usually decreases
monotonically when increasing the number of clusters, since the cluster prototypes can then be closer
to its members. It is therefore not a good measure of fit by itself since it will usually encourage using
as many clusters as possible.

Note that the sum of squares calculated in (12) is not a polarity invariant measure. Since it takes
polarity into account, it might not be a suitable measure of fit for polarity-invariant methods such as
modified K-means and (T)AAHC.

2.2.4 Krzanowski-Lai criterion

The Krzanowski-Lai (KL) criterion was introduced in Krzanowski and Lai (1988), as a means of
selecting how many clusters to use based on the dispersion measure. High values of KL usually
indicates an optimal number of clusters.

Though the WK usually decreases monotonically there often exists an "elbow", where the curve
flattens. This elbow signifies that there is a drop in the benefit of adding more clusters, and is
therefore often chosen as the optimal number of clusters. The KL criterion is a method for detecting
such an elbow by looking at the changes in WK :

DIFF(K) = (K − 1)2/CWK−1 −K2/CWK (14)

KL(K) =

∣∣∣∣
DIFF(K)

DIFF(K + 1)

∣∣∣∣ . (15)

The KL criterion attains large values when an elbow in the WK curve occurs.
In our toolbox we have added the rule that KL(K) is set to zero when WK −WK−1 is positive,

since this indicates that WK increased instead of decreasing.
Please note, that since the KL is based on WK it is also not a polarity invariant measure and

might not be a suitable measure of fit for polarity-invariant methods such as modified K-means and
(T)AAHC. However, since the KL is "just" a method for finding the elbow in the WK curve, it could
be altered to find the elbow in the curve of the measure optimised for by the chosen algorithm. E.g.
the modified K-means seeks to optimise the CV criterion, AAHC optimises for GEV and TAAHC
optimises for CorrSum(k), (6). This feature has not been implemented in the toolbox, but due to the
open nature of EEGlab and our an effort to document the code, it should be possible for the user to
customise the toolbox.

2.2.5 Normalised Krzanowski-Lai criterion

The normalised Krzanowski-Lai (KLnrm) criterion was introduced in Murray et al. (2008) as an
adaptation of the original formula, with the intent of computing a normalised curvature of W. It is
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defined as:

DK = K2/CWK − (K + 1)2/CWK+1 (16)

KLnrm(K) =
DK−1 −DK

(K − 1)2/CWK−1
. (17)

In order to only focus on the convex part of the WK curve, KLnrm is set to zero when DK−1 < 0 or
DK−1 < dK .

The main difference between the two KL measures is that the original is a ratio of change in the
dispersion function, where the normalised version look at the difference in the change of dispersion.
This means that the two measures are not linearly correlated and that they react differently to
dispersion curves. Both measures are therefore made available in the toolbox.

Please note that, like the KL, the KLnrm is also not a polarity invariant measure and might not
be a suitable measure of fit for polarity-invariant methods such as modified K-means and (T)AAHC.

As a side note on references, Tibshirani and Walther (2005) is often referenced when the KL
criterion is used, however this article focuses on using new methods to asses the number of clusters
instead of using the KL criterion. We suggest referencing Murray et al. (2008) when using the KLnrm
criterion8, and the original article, Krzanowski and Lai (1988), when using the KL criterion.

2.3 Settings for microstate clustering

Most clustering algorithms has some settings that influence how they perform in segmenting data.
In this section we will explain what some of the important settings of clustering algorithms do, and
why they are relevant.

2.3.1 Multiple restarts of algorithms

In the introduction of this methods section it was mentioned that some algorithms gives a different
result every time they are run, even with the same settings. To explain the reason for this it is
necessary to make a distinction between deterministic and stochastic algorithms.

As the name implies, a deterministic algorithm is an algorithm that always give the same result,
when its settings and the data stay the same. In other words there is no randomness in the algo-
rithm. If there is randomness somewhere in the algorithm, it is stochastic. This randomness is often
introduced in how the algorithm is initialised.

When using K-means or modified K-means for microstate analysis, the cluster prototypes are
often initialised by selecting EEG samples. There is usually not one true way of selecting which EEG
samples to use for prototypes, so a common approach is to select the EEG samples at random, making
the algorithm stochastic.

Though it would be tempting to always select the EEG samples in the same manner to ensure
determinism, it runs the risk of obtaining an inferior result. By restarting the stochastic algorithm
multiple times, you are able to test multiple segmentations on the same dataset and select the best
restart based on e.g. GEV. The downside is that you are not guaranteed to obtain the same segmen-
tation every time the algorithm is run.

How many restarts to use is a trade-of between computation time, and how likely you are to
converge on the same optimal solution. In the toolbox 10 restarts are used by default.

2.3.2 Stopping criteria: Convergence and maximum iterations

Some algorithms, like K-means, work by repeating multiple steps in iterations, which means that
it will keep iterating until some stopping criteria is met. One of these criteria is the convergence

8The KLnrm is the criterion implemented in stand-alone microstate software, CARTOOL.
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threshold, which stops the algorithm when the relative change in error between iterations drops
below the threshold. By default this is set to 10−6 in the toolbox.

Again there is a trade-of between computation time and precision of the segmentation, for which
reason it is also possible to set a maximum number of iterations before stopping. By default the
toolbox has a maximum number of iterations set to 1000.

2.4 Backfitting microstates to new EEG

When you have obtained microstate prototypes from your chosen clustering method, you might wish
to see how well some other recordings fit with these prototypes. This is relevant, e.g., when working
with spontaneous recordings, where you can’t reduce the noise levels through averaging trials. Instead
you only give the clustering algorithm time samples that peaked in the GFP time curve, as they are
assumed to have the "cleanest" representations of their microstate. After obtaining the prototypes it
is then relevant to see which microstate all prototypes likely belong to.

Backfitting is assigning a microstate labels to EEG samples based on which microstate proto-
type they are most topographically similar with. This similarity can be measured using global map
dissimilarity (GMD).

The GMD, which is also known as DISS (Murray et al., 2008), is a distance measure that is
invariant to the strength of the signal and instead only looks at how similar the topographical maps
look. For two EEG samples, xn and xn′ , GMD is calculated as:

GMD =

∣∣∣
∣∣∣ xn
GFPn

− xn′
GFPn′

∣∣∣
∣∣∣

√
C

. (18)

By normalising with GFP, two EEG samples that belong to the same microstate, but have different
strength, will achieve a low GMD distance.9

2.5 Temporal smoothing

EEG recordings are known to contain a lot of unwanted noise, especially in spontaneous recordings
where the noise can’t be averaged out like with ERPs. This noise can contribute to short (i.e. few or
single-sample) microstate segments appearing after clustering or backfitting. One way to address this
is to use temporal smoothing, where an EEG sample is not only assigned to a microstate class based
on topographical similarity with the prototype, but also based on the microstate labels of samples
prior and following the EEG sample.

The most commonly used clustering algorithms in microstate analysis do not take the temporal
order of the EEG samples into account. Therefore the temporal smoothing will be done as a processing
step after the microstate segmentation has been run.

Currently there are two variations of post-segmentation smoothing implemented in the toolbox;
windowed smoothing and small maps rejection.

2.5.1 Windowed smoothing

This variation of temporal smoothing of microstate segments was introduced in Pascual-Marqui et al.
(1995).

The microstate segments are smoothed by updating the microstate labels using a distance measure,
that is a trade-off between optimising the best fit to data and temporal smoothness of the labels.

9Note that the article Lehmann and Skrandies (1980) is often cited for introducing GMD, and while it does introduce
the concept of measuring topographical similarity between two microstate time samples, it does not introduce the
equation. See e.g. Michel et al. (2009); Murray et al. (2008) for the equation and more information on GMD.
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This distance measure is obtained by adding a bonus term for temporal smoothness to the distance
measure expressed in (5);

d2kn = xᵀ
n · xn − (xᵀ

n · ak)2 − λ · bkn, (19)

where bkn is equal to the amount of samples that has the microstate label k in a window surrounding
the n’th sample, and λ denotes how strongly to weigh smoothness.

This method of smoothing needs the user to set two parameters; λ and the width of the window
used. Pascual-Marqui et al. (1995) suggets to set λ to 5, and the window width to three samples (on
each side of the current sample), however, the optimal settings might vary between datasets, e.g.,
due to varying sampling frequency or recording conditions. To find the optimal smoothing settings
it would therefore be necessary to use cross-validation.

2.5.2 Small segment rejection

For this toolbox, we introduce a method which sets a minimum duration microstate segments are
allowed to last. The algorithm repeatedly scans through the microstate segments and changes the
label of time frames in such small segments to the next most likely microstate class, as measured by
GMD. This is done until no microstate segment is smaller than the set threshold.

2.6 EEG microstate statistics

Parsing the EEG data into microstates (i.e. labelling of the EEG data with respect to the best
fitting microstates classes) offers a rich set of statistical parameters with potential neurophysiological
relevance. These statistical parameters can be divided into parameters about the activation strength,
the spatial configuration and the temporal attributes of microstates. The strength of the average
global activation during a given microstate k is defined by its average GFP of all EEG samples
assigned to microstate k :

GFPk =
1

Nk

N∑

n

GFPn, for ln = k, (20)

where Nk is the number of samples assigned to cluster k. See section 2.2.1 for more information
regarding GFP.

The average GEV (see equation 8 and 9) and the average spatial correlation (between microstate
prototype maps and their assigned EEG samples) reflect to what extent the microstate protoypes can
explain the data. Where GEV looks at both the strength of the EEG and the spatial fit, the average
spatial correlation only looks at the spatial fit.

GEVk =
1

Nk

N∑

n

GEVn, for ln = k (21)

Corrk =
1

Nk

N∑

n

Corr(ak,xn), for ln = k (22)

=
CorrSum(k)

Nk
(23)

Note that in the toolbox the correlation is polarity-invariant, i.e. non-negative.
The basic temporal dynamics of microstates are described by Occurrence(k), Duration(k), and

Coverage(k). In the toolbox these are calculated using run-length encoding. Occurrence(k) reflects
the average number of times per second a microstate is dominant, the Duration(k) is defined as the
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average duration of a given microstate (in milliseconds), and the Coverage(k) reflects the fraction of
time a given microstate is active.

In addition to these basic statistical parameters, the transition probabilities between microstates
can be derived to quantify how frequently microstates of a certain class are followed by microstates of
other classes. There are (at least) two variants of this statistic, one where the transition probabilities
are not corrected for different number of occurrences of microstates (i.e. base rates of microstates)
and one which adjusts for the base rate probabilities. Note that only the former version is currently
implemented in the toolbox.

3 Guide to the Toolbox

In this part, we provide a practical guide how to conduct EEG microstate analyses using the EEGlab
toolbox. Figure 1 provides an overview of the specific processing steps pertinent to the analysis of
spontaneous EEG data and for event-related potential (ERP) data with the corresponding Matlab
functions and typical arguments that have to be passed to the functions. In the subsequent sections
we will provide a more thorough tutorial that shows how to analyse a small dataset of spontaneous
EEG data (see 3.1). We would like to emphasise that our choices regarding algorithms, settings, and
even the whole work-flow itself are based on our experience and not on empirical evidence, which is,
to the best of our knowledge, lacking so far.

3.1 Tutorial: Microstate Analysis on spontaneous EEG data

This tutorial will demonstrate how to use the graphical user interface (GUI) of the Microstate Toolbox
for EEGLAB to perform a microstate analysis on a small set of spontaneous EEG data with four
subjects. The data used for this tutorial can be downloaded here: https://archive.compute.
dtu.dk/files/public/users/atpo/Microstate (∼ 350 Mb). The archive also contains the newest
version of the toolbox and this guide. With this dataset, it should be possible to reproduce the actions
discussed in the tutorial and to obtain similar results as shown in the figures and outputs.

To be able to use the Microstates Toolbox presented in this tutorial, Matlab and EEGLAB
(Delorme and Makeig, 2004) needs to be installed and the tutorial data should be stored in an
accessible folder. To install the toolbox, simply unzip the toolbox into your MATLAB/eeglab/plugins
folder. The toolbox is tested with Matlab version 2015b or later and EEGLAB version 14.0.0 or later.

3.1.1 Description of the tutorial dataset and completed preprocessing steps

The tutorial data consists of EEG from 4 subjects (with the original IDs: A00062279001, A00062578001,
A00062842001, A00062219001) of the age group 25-44 from the data sharing paper by Langer et al.
(2017)10. The datasets have been preprocessed using the Automagic11 artefact correction (with the
standard settings) and have been filtered with a highpass filter of 1 Hz and a lowpass filter of 30 Hz
using the standard settings of pop_firfiltnew() from EEGLAB 14.0.0b.

3.1.2 Automatising analysis steps for multiple datasets

After finishing this tutorial, the reader may imagine that conducting the analysis steps using the
GUI for larger datasets may become a tedious and an error-prone endeavour. A more efficient and
reproducible way of conducting the same analyses can be accomplished using a MATLAB script that
calls the functions that perform the specific processing steps for all datasets as a batch process. Such

10The original, raw-data is available at http://fcon_1000.projects.nitrc.org/indi/cmi_eeg/eeg.html
11Available at https://github.com/amirrezaw/automagic
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2. Select data for microstate analysis
Select and aggregate data across subjects by concatena-
ting EEG maps at GFP peaks

pop_micro_selectdata.m
’datatype’, ’Continuous’
’avgref’, 1
’normalise’, 1
’MinPeakDist’, 10
’Npeaks’, 1000
’GFPthresh’, 1
’dataset_idx’, 1:4

3. Microstate segmentation
Segment EEG maps at GFP peaks into microstates

pop_micro_segment.m
’algorithm’, ’modkmeans’
’Nmicrostates’, 2:8
’Nrepetitions’, 50
’Optimised’, 1

4. Review and select microstate segmentation
Review the topographies of microstate prototypes and the 
fit measures to select the number of microstates for back-
fitting

MicroPlotTopo.m
pop_micro_selectNmicro.m

5. Import microstate prototypes
Import microstate prototypes from the microstate segmen-
tation to the datasets that should be back-fitted

pop_micro_import_proto.m

6. Back-fit and temporally smooth microstates 
on EEG 

pop_micro_fit.m
’polarity’, 0
pop_micro_smooth.m
’label_type’, ’backfit’
’smooth_type’, ’reject segments’
’minTime’, 30
’polarity’, 0

7. Calculate microstate statistics

pop_micro_stats.m
’label_type’, ’backfit’
’polarity’, 0

1. Preprocessing

a. Artefact correction (e.g. Automagic)
b. Filtering (e.g. 1 - 30 Hz) pop_filtnew.m
c. Optional: Extract epochs of interest pop_epoch.m

2. Select data for microstate analysis
Select and aggregate data across subjects by concatena-
ting the grand average ERPs

pop_micro_selectdata.m
’datatype’, ’ERP’
’avgref’, 1
’normalise’, 1
’dataset_idx’, 1:4

3. Microstate segmentation and temporal 
smoothing
Segment grand average ERPs into microstates and tem-
porally smooth the solution
pop_micro_segment.m
’algorithm’, ’kmeans’
’Nmicrostates’, 2:8
’Nrepetitions’, 50
’Optimised’, 1
pop_micro_smooth.m
’label_type’, 'segmentation'
’smooth_type’, ’reject segments’
’minTime’, 30
’polarity’, 1

4. Review and select microstate segmentation
Review the topographies of microstate prototypes and the 
fit measures to select the number of microstates for back-
fitting

MicroPlotTopo.m
pop_micro_selectNmicro.m

5. Import microstate prototypes
Import microstate prototypes from the microstate segmen-
tation to the datasets that should be back-fitted

pop_micro_import_proto.m

6. Back-fit and temporally smooth microstates 
on EEG 

pop_micro_fit.m
’polarity’, 1
pop_micro_smooth.m
’label_type’, ’backfit’
’smooth_type’, ’reject segments’
’minTime’, 30
’polarity’, 1

7. Calculate microstate statistics

pop_micro_stats.m
’label_type’, ’backfit’
’polarity’, 1

1. Preprocessing

a. Artefact correction (e.g. Automagic)
b. Filtering (e.g. 1 - 30 Hz) pop_filtnew.m
c. Optional: Extract epochs of interest pop_epoch.m
d. Optional: Baseline removal pop_rmbase.m

Spontaneous EEG data Event-related potential data

Figure 1: Schematic overview of a workflow for spontaneous EEG and ERP data.

scripts can be easily compiled using EEGLAB’s history command eegh12. Furthermore, a script that
12see https://sccn.ucsd.edu/wiki/Chapter_02:_Writing_EEGLAB_Scripts for a description on using this com-

mand
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Figure 2: Datasets loaded into EEGLAB.

performs the exact analysis steps of this tutorial is provided in appendix B.

