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Abstract.

Process-aware information systems (PAISs) are increasingly used to provide flexible
support for business processes. The support given through a PAIS is greatly enhanced
when it is able to provide accurate time predictions which is typically a very challenging
task. Predictions should be (1) multi-dimensional and (2) not based on a single process
instance. Furthermore, the prediction system should be able to (3) adapt to changing
circumstances, and (4) deal with multi-perspective declarative languages (e.g., models
which consider time, resource, data and control flow perspectives). In this work, a novel
approach for generating time predictions considering the aforementioned characteristics
is proposed. For this, first, a multi-perspective constraint-based language is used to
model the scenario. Thereafter, an optimized enactment plan (representing a potential
execution alternative) is generated from such a model considering the current execution
state of the process instances. Finally, predictions are performed by evaluating a desired
function over this enactment plan. To evaluate the applicability of our approach in
practical settings we apply it to a real process scenario. Despite the high complexity
of the considered problems, results indicate that our approach produces a satisfactory
number of good predictions in a reasonable time.

Keywords: Flexible process-aware information systems, Time prediction, Constraint
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1. Introduction

Businesses are increasingly interested in improving the quality and efficiency of
their processes and in aligning their information systems in a process-centered
way [31]. In such context, process-aware information systems (PAISs) [9] have
emerged to provide a more dynamic and flexible support for business processes
(i.e., BPs). BPs can be defined as sets of activities? which are performed in co-
ordination in an organizational and technical environment [43] and which jointly
achieve a business goal.

The support provided through a PAIS is greatly enhanced when it is able
to provide accurate time predictions (i.e., predictions related to the completion
time of a running process instance) since these predictions constitute a valuable
tool when managing processes [29]. In fact, there exist many process scenarios for
which temporal aspects are of utmost importance [44], and hence, reliable time
predictions are crucial for any PAIS [41]. Specifically, such predictions allow
process managers to (1) anticipate time problems, (2) pro-actively avoid time
constraint violations, and (3) make decisions about the relative process priorities
and timing constraints when significant or unexpected delays occur [10].

In such a context, time predictions must be provided while taking into ac-
count a set of basic requirements [32]: (1) the forecast must be highly accurate,
(2) the prediction must take place nearly instantaneously, (3) the prediction
functionality must be easy to use, and (4) the prediction may not interfere with
the efficient operation of the PAISs. Therefore, time prediction represents a very
challenging task and, even more, if the following desirable characteristics are
considered:

— The predictions should not be based on a single process instance.
Typically, activities in a BP compete for limited resources which are shared
between all the process instances which are executed in the PAIS. Therefore,
predictions which are evaluated over an isolate process instance may lack
accuracy since some of the resources might be assigned to a different instance.
These resources are then not available for such instance. For this, in order to
provide accurate predictions they must consider multiple process instances
and resources [37, 32].

— The predictions should be multi-dimensional. In modern cooperative
business, time is of utmost importance. Therefore, process models should be
able to take this dimension into consideration [44]. Moreover, the resource
perspective of BPs —which refers to the link between the activities defined
in the processes and the entities that carry out the work related to them
[47]— is significant to the efficiency and effectiveness of a process [40], and
hence, should be also considered when designing a BP model [38]. Likewise,
it becomes essential to take into account the data perspective since data
constraints influence the possible executions of activities and, in turn, the
execution of activities results in certain data constraints that should be met.
Thus, a multi-perspective time prediction methodology, including all these
aspects, would be desirable, i.e., besides predicting the remaining time of a
specific instance, other relevant issues that can be also predicted for improving

2 Similarly to [27], the term activity is used in this paper to express the smallest unit of work
in a BP. In other previous works (e.g., [6]), however, the term task is used instead.
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Fig. 1. Overview of the proposed approach for generating time predictions

the management of running instances (e.g., start and end times of process
activities, use of resources, and critical activities).

— The prediction system should be able to adapt to changing circum-
stances. Many real scenarios might be subject to input uncertainty, e.g., the
arrival time of clients is not well known or a resource became unavailable
during the process enactment [39]. Therefore, in general, BPs are designed
considering different alternatives to cope with such situations when they are
enacted. Accordingly, a related prediction system should also consider such
alternatives during the enactment to increase the supported flexibility.

— The prediction system should be able to deal with declarative mod-
els. Flexible PAISs [31] are required to allow companies to rapidly adjust their
BPs to changes. In such a context, declarative BP models (e.g., constraint-
based models) are increasingly used allowing their users to specify what has
to be done instead of how [27], and hence, offering a high flexibility to end
users. Many enactment plans related to the same constraint-based process
model typically exist, and each of these plans presents different values for
relevant objective functions (e.g., overall completion time).

Although there exist some approaches related to time prediction (e.g., [42,
41, 37, 34, 13, 23, 29]), they neglect some of the aforementioned characteristics.
Especially in the last one, whereas there exist solid time prediction techniques for
imperative models (e.g.,[23, 13, 24]), little work has been conducted for declar-
ative models [41].

In this work, an approach for generating time predictions of running pro-
cess instances related to a multi-perspective constraint-based process model is
proposed, i.e., which considers time, resource, data and control flow perspec-
tives. The generated predictions are based on information extracted from both
a constraint-based process model and the current state of partially executed
process instances.

Note that while constraint-based process models offer a high flexibility to
end users, they also increase the challenge of performing accurate predictions in
such uncertain scenarios. In this work, we consider that all the decisions that
the process stakeholders make about the way to execute it are generally aligned
to the optimization of relevant objective functions (e.g., among all the available
activities, which one should be executed next in order to minimize the overall
completion time of the current process instances?). For this, instead of using any
possible enactment plan which is compliant with the constraint-based process
model, we propose to base the predictions on an optimized enactment plan that
is generated from such a model at the current execution state.

Figure 1 depicts the main contribution of this work. Starting from (1) a multi-
perspective constraint-based process model, (2) an objective function and (3) the
execution state of multiple running process instances, an optimized enactment
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plan is automatically generated. The generation of such plan is carried out by
solving a planning and scheduling (P&S) problem in which, on the one hand, the
activities to be executed are selected and ordered considering all the constraints,
resource requirements, and resource availabilities —what constitutes a planning
problem [16]—. On the other hand, attribute values like start time are assigned to
activities —what constitutes a scheduling problem [8]—. For solving this P&S
problem we base on a previous work[20] where we propose a constraint-based
approach in which the process model and the objective function are represented
as a constraint optimization problem (i.e., COP). The generated enactment plan
is obtained as an optimized solution to this problem and is, in turn, used for
performing the predictions. Thereafter, the predictions are performed through
the evaluation of desired functions over the optimized enactment plan.

Note that the decisions which are taken by the process stakeholders might not
be aligned with the enactment plan which has been used to generate the predic-
tions due to unexpected events (e.g., a resource became unavailable). Nonethe-
less, at run-time this plan is updated —if necessary— considering the current
state of the running process instances, and therefore, the predictions are also
updated as the execution of the process proceeds.