3.2 Outline

To recap, the goal of a microstate analysis is to parse EEG maps into microstate prototypes and
re-express the spatio-temporal characteristics of the EEG time series by means of the microstate
prototypes. Thus, the first step (after loading the data) is to derive a set of microstate prototypes by
clustering the EEG data into as few as possible microstate prototypes that account for as much as
possible variance in the EEG data. For the microstate analysis of spontaneous EEG, such as resting
state data (as opposed to time-locked EEG data), the amount of data is typically reduced by only
using the EEG maps, where the GFP is peaking. This reduces the number of EEG maps that enter
the analysis (and hence the processing time) and discards maps of low signal-to-noise ratio. The
selected EEG at GFP peaks enters a clustering algorithm that groups it into a small set of classes
based on topographic similarity and calculates for each microstate class a topographical prototype,
the so called microstate prototype.13 After obtaining the microstate prototypes, the topography of
each EEG sample is labelled as belonging to one of these classes, and the EEG signal is re-expressed
as a sequence of microstate classes. Finally, statistics about the sequence of microstate classes, such
as their frequency of occurrence or average duration can be calculated. These statistics are typically
submitted to further statistical analyses such as group comparisons.

3.3 Data selection and aggregation

3.3.1 Loading datasets in EEGLAB

Start EEGLAB and load each of the four datasets with Load existing dataset14. This step has
to be repeated for each dataset. All loaded datasets can be viewed and selected from the Datasets
menu (see Figure 2).

13 Given that the selected EEG maps at GFP peaks are temporally independent, the clustering algorithm ignores
information about the order of their appearance, which is the reason that we do not apply temporal smoothing to the
segmentation, in contrast to the microstate segmentation of event-related EEG.

14See https://sccn.ucsd.edu/wiki/Chapter_01:_Loading_Data_in_EEGLAB for details on installing and starting.
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(a) Settings for selecting data for segmentation. (b) Aggregate from multiple datasets.

Figure 3: Select your settings for the data to be segmented. If you are aggregating from multiple datasets,
another window will prompt you to select which datasets to aggregate from, and a new dataset will be created.

3.3.2 Select data for microstate segmentation

Before starting the microstate segmentation, it is necessary to specify the data of which the microstates
will be derived from. Since, we are typically interested in obtaining microstate prototypes that
explain variance in datasets consisting of more than one subject, the toolbox provides functions to
aggregate EEG from multiple datasets into one dataset. This dataset is then used to derive microstate
prototypes from.

To select data, open the menu Tools/Microstates/Select data for microstate analysis.
This will open a window (Figure 3a), which allows you to select the following options (with suggested
settings):

• Data type: By selecting Spontaneous - GFP peaks, EEG maps that represent peaks in the GFP
time curve will be used for segmentation. By selecting ERP, EEG from all time points will be
used. If the dataset contains multiple epochs/trials, these will be averaged into one average
epoch (i.e. a grand average ERP). Since the data used for this tutorial stems from spontaneous
EEG, we set the data type to Spontaneous.

• Select and aggregate data from other datasets: This option allows to perform the microstate
segmentation on EEG from multiple datasets. In the case of Spontaneous data, for each sub-
ject, a selection of defined number of EEG maps at GFP peaks is randomly extracted and
concatenated to one new dataset15. This option will open a new window, where the datasets
that are already loaded into EEGLAB are listed and can be selected. Note, if this option is not
selected, the segmentation is only performed on the currently active dataset.

• Calculate average reference: We advise to reference the data to average reference. Michel et al.
(2009) discuss why it is a good idea to use the average reference.

• Normalise dataset(s): This option will normalise each dataset with by the average channel
standard deviation within each dataset. This makes the amplitude of the EEG comparable
between recordings, which might help weighing each dataset equally in the microstate clustering.
However, if the data contains high amplitude artefacts the normalisation might skew the weight
given to each dataset. For this walk-through we will not select this option.

• Settings for the extraction of GFP peak maps - These are only relevant and active when selecting
spontaneous data:

15In the case ERP has been selected, the epochs/ERPs from each dataset are either averaged into one grand average
ERP or are concatenated in time (resulting in one long epoch).

17

.CC-BY-NC 4.0 International licensenot peer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/289850doi: bioRxiv preprint first posted online Mar. 27, 2018; 



(a) Select clustering algorithm. (b) Settings for modified K-means.

Figure 4: Settings for microstate segmentation. After selecting a clustering algorithm, another window will
appear with settings specific to the selected algorithm.

– Minimum peak distance (ms): Defines what the minimal distance between GFP peaks can
be. This is to ensure only using distinct peaks. We set the minimum peak distance to 10
ms.

– No. of GFP peaks per subject that enter the segmentation: Indicates how many GFP
peaks are maximally extracted per dataset. We choose to extract EEG samples from 1000
randomly selected GFP peaks for each subject.

– Reject peaks over threshold : Discards maps with a GFP that exceeds X times the standard
deviation of the GFPs of all maps. This option exists because maps with extreme GFPs
often include artefacts of non-neural origin with high amplitudes. Here we will reject maps
with GFP that exceeds 1 times the standard deviation of GFPs. Note that this rather low
threshold prevents from an unwanted influence of outliers that can occur when analysing
data from only four subjects. If there are few GFP peaks available per subject, it may be
reasonable to select higher values for this setting.

Confirm the settings by clicking Ok. A new window Select datasets to aggregate (see Figure
3b) appears to select the datasets to include in the analysis. Use the Shift or Ctrl keys to select
multiple datasets and confirm your selection by clicking Ok. A new dataset will be created called
MicroGFPpeakData (which is now listed under Datasets) that includes the EEG extracted and
aggregated based on the GFP peaks.

Please note, that we are going to estimate microstate prototypes based on GFP peaks selected at
random, and there will therefore likely be slight differences in the resulting microstates compared to
the ones illustrated on figures 5b and 9b. We experienced converging results when using 1000 peaks
per subject for this specific dataset. However, note that for other datasets it may be necessary to
take more GFP peaks.

3.4 Microstate segmentation

In this step, the selected EEG (in our case aggregated GFP peaks from four subjects found in Datasets:
MicroGFPpeakData) is segmented into a predefined number of microstate prototypes with the goal
of maximising the similarity between the EEG samples and the prototypes of the microstates they
are assigned to. How this similarity is measured is dependent on the chosen clustering algorithm (see
section 2.1).

Make sure that the dataset MicroGFPpeakData is the currently active dataset (indicated by a
tick in the menu Datasets) before opening the menu Tools/Microstate analysis/Segment into
microstates to select (Figure 4a).

As we are working with spontaneous EEG data, we will choose the modified K-means algorithm16,
16The (T)AAHC algorithms are also polarity invariant and could be used. The K-means algorithm implemented in

this toolbox, however, accounts for polarity because it uses the Euclidean distance as a similarity measure. K-means is
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(a) Select which segmentations to plot. (b) Prototype topographies from 2 to 8 clusters.

Figure 5: A qualitative assessment of the prototype topographies can be used to decide how many clusters to
use. Note that since modfied K-means is polarity-invariant the prototypes for different segmentations might be
inverted as is the case for prototype number 1 for 2 and 3 clusters.

since it ignores the polarity of the EEG topography (Pascual-Marqui et al., 1995; Michel et al., 2009;
Wackermann et al., 1993; Lehmann, 1971).

By default the microstate prototypes are sorted by decreasing Global explained variance. The sort-
ing is done after the clustering and does not affect the segmentation. We set the sorting to its default
setting and set the Number of microstates to cluster the EEG data into from 2 to 8 microstate proto-
types (which seems reasonable considering that a majority of studies find four microstate prototypes
to be most adequate to describe resting EEG data).

It is possible to Normalise EEG before segmentation by the average channel standard deviation,
as was the case in Select data for microstate analysis. However, here the normalisation will
be done across the entire dataset and only for the segmentation, i.e. the stored data will not be
changed. This could be relevant, if one wanted to keep the dynamic ranges between datasets by not
normalising during data aggregation, but still wanted to help the clustering methods that sometimes
assume unit standard deviation. For the same reasons as earlier, we will leave the option unchecked
for this walk-through.

After confirming the settings with Ok an additional window will open (Figure 4b), in which we
can set parameters for the modified K-means algorithm. As mentioned in section 2.3 the first three
settings reflect a trade-off of reproducibility versus computation time.

In general, it is advisable to set as high an amount of No. of random initializations as com-
putationally feasible to obtain a replicable result. This can be tested by repeatedly running the
segmentation and comparing the topographies of the resulting microstate prototypes. If the algo-
rithm reaches the pre-set Maximum number of iterations for all restarts (as can be observed in the
output on the command window in Matlab), it is recommended to increase this value. The Measure
of fit for selecting best segmentation defines how to decide which of the N restarts obtained the best
clustering. As modified K-means seeks to optimise the clustering based on the CV criterion, we will
also set this as the measure of fit.

We Use optimised segmentation to employ the optimised iteration scheme for modified K-means

therefore better suited for ERP analysis, where one might want to take polarity into account.
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(a) Select which measures of fit to plot.

(b) Separate subplots. (c) Using same figure.

Figure 6: Select active number of microstates based on measure of fit. These can either be plotted on individual
subplots or in the same figure. If plotted together, the plotted measures of fit are normalised to lie in the range
[0; 1]. When clicking Ok, the segmentation from with the No. of microstates will become the active segmentation.

that is introduced in appendix A. We use this new iteration scheme, since our preliminary tests
indicate that it is much faster and is slightly better at representing the EEG as microstates. The
excat computational speedup depends on the dimensionality of the segmented data, but for the
present data the optimised iteration scheme results in a computational speed-up by a factor of ∼5.
We will use this speed-up to increase the Maximum number of iterations to 50 and leave the other
two settings to their default values.

3.5 Review and select microstate segmentation

After having clustered the EEG with multiple numbers of microstate clusters it is necessary to select
which number of clusters to use for further analysis. In microstate analysis, this is often decided
based on a qualitative evaluation of the prototype topographies and measures of fit. In some study
that analyse spontaneous EEG, while participants are at rest, 4 clusters are chosen, based on previous
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Figure 7: Import microstate prototypes from the MicroGFPpeakData dataset into the current dataset.

results, summarized in (Michel and Koenig, 2017).

3.5.1 Plot microstate prototype topographies

To review the result of the microstate segmentations for different numbers of microstates, we look
at the quality of the microstate prototypes topographies by selecting Plot microstate prototype
topographies. This opens a figure as seen on Figure 5b that shows the microstate prototype topogra-
phies of each microstate segmentation, sorted by the measure selected in Segment into microstates
from left to right. The qualitative assessment of the microstate prototypes can, e.g. be based on if
the same microstate segmentation contains prototypes with very similar topography or whether the
topographies seem physiologically feasible.

3.5.2 Select active number of microstates

In addition to selecting the number of microstates based on the topographies, we should review
the quality of the different microstate segmentations with respect to the goodness of fit. There are
various measures for this as explained in section 2.2. Since these measures are calculated in different
ways, segmentations that score well with one measure do not necessarily score just as well with other
measures. Importantly, the fit measures W, KL and KLnorm are not polarity-invariant, as it is
assumed in the segmentation of spontaneous EEG data. Therefore, we should only use the GEV and
the CV criterion to review the goodness of fit of our microstate segmentations. To do this, open
the menu Tools/Microstate Analysis/Select active number of microstates (Figure 6a) and
deselect W, KL and KLnorm and only select GEV and CV and click Ok.

A new figure shows the measures of fit plotted for the different microstate segmentations. This is
either plotted on subplots (Figure 6b) or normalised together (Figure 6c), depending whether we have
previously selected Plot measures on separate subplot. If plotted together, each measure is normalised
independently to lie between 0 and 1.

The decision for the right number of clusters obviously reflects a trade-off between the goodness of
fit and the complexity a high number of microstates brings to the segmentation. The GEV criterion
theoretically (and most of the time effectively) becomes monotonically larger, when increasing the
number of clusters, and it is therefore a question of stopping when adding another cluster does not
bring a significant benefit.

Note that it can happen that the GEV does not monotonically increase. This indicates that the
segmentation has not arrived at the best clustering solution, which might be overcome by increasing
the number of restarts and maximal number of iterations and decreasing the threshold for convergence
to ensure the best solution is obtained for each number of microstates. while the GEV does not account
for complexity (i.e. degrees of freedom), the CV criterion does. However practically, the CV criterion,
pointing to the best clustering solution at its smallest value, often reaches such a minimum only with
large numbers of clusters, which are difficult to interpret.
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(a) Select which labels to smooth and how. (b) Settings specific for small segments rejection.

Figure 8: Temporal smoothing microstate labels. The microstate labels can either stem from prototypes
backfitted to EEG, or from the EEG used in the microstate clustering.

In our case an argument could be made for choosing between four and six clusters. We select
using five clusters since it has a good balance between goodness of fit and the number of clusters, as
well as it obtains feasible topographies.

3.6 Back-fit microstates on EEG

Now that we have selected the number of microstate prototypes, we are ready to fit the microstate
prototypes back to all of the EEG (and not only the GFP-peak data we selected for segmentation).
In this processing step, we essentially label the EEG data with the class of the microstate prototype
that is most similar. To do this we need to import the microstate prototypes to the dataset to which
the prototypes are backfitted to.