The proposed approach has several advantages that are worth nothing. First,
when generating the optimized enactment plan, multiple process instances as
well as the allocation of resources are considered.Secondly, since the optimized
enactment plans are updated according to the running process instances, it is
possible to deal with unexpected factors and hence, to adapt to changing cir-
cumstances. Third, besides predicting the remaining time of a specific process
instance, the proposed approach allows the prediction of other relevant issues.
Finally, declarative models are considered as starting point.

In previous work, we presented an approach for generating optimized enact-
ment plans from constraint-based specifications [20]. In addition, we applied such
technique to provide recommendations [4] and generate imperative BP models
[2]. However, this paper significantly extends these previous works by:

1. Introducing a novel method to generate predictions from declarative specifi-
cations. Such a method is built upon the constraint-based tool developed in
[20].

2. Performing a case study considering a benchmark and a real scenario in order
to validate the effectiveness and suitability of the proposal.

Moreover, the Appendix A of this paper provides further implementation details
of the constraint-based tool which are not included in previous works.

The rest of the paper is organized as follows: Section 2 introduces back-
grounds, Sect. 3 details the proposal for providing predictions, Sect. 4 explains a
real example where the current proposal is applied, Sect. 5 deals with the evalu-
ation, Sect. 6 presents a critical discussion, and Sect. 7 includes some conclusions
and future work.

2. Background

This section introduces the related concepts which are used in the remainder
of this paper. Section 2.1 provides backgrounds regarding constraint-based BP
models. Section 2.2 gives an overview of planning, scheduling and constraint
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programming. Section 2.3 summarizes previous related work on time prediction
on business processes.

2.1. Constraint-based BP Models

Different paradigms for process modelling exist, e.g., imperative and declarative.
Irrespective of the chosen paradigm, desired behavior must be supported by
the process model, while forbidden behavior must be prohibited [27, 25]. While
imperative process models specify exactly how things have to be done, declarative
models only focus on what should be done. In our proposal we use the constraint-
based language Declare 3 [27, 28] for the BP control-flow specification. Declare
is based on constraint-based process models.

Definition 2.1. A constraint-based process model CM = (A4,Cpp) con-
sists of a set of activities A, and a set of constraints Cgp prohibiting undesired
execution behavior. Each activity a € A can be executed arbitrarily often if not
restricted by any constraints.

Constraints can be added to a Declare model to specify forbidden behav-
ior, restricting the desired behavior. For this, Declare proposes an open set of
templates which can be divided into 4 groups:

1. Existence templates: unary template (i.e., it involves only one activity) con-
cerning the number of times one activity is executed, e.g., Exactly (IN,A) spec-
ifies that A must be executed exactly N times.

2. Relation templates: positive binary templates used to impose the presence
of a certain activity when some other activity is performed, e.g., Prece-
dence(A,B) specifies that to execute activity B, activity A needs to be exe-
cuted before.

3. Negation templates: negative templates used to forbid the execution of ac-
tivities in specific situations, e.g., NotCoexistence(A,B) specifies that if B is
executed, then A cannot be executed, and vice versa.

4. Choice templates: n-ary templates expressing the need of executing activities
belonging to a set of possible choices, e.g., ExactlyChoice(N,S) specifies that
exactly N activities of the set of activities S must be executed.

Example 2.1. Figure 2(a) shows a constraint-based BP model where traces*

3 DECLARE is one of the most referenced and used declarative process modeling languages.
4 For the sake of clarity regarding the examples of Figure 2, traces represent sequences of
only completed events of activity executions, i.e., no parallelism is considered. Nonetheless, as
stated in Def. 2.4, the current approach deals with the identifier of the activity as well as with
the start time, end time and the resource which executes the activity.
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<AAB>, <AB>, <ABAB>, <ABB>, <A> are some of the valid ways of ex-
ecuting such model, while traces <BA>, <BB>, <BAAB> are invalid since A
must precede B. In contrast, Fig. 2(b) shows an imperative model where there
is only one valid execution trace, <AB>.

There are different ways to execute a constraint-based process model while
fulfilling the constraints, i.e., there are several related enactment plans.® The
different valid execution alternatives, however, can greatly vary in respect to their
quality, i.e., how well different performance objective functions can be achieved.
Such objective functions of the BPs are the functions to be optimized during the
BP enactment, e.g., minimization of the overall completion time.

In order to allow dealing with more realistic problems compared to Declare,
and motivated by requirements described in literature [27, 25, 22, 44], in previous
works we extended Declare to ConDec-R [19] by adding resource reasoning as well
as temporal and data constraints®, resulting in ConDec-R process models. For
this, ConDec-R supports activities with an open set of attributes and alternative
resources.

Definition 2.2. A BP activity BPAct = (a, Res, Atts) represents a BP ac-
tivity called a, which can be performed by any resource included in Res, and
which has a set Atts of attributes associated (e.g., duration and profit) which is
composed of tuples <att, val>.

Definition 2.3. A ConDec-R process model CR = (BPActs, Data, Cgp,
AvRes, OF) related to a constraint-based process model CM = (Acts, Cgp)
is composed of (1) a set of BP activities BP Acts associated to Acts, (2) prob-
lem data information Data, (3) a set of ConDec-R constraints Cgp including
the constraints of Czp and the constraints which relates activities included in
BPActs and the data included in Data, (4) a set of available resources AvRes
which is composed of tuples (role,#role) which includes for each role (i.e., role)
the number #role of available resources, and (5) an objective function OF to be
optimized.”

Figure 3 shows a simple ConDec-R process model where: BPActs = {(4, <
Rl >,<< att,2 >,< atle,6 >>),(B,< R2 >, << att1,3 >,< atty,2 >>
),(C,< R1,R2 > << att1,2 >, < atte,2 >>),(D,< R1,R2 >, << atty,2 >, <
atty,3 >>)}8; Data = {< N,1 >}; Cgp = {ewactly(1, A), succession(A,B),
response(A, B), negate-response(B, C), precedence(C, D), exactly(2, B)}; Av-
Res= {(R1,2), (R2, 2)}; and OF = mazimize(OF}).

5 Although imperative models allow for several choices, in general, all the execution paths
should be explicitly specified. In contrast, declarative models specify constraints, and therefore,
these models typically allow for more variants.

6 ConDec-R directly supports the most common workflow resource pattern, i.e., the role-based
distribution [35], which also supports our case study. Furthermore, ConDec-R allows to specify
temporal constraints in a similar way as [25, 44], i.e., all the Declare constraints are extended to
support time intervals that indicate the time frame within which activities shall be performed.
Moreover, ConDec-R includes data constraints in a similar way as [25].

7 Note that a ConDec-R process model considers multiple perspectives and, hence, is a multi-
perspective declarative process model.

8 For the sake of simplicity, (1) all the BP activities of the example of Fig. 3 have the same
attributes —which is a common situation—, i.e., att1 and atts and (2) the graphical represen-
tation depicts the room only for 2 attributes. Nonetheless, as stated in Def. 2.2, the number of
attributes can be different for each one.
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2.2. Planning, Scheduling and Constraint Programming

The area of scheduling includes problems in which it is necessary to determine
an enactment plan for a set of activities related by temporal and resource con-
straints (in our context the control-flow constraints). In scheduling problems
several objective functions are usually considered to be optimized, in most cases
related to temporal measures, or considering the optimal use of resources. In a
wider perspective, in Artificial Intelligence (AI) planning [16], the activities to
be executed are not established a priori, hence it is necessary to select them from
a set of alternatives and to establish an ordering. Thus, the objective of P&S is
to find an enactment plan which fulfills the temporal and resource constraints
while considering the optimization of some objective function. Such enactment
plans are commonly represented as Gantt Charts [14] (cf. Fig. 4).

Definition 2.4. An enactment plan EP = (pld, Acts) is composed by an
identifier (i.e., pId) and a set of activities (i.e., Acts) which are executed without
preemption. Each activity act € Acts consist of a tuple < actld, st,et,res >
where: actld is an unique identifier of the activity, st and et state the start time
and end time of the activity in the enactment plan respectively, and res identifies
the resource where the activity is allocated. *

9 Note that, since activities are executed without preemption and the same resource cannot
be used to perform more than one activity in parallel, there are implicit precedence relations
between the activities which are executed by the same resource since our approach does not
allow a resource doing multiple activities in parallel.
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In such a context, constraint programming (CP) [33] supplies a suitable
framework for modeling and solving problems involving P&S aspects [36]. In
order to solve a problem through CP, it needs to be modelled as a constraint
satisfaction problem (CSP).

Definition 2.5. A CSP P = (V,D,Ccgsp) is composed of a set of variables
V, a set of domains D which is composed of the domain of values for each
variable var; € V, and a set of constraints Cogp between variables, so that each
constraint represents a relation between a subset of variables and specifies the
allowed combinations of values for these variables.

A solution to a CSP consists of an assignment of values to the CSP variables.

Definition 2.6. A solution S =< (vary,valy), (vary,valy), ...(var,, val,) >
for a CSP P = (V,D,Ccgsp) is an assignment of a value val; € dom; to each
variable var; € V.

A solution is feasible when the assignments variable-value satisfy all the
constraints. In a similar way, a CSP is feasible if at least one feasible solution
for this CSP exists. From now on, S¥%" refers to the value assigned to variable
var in a solution S.

Similar to CSPs, constraint optimization problems (COPs) require solutions
that optimize an objective function.

Definition 2.7. A COP P, = (V, D,C¢csp,0) related toa CSP P = (V, D, Ccsp)
is a CSP which also includes an objective function o to be optimized.

A feasible solution S for a COP is optimal when no other feasible solution
exists with a better value for the objective function o.

Constraint programming allows to separate the models from the algorithms,
so that once a problem is modelled in a declarative way as a CSP, a generic
or specialized constraint-based solver can be used to obtain the required solu-
tion. Furthermore, constraint-based models can be extended in a natural way,
maintaining the solving methods. Several mechanisms are available for solving
CSPs and COPs [33], which can be classified as search algorithms (i.e., for ex-
ploring the solution space to find a solution or to prove that none exists) or
consistency algorithms (i.e., filtering rules for removing inconsistent values from
the domain of the variables). In turn, search algorithms can be classified as com-
plete search algorithms (i.e., performing a complete exploration of a search space
which is based on all possible combinations of assignments of values to the CSP
variables) and incomplete search algorithms (i.e., performing an incomplete ex-
ploration of the search space so that, in general, to get a feasible or an optimal
solution is not guaranteed). In this work we apply P&S to generate the best
possible enactment plan from the a constraint-based process model through a
complete search algorithm.

Since many COPs present NP complexity [15], optimized solutions are con-
sidered.

Definition 2.8. Let Sols be the set of all the solutions of a COP P, and let
Sols; C Sols be the subset of the solutions already explored at certain time t.
Then, a solution sol; € Sols, is optimized if it can be ensured that it is optimal
regarding only the subset Sols;.
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2.3. Time Prediction on Business Processes

Time prediction!® represents a valuable tool for any PAIS [41] since there exist
many process scenarios for which time is of utmost importance [44].

Many proposals related to time prediction can be found in literature. Such
proposals base their predictions either on: (1) applying data mining techniques
for analyzing logs of past process execution [41, 42, 32], (2) applying certain
techniques over the process model [37, 13, 24] (e.g., simulation, critical path
method, or queuing network analysis), and (3) both sources of information [34,
23] (i.e., event logs and process design).

Regardless of the source information which is analyzed for performing the
predictions, such predictions should not be based on a single process instance in
isolation, but consider multiple process instances and resources [37, 32]. However,
while only few proposals deal with this issue (e.g., [34, 24]), most proposals (e.g.,
[41, 42, 13, 23]) do not pay attention to the influence that the execution of
multiple instances competing for shared resource has on the related predictions.

Moreover, since flexible PAISs [31] are required more and more, the predic-
tion system should be able to adapt to changing circumstances (e.g., a resource
became unavailable during the process enactment) [37, 34, 23].

Although most proposals on time predictions are only focused on predict-
ing the remaining time that is needed to complete the handling of a specific
instance, there are other relevant issues that can be also predicted to support
and improve the management of running instances: (1) start and end times of
process activities, (2) use of resources, or (3) critical activities (i.e., activities
whose delay implies a greater overall completion time). In such respect, existing
proposals could be used for dealing with some of these issues, but, to the best
of our knowledge, there is not any previous proposal able to deal with all the
aforementioned issues.

3. Method for Generating Time Predictions

This section details the method which is proposed for generating time predic-
tions. Figure 5 shows an overview of the proposed approach, and its main com-
ponents are explained as follows:

— ConDec-R Specification is the multi-perspective constraint-based model
(cf. Def. 2.1) created by an analyst through the ConDec-R language (cf. Def.
2.3).

— Declarative PAIS is the component which takes a declarative specification
and allows the user for instantiating such specification and interacting with
the running process instances.

— P&S Module is a constraint-based tool (i.e., it relies on a COP solver) which
is in charge of generating optimized BP enactment plans from a declarative
specification. In addition, the P&S Module allows considering that the cur-
rent execution state (i.e., partial traces) of the running process instances is
reproducible in the generated plan (i.e., the plan includes the current execu-
tion state).

Some works refer to time prediction as case prediction (e.g., [32])
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— Store of Plans is just the shared place where both the P&S Module and
the Prediction Service manage the plans.

— Prediction Service is the system which allows the user to ask for predic-
tions. Each time the user asks for a prediction related to any magnitude (e.g.,
remaining time until completion of all running instances), this service consid-
ers the most recent optimized enactment plan for producing the prediction
response.