We start by changing the active dataset in Datasets to the first dataset (Subject1). We want
to import the microstate prototype topographies we just obtained, which is stored in the dataset
MicroGFPpeakData. We therefore select Import microstate prototypes from other dataset and
thenMicroGFPpeakData from the list of datasets (see Figure 7). This will add the field microstates.
prototypes to the EEG structure in the Matlab workspace.

As a last step in the back-fitting, we select Backfit microstates on EEG to open a window, in
which we can choose whether we want to ignore polarity when back-fitting. As we are analysing
spontaneous EEG, we want to ignore polarity. So leave this box unchecked and press Ok.

3.7 Temporally smooth microstate labels

In the back-fitting procedure, each EEG sample is assigned to the class of the microstate prototype it
is most similar with. As spontaneous EEG includes noise, it will happen often that consecutive time
frames are labelled differently by chance. In addition, short periods of unstable EEG topographies
occur typically during the change of polarity, even in the same microstate. To reduce these spurious
influences, microstate labels can be temporally smoothed after the back-fitting. To do this we open
the menu Temporally smooth microstates labels (See Figure 8a).

In Smooth labels obtained from: select Backfitting prototypes to EEG. Here we select the smoothing
method Reject small segments.17 Click Ok.

A window opens (Figure 8b), where we can indicate how small microstate segments that we will
tolerate before the EEG samples are redistributed to other microstate clusters. We use the default
settings and click Ok.

17see section 2.5.1 for more information on the two options for temporally smoothing microstate labels.
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(a) Select time range to plot.

(b) GFP of active microstates.

Figure 9: Illustrative figure of the GFP of active microstates for 1,500 ms, from 4,200 ms to 5,700 ms, of the
EEG from the first subject.

3.8 Illustrating microstate segmentation

One might wish to visualise the microstate segmentation. This works especially well for ERP analysis,
where the entire epoch can fit in a single figure. Since we use spontaneous data for this guide we will
instead visualise 1.5 s from subject 1. Figure 9 shows the GFP of the active microstates in the time
range between 4,200 and 5,700 ms of the entire resting EEG dataset for subject 1.

3.9 Calculate microstate statistics

Once we have back-fitted to all of the EEG and temporally smoothed the microstate labels, we can
calculate the statistical properties of the microstates (see section 2.6), including the average GFP in
all time frames of the same microstate class, the occurrence of each microstate class per second, the
average duration, the percentage coverage of each microstate class, the Global Explained Variance
and spatial correlation (i.e. on average how much variance in the EEG data is explained by the best
fitting microstate prototype) and the transition probabilities between microstate classes. To run these
calculations click on Calculate microstate statistics. This will open a window (Figure 10), in
which you select Use labels obtained from Backfitting prototype to EEG and leave the entry for Time
window of analysis empty, so it uses all time frames. Leave the option Account for polarity when
fitting unchecked, as we have not accounted for polarity previously in the analysis.
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Figure 10: Settings for microstate statistics.

The results of the microstate statistics are stored in the microstate.stats field of the EEG
structure in the Matlab workspace. It is then possible for the user to submit these statistics to
further custom analyses.

Repeat all steps in sections 3.6, 3.7 and 3.9 for each dataset. See section 3.1.2 on how to automatise
these steps to avoid going through the steps in the GUI for each dataset.

4 Concluding remarks

The aim of both the toolbox and guide has been to make it easier to adapt to microstate analysis
for researchers new to the field. Both by bringing transparency to the employed methods, and by
supplying an open source toolbox in Matlab.

It is our impression that researchers that are interested in microstate analysis hesitate to adopt
to the field, due to a lack of understanding of the underlying methods. With our guide we hope
to increase understanding of the methods and hopefully clear up some of the confusion that exits
regarding references and miss-citations of articles when citing methods.

By existing in the Matlab framework, the toolbox both makes it easier for users to customise their
analysis to suit their experimental conditions and to make the analysis less tedious by being able to
create script that can loop the analysis over an entire cohort of subjects and different conditions. We
have also sought to thoroughly document the code of the toolbox. Both so users can see how the
algorithms are implemented to increase transparency, but also it makes it easier to add new methods
to the toolbox in the future.

This manuscript has been intended both as a guide to the toolbox and as an overview of the
methods employed in the field of microstates. Therefore, if you have things that you feel are missing
or find errors in either guide or the toolbox, please lets us know.
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A Optimised iteration scheme for modified K-means

The modified K-means algorithm is based on the loss function

E =
N∑

n=1

||xn −
K∑

k=1

akzk,n||2 (24)

which should be minimised under the constraints

zk,n · zk′,n = 0 if k 6= k′

||ak||2 = 1. (25)

The first constraint ensures that a single microstate is active at any given time, while the second
constraint resolves the scaling ambiguity between the a and the z variables. While closed form
optimization is not feasible, we can consider two different iterative schemes.

We can follow a K-means approach as in Pascual-Marqui et al. (1995): Interchange hard assign-
ment and a updates. In this case assume the assignments (each data point is assigned to a component
ln) to be given. In this case we may first optimise the loss function w.r.t. the zln,n variables

ẑln,n = argmin
z
||xn − alnz||2 = aᵀlnxn (26)

Substitute this activation measure in the loss function to obtain

E =

N∑

n=1

||xn − aln(a
ᵀ
ln
xn)||2 =

N∑

n=1

||xn||2 − (aᵀlnxn)
2 (27)

This loss function can now be minimised w.r.t. ak under the unit length constraint, leading to the
eigenvalue problem (

N∑

n=1

δln,kxnxᵀ
n

)
âk = λ1âk (28)

Where the delta function weighted sum
∑N

n=1 δln,k assures that only data points associated with the
component, i.e., ln = k are included.

Alternatively, we may consider an iterative scheme in which we first keep zk,n fixed (i.e., both the
assignments ln and the activities zln,n) and optimise for the scalp maps a. This leads to

ak = argmin
ak

N∑

n=1

δln,k||xn − akzk,n||2 s.t. ||ak||2 = 1

⇒ ak =

∑N
n=1 δln,kxnzk,n

||∑N
n=1 δln,kxnzk,n||

. (29)

Next we obtain new values for ln and zk,n similar to the first approach.

ẑln,n = argmin
z
||xn − alnz||2 = aᵀlnxn

ln = argmin
k

(||xn||2 − (aᵀkxn)
2). (30)

The two approaches lead to different updates for a. The second scheme is slightly faster than the
first and turns out to produce an improved fit when empirically evaluated, see Figure 11.
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Figure 11: Simulation experiment to benchmark the two optimization procedures for modified K-means. Simu-
lated data (N = 2000, K = 10, C = 30) and variable signal-to-noise rations (variance ratios) were analysed using
Nits = 50 iterations (typical convergence took about 20 iterations). A scaled mean square error (MSE) measure
is computed between the noise free signal, X0, and the reconstructed signal, AZ>, as

∥∥X0 −AZ>∥∥2
/ ‖X0‖2.

For this simulated data, the new iteration scheme were on average ∼4 times faster than the original.

B MATLAB code to Tutorial

%% 3 Tutorial: EEG microstates analysis on spontaneous EEG Data
%
% This script executes the analysis steps of the Tutorial described in
% detail in section 3.3 to 3.8 of:
% Poulsen, A. T., Pedroni, A., Langer, N., & Hansen, L. K. (2018).
% Microstate EEGlab toolbox: An introductionary guide. bioRxiv.
%
% Authors:
% Andreas Trier Poulsen, atpo@dtu.dk
% Technical University of Denmark, DTU Compute, Cognitive systems.
%
% Andreas Pedroni, andreas.pedroni@uzh.ch
% University of Zurich, Psychologisches Institut, Methoden der
% Plastizitaetsforschung.

clear;clc;

% start EEGLAB to load all dependent paths
eeglab

%% set the path to the directory with the EEG files
% change this path to the folder where the EEG files are saved
EEGdir = ’~/EEGFiles/’;

% retrieve a list of all EEG Files in EEGdir
EEGFiles = dir([EEGdir ’*.set’]);

%% 3.3 Data selection and aggregation

%% 3.3.1 Loading datasets in EEGLAB
for i=1:length(EEGFiles)

EEG = pop_loadset(’filename’,EEGFiles(i).name,’filepath’,EEGdir);
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[ALLEEG, EEG, CURRENTSET] = eeg_store( ALLEEG, EEG, 0 );
eeglab redraw % updates EEGLAB datasets

end

%% 3.3.2 Select data for microstate analysis
[EEG, ALLEEG] = pop_micro_selectdata( EEG, ALLEEG, ’datatype’, ’spontaneous’,...

’avgref’, 1, ...
’normalise’, 0, ...
’MinPeakDist’, 10, ...
’Npeaks’, 1000, ...
’GFPthresh’, 1, ...
’dataset_idx’, 1:4 );

% store data in a new EEG structure
[ALLEEG EEG] = eeg_store(ALLEEG, EEG, CURRENTSET);
eeglab redraw % updates EEGLAB datasets

%% 3.4 Microstate segmentation
% select the "GFPpeak" dataset and make it the active set
[ALLEEG EEG CURRENTSET] = pop_newset(ALLEEG, EEG, 4,’retrieve’,5,’study’,0);

eeglab redraw

% Perform the microstate segmentation
EEG = pop_micro_segment( EEG, ’algorithm’, ’modkmeans’, ...

’sorting’, ’Global explained variance’, ...
’Nmicrostates’, 2:8, ...
’verbose’, 1, ...
’normalise’, 0, ...
’Nrepetitions’, 50, ...
’max_iterations’, 1000, ...
’threshold’, 1e-06, ...
’fitmeas’, ’CV’,...
’optimised’,1);

[ALLEEG EEG] = eeg_store(ALLEEG, EEG, CURRENTSET);

%% 3.5 Review and select microstate segmentation

%% 3.5.1 Plot microstate prototype topographies
figure;MicroPlotTopo( EEG, ’plot_range’, [] );

%% 3.5.2 Select active number of microstates
EEG = pop_micro_selectNmicro( EEG);
[ALLEEG EEG] = eeg_store(ALLEEG, EEG, CURRENTSET);

%% Import microstate prototypes from other dataset to the datasets that should be
back-fitted

% note that dataset number 5 is the GFPpeaks dataset with the microstate
% prototypes
for i = 1:length(EEGFiles)

fprintf(’Importing prototypes and backfitting for dataset %i\n’,i)
[ALLEEG EEG CURRENTSET] = pop_newset(ALLEEG, EEG, CURRENTSET,’retrieve’,i,’study’,0);
EEG = pop_micro_import_proto( EEG, ALLEEG, 5);
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%% 3.6 Back-fit microstates on EEG
EEG = pop_micro_fit( EEG, ’polarity’, 0 );

%% 3.7 Temporally smooth microstates labels
EEG = pop_micro_smooth( EEG, ’label_type’, ’backfit’, ...

’smooth_type’, ’reject segments’, ...
’minTime’, 30, ...
’polarity’, 0 );

%% 3.9 Calculate microstate statistics
EEG = pop_micro_stats( EEG, ’label_type’, ’backfit’, ...

’polarity’, 0 );

[ALLEEG EEG] = eeg_store(ALLEEG, EEG, CURRENTSET);

end

%% 3.8 Illustrating microstate segmentation
% Plotting GFP of active microstates for the first 1500 ms for subject 1.
[ALLEEG EEG CURRENTSET] = pop_newset(ALLEEG, EEG, CURRENTSET,’retrieve’,1,’study’,0);
figure;MicroPlotSegments( EEG, ’label_type’, ’backfit’, ...

’plotsegnos’, ’first’, ’plot_time’, [4200 5700], ’plottopos’, 1 );

eeglab redraw
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Sleep is characterized by a loss of behavioral responsiveness. However, recent research has shown that the sleeping brain is not completely
disconnected from its environment. How neural activity constrains the ability to process sensory information while asleep is yet unclear.
Here, we instructed human volunteers to classify words with lateralized hand responses while falling asleep. Using an electroencephalo-
graphic (EEG) marker of motor preparation, we show how responsiveness is modulated across sleep. These modulations are tracked
using classic event-related potential analyses complemented by Lempel-Ziv complexity (LZc), a measure shown to track arousal in sleep
and anesthesia. Neural activity related to the semantic content of stimuli was conserved in light non-rapid eye movement (NREM) sleep.
However, these processes were suppressed in deep NREM sleep and, importantly, also in REM sleep, despite the recovery of wake-like
neural activity in the latter. In NREM sleep, sensory activations were counterbalanced by evoked down states, which, when present,
blocked further processing of external information. In addition, responsiveness markers correlated positively with baseline complexity,
which could be related to modulation in sleep depth. In REM sleep, however, this relationship was reversed. We therefore propose that, in
REM sleep, endogenously generated processes compete with the processing of external input. Sleep can thus be seen as a self-regulated
process in which external information can be processed in lighter stages but suppressed in deeper stages. Last, our results suggest
drastically different gating mechanisms in NREM and REM sleep.

Key words: complexity; EEG; NREM; REM; sensory processing; sleep

Introduction
Sleep can be defined as a state of behavioral unresponsiveness
(Peigneux et al., 2001), but its extent and underlying mechanisms
need to be further specified. Disconnection from the external

world may play a crucial role in memory consolidation, allowing
the brain to turn inward and protect endogenous mechanisms of
neural plasticity from external interferences (Rasch and Born,
2013). Yet, this disconnection potentially comes at the expense of
survival, as a sleeping organism becomes highly vulnerable. It
remains unclear, however, to which extent such disconnection is
implemented and modulated. The influential thalamic gatingReceived March 18, 2016; revised May 11, 2016; accepted May 14, 2016.
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Française de Recherche et Médecine du Sommeil to T.A. We thank Hernan Anllo, Leonardo Barbosa, Virginie Bayon,
Audrey Dalbin, Isabelle Dautriche, Livio de Sanctis, Maxime Elbaz, Louise Goupil, Stéphane Rio, and Chiara Varazzani
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Significance Statement

Previous research has tempered the notion that sleepers are isolated from their environment. Here, we pushed this idea forward
and examined, across all sleep stages, the brain’s ability to flexibly process sensory information, up to the decision level. We
extracted an EEG marker of motor preparation to determine the completion of the sensory processing chain and explored how it
is constrained by baseline and evoked neural activity. In NREM sleep, slow waves elicited by stimuli appeared to block response
preparation. We also used a novel analytic approach (Lempel-Ziv complexity) and showed that the ability to process external
information correlates with neural complexity. A reversal of the correlation between complexity and motor indices in REM sleep
suggests drastically different gating mechanisms across sleep stages.
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hypothesis proposed that behavioral unresponsiveness was
achieved at an early stage, through the blockade of sensory infor-
mation at the thalamic level (McCormick and Bal, 1994). How-
ever, familiar and salient stimuli trigger an awakening more easily
(Oswald et al., 1960; Formby, 1967), suggesting the preservation
of basic sensory processes. Even when sleep is preserved, familiar
stimuli exhibit different brain responses (Perrin et al., 1999). In
recent years, several studies have shown that external informa-
tion processing may extend far beyond automatic operations:
from the detection of semantic incongruity (Bastuji and García-
Larrea, 1999; Ibáñez et al., 2006) or the violation of simple rules
(Ruby et al., 2008; Strauss et al., 2015) to the formation of new
associations (Arzi et al., 2012; de Lavilléon et al., 2015). The cog-
nitive processes involved during sleep therefore appear more
elaborated than previously thought.