Thereby, the Prediction Service allows to predict values not only over a single
process instance but over the whole set of instances which is planned to be
executed within a certain timeframe.

To initialize the components, in a first step, a multi-perspective constraint-
based model is created by an analyst through the ConDec-R language (cf. step
a in Fig. 5). Therefore, the control-flow, resource requirements, estimates of the
activities (e.g., the duration), and resource availabilities are specified. Estimates
can be obtained by interviewing business experts or by analyzing past process
executions (e.g., by calculating the average values of the parameters to be es-
timated from event logs). Moreover, both approaches can be combined to get
more reliable estimates. Second, the Declarative PAIS takes such specification
as input to allow users to execute related running process instances (cf. step b
in Fig. 5). And third, the same specification is transformed and passed to the
P&S Module to initialize it (cf. step ¢ in Fig. 5). For this, the elements of the
ConDec-R model (i.e., BP activities, constraints, resources, data and objective
function) are transformed into the elements of the COP (i.e., variables, domains,
constraints and objective function). Thereafter, the resulting COP can be solved
using a search algorithm to obtain the solution of the COP which is directly
considered as the optimized enactment plan (cf. step d in Fig. 5).11

After these initial steps, two different processes run in a parallel way:

11 A more formal description of the transformation as well as deep implementation details are
stated in Appendix A.
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The user requests a prediction: At run-time, the user may request a
prediction for the running process instances (cf. step e in Fig. 5). Thereafter,
as stated in Alg. 1, the prediction service registers that a user requested
a prediction through the method registerPendingPrediction. Then the
algorithm gets the existing optimized enactment plan from the store or waits
for it in case that no plan is there yet (cf. step f in Fig. 5). As soon as a new
plan is calculated by the P&S module, such a plan is returned by the method
getPlanOrWait. After that, the prediction is generated (cf. step g in Fig. 5)
using: (1) the optimized enactment plan and (2) a measurement function'? Mf
which states the magnitudes to extract from the plan. After the prediction is
performed, the method deregisterPendingPrediction informs the system
that the prediction has been served.

Algorithm 1: Providing Predictions

input : Measurement Function M f
PlanStore store
output: Prediction pred

1 register PendingPrediction();
2 EnactmentPlan ep <+ store.get PlanOrW ait();
3 pred < M f(ep, currentT'ime());

4 deregister PendingPrediction();

Definition 3.1. Let EP be an enactment plan and 7T a time, then a Mea-
surement function Mf(EP,T) is a function that produces some related mea-
surements, e.g., accumulated profit until time T, remaining profit from time
T, time until completion. Formally, M f € (C x N) — M, where C is the set
of possible enactment plans, N is the set of possible time stamps and M is
the set of possible measurement values (e.g., some time duration).

Note that, similarly to [41], this definition of measurement can be used for
generating both predictive and non-predictive values. That is, a predictive
value is obtained when the measurement function looks beyond T, e.g., ex-
pected time until completion. In contrast, non-predictive values are those
which only require information of the enactment plan regarding the elapsed
time (i.e., before T'), e.g., accumulated profit.

Example 3.1. On the one hand, a predictive measurement function related
to the remaining completion time would be described as follows:

Mazgctepp.acts(act.et) =T
That is, it is measured by calculating the end time of the last activity in the
plan —which is the total completion time— and then, subtracting the time
T when the prediction is asked.
In addition, a measurement function to predict the expected profit would be
described as follows:

ZactEEP.Acts profit(act)

That is, it is calculated by summing the attribute profit of all the activities
which exist in the plan.

12 This definition of measurement is an adaptation of the one given by van der Aalst in [41].
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On the other hand, a non-predictive measurement function related to the
accumulated profit would be described as follows:

ZactGEP.Acts\act.et<T profit(act)
That is, the sum of the attribute profit of all the activities whose end time
is before the time T when the prediction is asked.
In the above formulas, EP.Acts refers to the activities which are enacted in
the enactment plan E P, act.et represents the value of the et variable of the
activity act, and profit(act) is the value of the attribute profit of the BP
activity associated to act in the model.

Process instances are executed by authorized users (cf. step h in Fig.
5): As the execution of the process proceeds, events are generated (i.e., start-
ing or finishing an activity by a resource) and constitute the current execution
state which is sent to the P&S Module (cf. step i in Fig. 5). This module is
in charge of updating the optimized enactment plan which is in the store by:
(1) removing it if does not support the current state, i.e., the current par-
tial trace is not a subtrace of such a plan, (2) continuously generating new
optimized enactment plans in order to improve and replace the existing one,
i.e., allowing continuous replanning. In this step, the solver considers the in-
formation of the current execution state obtained from the declarative PAIS.
Note that this allows to adapt the predictions to changing circumstances.

The behaviour of the P&S Module is described in Algorithm 2. In the first
line, a solver is created to look for solutions (i.e., optimized enactment plans)
compliant with the ConDec-R process model. Each time the solver finds a
solution which is better than the previous one, the solver updates the plan
in the store. It is important to notice that, since predictions are requested
on demand (cf. Alg. 1), the time between the user interacts with the PAIS
and the Prediction Service takes the optimized enactment plan from the
store for generating a prediction is unknown. For this, the solver is executed
without establishing a time limit, i.e., the startGeneratingPlans method
launches the solver which goes on optimizing the plan, always compliant with
the currentState, until stopGeneratingPlans is invoked. The algorithm is
executed until all running instances have been completed (line 9 in Alg. 2).
While the solver is running, the algorithm waits until no predictions are
pending (cf. line 5 in Alg. 2), i.e., the Prediction Service is not waiting for a
plan in the store. After that, it waits and listens to the changes in the current
execution state that the P&S module may receive (line 6 in Alg. 2). Whenever
a change is received, the solver is stopped (line 7 in Alg. 2) since the change
may invalidate the solutions which are being generated and the optimized
enactment plan in the store is updated (line 8 in Alg. 2). Specifically, the
removePlanIfNotCompliant method removes the plan from the store if the
current execution trace does not match, i.e., it is not reproducible in the plan.

Despite the NP-complexity of the considered problems, in general, replanning

is less time consuming than initial planning, since most of the information about
previous generated plans can usually be reused. In the context of the current
approach for the P&S Module, CSP variable values become known as execution
proceeds.

From the point of view of the proposed approach, the complexity of per-

forming a prediction over a given declarative model depends on the number and
diversity of its execution alternatives, i.e., on the size of the search space. To
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Algorithm 2: Runtime Monitoring

input : ConDec-R Specification cr
PlanStore store

Solver solver + newSolver(cr, store);
Set<Event> currentState <+ (;
repeat
solver.startGenerating Plans(currentState);
waitl f Pending Predictions();
currentState < waitForChangesInCurrentState();
solver.stopGeneratingPlans();
store.removePlanl f N otCompliantWith(currentState);
until !CompleteTrace(cr, currentState);

© 0N O U W N -

be more precise, such complexity is related to the number of BP activities, the
number and type of constraints among these activities, and the percentage of
the plan that is already executed.