However, although these studies have demonstrated the pres-
ervation of cognitive abilities during sleep, the neural mecha-
nisms allowing sleepers to process or isolate from external
stimulations remain unsettled. The role of evoked slow oscilla-
tions, such as K-complexes, a hallmark of NREM sleep, is partic-
ularly unclear (Halász, 2005). K-complexes have sometimes been
related to arousal systems (Siclari et al., 2014) providing windows
of wakefulness to sleepers (Destexhe et al., 2007). Conversely,
they have also been described as local down states (Cash et al.,
2009) entailing large-scale neuronal silencing (Vyazovskiy and
Harris, 2013) and protecting sleep against external stimulations
(Wauquier et al., 1995; Bastien et al., 2000). This tendency neu-
rons have to alternate between periods of activations (up states)
and silencing (down states) (Sanchez-Vives and McCormick,
2000) is termed “neuronal bistability” and has been proposed as a
mechanism limiting sensory processing at the cortical level
(Tononi and Massimini, 2008; Pigorini et al., 2015). Sleep spin-
dles are also thought to enable sleeper’s isolation by blocking
incoming input at the thalamic level (McCormick and Bal, 1994).
However, evidence supporting this hypothesis is scarce (Schabus
et al., 2012), whereas cellular recordings showed remarkably pre-
served responses to sounds during spindles (Sela et al., 2016).

REM sleep, on the other hand, has been far less studied. Par-
adoxically, even if brain activity in REM sleep resembles wakeful-
ness and consciousness is regained (Hobson and Pace-Schott,
2002), sleepers remain largely unresponsive (Ermis et al., 2010).
It has been proposed that dreams themselves would compete and
block the processing of external inputs (Nir and Tononi, 2010),
but direct evidence is still missing.

Here, to explore responsiveness during human sleep, we relied
on a paradigm that aimed at inducing task-dependent responses
in the sleeping brain during naps (Kouider et al., 2014). In prac-
tice, participants fell asleep while categorizing spoken words
with lateralized responses. Using EEG recordings, we explored
whether stimuli elicited brain activations corresponding to the
motor preparation of the correct response (i.e., lateralized read-
iness potential [LRP]) (Masaki et al., 2004; Smulders et al., 2012).
The presence of such LRP implies that stimuli were not only
encoded at the sensory level but also processed at a high level of
semantic representation and propagated up to the preparation of
a motor response (see Kouider et al., 2014). The presence of an
LRP highlights the maintenance of complex distributed pro-
cesses during sleep. Although our previous study was limited
to daytime sleep (nap study), here we investigated all sleep
stages in a full-night protocol. Furthermore, the presence and
magnitude of the LRP was further evaluated in light of brain
activity before and after the stimulus so as to provide novel

insights on how the brain manages to alternatively track its
environment or rather preserve sleep.

Materials and Methods
Participants
Twenty-three right-handed French native speakers (16 females, age
21–31 years) with no history of neurological or sleep disorders partici-
pated to this study. Participants underwent an interview with a sleep
specialist and filled in questionnaires determining their sleep habits and
their propensity to fall asleep in noisy environments. Participants did not
complain of any sleep disorder. They were monitored for 7–10 d before
the recording session through actigraphy and sleep diaries to ensure
regular sleep/wake rhythms. Among these 23 participants, 5 participants
(4 females) were discarded from our analyses either for technical issues
affecting the recordings (N � 1) or because the experiment was aborted
(N � 4, participants experiencing difficulties to fall asleep with auditory
stimulations). The protocol had been approved by the local ethics com-
mittee (Comité de Protection des Personnes, Ile-de-France I, Paris,
France).

Experimental procedure
Task. We adapted a procedure previously used during daytime naps
(Kouider et al., 2014) to a full-night protocol to explore all sleep stages.
On the night of the recordings, participants were equipped for poly-
somnographic recordings. They went to bed, and spoken words in
French were then played in isolation one after the other. These words
referred either to an animal or to an object. Participants were instructed
to perform a semantic-decision task by indicating the category of each
word through right- and left-hand responses. They were asked to cate-
gorize words as long as they were awake and to resume responding in case
of an awakening. Subjects were reminded to do so whenever they awoke
during the night without resuming to respond. However, participants
were explicitly authorized to fall asleep while performing the task. Cru-
cially, three different lists of words were played to participants according
to their vigilance state, as assessed through an online assessment of sleep
stages (see below). A list was played whenever participants were in NREM
sleep, another list was played during REM sleep, and a wake list was
played otherwise (i.e., mainly during wakefulness). Thus, unpracticed
words (i.e., novel words not previously categorized during wakefulness)
were played in sleep to ensure that participants had to access the meaning
of the word to prepare for the appropriate response, without relying on
stimulus-response associations learned while awake.

Stimuli. Stimuli were French spoken words uttered by a female voice.
Lists of 72 words were created each containing 36 words referring to
animals and 36 words referring to objects. Animal and object words were
matched in frequency and number of syllables using the Lexique da-
tabase (New et al., 2004). The attribution of the different lists to a
given vigilance state was counterbalanced across participants. Partic-
ipants received on average 21.7 � 1.0 (mean � SEM across partici-
pants), 25.2 � 0.7, and 6.9 � 0.3 times the words from the wake,
NREM, and REM lists, respectively.

Apparatus. Response-handles were attached to participants’ hands.
The mapping between semantic categories and response-hands was
counterbalanced across participants. Stimuli were played through loud
speakers at �55 dB (depending on participants’ preferences) using the
Psychtoolbox extension (Brainard, 1997) for MATLAB (The Math-
Works). Stimuli were played every 6 –9 s (random uniform jitter).

Data analysis
Electrophysiological recordings. EEG (N � 19 derivations, 10 –20 mon-
tage), electro-occulographic (EOG, N � 2 derivations, positioned above
the right canthus and under the left canthus), electromyograhpic (EMG,
1 derivation placed on the chin measuring muscle tone and 2 derivations
on the right and left abductor pollicis brevis [thumb flexor muscle] re-
cording muscle activity accompanying participants’ responses) and elec-
trocardiographic (ECG, N � 1 derivation) data were continuously
recorded. Video monitoring was also available. EEG, EOG, ECG, and
EMG data were recorded with AgCl electrodes attached to participants’
skin and hair with an adhesive paste (EC2, Natus Neurology). Signals
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were amplified through a B1IP or B2IP MEDATEC amplifier (Medical
Data Technology) and recorded at a 200 Hz sampling rate. Impedances of
scalp electrodes were generally �5 k�. EEG and EOG electrodes were
referenced online to the opposite mastoids. An additional channel was
used to synchronize EEG data with stimulus presentation.

Online sleep assessment. The presentation of stimuli was continuous,
but the words presented to participants were selected from lists that
differed depending on participant’s vigilance state (Fig. 1). Vigilance and
sleep states were scored online following standard guidelines (Iber et al.,
2007). In practice, the experimenter waited for the appearance of NREM
hallmarks (first spontaneous K-complex or sleep spindle in the absence
of arousal) before switching to the NREM list. Similarly, the REM list was
presented to participants when they entered the REM stage (absence of
slow oscillations or sleep spindles, absence of alpha oscillations, presence
of saw-tooth waves, rapid eye movements, increase in theta oscillations,
reduced or absent muscle tone). The experimenter typically waited for a
few minutes after the transition to the new sleep stage before switching
the list, so as to ensure sleep stage’s stability. The wake list was presented
to participants whenever they showed signs of arousal (body movements,
increase in low-amplitude desynchronized rhythms, EMG activation).
This online scoring was confirmed and refined offline (see below).

Offline sleep scoring. Wakefulness and sleep stages were scored by 2
scorers blind to experimental conditions and following established
guidelines (Iber et al., 2007). Only Fz, C3, C4, and Pz EEG derivations
(within the 10 –20 montage) were used along ECG and EMG derivations.
EEG channels were first rereferenced to the average mastoids. The EEG
and EOG signals were high-pass filtered �0.1 Hz and then low-pass
filtered �30 Hz (two-pass Butterworth filters at the fifth order). Using
the same filter types, EMG data were bandpass filtered between 60 and 80
Hz. A notch-filter (second order Infinite Impulse Response filter) �50
Hz was used on all channels to reduce line-noise. Vigilance states were
continuously scored on 20-s-long windows as wakefulness, NREM sleep
Stages 1, 2, and 3 (NREM1, NREM2, and NREM3 stages, respectively),
and REM sleep. Importantly, epochs showing signs of arousal (increase
in alpha oscillations or oscillations �16 Hz lasting �3 s) or micro-
arousal (�3 s) in association with trial onsets were marked. The corre-
sponding trials were not included in further analyses to avoid potential
confounds. Table 1 summarizes sleep scoring across participants.

Slow wave detection. Slow oscillations (sleep slow waves and
K-complexes) were detected in NREM sleep using an algorithm that has

been presented in details previously (Riedner et al., 2007; Nir et al., 2011).
Briefly, slow oscillations were detected for each EEG channel by bandpass
filtering the EEG signal between 0.2 and 3 Hz (two-pass Butterworth
filter at the third order). The first-order derivative was used to detect
local extrema and identify single waves. Only slow oscillations with a
peak-to-peak amplitude exceeding 75 �V and a duration of �0.5 s and
�2 s were considered as slow waves. These slow oscillations were used to
define light and deep NREM trials (see below).

EEG preprocessing. EEG data were analyzed using a combination of
SPM (Functional Imaging Laboratory, University College London, Lon-
don), FieldTrip (Oostenveld et al., 2011), and EEGlab (Delorme and
Makeig, 2004) toolboxes running on MATLAB (The MathWorks). We
examined the brain activity in response to sounds by computing event-
related potentials (ERPs) and LRPs. To do so, the continuous EEG signal
referenced to the average mastoids was high-pass filtered �0.1 Hz (two-
pass Butterworth filter at the fifth order) and then segmented on large
temporal windows around stimulus onsets ([�14, 14] s). The EEG signal
was then low-pass filtered �40 Hz and notch-filtered �50 Hz (same
filter types as for the sleep scoring) to reduce line noise. Epochs were
resized to focus on the activity around stimulus onsets ([�2, 7] s). Trials
with absolute amplitude over central electrodes (Cz, C3, C4) exceeding a
given threshold were discarded (150 �V in wake and REM sleep, and 200
�V in NREM sleep because NREM sleep contains high-amplitude phys-
iological slow waves).

Conditions of interest. In NREM sleep, brain activity varies immensely:
from NREM1 in which sleep hallmarks (slow oscillations and sleep spin-
dles) are not yet visible to NREM3 where they predominate (Iber et al.,
2007). First, to ensure that observed sensory processes are not due to
(even brief) awakenings, NREM1 stage was discarded as well as trials in
which any sign of arousal could be observed in the EEG signal. Second,
NREM2 and NREM3 trials were separated according to the presence of
slow waves associated with stimuli onset. We thus divided trials in four
different conditions of interest: (1) wake: correct trials during which
participants were scored as awake and the wake list was played; (2) light
NREM sleep: trials scored as NREM2 or NREM3, during which partici-
pants were unresponsive and in which the NREM list was played but no
slow-wave were detected (on a [�2, 3] s window time-locked to stimulus
onset); (3) deep NREM sleep: trials scored as NREM2 or NREM3, during
which participants were unresponsive and in which the NREM list was
played and slow waves were detected (on a [�2, 3] s window time-locked

Figure 1. Experimental procedure. Illustration of the protocol. Different lists of animal and object words were played to participants. Participants were instructed to classify these words through
left- and right-hand responses according to their semantic category (here right-hand responses for animals). Lateralized hand-response preparation involves the contralateral motor cortices, a
task-dependent lateralization of brain activity that can be tracked with the EEG (Fig. 2). Different lists of words were presented to participants. A list was restricted to NREM sleep (NREM2 and NREM3,
blue) and another one to REM sleep (green) while the wake list (red) was played otherwise. Changing list between wake and sleep prevents sleepers from using stimulus-response associations
learned in wake to classify words in sleep. Words being novel, participants must have had access to the meaning of each word to prepare for the correct response.
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to stimulus onset); (4) REM sleep: trials scored as REM sleep, during
which participants were unresponsive and in which the REM list was
played. Thus, light NREM, deep NREM, and REM trials comprised only
words that had not been practiced before, when participants were awake
and responsive (no wake list word). For each condition, only participants
with at least 70 trials were included. On average, there were 174 � 20
trials in the wake condition (mean � SEM across N � 17 participants),
232 � 28 in light NREM sleep (N � 15), 400 � 25 in deep NREM sleep
(N � 18) and 186 � 9 in REM sleep (N � 18). Light NREM trials
occurred almost exclusively in NREM2 (93 � 1.2%, N � 15 partici-
pants), whereas deep NREM trials correspond to trials occurring either in
NREM2 or NREM3 stages (56% and 44%, respectively, � 3.5% in 18
participants). Thus, light NREM sleep trials corresponded to a state in
which slow oscillations could be observed (NREM2) but not in the vicin-
ity of stimulus onset, whereas deep NREM sleep trials corresponded to a
state in which slow oscillations were observed in association with stimuli
regardless of the presence of continuous trains of slow waves (e.g., in
NREM3). Nonetheless, we obtained qualitatively similar results (see Re-
sults) when defining light and deep NREM sleep as NREM2 and NREM3
stages, respectively. We also examined trials corresponding to the defini-
tion of light, deep NREM, and REM sleep, but during which the wake list
was presented to sleepers instead of the NREM or REM lists. Indeed,
participants were switched to the wake list whenever the experimenter
was unsure of the state of the sleeper (later verified off-line), at transitions
between states or when the experimenter had to attend to another par-
ticipant (two participants participated in the experiment on each record-
ing night). Although these trials containing practiced words were not
randomly intermixed with the unpracticed words, they were scored
offline as either REM or NREM sleep by two scorers blind to the list used
and revealed ERPs and power spectra nearly identical to the ones ob-
tained in trials in which the sleep lists were played (see Fig. 3). Thus, these
trials allowed us to investigate how practiced (i.e., overtly categorized)
words were processed during sleep, although precautions must be taken
when interpreting such results (see Discussion). Participants with at least
30 trials per conditions were included for this analysis.

ERPs. ERPs were computed by averaging the EEG signal across trials
for a given experimental condition after baseline correction ([�0.2, 0] s).

LRPs. LRPs allow the monitoring of action selection and preparation
(Smulders et al., 2012). LRPs are usually computed with EEG data time-
locked to motor responses but can also be computed time-locked to
stimuli (Leuthold, 2003; Töllner et al., 2012). In our case, due to the
absence of responses during sleep, we computed LRPs on stimulus-
locked data. LRPs were computed using ERPs recorded from the right
(C4) and left (C3) electrodes placed over motor cortices as follows:

LRP �
	C3right�hand � C3 left�hand
 � 	C4 left�hand � C4right�hand


2

ERPs over C3 and C4 electrodes were computed similarly as described
above, except for the baseline correction ([�2, 0] s). Using this formula,
LRPs are characterized by a negative deflection starting before partici-
pants’ response. In subsequent analyses, we extracted the LRP magnitude
over the temporal windows in which significant negative clusters were
observed (see Figs. 2, 3). To examine how this LRP magnitude was dy-
namically related to other markers of responsiveness, we computed LRPs
on windows of 60 consecutive left- and right-response trials slid every
trial (see Figs. 4, 6, 7). The LRP-negative potential was extracted as a
positive value (LRP magnitude) by multiplying the LRP formula by �1.
A similar operation was performed on the N500 and N550 potentials

amplitude (see Figs. 6, 7) to extract their magnitude. Other variables of
the EEG signal were estimated on the same windows such as the Lempel-
Ziv complexity (LZc; see Fig. 4) or ERP components (see Figs. 6, 7). These
variables were z-score normalized across trials for each participant and
then aggregated across participants to examine their correlation.

Time-frequency analyses. To better understand how sleep rhythms im-
pact sensory processing, we computed the time-frequency decomposi-
tion of the EEG signal in response to stimuli. To do so, we applied FFT on
1.28-s-long windows (padding ratio of 2) on the preprocessed EEG signal
(see above). The resulting power for each frequency and time was ex-
pressed as the log-ratio of the power at the corresponding frequency and
time over the baseline activity ([�1.5, 0] s) at the same frequency. LRP
magnitude and the activity within the slow waves ([1, 6] Hz) and spindle
([11, 16] Hz) bands were extracted on windows of 60 consecutive right-
hand and left-hand responses.

LZc. The LZc measures the complexity of a given signal by estimating
its compressibility (Ziv and Lempel, 1977). A temporally unpredictable
signal will have a low compressibility and therefore a high LZc value.
Such an unpredictable signal will be considered as a highly complex
signal. Previous studies have shown that LZc accurately tracks the level of
consciousness in patients, healthy subjects under anesthesia and during
sleep (Casali et al., 2013; Abásolo et al., 2015; Schartner et al., 2015). For
example, when the EEG signal is populated by high-amplitude synchro-
nous slow waves as in deep NREM sleep, the signal becomes more
predictable and the associated LZc value decreases compared with wake-
fulness or REM sleep (see Fig. 4a). To calculate the LZc on the continuous
EEG, we implemented the approach developed by Schartner et al. (2015).
Thus, the complexity was computed at the sensor level. To filter the raw
EEG, the MATLAB FDAtool was used to create equiripple Finite Impulse
Response FIR filters with linear phase to avoid phase distortion in the
EEG. The EEG was first low-pass filtered �85 Hz (111th order) and then
notch-filtered �50 Hz to reduce line noise (296th order). A surface
Laplacian was then applied to the EEG data (BCILAB plug-in for the
EEGLAB toolbox) (Delorme and Makeig, 2004; Kothe and Makeig,
2013), with a neighbor count of four, to reduce the influence of volume
conduction. The data were then epoched around stimuli onset ([�2, 6]
s), and the LZc was extracted for each trial by integrating the EEG data
over all the sensors on 500-ms-long windows slid every 50 ms. Details of
the LZc algorithm can be found previously (Schartner et al., 2015).
Briefly, for each window, the mean of the EEG signal was subtracted for
each sensor and linear trends over the entire epochs were removed. A
Hilbert transform was then applied to the signal to extract its envelope.
Each channel was then binarized: values above the mean value of the
envelope for the corresponding epoch and sensors were coded as 1, and 0
otherwise. The resulting binary matrix was then reshaped sensor-wise
into a vector containing the time-points for all channels. The complexity
was computed on such vectors and normalized by the complexity calcu-
lated on a randomly shuffled version of the same vector. After normal-
ization, LZc takes values between 1 (minimally compressible, i.e., as
predictable as the shuffle data) and 0 (fully compressible, i.e., predictable
signal). The normalized complexity was thus computed for each trial and
averaged across vigilance states (as scored offline) over the prestimulus
baseline ([�1.5, 0] s) to compare the overall level of complexity between
these different states (see Fig. 4a). We also examined how the complexity
was affected by stimulation by averaging the LZc on a [�1.5, 6] s win-
dows for each vigilance state separately in an approach similar to when
calculating ERPs (see Fig. 4b). To better compare the dynamics, LZc was
normalized (ratio) by the level of complexity in the prestimulus window

Table 1. Sleep scoring and conditions of interesta

Wake NREM1 NREM2 NREM3 REM Total

Duration (min) 88.5 (�9.6) 45.3 (�5.6) 186.3 (�13.4) 79.7 (�7.3) 76.9 (�6.5) 499.6 (�6.6)
% of trials 17.8 (�1.6) 9.7 (�1.0) 39.6 (�2.0) 16.4 (�1.4) 16.5 (�0.8) 100
Marked arousals 0 12.3 (�1.6) 13.4 (�1.8) 2.6 (�0.5) 7.0 (�1.5) 35.8 (�3.8)
aData are mean (SEM); N � 18. Participants’ vigilance was scored according to established guidelines as wakefulness, NREM1, NREM2, NREM3, and REM stages on 20-s-long windows (see Materials and Methods). Duration indicates the
average time participants spend in each stage. Each trial was attributed a sleep stage defined as the most conservative scoring obtained on a ��2, 8� s window around stimulus onset (% of trials). Marked arousals indicates the mean number
of trials that were rescored as wakefulness due to an arousal.
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([�1.5, 0] s). To relate the level of complexity with the index of motor
preparation (LRP magnitude), the baseline LZc was extracted in wake-
fulness, NREM and REM sleep on windows of 60 consecutive left- and
right hand-response trials slid every trial along the entire recordings. The
values obtained were then z-scored across trials for each participant be-
fore examining their correlation (see Fig. 4c).

Sleep cycle identification. To examine how markers of responsiveness
are modulated across NREM sleep, we identified the sleep cycles based on
each participant’s hypnograms. A total of 100 cycles were individualized
in 18 participants (5.6 � 0.2 cycle per participant). Values of interest
(LRP magnitude, LZc and �(�4 Hz) power) were computed on 60 right-
hand and left-hand consecutive NREM trials (NREM2 and NREM3) slid
every trial within each cycle. Delta power was extracted by applying a FFT
of the signal time-locked to stimuli onsets ([�2, 6] s) and normalizing
the � range (�4 Hz) with higher frequencies ([20, 40] Hz, log ratio). Later
on, each sleep cycle was normalized in duration to average variables of
interest across sleep cycles. To do so, each cycle was divided in 30 equal
bins and the mean value of the variables of interests was computed for
each bin. Eighty-three cycles were eventually included in this analysis.
The other cycles did not have enough NREM2 and NREM3 trials so as to
be similarly normalized in duration.

Statistics. To correct for multiple comparisons when examining statis-
tical differences between two time series (see Figs. 2–5), we used a cluster-
permutation approach (Maris and Oostenveld, 2007). Each cluster was
constituted by the samples that consecutively passed a specific threshold
(here, p � 0.1 for LRPs and p � 0.05 otherwise). As demonstrated pre-
viously (Maris and Oostenveld, 2007), this method controls for Type 1
errors independently of this threshold. For each cluster, we computed the
sum of the t values of all the samples within the cluster. Then, we com-
pared the cluster statistics of each cluster with the maximum cluster
statistics of 1000 random permutations and obtained a nonparametric p
value (Monte-Carlo p value: pcluster). Significant clusters are displayed as
horizontal bars on plots, and pcluster are reported in the main text and
figures’ legends. For scalp topographies of correlation analyses (Figs. 6,

7), the False Detection Rate (FDR) method was used to correct individual
p values (Benjamini and Yekutieli, 2011).

Results
Sleepers can classify words during sleep
A classical LRP was observed when participants were awake and
responsive (Fig. 2a; significant cluster: [0.490, 2.025] s, pcluster �
0.002, N � 17 participants), characterized by a large negative
deflection starting before the average response time (black arrow)
over motor electrodes (Fig. 2a, inset). When focusing on light
NREM sleep, we observed a similar significant negative deflection
for the LRP (Fig. 2c; significant cluster: [3.035, 3.775] s, pcluster �
0.01, N � 15 participants), although the corresponding words
had not been previously categorized during wakefulness. We ob-
tained a similar LRP even when discarding all words that had
been previously presented during an even brief (�3 s) arousal
(cluster: [2.830, 3.310] s, pcluster � 0.043, N � 15 participants),
thus when focusing on words that had been presented exclusively
during sleep throughout the entire recording session. As in wake-
fulness, this negative deflection was maximal over motor cortices
(central electrodes; see Fig. 2c, inset) but was delayed compared
with wake trials. This LRP is strikingly similar to the one observed
in previous nap studies (Kouider et al., 2014).

However, no significant deviation in the LRP was observed in
deep NREM sleep or REM sleep (Fig. 2b,d), suggesting, at first
glance, that processing of sensory information up to the decision
level is abolished in deeper stages of sleep. Interestingly, light and
deep NREM sleep also differed regarding the evoked responses to
stimuli (ERPs). Light NREM sleep was characterized by a reduc-
tion of the large negativity evoked by stimuli in NREM sleep
(N550) (Picton, 2010). This N550 is often attributed to evoked

Figure 2. LRPs across sleep stages. The LRP allows monitoring the lateralization of brain activity associated with motor selection and preparation. We used it here as an index of participants’
ability to process sensory information up to the semantic level and to use this information in a flexible task-dependent fashion (see Materials and Methods) (Kouider et al., 2014). Subpanels, Left,
The stimulus-locked ERP computed on Cz: a, in wakefulness; b, in REM sleep; c, in light NREM sleep (blue, black curves show deep NREM sleep for comparison); d, in deep NREM sleep. Right, The
corresponding stimulus-locked LRP computed on C3/C4 electrodes are plotted. Shaded areas represent the SEM computed across participants. Colored horizontal bars represent significant clusters
for LRP ( pcluster � 0.05). Insets, Scalp topographies of LRP averaged over the red and blue clusters. Curves were smoothed using a Gaussian kernel (width: 50 ms for ERPs, 200 ms for LRPs) for display
only (statistics were performed before smoothing). An LRP peaking over motor cortices is visible in light NREM but is absent in deeper sleep stages (deep NREM and REM sleep). RT, Response time.
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slow waves (such as K-complexes) (Bastien et al., 2000), which
entails large-scale neuronal silencing (Vyazovskiy and Harris,
2013) and could explain the absence of an LRP when the N550 is
larger. Importantly, defining light and deep NREM sleep more
classically as NREM2 and NREM3 stages, respectively, led to sim-
ilar results (i.e., presence of an LRP in light NREM ([4.1, 4.6]s,
pcluster � 0.038) and absence in deep NREM).

In REM sleep, only words previously heard in wake
are classified
Does the absence of an LRP in REM sleep mean that stimuli were
not processed at all, or is this absence due to the complexity of the

task at hand? To investigate this issue, we took advantage of the
fact that words from the wake list were sometimes presented in
REM sleep (see Materials and Methods), albeit not intermixed
with unpracticed words, which would have allowed a stronger
comparison (see Discussion).

Importantly, the ERPs and power spectra were similar when the
practiced and unpracticed words were played (Fig. 3), but a clear
LRP was observed for the wake list only ([2.750, 3.200] s, pcluster �
0.036 and [3.230, 3.900] s, pcluster � 0.014, N � 14 participants). In
addition, a significant difference could be observed between the
wake and REM lists ([3.230, 4.120] s, pcluster � 0.015). The presence

Figure 3. LRPs in light NREM, deep NREM, and REM sleep for words categorized during wakefulness. Top, Power spectra (left), stimulus-locked ERPs (middle), and stimulus-locked LRPs (right)
computed in light NREM sleep for trials in which either the NREM list (blue) or the wake (purple) list was played. The wake ERP and power spectrum (red curves) are displayed for comparison.
Horizontal bars represent the significant clusters for LRPs ( pcluster � 0.05). Note the presence of a similar (and slightly earlier) LRP when words categorized during wakefulness were played. Middle,
Same plots for deep NREM sleep trials. No significant LRP cluster could be observed for either the NREM or the wake lists. Bottom, Power spectra (left), ERPs (middle), and LRPs (right) computed in
REM sleep for trials in which either the REM list (light green) or the wake (dark green) list was played. Interestingly, for words previously categorized in wakefulness (practiced), a clear LRP was
observed ( pcluster � 0.05) but not for unpracticed words (black bar represents cluster for the comparison between the LRPs for the wake and REM lists, pcluster � 0.05). Yet, the power spectrum and
ERPs for both practiced and unpracticed words are highly similar and different from wake trials (red curves). Shaded areas represent the SEM computed across participants.
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of an LRP for practiced words shows that sleepers can still map
familiar stimuli with the correct response side in REM sleep, suggest-
ing that part of the processing chain was conserved for practiced
words. When repeating this procedure in NREM sleep, an LRP was
also observed in light NREM for the words practiced in wake ([2.23,
2.9] s, pcluster � 0.011, N � 15 participants) but not in deep NREM
sleep despite the negative deflection visible in Figure 3.

The processing of information depends on the degree of
neural complexity
We then set out to examine whether the overall complexity of the
prestimulus EEG signal was predictive of sleepers’ ability to pro-
cess information up to the decision level. To do so, we used a
recently developed approach (Casali et al., 2013) consisting in
measuring the temporal predictability of the EEG signal by re-
ducing it to a single value: the LZc (Ziv and Lempel, 1977). Ap-
plying this methodology to our data (Fig. 4a) revealed a strong

modulation of LZc according to the vigi-
lance state (ANOVA: F(3) � 9.67, p � 2 
10�5). Such modulation indicates that, in
wakefulness, the EEG signal is maximally
complex (i.e., unpredictable), whereas, in
deep NREM sleep, the EEG signal be-
comes the most predictable and therefore
less complex according to the Lempel-Ziv
algorithm. We could separate sleep and
wake stages along a gradient matching the
phenomenology associated with these
states (Nir et al., 2013), confirming initial
results in humans (Casali et al., 2013) and
animals (Abásolo et al., 2015). Precisely,
the baseline LZc was maximal in wakeful-
ness (paired t tests across participants
with other sleep stages: all p � 0.005) and
minimal in deep NREM sleep. Light
NREM and REM sleep had intermediary
values, with REM sleep being the closest to
wakefulness (REM vs wake: t(17) � �3.3,
p � 0.004; REM vs light NREM: t(17) �
5.4, p � 5  10�5; light vs deep NREM:
t(17) � 9, p � 7  10�8).