4. A Real Example: A Beauty Salon of Seville

This section introduces a real example from a beauty salon that is used to validate
the current proposal in the considered case study.

The considered business has expanded quickly in the last years involving
more staff, services and complex constraints which resulted in problems related
to the management of the salon. In particular, long waiting time for clients and
a lack of information for the manager are causing problems, affecting customer
satisfaction and profit of the business.

Since our approach generates predictions based on the state of the beauty
salon, the aforementioned problems can be detected in advance, and therefore,
the manager of the salon can react to overcome them.

The considered beauty salon offers various services '3 like dye, clean&cut,
manicure and facial services. Clients are required to make appointment calls
so the number of clients and its booked services are known at the beginning
of the day. There are several full-time employees identified by A, R, L and M,
and each activity can be performed by certain employees only. In addition, each
activity has an average estimated duration and a profit which is obtained after
their execution. The manager of the salon wants to plan and schedule a working
day with several clients considering that the waiting time (WT) of the clients
has to be minimized and distributed uniformly among all the clients (objective
function):

WT = \/ZCEC ((8°*) —c.appT) —(Fpec.servea b-etimate))?

C.size
Where C' is the set of clients, S is the considered solution, S(¢) is the time
when the client ¢ has finished, c.appT is the appointment time of ¢, c.served is
the set of services which are applied to ¢ (i.e., included in the enactment plan),
and b.estimate is the estimated duration for service b.

13 For the sake of clarity, the depicted scenario is a subset of the actual beauty salon, i.e., the
salon offers more services and has more employees.
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Fig. 6. ConDec-R Model for the Beauty Salon Problem (Top level process)
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Fig. 7. ConDec-R Model for some of the Services which are offered

client.bookedServices C this.choices

/1 Both activities, Prepare Hands and Clean Nails must
/ | be execute in succession, at most 15 minutes later

Typically, as illustrated in Fig. 6, a client visit starts with the reception in
the beauty salon. After that, the staff applies some services to the client and,
finally, the client is charged. Complex activity Services is composed of other
activities'* (e.g., dye, clean&cut, facial and manicure, cf. Fig. 7), while Reception
and Charge are BP activities (cf. Def. 2.2). For each BP activity two attributes
are considered: (1) estimated activity duration, and (2) profit.!> Moreover, the
set of alternative resources which can perform the BP activity is also included,
e.g., the activity Reception of Fig. 6 has an estimated duration of 1 minute and
a profit of 0, and can be performed by A, R, M or L.

The current problem deals with NV clients (cf. Existence constraint in Fig. 6)
—each one representing an instance of the model— which come to the salon at
different times and with different bookings during a working day.

Such information is included in the data perspective (cf. Client-Data ele-
ment in Fig. 6). Through the data perspective, it is also modeled that activity
Reception cannot start before the client appointment time. Moreover, a data
constraint is used (in conjunction with the choice constraint) to ensure that
all thelﬁservices the client has booked are selected in the generated enactment
plans.

5. Empirical Evaluation

This section provides an empirical study for the proposed approach. Specifically,
the purpose of this study is the evaluation of the whole approach in terms of
its suitability to provide predictions. In this section, the case study protocol for
the software engineering field proposed by [7] is followed to improve the rigour

14 n asimilar way to PSL [30], ConDec-R allows hierarchical modelling (i.e., complex activities
aggregate activities).

15 As can be seen in Figs. 6 and 7, the profit of the services is associated to one of the activities
of the related services.

16 As an example, two optimized BP enactment plans for the beauty salon problem
with different concurrent clients can be found at http://azarias.lsi.us.es/Predict/
PlansBeautySalon.pdf.
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Table 1. Case study research questions

Id Research Question

MQ1 Is the proposed approach useful for generating predictions?

AQ1 Can the proposed approach propose accurate predictions?

AQ2 Can the proposed approach generate predictions nearly instantaneously?

and validity of the proposed study. Such protocol suggests the following sections:
background , design , case selection , case study procedure and data collection ,
analysis and interpretation , and validity evaluation

Background: Taking the purpose of the proposed study into account, a main
research question (MQ1) is defined (cf. Table 1). Specifically, M Q1 assesses if the
current approach can be useful to provide predictions by satisfying the aforemen-
tioned requirements [32]. For this, M Q1 is divided into two additional questions:
(1) AQ1 checks whether the predictions which are obtained by our approach are
accurate, and (2) AQ2 evaluates the immediacy of our approach for generating
accurate predictions.

Design: The object of study is the method which is proposed for generating pre-
dictions from ConDec-R specifications. For this, a holistic design which considers
the overall proposal as a whole is carried out. In this design, the architecture de-
scribed in Sect. 3 is established for addressing M Q1 (i.e., AQ1 and AQ2). In
such respect, the interaction between the user and the declarative PAIS (cf. Fig.
5) is simulated as detailed later in the case study procedure.

This case study is run on a Intel(R) Core (TM) CPU i7-3517U, 1.90GHz,
10GB memory, running Windows 7. In this work, we consider the constraint-
based system IBM ILOG CPLEX Optimization Studio (CPLEX) [18] for im-
plementing the constraint-based approach detailed in Appendix A.'" CPLEX
provides for efficient search algorithms as well as efficient high-level objects and
constraints to deal with temporal constraints, resource allocation, and optimiza-
tion. This leads to an efficient management of the problems to be solved. After
the application of the aforementioned holistic design, the generated information
(i.e., the predictions) is analyzed to answer the research questions (cf. Table 1).

The data described in Table 2 is quantified for each ConDec-R model which
is considered following the case study procedure.

Case Selection: For this case study, the beauty salon problem is studied. We
consider this is a good and suitable case since it fulfills the following selection
criteria: (1) it has been created for an actual business, (2) the business has
grown up and now it has scheduling problems (i.e., involves resource alloca-
tion, complex constraints and the optimization some objective function), and (3)
it manages several performance measures which can be used to generate
predictions (e.g., resource usage, waiting times, profit, completion time, etc.).

In addition, in order to extend the external validity, a set of synthetic mod-
els has been created taking some important characteristics into account. First,
correctness, i.e., the ConDec-R models must represent feasible problems without
any conflict (i.e., there are some traces that satisfy the model). Second, represen-
tativeness, i.e., the ConDec-R models must represent problems which are similar
to actual BPs with different constraints and sizes. Consequently, we considered
models of medium-size (i.e., including 10-20 activities) which comprise all basic

17 CPLEX has been the selected tool for the current approach due to its maturity —it is the
successor of ILOG Solver, the market leader in the last decade [33]—. Despite it is a proprietary
software, it can be freely accesses for the academic community and it is currently used in many
papers, e.g., [45, 46].
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Table 2. Quantified variables for the holistic design which are obtained by applying the
proposed approach with a time limit equal to It seconds and after the sp% of a reference
process enactment is executed with It € {1,5,10} and sp € {0, 25, 50,75}

Variable Description

Average of the waiting time of the reference solution which represents min-

MinW'T . " .
imum waiting time.
MazWT Average of maximum waiting time which is achieved.
Predt sp Average of the prediction of the waiting time.
NPred Average of the prediction of the waiting time when no optimization is per-
redsp

formed.