We then investigated whether this
baseline LZc was predictive of LRP mag-
nitude. LRP magnitude was extracted on
the temporal windows in which a LRP was
observed in wakefulness (Fig. 2a), light
NREM sleep (Fig. 2c), and REM sleep
(when practiced words were played; Fig.
3). Importantly, the baseline LZc was pos-
itively correlated with LRP magnitude in
wakefulness and light NREM sleep (Pear-
sons’s coefficient: r � 0.08 and 0.13, p �
0.001 and 1  10�13, across N � 2035 and
N � 3111 samples in 17 and 15 partici-
pants, respectively), but this correlation
was reversed in REM sleep (r � �0.23,
p � 5  10�24, N � 1937 samples in 18
participants). Comparing LZc in REM
sleep when practiced words were pre-
sented (LRP present) and when unprac-
ticed words were presented (LRP absent)
revealed again that the presence of the
LRP was associated with a lower complex-

ity (paired t test: t(17) � 3.5, p � 0.004). This result contrasts with
the correlation observed in NREM sleep and wakefulness, sug-
gesting an inverse relationship between levels of consciousness
and the degree of connectedness to the environment (Sanders et
al., 2012) in NREM and REM sleep.

We also examined how the LZc was modulated in response to
stimuli above and beyond its baseline level (Fig. 4b). Stimulus
onset was followed by a decrease in LZc (i.e., increase in signal
predictability), potentially due to the stereotypical ERPs. And
indeed, this decrease in LZc was more pronounced for the sleep
stages in which high-amplitude ERPs were observed, such as in
NREM sleep (Fig. 2). Accordingly, this decrease in LZc did not
reach significance in REM sleep, a state in which auditory stimu-
lation has less impact on brain activity (Bastuji and García-
Larrea, 1999; Picton, 2010). Interestingly, in NREM and REM
sleep, this initial decrease was followed by an increase in LZc

Figure 4. Lempel-Ziv complexity (LZc) across sleep stages and in relation to motor preparation indexes. a, LZc extracted over
the prestimulus activity ([�1.5, 0] s) was averaged across trials scored as wakefulness, light NREM, deep NREM, and REM sleep.
Error bars indicate the SEM computed across participants. LZc allowed to unambiguously separate the different vigilance states
(one-way ANOVA: F(3) � 9.67, p � 2  10 �5, N � 18 participants). Post hoc comparisons show highly significant differences
with a gradual decrease in complexity: wake � REM � light NREM � deep NREM (all paired t tests, p � 0.005). b, LZc time course
locked on stimulus onsets and expressed as a ratio of the baseline level ([�1.5, 0] s). Stimuli robustly modulated the complexity of
the EEG signal with an initial decrease after stimulus onset ( pcluster �0.05, except for REM sleep). The initial decrease was followed
by an increase in complexity in light NREM, deep NREM, and REM sleep ( pcluster � 0.05). c, Correlation between the baseline LZc
(see a) and the LRP magnitude computed across the entire night for wake (left), light NREM (middle), and REM sleep (right) trials.
Correlation between the pairs of variables was assessed using the Pearson’s method, which coefficients are displayed on each
subplot along their significance levels. ***p�0.005. Dotted lines indicate the linear fit between the pairs of variables. Values were
z-scored across trials for each participant before being aggregated across participants. Values were binned for visual purpose (N �
50 bins on the sorted LZc values). Error bars indicate the SEM of the LRP magnitude for the corresponding bin.
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(pcluster � 0.05), which could be interpreted as a stimulus-
induced modulation of sleep depth.

Sensory processes locally disrupt sleep rhythms
So, are the LRPs observed in sleep and the associated increase in LZc
reflecting the consequence of a partial awakening? To answer these
questions, we examined the consequences of auditory stimulation
on sleep itself. Figure 5a shows the time-frequency decomposition of
the EEG signal in response to sounds in NREM sleep (both light and
deep NREM) for electrode Cz. Stimulus onset was accompanied by
an increase within the slow-wave (�6 Hz: pcluster � 0.001, N � 18
participants) and spindle ([11, 16] Hz: pcluster � 0.002) ranges (Fig.
5b). This increase was followed by a decrease within these two ranges
(�6 Hz: [2.1, 6.3] s; [11, 16] Hz: [2.4, 5.0] s, both pcluster �0.001),
interestingly, at a time corresponding to the appearance of an LRP in
light NREM sleep. This result suggests that the preparation of task-
related responses translates into a local-in-time modulation of sleep
rhythms and hence of sleep depth. Such modulation was also local-
in-space. Indeed, while the increase within the slow-wave and spin-
dle range after stimulus onset showed a typical frontal topography
(Fig. 5b), the following decrease had a different topography and was
prominent over central electrodes (i.e., over the sensors showing the
LRP). It is important to note that this decrease within the slow-wave
and spindle ranges was not accompanied by an increase in frequency
bands associated with wakefulness (alpha: [9, 11] Hz, beta: �16 Hz),
which is concordant with the fact that trials with signs of arousal
were discarded from our analyses. Thus, in NREM sleep, the pro-
cessing of auditory information resulted in a local (in time and
space) modulation of NREM oscillations in the absence of any ob-
servable trace of awakening on the scalp.

In REM sleep, brain responses were qualitatively different
(Fig. 5c,d): auditory inputs clearly disturbed REM sleep with an
initial increase in higher frequencies (�12 Hz, pcluster � 0.01).
This increase was followed by a sustained decrease within the
theta range ([4, 8] Hz, pcluster � 0.001), reflecting a stimulus-
induced perturbation of theta oscillations, which are a hallmark
of REM sleep in animals (Buzsáki, 2006). Interestingly, these in-
creases were both maximal over central electrodes where audi-
tory and motor components are observed in wakefulness (Picton,
2010; Smulders et al., 2012). However, these transient markers of
arousal did not lead to the appearance of a clear LRP (Fig. 2)
unless practiced words were presented (Fig. 3).

Neuronal bistability gates sensory processing in NREM sleep
In NREM sleep, brain responses to stimuli were characterized by
strong evoked potentials, such as the P200 and the N550 (Fig. 6a).
These two potentials are of high interest because the P200 is
thought to reflect an activation within the primary sensory cor-
tices corresponding to the eliciting event (i.e., dependent of the
sensory modality), whereas the N550 is thought to reflect a broad
modality-independent neuronal silencing, maximal in frontal ar-
eas (Laurino et al., 2014; Halász, 2015). The respective scalp to-
pographies of these potentials corroborated such view (Fig. 6a,
right). According to this interpretation, the P200 could represent
a marker of the brain’s responsiveness to external events, whereas
the N550 could be associated with sleep protection against exter-
nal perturbations.

We thus examined whether the auditory responses (evoked-
potentials associated with stimulus onset) were predictive of the
appearance of an LRP. Interestingly, in light NREM sleep, the

Figure 5. Local modulations of sleep rhythms in association to stimuli. a, Time-frequency decomposition of the EEG signal recorded at Cz in response to stimuli. The time-frequency decomposition
was extracted for each trial in NREM sleep (light and deep) and averaged across participants (N � 18) (see Materials and Methods). Right after stimulus onset, a large increase in the low-frequency
range (�6 Hz) and spindle range ([11, 16] Hz) can be observed, which correspond to slow waves and spindles evoked by stimuli. Interestingly, these sleep rhythms were suppressed later on, at the
time during which a LRP was observed in light NREM sleep (Fig. 2). This decrease was confirmed in b by examining the modulation of the power (at Cz) in these 2 frequency bands (�6 Hz: slow-wave
range, black curve; [11, 16] Hz: spindle range, gray curve). Horizontal bars represent the significant clusters determined across participants ( pcluster � 0.05). Shaded areas represent the SEM
computed across participants. Insets, Scalp topographies of the power within the slow-wave and spindle ranges at trial onset ([0, 2] s) and during the LRP window ([2.9, 3.8] s). Power was z-scored
across sensors to emphasize regional differences. The decrease associated with the LRP is centrally distributed for slow waves and sleep spindles despite their originally frontal distribution,
suggesting a local suppression of sleep rhythms. c, d, Same as a, b, except for REM sleep. Note the initial broadband increase in the higher frequency range (�12 Hz) and the decrease within the theta
range ([4, 8] Hz). Scalp topographies were computed by averaging power over the significant clusters ( pcluster � 0.05).
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N550 was largely reduced, which is in line
with the fact that only trials without slow
waves were included. The P200 was also
reduced. When examining the relation-
ship between these events and the LRP
magnitude in light NREM sleep (Fig. 6b),
a positive relationship was found between
LRP magnitude and the P200 (Pearson
coefficient at Pz: r � 0.24, p � 6  10�42,
N � 3111 samples in 15 participants).
This correlation was maximal over cen-
troparietal electrodes. Thus, the larger the
P200, the larger the LRP in light NREM
sleep. A much less robust correlation was
observed with the magnitude of the N550
(r � �0.04, p � 0.02), which could be
explained by the fact that, in light NREM,
the N550 was almost abolished.

On the other hand, in deep NREM
sleep, there was a clear negative correla-
tion between the N550 and the LRP mag-
nitude (Fig. 6c, Pearson coefficient at Cz:
r � �0.10, p � 10�4, N � 6037 samples in
18 participants). Thus, the more pro-
nounced the N550, the smaller the LRP in
deep NREM sleep. Interestingly, the rela-
tionship between LRP magnitude and the
P200 was reversed between light and deep
NREM sleep. Contrary to light NREM
sleep, the LRP magnitude was negatively
correlated with LRP magnitude (Pearson
coefficient at Cz: r � �0.12, p � 10�20)
despite the fact that the P200 increases in
amplitude from light to deep NREM sleep
(Fig. 6a), which should favor sensory pro-
cessing according to the positive relation-
ship observed in light NREM sleep. Such
reversal could be due to the fact that the
P200 activation can trigger a down state
(N550) in deeper stages of NREM sleep,
which would ultimately inhibit informa-
tion processing and reverse the relation-
ship between the P200 and the LRP (see
Discussion).

Auditory evoked potentials are
predictive of motor preparation in
REM sleep
We applied the same approach to REM
sleep. Auditory stimuli in REM sleep also
evoked archetypal potentials: a positivity
�200 ms followed by a negativity �500
ms (Fig. 7a). However, the topography
and temporal profile of these potentials
are quite different from NREM potentials.
In REM sleep, the P200 is usually associ-
ated with the wake auditory P200, gener-
ated over the primary and secondary
cortices (Picton, 2010). The scalp topog-
raphy of the P200 with a maximum over
central electrodes is concordant with this
view. Contrary to light NREM sleep, the
P200 was negatively correlated with the

Figure 6. Neural bistability gates sensory processing in NREM sleep. a, ERPs computed at Cz for trials in light NREM (blue curve) and
deep NREM sleep (black). Two distinct potentials are clearly visible: a positivity�200 ms (P200) maximal at centroparietal electrodes (see
scalp topography on the top right); and a negativity�550 ms (N550) predominant in deep NREM sleep (trials associated with slow waves)
and maximal at frontal electrodes (see scalp topography on the bottom right). Shaded areas represent the SEM computed across partici-
pants (N � 18). Scalp topographies were established by averaging the voltage over windows around the two potentials of interest (see
gray areas on ERP plot). These values were averaged across participants and z-scored across channels to emphasize regional differences. b,
Correlations between the LRP magnitude and the P200 magnitude (left) or the N550 magnitude (right, opposite of amplitude) for trials in
light NREM sleep. The P200 and N550 magnitudes were computed at Pz and Cz, respectively. Correlation between the pairs of variables was
assessed using Pearson’s method, with coefficients displayed on each subplot along with their significance levels. ***p � 0.005. *p �
0.05. Dotted lines indicate the linear fit between the two pairs of variables. Values were z-scored across trials for each participant before
being aggregated across participants. Values were binned for visual purpose (N�50 bins on the sorted x-axis variable). Error bars indicate
the SEM of the LRP magnitude for the corresponding bin. Scalp topographies on the right represent the Pearson coefficients computed for
each sensor (nonsignificant coefficients were set to 0, p � 0.05, FDR corrected for multiple comparisons). c, Same as in b for trials in deep
NREM sleep. The reversal of the relationship between the LRP and the P200 from light to deep NREM paralleled with the appearance of a
large N550, showing a suppressive effect on LRP magnitude.
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LRP magnitude in REM sleep (Pearson
coefficient at Pz: r � �0.14, p � 4 
10�11, N � 2622 samples in 18 partici-
pants; Fig. 7b). This negative correlation
was maximal over occipital electrodes.

The N500, a potential that is promi-
nent over occipital electrodes in REM
sleep, was positively correlated with LRP
magnitude (Pearson coefficient at Pz: r �
0.15, p � 3  10�14; Fig. 7c), an opposite
relationship compared with the one
found for the N550 potential in NREM
sleep. Similar correlations were observed
when considering the REM trials in which
words practiced in wake were played
(P200: r � �0.12, p � 8  10�4; N500:
r � 0.15, p � 7  10�15). These results
indicate that the evoked potentials associ-
ated with auditory stimuli are predictive
of later and more complex stages of pro-
cessing (here motor preparation) and
suggest that these auditory potentials are
not an unspecific reaction to external
stimuli but rather reflect cortex’s respon-
siveness to these inputs.

Markers of responsiveness are
modulated within sleep cycles
The presence of LRP in light NREM but
not deep NREM sleep or REM sleep
(when unpracticed words are presented)
could be due to the fact that light NREM
sleep is more pervasive to external infor-
mation. Another interpretation would be
that the ability to prepare for the adequate
motor response slowly decays with the
time spent asleep. With light NREM sleep
occurring first, the LRP would be promi-
nent in this state. To test this possibility,
we examined how the LRP magnitude was
modulated within sleep cycles. Sleep cy-
cles were detected using participant’s hyp-
nograms (see Materials and Methods).
For each cycle, we retrieved the dynamics
of the LZc, the slow-wave power (�-
power, a proxy for slow-wave density),
and the LRP magnitude in the NREM part
of the cycle (Fig. 8). In accordance with
the archetypal profile of sleep cycles, slow-
wave power density gradually increased at the beginning of the
sleep cycle (descending slope) but decreased toward the end of
the cycle (ascending slope and transition to REM sleep) (Halász,
2015). The LZc mirrored this pattern with a gradual decrease in
overall complexity followed by a steep increase. Interestingly, the
LRP magnitude followed the LZc dynamics and increased
again toward the end of the cycle (U shape). This result sug-
gests that the capacity to process information is dynamically
related to signal complexity and neural bistability. Thus, the
beginning and end of NREM episodes might represent tempo-
ral windows in which monitoring of the surrounding environ-
ment is possible.

We also examined the effect of the progression within the
night on LRP magnitude. To do so, each night was divided into

thirds and the LRP magnitude was computed in light NREM,
deep NREM, and REM trials in each third separately. In light
NREM sleep, a linear decrease was observed across the night
(linear regression: � � �0.41, p � 0.002, N � 15 partici-
pants). A post hoc comparison showed a highly significant
difference between the LRP magnitude in the first and last
third of the night (t(14) � 4.03, p � 0.001) with only the first
third of the night showing a significant LRP (t(14) � 3.15, p �
0.007). Such within-nights effect was not observed in deep
NREM or REM trials (linear regressions: � � �0.20, p � 0.44
and � � �0.08, p � 0.58, respectively). However, because
sleep lists were repeated across the night, it is impossible to
disentangle in this study a potential effect of early and late
sleep from an effect of word-repetition.