Average of the error made in the prediction Pred;; s,. This error is mea-
Erryg sp sured as abs(|Predys s — RefW7T|)/(rangeW'T), where Ref is the reference
enactment plan, and range'T is the range of possible values of WT.

Average of the error made in the prediction N Predsp. It is measured simi-

NErTsp larly to Erryy op-

Table 3. Generic synthetic models with 10 and 20 activities and a varying number of con-
straints.

Model  #Acts Description
A10 10 Includes 10 activities and 7 constraints
B10 10 Extends A10 by including 3 additional constraints
Al5 15 Includes 15 activities and 12 constraints
B15 15 Extends A15 by including 3 additional constraints
A20 20 Includes 20 activities and 17 constraints
B20 20 Extends A20 by including 6 additional constraints

types of ConDec-R templates, i.e., existence, relation, and negation. For this, 6
generic test models are considered with 10, 15 and 20 activities respectively and
a varying number of constraints (cf. Table 3).

Case Study Procedure and Data Collection: The execution of the study
is planned as follows.

First, the business is selected —according to the selection criteria— and it is
modeled as a ConDec-R model.

After that, on the one hand, different configurations are generated related
to the beauty salon problem. Each configuration specifies the number of clients
(NC) which are considered and the average number of booked services (NS).
According to the information which is provided by the manager of the salon (i.e.,
there are normally between 10 and 20 clients per day and a client typically books
one or two services) we consider values {1, 1.5, 2} for NS and the values {10, 15,
20} for NC'. Based on this information, to average the results, a collection of 30
Condec-R models is randomly generated for each pair <NC, NS> by varying the
booked services of each client (S) and their appointment times (T). In summary,
30*3*3=270 different ConDec-R related to the beauty salon are considered. Fig.
8 shows an example of a problem file of the beauty salon generated for 10 clients
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Table 4. Description of the acronyms

Acronym Description

NC Number of clients in the beauty salon during the day.

T Appointment time of each client.

NS Average number of booked services by client during the day.
S Booked services for each client.

c: 0 T: 9.00 S: Dye

c: 1 T: S.00 S: cleanAndCut, Dye, Manicure
Cr o2 T: 10.30 8: CleanAndCut, Dye, Facial
c: 3 T: 12.15 S: Dye

C: 4 T: 12.15 S: Facial

Cc: 5 T: 13.00 5: Dye, Facial

C: o6 T: 14.00 S5: Manicure, Dye, Facial

c: 7 T: 15.30 S: Facial, Manicure, Dye

c: 8 T: 17.20 S: Manicure

c: 9 T: 17.20 5: CleanAndCut

Fig. 8. Example of a problem file of the empirical evaluation generated for 10 clients (i.e.,
NC = 10) with 2 booked services in average (i.e., NS = 2). For each client (i.e., C), its
appointment time (i.e., T) and its booked services (i.e., S) are stated.
(i.e., NC = 10) with 2 booked services in average (i.e., NS = 2).'® To clarify,
Table 4 summarizes the different acronyms which appear above.

On the other hand, for the synthetic problems, Figure 10 shows the ConDec-
R representation of the generic models A10, B10, A15, B15, A20 and B20. There
are some activities that are involved in an Existence constraint, which means
that such activities must be repeated several times. We have considered 15, 30
and 60 repetitions, i.e., N € {15, 30,60}. Regarding the number of available re-
sources, in turn, for all the generated test models, two available resources of two
kinds of roles (i.e., R1 and R2) are considered. Moreover, random durations and
resource requirements are considered for each activity since these aspects have
a great influence on the complexity of the search of optimal solutions. This is
due to the considered problems are extensions of typical scheduling problems.
Specifically, in order to average the results over a collection of randomly gen-
erated ConDec-R models, 30 instances are randomly generated for each specific
ConDec-R model by varying activity durations between 1 and 10 and role of
required resources between R1 and R2. In summary, 6*3*30= 540 different syn-
thetic ConDec-R models are considered for evaluating predictions. In this case,
the objective function and the prediction function are both related to the overall
completion time, i.e., the time spent to complete all the instances.

Thereafter, for each beauty salon problem (i.e., same activities, relations and
resources but different booked services and appointment times) and for each
synthetic problem, we proceed as depicted in Fig. 9:

1. An optimized BP enactment plan is generated by the proposed approach for
minimizing the waiting time when establishing the time limit of the solver
equal to 5 minutes. This plan is then selected for being the reference process

18 The set of problems which are used for the empirical evaluation is available at http://
azarias.lsi.us.es/Predict/ObjectsBeautySalon.zip.
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Fig. 10. Generic synthetic ConDec-R models

enactment, i.e., to simulate the behavior of a potential user. ' In this step,
the Ref™T is obtained which is the same as Min"'7T.

2. In order to calculate a tentative maximum value of the waiting time —which
is necessary for calculating range’VT— another search is performed for 5 min-
utes considering the maximization of the waiting time as objective function
and then, Maz"'7 is obtained.

3. The next steps evaluate different predictions using the proposed approach
(cf. Sect. 3). For this, the initial parts of the reference plan is considered as
the current state of the instances (cf. Alg. 2). The reasons for taking initial
parts of this best plan are to (1) easily get feasible traces and (2) be able

19 Note that, as previously mentioned, the process stakeholders which are involved want the
optimization of the average waiting time of the clients when executing the model.
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to compare the quality of the enactment plans which are generated in few
seconds versus the ones which are generated in 5-minutes. Specifically, 0%,
25%, 50% and 75% of the reference plan is considered as already executed.
For each percentage, the solver is given different time limits to generate the
plans (i.e., the time which exists between the startGeneratingPlans method
is invoked in Alg. 2 and the related prediction is requested by Alg. 1) which
are used by the Prediction Service to provide the predictions. Specifically, 5
s., 10 s. and 15 s. are used.
Therefore, the values of Predy, s, are obtained for ¢! € {5,10,15} and sp €
{0%, 25%, 50%, 75%}.

4. In addition, in order to illustrate the effectiveness of the method in the beauty
salon scenario, the values of INPred,, are obtained by considering the first
solution which is obtained by the solver, i.e., a non-optimized solution.

5. After that, the Erry o and the N Errg, values are calculated using the above
data.

Finally, the analysis and interpretation of the collected data is conducted and
the validity of the case study procedure is studied.

The values for the response variables are included in Table 5.

Analysis and Interpretation: The data which is collected is analyzed to an-
swer the research question and to draw conclusions (cf. Tables 5 and 6). In order
to address M @1, sub-questions AQ1 and AQ2 need to be answered (cf. Table
1).