Figure 7. Evoked responses to sounds correlate with LRP magnitude in REM sleep. a, ERPs computed at Cz for trials in REM sleep.
Two distinct potentials are again visible: a positivity �200 ms (P200) maximal at central electrodes (see scalp topography on the
top right); and a negativity �500 ms (N500) maximal at parietal electrodes (see scalp topography on the bottom right). Scalp
topographies were established by averaging the voltage over windows around the two potentials of interest (see gray areas on ERP
plot). These values were averaged across participants and z-scored across channels to emphasize regional differences. These two
potentials are quite different from the potentials described in NREM (Fig. 6a) in terms of temporal profile, amplitude, and topog-
raphy. b, Correlations between the LRP magnitude and the P200 magnitude (left) or the N500 magnitude (right, opposite of
amplitude) for trials in REM sleep. The P200 and N500 magnitudes were computed at Cz and Pz, respectively. Correlation between
the pairs of variables was assessed using Pearson’s method, with coefficients displayed on each subplot along with their signifi-
cance levels. ***p � 0.005. Dotted lines indicate the linear fit between the two pairs of variables. Values were z-scored across trials
for each participant before being aggregated across participants. Values were binned for visual purpose (N � 50 bins on the sorted
x-axis variable). Error bars indicate the SEM of the LRP magnitude for the corresponding bin. Scalp topographies on the right
represent the Pearson coefficients computed for each sensor (nonsignificant coefficients were set to 0, p � 0.05, FDR corrected for
multiple comparisons). Similar correlations were obtained when focusing on practiced words (data not shown).
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Discussion
Complex and distributed processes in the sleeping brain
Participants had to categorize spoken words based on their se-
mantic category through lateralized hand responses while falling
asleep. To assess participants’ responsiveness, we computed an
LRP (Smulders et al., 2012), which indicates whether brain activ-
ity is lateralized according to the expected response side. Accord-
ingly, a negative deflection was observed in wakefulness around
response time (Fig. 2a). This negativity was conserved in light
NREM sleep when unpracticed words were played despite the
absence of overt responses (Fig. 2c), replicating previous findings
in naps (Kouider et al., 2014). Because the stimulus-response
mapping was counterbalanced across participants, the presence
of an LRP for novel words in light NREM sleep reflects the main-
tenance of complex and distributed processes going from the
encoding of the auditory information to the preparation of the
appropriate motor response. The maintenance of such complex
processing chain could be explained by the automation of the
task-set during wakefulness (Kouider et al., 2014).

No LRP was observed in deep NREM sleep or REM sleep (for
unpracticed words), suggesting that part of this chain is disrupted
in these stages. However, when considering practiced words
(wake list, Fig. 1), an LRP was observed in REM sleep (Fig. 3). The
presence of an LRP for practiced words only could be interpreted
as a failure to access the meaning of novel words during the REM
period. Under such circumstances, sleepers could still rely on
stimulus-response contingencies learned during wakefulness for
practiced words. However, because the practiced and unprac-
ticed words were not intermixed, we cannot rule out the possi-
bility that the presence or absence of an LRP stems from a
difference in terms of sleep (i.e., sleep depth) rather than stimulus
type (practiced or not).

The complexity of brain dynamics interacts with the
processing of the environment
Certain periods of sleep proved more propitious for the induc-
tion of task-dependent responses. To understand the relationship
between the background neural activity and brain’s responsive-
ness, we computed the temporal predictability of the EEG signal

using LZc (Ziv and Lempel, 1977). LZc
has been used to determine the level of
consciousness during anesthesia or in
brain-damaged patients (Casali et al.,
2013; Sarasso et al., 2015; Schartner et al.,
2015). We confirmed previous findings in
sleep (Casali et al., 2013; Abásolo et al.,
2015) and LZc matched sleep’s phenome-
nology (Nir et al., 2013), dreams (i.e., con-
scious contents) being more frequent and
complex in REM compared with light
NREM but quite rare in deep NREM
sleep.

LZc also predicted the LRP magni-
tude (Fig. 4c). In light NREM sleep, an
increased propensity to respond to ex-
ternal input was associated with higher
levels of complexity before stimulus on-
set. In REM sleep, however, this rela-
tionship was reversed, which could be
related to the peculiarity of REM sleep: a
state of consciousness disconnected
from the environment (Hobson, 2009).
This result emphasizes the difference

between consciousness and responsiveness as observed in an-
esthesia (Sanders et al., 2012).

Neuronal bistability and the gating of sensory processing
In contrast with light sleep, no LRP was observed in deep NREM
sleep. Light and deep NREM sleep were defined based on the
presence or absence of slow oscillations associated with stimuli.
Accordingly, light NREM showed a drastically reduced N550 po-
tential (Figs. 2, 6), a potential usually linked to the down states of
stimuli-evoked K-complexes (Bastien et al., 2002). Down states
represent episodes of neuronal silencing (Steriade, 2003) and
perturb the encoding and integration of information (Schabus et
al., 2012; Pigorini et al., 2015). The presence of a N550 could
therefore prevent the further processing of information and
abolish the LRP in deep NREM sleep. This hypothesis is but-
tressed by the positive correlation between the N550 and LRP
magnitudes (Fig. 6c).

In light NREM sleep, stimulus-evoked potentials showed an
initial P200 correlating positively with LRP magnitude (Fig. 6b).
The P200 has been interpreted as a local modality-dependent
excitation (Laurino et al., 2014) and could reflect brain’s respon-
siveness to external inputs. However, in deep NREM sleep, the
P200 was associated with LRP suppression (Fig. 6c). We interpret
this reversal as the consequence of an increased neuronal bista-
bility from light to deep NREM sleep.

Indeed, in deep NREM sleep, cortical neurons exhibit more
down states (Steriade, 2003). Because a local excitation can trig-
ger a down state (Sanchez-Vives et al., 2010; Menicucci et al.,
2013), in deep NREM sleep, the P200 could ignite a down state in
frontal areas that would shut down in turn any further process-
ing. Thus, depending on sleep depth and neuronal bistability, the
relationship of the P200 with sensory processing would reverse:
from a potentiating activation to a suppressive mechanism. Brain
responses to sounds could therefore follow a self-regulated pro-
cess (Halász, 2015), whereby sensory activations can be retroac-
tively suppressed. Thus, in NREM sleep, a reactive cortical gating
(Tononi and Massimini, 2008), rather than a default thalamic
one (McCormick and Bal, 1994), seems to take place.

Figure 8. The ability to process information is dynamically modulated within sleep cycles. Modulation of the LRP magnitude
(colored dots), the LZc (black curve), and the �-power (gray curve) within the NREM sleep part of sleep cycles. Colors of dots (LRP
magnitude) represent the proportion of light and deep NREM trials included in the corresponding bin. A classical increase in
�-power (a proxy for slow-wave density) is observed corresponding to the transition from light to deep NREM sleep. This increase
in �-power is accompanied by a decrease in LZc and LRP magnitude. Both LZc and LRP have the tendency to increase again at the
end of the NREM cycle, paralleling the transition from deep NREM sleep to REM sleep. LRP, LZc, and � values were estimated within
each sleep cycle on fixed windows (see Materials and Methods). Sleep cycles were then binned (N � 30) so as to average cycles
with different durations, and values were normalized across the entire cycle to better visualize the dynamics of each variable of
interest (expressed here in arbitrary units [a.u.]).
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Could dreams gate sensory processing in REM sleep?
The mechanisms underlying sensory decoupling in REM sleep
are still unknown. The recovery of a wake-like brain activity and
consciousness should favor the processing of external informa-
tion, and yet external inputs are rarely integrated in dream scen-
ery (Nir and Tononi, 2010). A recent study described the
presence of slow waves in REM sleep restricted to the superficial
layers of primary sensory cortices (Funk et al., 2016). These slow
waves could act as a gating mechanism because superficial corti-
cal layers are the main targets of thalamic sensory relays (Jones,
2007). We showed here, however, that stimuli had a clear impact
on cortical activity: signs of arousals could be observed after stim-
ulus onset (Fig. 5c,d) as well as robust auditory potentials (Fig. 7).
These activations indicate that sensory information did reach the
cortex as previously suggested (Sallinen et al., 1996; Nir et al.,
2015). However, no LRP was observed when novel words were
played. A potential explanation is that stimulus-evoked pertur-
bations were confined in sensory areas.

But what could limit distributed cortical processes if cortico-
cortical connectivity is regained in REM compared to NREM
sleep (Massimini et al., 2010)? We propose that sensory informa-
tion may compete with endogenous contents (i.e., dreams). In-
deed, wake-like endogenous activations have been observed in
REM sleep (Louie and Wilson, 2001; Andrillon et al., 2015).
These endogenous activations could compete for the brain’s
computational resources and interfere with the processing of ex-
ternal inputs. Accordingly, prestimulus complexity had a nega-
tive impact on LRP magnitude (Fig. 4). This “informational
gating” could be mediated by a domination of top-down signal-
ing at the expense of bottom-up processes (Nir and Tononi,
2010). Further investigations are needed to investigate the rela-
tionship between oneiric contents and sensory disconnection.

Consequences of external stimulations on sleep
How did stimulation affect sleep? In NREM sleep, we observed a
two-step response (Fig. 5a,b). Right after stimulus onset, power
increased within the slow-wave and spindle ranges in accordance
with the fact that sleep rhythms can be evoked by external stim-
ulations (Halász, 2015). These increases were maximal over fron-
tal electrodes and could correspond to a protective mechanisms
ensuring that sleep is preserved (Halász et al., 2014). Likewise, the
suppressive N550 (Fig. 6) was maximal at frontal electrodes. After
this initial increase, slow waves and spindle power were on the
contrary suppressed. The associated spatial and temporal distri-
butions overlap with the time and location of the LRP (Fig. 2c)
and the increase in LZc following stimulus presentation (Fig. 4b).

A local dampening of sleep depth, accompanying sensory pro-
cessing, thus followed the initial protective response. No sign of
arousal was observed, but the absence of arousal at the scalp level
does not preclude local awakening in motor or sensory areas
(Nobili et al., 2011; Peter-Derex et al., 2015). The local modula-
tion of sleep depth associated with sensory processing could
therefore reflect, at the scalp level, the occurrence of local wake
within sleep (Nobili et al., 2012). In REM sleep, auditory
stimulations also perturbed theta oscillations (Fig. 5c,d), a
hallmark of REM sleep (Buzsáki, 2006). Signs of cortical acti-
vation (increase in the high-frequency range) could also be
observed after stimulus onset. Once again, these perturbations
were maximal over central electrodes, potentially revealing the
recruitment of auditory areas.

Responsiveness is dynamically modulated during sleep cycles
We also explored the dynamics of neural complexity, motor
preparation, and �-power (a proxy for slow-wave density) across
sleep cycles. Both the LZc and �-power dynamics reflected sleep
cycles’ structure, with an initial descent toward deep NREM sleep
(increase in �-power, decrease of LZc) followed by a steep damp-
ening of NREM sleep at the transition with REM sleep. The LRP
magnitude was also robustly modulated within sleep cycles and
paralleled complexity’s dynamics. Crucially, LRP magnitude in-
creased toward the end of sleep cycles. Thus, the LRP does not
slowly decay after cycle onset but is tightly linked to sleep depth.
This fragility of sleep at the transition with REM sleep could be
instrumental in allowing the brain to “decide” whether to stay
asleep or to wake up (Halász et al., 2004). This modulation of
responsiveness during NREM sleep cycles is reminiscent of a
model (Halász and Bódizs, 2013) in which the descending slope
of the NREM cycle is gradually dominated by sleep-promoting
mechanisms (such as evoked slow waves, as suggested by Fig. 6),
whereas the ascending slope is characterized by the emergence of
wake-promoting mechanisms, which could explain the recovery
of the responsiveness marker toward the end of the NREM epi-
sode (Fig. 8). Interestingly, such a model would predict that ex-
ternal information would be better processed at the end of the
NREM sleep cycle compared with the beginning, sleep depth
being kept equal. Further research would be needed to confirm
such a hypothesis.

Overall, our data suggest that sleepers can complexly and flex-
ibly process information during certain sleep stages. This ability is
self-regulated by the neural dynamics, allowing the sleeping brain
to manage the challenging tradeoff between sensory decoupling
and monitoring its environment.
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Abstract

Recent research has shown that the complexity of EEG signals is correlated with the levels of
cognitive processing in comatose in comatose or sleeping subjects. Here we investigate whether
this neural marker can be used in fully aware healthy people, as an index of how focused they are
on a given task. We had twenty subjects test a helicopter simulator made for this experiment,
with the aim of manoeuvring the helicopter through rings using a joystick. By contrasting when
subjects were successful in navigating the helicopter compared to when they made errors we could
identify moments of high mental workload and investigate how well EEG complexity was able to
track it. Though not able to distinguish on a single-trial level, subjects showed higher complexity
on average in the seconds before missing circles compared to when they successfully navigated
the helicopter through them. Additionally, a significant drop in complexity was measured in the
navigational mode, which subjects reported as the easiest. This mode was presumably the one
they improved the most in, reaching a plateau in their improvement early on resulting a decreasing
the need to focus, reflected in the decreased complexity. Finally, there was a significant contrast
in the complexity for trials with a hard difficulty compared to trials that were easier to navigate.
This was also true when only comparing difficulty for successfully completed trials. This indicates
that the EEG complexity is not only is sensitive to neural changes leading up to a failure, but also
when a subject is struggling during a hard but successful trial. Our results indicate that EEG
complexity is able to distinguish moments of varying workload consistently across subjects, which
suggests that EEG complexity is a viable candidate as an index of mental workload.

1 Methods

Twenty subjects (hereof 10 were female) were recruited for an experiment, where they had to use
a helicopter simulator to navigate through courses with varying difficulty with the aim of flying
through circles. While the subjects interacted with the simulator, we recorded their EEG in order to
investigate whether their neural activity reflected their their performance in navigating the helicopter,
as well as the varying difficulty of the simulator.

Figure 1 illustrates the concepts of the paradigm experiment.