As expected, the ranges [Min, Mazx] are narrower as the complexity of the
problem increases since fewer options to allocate the activities exist. Moreover,
when the prediction (cf. column Pred) is closer to the reference value (cf. column
Min) the average error is lower (cf. column Err).

Regarding the accuracy of the solutions, the average of the error increases as
the complexity of the problems increases in both the beauty salon problems and
the synthetic problems. Specifically, the problems which entail the highest com-
plexity are those related to the configuration < NC = 20, NS = 2, t[ = 55 >
—in the beauty salon— and < Model = A20, N = 60 > —in the synthetic
problems—, in which the value for Err is nearly 50% when 0% of the reference
plan is known (i.e., sp = 0%). Although it is not a good value, this can be ex-
plained by the fact that the process enactment has not been started yet, and the
time limit for solving a rather complex problem is very low (i.e., only 5 seconds).
Moreover, it is the only case where the obtained prediction is really close to the
one obtained by the trial predictor. Nonetheless, as can be observed, for all the
configurations where sp > 25%, Err is lower than 20% when 10 seconds or more
are provided as time limit. Moreover, the average error is lower than 10% in
most cases, which can be considered good solutions overall if it is compared with
the trial predictor. A similar behavior is observed with the synthetic problems
in which the error is lower and stays below 7% for configuration with N = 15
regardless of the model. As can be seen in Fig. 11 —which shows the average
error which is committed by both predictors grouped by the number of clients—,
the error of the proposed prediction is considerably lower than the trial one. For
this, AQ1 can be answered as true when some information is known about the
process enactment, but might be questioned for early predictions.

Regarding the immediacy of the predictions (i.e., AQ2), as expected, the
accuracy of the predictions increases as the time limit increases. In addition,
for most of the problems, the error in the prediction considering time = 10 is
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Table 5. Quantified variables for the experiment
sp=0% sp=25% sp=50% sp=75%
NC NS Min Max Time Err Pred Err Pred Err Pred Err Pred

1 1,8 5095

10 1,5 1,5 489,6

2 1,9 4377

5 11,6% 62,4 7,4% 42,6 2,3% 186 0,1% 8,7
10 8,8% 490 4,3% 284 1,2% 13,7 0,1% 85
15 6,1% 36,6 2,7% 209 0,8% 11,0 0,0% 8,3

1 8,4 4671

15 1,5 10,7 450,2

2 14,3 401,9

1 24,7 4364

20 1,5 34,1 4194

2 66,2 3888

lower than 12%, that can be considered a good result. Thereafter, AQ2 can be
answered as true since 10 seconds can be considered a reasonable time limit for
the considered scenario.
Validity Evaluation This section evaluates if the results of the proposed case
study are valid and not biased. To be more precise, three types of validity are
addressed in this section: construct, internal and external.

Firstly, regarding the construct validity, it has to be addressed in how far the
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Fig. 11. Average error committed by the predictors grouped by NC.

Table 6. Error values for the synthetic experiment for tl = 5s

Model N Errgy, Errosy Errsoq Errisg
15 0,0% 0,0% 0,0% 0,0%
Al0 30 1,2% 0,1% 0,0% 0,0%
60 | 43,2% 31,3% 13,8% 0,2%
15 0,3% 0,0% 0,0% 0,0%
Al5 30 | 18,2% 12,3% 4,9% 0,1%
60 | 42,2% 41,0% 32,8% 13,2%
15 3,2% 1,1% 0,0% 0,0%
A20 30 | 41,4% 33,3% 24,3% 5,7%
60 | 45,5% 40,9% 33,8% 12,7%
15 0,0% 0,0% 0,0% 0,0%
B10 30 2,5% 0,0% 0,0% 0,0%
60 | 32,2% 21,8% 3,4% 0,0%
15 0,3% 0,0% 0,0% 0,0%
B15 30 | 19,2% 10,2% 4,0% 0,1%
60 | 28,9% 25,8% 12,8% 2,7%
15 6,5% 0,4% 0,0% 0,0%
B20 30 | 29,8% 20,1% 4,7% 0,7%
60 | 33,2% 22,2% 11,6% 2,8%

measures which have been used are appropriate to address the research ques-
tions which have been planned. Three different threats are identified related to
the acquisition of the data. The first threat is related to how the problems have
been randomly generated in both designs. In these designs, unsolvable problems
were not considered in order to evaluate the algorithm better. This is checked
considering a simple rule: the generated appointment time of a client plus the
time which her booked services consume cannot overpass the closing time of the
beauty salon. Due to the parallelism which may exist because of the tempo-
ral constraints (i.e., a client can be served by different employees at the same
time), this rule leaves out some problems which might be solvable. To mitigate
this threat, a more elaborated algorithm can be performed to avoid eliminating
problems which may be solvable. Secondly, the complexity of the problems which
are generated is controlled only by varying the number of clients and her booked
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services. Although we consider that the beauty salon is a suitable business due
to its complexity, different ways of controlling this complexity can be applied to
mitigate this threat, e.g., by changing the type of constraints. The third threat
concerns the data collected (cf. Table 2). To the best of our knowledge the met-
rics are good enough for addressing AQ1 and AQ2. To mitigate this threat, a
consolidated definition of accuracy of a prediction and a way of measuring it
could be defined.

Regarding the internal validity, the main threat is that the obtained results
related to the immediacy of the proposal could be biased. This is because its
interpretation can be subjective since it depends on the business which is ana-
lyzed. To mitigate it, other business experts can be consulted in order to state
what is a appropriate period for considering a prediction to be instantaneous.

Finally, the external validity considers in how far the obtained results could be
generalized to any business. This generalization is threatened by the fact that the
beauty salon was the unique real scenario which was studied. Although a set of
synthetic models of a range of complexities has been included in the experiment,
other real scenarios can be considered to replicate this study in order to mitigate
this threat.

6. Discussion and Limitations

The Declare language [27] has been extended in several works [44, 26, 25, 21].
In fact, ConDec-R is based on the time extensions defined in [25, 44] where it is
possible to define time lags over the different Declare constraints. Furthermore,
the data-aware extension which has been proposed in [26] is considered in the
current approach. This way, with the proposed declarative language, the consid-
ered problems can be modelled in an easy way, since it is based on high-level
constraints. Moreover, realistic problems can be managed, e.g., the Beauty Salon
detailed in Sect. 4.