1.1 Experimental setup

The experiment was constructed in the following way: A trial is defined as the time spent until reach-
ing a circle, with a block consisting of nine trials. The subjects were instructed to take small breaks
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Figure 1: Experimental setup and EEG complexity pipeline. A: From EEG to LZc. EEG is recorded from a
subject interacting with the helicopter simulator (B). In windows of 1,500 ms, the EEG is binarised based on the
envelope amplitude of each channel. The binary matrix is "stretched" into a string observation-by-observation
and given to the Lempel-Ziv algorithm. By using a moving window (with steps of 100 ms) and averaging across
trials, the we can compare the difference in complexity leading up to a successful or failed navigation.
C: The object for the subject is to navigate a helicopter successfully through circles, where a trial is defined as
the time leading to to reaching a circle. In total, the subject has to navigate a helicopter through 240 trials
divided into blocks of eight trials. Each trial is affected by three independent types of difficulty, with an easy
and a hard setting, and each block contains all eight difficulty combinations in random order. Trial 4, in the
illustrated block, has a hard angle between the circles, the circle is large (easy) and there is turbulence from the
hard wind difficulty.
D: In the helicopter simulator the subject has control the helicopter in three navigational modes, where the
control scheme differs. The modes are played in a fixed order and repeated ten times.

between blocks, when needed. The subject navigated the helicopter in three different navigational
modes, that alternated in a fixed order. The three navigational modes were then repeated ten times
as can be seen in fig. 1, summing to a total of 270 trials per subject. The order of blocks and modes
is illustrated on fig. 1D.

The helicopter simulator was designed specifically for this experiment, and featured three different
and independent ways to wary the difficulty. Each difficulty had a hard and an easy setting, giving
eight possible combinations of the three types of difficulty. Each block started with a "warm-up"
trial and the remaining eight trials consisted of all posbiile difficulty combinations in random order.
The three types of difficulty were: The angle difficulty determined the angle between the next circle
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and the one just completed, meaning that a hard difficulty forces the subject to take sharper turns
with the helicopter. The size difficulty determines the size of the circle the helicopter needs to be
navigated through, where a hard difficulty requires the subject to have a better and smoother control
over the helicopter. The wind difficulty decides whether or not there will be turbulence, which makes
it harder to have a controlled navigation of the helicopter. This is also illustrated on fig. 1C.

1.2 Acquisition and pre-processing

During the experiment, we recorded electroencephalogram (EEG) from subjects using a 64 channel
Biosemi system with active electrodes. All subsequent processing and analysis of the EEG was
conducted digitally in Matlab.

Before analysing the EEG, we pre-processed it to remove unwanted noise in the recorded signals.
First, the raw EEG was filtered using a 85 Hz lowpass and 50 Hz bandstop FIR filters to ensure linear
phase and avoid phase distortion in the EEG. As we intended to measure the information sharing
between brain areas, we opted not to employ digital re-referencing, to avoid inducing signals between
distant electrodes. Therefore the only interactions between electrodes were with the CMS and DRL
electrodes, which are placed occipitally in the Biosemi system.

We wanted to avoid signals of non-cortical origin (e.g. from eye or body movements) inducing
the same information in multiple electrodes and thereby false positives in our analysis. We therefore
employed independent component analysis (ICA), followed by dipole-fitting and automatic classifi-
cation of the ICs using plug-ins for the EEGLAB toolbox, to help identify these non-cortical sources
and remove them from the EEG (Delorme and Makeig, 2004; Oostenvelt et al., 2003; Frølich et al.,
2015).

The experiment contained more movement than normally seen in experiments where EEG is
recorded. EEG can be sensitive to movement artefacts, which in our experiment might create false
positives for difficult trials, where the subject might unintentionally move their entire body. We
therefore implemented a very aggressive preprocessing, only keeping ICs that the toolbox classified
as most likely to be cortical. This resulted in a high number of rejected ICs.

Finally, we used surface Laplacian, with a neighbour count of eight to reduce the influence of
volume conduction (BCILAB plug-in for EEGLAB; Kothe and Makeig (2013)).

1.3 Complexity analysis of EEG

In order to analyse EEG complexity, we employed Lempel-Ziv complexity implemented the same
manner as in Andrillon et al. (2016). Briefly, LZc measures the complexity of a signal by estimating
how much it can be compressed (Lempel and Ziv, 1976). The analysis is based on the algorithm
used in known file lossless compression programs such as WinZip. LZc can be normalised such that
it takes values between 0 (fully compressible, i.e., predictable signal) and 1 (minimally compressible).
Previous studies have shown that LZc (or variants of it) can track levels of consciousness in patients
as well as healthy subjects under anaesthesia and during sleep (Casali et al., 2013; Schartner et al.,
2015; Andrillon et al., 2016; Schartner et al., 2017). The aim of this study was to see if this measure
would also be able to track consciousness in awake subjects, while dealing with a task of varying
difficulty.

It is worth noting that this analysis is unsupervised, meaning that it requires no models to be
fitted to the data, and therefore there is no risk of over-fitting a model to observation noise.

For the analyses presented here, we use a subset of eight electrodes from the occipital-parietal
area. This subset was selected based on tests from pilot experiments on an early version of the
helicopter simulator.
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Figure 2: (a): LZc time-locked to the time point when the helicopter reached a circle (defined as t = 0 s) for
the contrast between failed and successful trials. The LZc contrast were calculated by subtracting the average of
successful trials from the average of failed trials for each subject. The contrast was then averaged across subjects,
with shaded areas signify SEM. Note that two groups of trials was not balanced with respect to the number of
trials. The dashed grey square indicates the temporal ROI used to average into single LZc values for each trial,
which have been averaged across subjects in (b). Error bars signify the standard error of the over the subjects
mean.

2 Results

With our experiment we wanted to investigate the capacity of EEG complexity to reflect neural
changes leading up to failures while navigating a helicopter. To this end, we time-locked the LZc
to when the helicopter reached a circle, and averaged across trials. On the subject level, we could
see a clear differences in the LZc between successful and failed trials, but we also identified a strong
subject-specific difference in the LZc (see figures S1 and S2). Due to our experimental paradigm, we
were unable to remove subject-specific variations in the LZc, which we solved by looking at condition
contrasts within each subject.

For each subject we calculated the average LZc for failed trials and subtracted them by the average
LZc from successful trials, resulting in the graph shown on fig. 2a. From this contrast it can be seen
that the EEG on average is more complex in trials where the subject is about to fail a navigation
compared to successful trials. It can also be seen that there is a continued contrast after the circle
has been reached, which is likely driven by the 1,500 ms width of the window used to calculate the
LZc, which ends in the time point it is designated to. I.e. the LZc designated to t = 1,000 ms is
calculated from the EEG between -500 ms to 1,000 ms, relative to reaching a circle.

To test the significance of this contrast we selected a temporal region of interest (ROI) from -2,000
ms to 1,000 ms. For each trial we averaged the LZc in this ROI, excluding LZc samples influenced
by the ERP generated from the previous trial, as discussed in section 1.3, and calculated the subject-
averages for the two trial subsets. Using a paired t-test showed a that the LZc in the ROI was
significantly higher in failed trails, than in successful trials (p = 0.001).

In a real-world scenario, a flight-simulator would in most cases not need neural measures to regis-
ter, when a navigational failure was made. As in the helicopter-simulator created for this experiment,
failures could simply be recorded, when the subject failed to complete a task, such as flying through
a circle. However, it is much harder for a simulator to register, when the user is struggling with
navigating the helicopter. To investigate this, we looked at how the LZc varied with the changes in
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Figure 3: (a): LZc time-locked to the time point when the helicopter reached a circle (defined as t = 0 s) for
three contrast between difficult and easier trials. The LZc contrasts were calculated by subtracting the average of
easy trials from the average of hard trials for each subject. The contrasts were then averaged across subjects, with
shaded areas signify SEM. The Angle, Size, and Wind contrasts are calculated using the hard and easy difficulty
and the members of the two groups are therefore balanced. The dashed grey square indicates the temporal ROI
used to average into single LZc values for each trial, which have been averaged across subjects in (b). Error bars
signify the standard error of the over the subjects mean.

the three types of difficulty.
We conducted a repeated measures ANOVA with the LZc in the temporal ROI as the response

variable and a within-subject design. As within-subject predictor variables we included the three
difficulty types and the navigational mode, resulting in a 2-by-2-by-2-by-3 ANOVA. The ANOVA
showed that the subjects, the Size difficulty, and the the navigational mode had a significant effects
on the LZc variation (psubject < 0.001, psize < 0.001, pmode = 0.0191), whereas the Angle and Wind
difficulties had low or no effect on the variation in LZc (pangle = 0.077, pwind = 0.977).

In a manner similar to the failure contrast, we also investigated the influence of the types of
difficulty by calculating contrasts between the trials with a hard and an easy setting. For example,
for the Angle difficulty we subtracted the average LZc across all trials with an easy angle from the
average of trials with a hard angle. Figure 3 supports the conclusion of the ANOVA with similar
p-values (pangle = 0.077, psize < 0.001, pwind = 0.977).

Comparing the failure contrast curve on fig. 2a with the Size contrast in fig. 3a, they can be seen
to be were similar. This had us asking the question whether the contrast between hard and easy Size
difficulty was simply because subjects failed the hard trials, so the LZc only captured neural changes
due to upcoming failure, and not also struggles due to high difficulty. We therefore divided the trials
into a subset of failed trials, and a subset of successful trials, and calculated the Size difficulty contrast
for both subsets.

Figure 4 shows that, looking only at trials with successful navigations, there is still a significantly
higher LZc when the Size difficulty contrast is hard. This is evidence that LZc not only reflects ex-
ternally measurable events such as navigational failures, but also reflects more endogenous processes,
such as when a user successfully completes a task, but struggles with it.

We were also interested in seeing whether the there was a change in LZc over time, which could
reflect a learning process. We therefore include time, represented by the block number, as a predictive
variable in the repeated measures ANOVA. This showed time to have a significant effect on LZc
(p < 0.001), as well as having a significant interaction with the navigational mode (p = 0.002). We
therefore investigated the difference of LZc in the temporal ROI between the first and the last block
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Figure 4: Contrasting difficulty in the two subsets of failed or successful trials. (a): Size difficulty contrast (hard
vs. easy) is calculated in the same way as in fig. 3, but only for the Failed or the Successful subset of trials. Note
that the trial count for Failure subset group is lower, and the average is therefore more noisy. Additionally, the
low trial count might be compounded by the fact that short trials were susceptible to the removal of LZc samples
influenced from the ERP of prior trial as discussed in section 1.3, which might explain the sudden change after
t = 0. The dashed grey square indicates the temporal ROI used to average into single LZc values for each trial,
which have been averaged across subjects in (b). Error bars signify the standard error of the over the subjects
mean.

for each navigational mode.
Figure 5 shows that all three navigational modes have a drop in complexity between the first and

last block. The contrast is seen to be strongest for the Horizontal mode, and it is also the only mode
to have a significant drop in complexity as measured be a paried t-test (p = 0.003). The Horizontal
mode was also reported by subjects to be the easiest in post experiment questionnaires, as well as
the mode were most quick to learn, as reported by self-scored learning curves.

3 Conclusion

Though not being able to distinguish on a single single trial level, we have shown that on average the
EEG complexity, is higher in the seconds before missing circles compared to when they successfully
navigated the helicopter through them.

All together, these results show that the EEG complexity shows promise in tracking the perfor-
mance of persons mental workload while training a new task, such as learning to fly a helicopter
simulator.
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Supplementary information for
Tracking difficulty in a helicopter simulator: EEG complexity as a marker for mental

workload

Figure S1: Average LZc for subject 1-12, synchronised to the time point when helicopter reached a circle. The
LZc is averaged across trials where helicopter went through circle ("Hit"), and when helicopter went past circle
("Missed"). Shaded bars signify SEM over trials.
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Figure S2: Average LZc for subject 13-20, synchronised to the time point when helicopter reached a circle. The
LZc is averaged across trials where helicopter went through circle ("Hit"), and when helicopter went past circle
("Missed"). Shaded bars signify SEM over trials.
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Figure S3: Predictive capacity of LZc. Contrasts over the hard vs. easy difficulty using only EEG recorded
prior to reaching a circle. Note that the trial count for Missed group is lower, and the average is therefore more
noisy. Note that the LZc is calculated in 1.5 s windows ending in the time point designated for the LZc value.
The LZc presented here is therefore not based on EEG recorded subsequent to reaching a circle.
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Figure S4: LZc only for the 1 second after reaching the circle. Contrasts over the hard vs. easy difficulty using
only EEG recorded subsequent to reaching a circle. Note that the trial count for Missed group is lower, and the
average is therefore more noisy. Note that the LZc is calculated in 1.5 s windows and therefore include EEG prior
to reaching the circle.
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Tracking difficulty in a helicopter simulator: EEG complexity as a marker for mental workload 

Electroencephalography (EEG) is an intricate multi-dimensional measure, and there are many approaches to 

analyse EEG or compare it with the stimuli subjects are interacting with. 

Recent research has shown that the complexity of EEG signals is correlated with the levels of consciousness 

in comatose patients (Casali et al., 2013) as well as healthy subjects under anaesthesia and during sleep 

(Schartner et al.,2015; Andrillon et al., 2016; Schartner et al.,2017). 

In this study we investigate whether EEG complexity (LZc), as captured by the Lempel-Ziv algorithm (Lempel 

and Ziv, 1976), can be used in fully aware, healthy people as an index of how focused they are on a given 

task. 

Twenty subjects (hereof 10 were female) were recruited for an experiment, where they had to use a 

helicopter simulator to navigate through courses with varying difficulty with the aim of flying through circles. 

While the subjects interacted with the simulator, we recorded their EEG in order to investigate whether their 

neural activity reflected their performance of navigating the helicopter, as well as the varying difficulty of the 

simulator. 

This paradigm contained a higher degree of movement than normally seen in experiments where EEG is 

recorded. EEG can be sensitive to movement artefacts, which in our experiment might create false positives 

for difficult trials, due to the subject unintentionally moving their entire body. We therefore implemented an 

aggressive preprocessing using independent component analysis (ICA), followed by dipole-fitting and 

automatic classification of the ICs using plug-ins for the EEGLAB toolbox, to help identify non-cortical sources 

and remove them from the EEG (Delorme and Makeig, 2004; Oostenvelt et al., 2003; Frølich et al., 2015). 

The helicopter simulator was designed for this experiment and featured three modes with different ways to 

navigate the helicopter, as well as three different ways to wary the difficulty. By contrasting each of these 

difficulty types, we could investigate whether LZc was able to identify trials with high difficulty, where the 

subjects were assumed to struggle more. 

Furthermore, by contrasting the trials, where subjects were successful in navigating the helicopter, with 

failed trials, we could identify moments of high mental workload and investigate how well LZc was able to 

track these moments. 

Though not distinguishable on a single-trial level, subjects showed significantly higher complexity on average 

in the seconds before failing a trial compared to when they successfully navigated the helicopter through the 

circles (see figure 1). Additionally, a significant drop in complexity was measured in the navigational mode, 

which subjects reported as being the easiest. This mode was presumably the one they improved the most in, 

thereby reaching a plateau in their improvement early on. This could result in a decrease in focus, reflected 

in the decreased LZc. 

The difficulty type that obtained the highest LZc contrast between easy and hard trials, was also the difficulty 

type that was the most influential in whether subjects failed a trial. This was also the case when calculating 

this difficulty contrast only on successful trials, which indicates that the LZc not only captures neural changes 

up to a failure, but also when a subject is struggling during a hard but successful trial.  

That LZc is able to distinguish moments of varying workload consistently across subjects, suggests that EEG 

complexity is a viable candidate as an index of mental workload. 
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