Regarding proposals on time prediction, a probabilistic time-aware workflow
system for time prediction is presented in [11]. However, the focus of [11] is more
on scheduling, and, unlike the current approach, assumes that the workflow is
known beforehand and stable [41]. Moreover, both [12, 11] provide design-time
support (i.e., before the enactment time), whereas the proposed approach pro-
vides run-time support as well (i.e., support during the enactment of instances).
Similarly, [42] proposes a service that predicts the completion time of process
instances by using non-parametric regression. In addition, [41] proposes the ap-
plication of process mining to an event log in order to obtain a transition system.
In a related way, [5] presents an approach for predicting process remaining time
based on query catalogs. Such catalogs are groups of partial traces (annotated
with additional information about each partial trace) that have occurred in an
event log, and are then used to estimate the remaining time of new executions of
the process. Although the interaction between process instances and the avail-
ability of resources constitute important factors for predicting the remaining
time until completion, the proposals presented in [37, 42, 41, 5] do not consider
the number of instances being executed and the resources available at a specific
point of time during process enactment when making this prediction. Further-
more, unlike in our approach, the predictions cannot be adapted to changing
circumstances (e.g., a resource became unavailable during the process enact-
ment). Similar to our approach, [34, 37] consider the enactment of multiple in-
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stances and resource availabilities when making the prediction. Moreover, in such
approaches the predictions can be adapted to changing circumstances. Neverthe-
less, as opposed to the current approach, [34, 37] do not perform optimization
over objective functions and do not start from a declarative model.

However, our approach also presents a few limitations. The predictions are
generated by considering estimated values for the number of instances to execute,
and hence our proposal is only appropriate for processes in which this number is
known a priori. In a related way, activity attributes and resource availability need
to be estimated. As a real example, the beauty salon problem is detailed and
an extensive empirical evaluation is carried out with the goal of supporting the
contributions of our proposal. Moreover, some of our previous works also dealt
with this kind of scenarios (e.g., [2] describes a travel agency problem and [3]
considers computer support for clinical guidelines as an application example).
Nevertheless, if the actual values of the estimates deviate from the estimated
values during the execution of the model, P&S techniques can be applied to
replan the activities and to update the predictions at runtime by considering the
actual values of the estimates.

In addition, motivated by the requirements of the considered scenarios, the
data perspective which is considered in the current approach mainly includes
data constraints which can be applied to input data and activity relations. How-
ever, more advanced features like dynamic data or data-flow perspective have
been left out since they are not part of the design requirements of the considered
scenarios and will be addressed in future work when applying our proposal to
BPs with different characteristics.

7. Conclusions and Future Work

In this work, an approach for generating time predictions of running process
instances related to a multi-perspective constraint-based process model is pro-
posed. For performing such predictions, we propose generating optimized enact-
ment plans from a multi-perspective constraint-based process model and from
the current state of partially executed process instances by considering a given
objective function. This approach has several advantages regarding previous re-
lated work: (1) multiple process instances as well as the allocation of resources
are considered, (2) is able to adapt to changing circumstances, and (3) besides
predicting the remaining time of a specific process instance, it allows the pre-
diction of other relevant issues. To evaluate the applicability of our approach in
practical settings we applied it to a real process scenario. Despite the high com-
plexity of the considered problems, results indicate that our approach produces
a satisfactory number of good solutions in a reasonable time.

As for future work, we will consider to deal with both paradigms imperative
and declarative for the specification of the BPs Furthermore, it is planned to
consider the information from past process executions as additional input data
for providing more accurate predictions. Additionally, we intend to apply it to
real scenarios from other domains. Finally, further aspects of data perspective
(e.g., the data-flow) are planned to be considered in future versions of ConDec-R.
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A. Method for generating optimized BP enactment plans

In this work, we consider the constraint-based system IBM ILOG CPLEX Op-
timization Studio (CPLEX) [18] together with the CPLEX CP Optimizer com-
plement [17] since they provide for efficient mechanisms to deal with scheduling
problems as well as temporal constraints. This appendix explains how COPs with
a single objective function are created for a multi-perspective constraint-based
specification (cf. A.1) and then modeled in CPLEX (cf. Sect. A.2).

A.1. From ConDec-R Model to a COP

This section explains how to transform the ConDec-R model as COP which
can be solved using a search algorithm to obtain a set of optimized enactment
plans.?0

Figure 12 depicts the different steps of the method. The elements of the multi-
perspective constraint-based specification (cf. Fig. 12 A) needs to be transformed
into a COP (cf. Fig. 12 B).

Definition A.1. A scheduling activity sa = (st, et, res, sel) related to a BP
activity BPAct = (a, Res, Atts) represents a specific instance of BP Act, where st
and et are CSP variables indicating the start and the end times of such execution
sa, respectively, res € Res is a CSP variable representing the resource used for
its execution, and sel is a CSP variable indicating whether or not sa is selected
to be executed.

For this, BP activities —which can be executed arbitrarily often if not re-
stricted by any constraint— are modelled as sequences of optional scheduling
activities. This is required since each execution of a BP activity is considered as
one single activity which needs to be allocated to a specific resource and tem-
porarily placed in the enactment plan, i.e., stating values for its start and end
times. For each BP activity, ntasax scheduling activities exist, which are added
to the CSP model as decision variables.

In a formal way, a ConDec-R process model C M (BP Acts, Data,Cgp, AvRes, OF)
(cf. Def. 2.3) is transformed into a COP P,(V, D,Ccgp,OF) (cf. Def. 2.7) where:

1. The set of variables V' comprises all CSP variables related to the possi-
ble executions of the BP activities (i.e., the scheduling activities) plus the
CSP variables related to the objective function, i.e., V' = {nt(act),act €
BPActs} U {st(act;), et(act;), res(act;), sel(act;), i € [1.. ntprax(act)],act €
BPActs} UOFs.

2. D is composed of the domains of each CSP variable, where UB(var) and
LB(var) represent the upper and lower bounds of the domain of var, respec-
tively.

3. Cegsp is composed of the resource constraints and the global constraints re-
lated to C'gp together with the constraints which are inherent to the proposed
model, which are listed as follows:

(a) A specific execution of a BP activity precedes the next execution of the

20 The transformation method has been already introduced, discussed and evaluated in pre-
vious works (the reader is referred to [20] for deeper details of the method).
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Fig. 12. Generating Optimized BP Enactment Plans from a ConDec-R model

same activity, i.e, Yact € BPActs Vi : 1 < i < nt(act) : et(act;) <
st(actit).

(b) The nt variable is directly related to the sel variables of the associated
scheduling activities, i.e., Vact € BPActs Vi : 1 < i < UB(nt(act))
sel(act;) == (nt(act) >=1).

(c) The start and the end times of each scheduling activity are related by the
estimated duration of the associated BP Activity, i.e., Yact € BPActs
Vi: 1 <i < nt(act) : st(act;) + duration(act) == et(act;).

4. The optimization of the considered objective function is explicitly stated, i.e.,
optimize(OF).2!

Resource constraints are not explicitly stated since most constraint-based
systems (e.g., IBM ILOG CPLEX Optimization Studio [18]) provide high-level
mechanisms specific to scheduling which allow for an efficient management of
shared resources.

The solution which is obtained by solving the COP is directly considered as
the optimized enactment plan (cf. Def. 2.4) since the solution contains all the
required information for the enactment plan (cf. Fig. 12 C).

As stated, the proposed approach is based on complete search algorithms,
which explore a search tree for the COP problem based on all possible com-
binations of assignments of values to the COP variables. However, since the
generation of optimal plans presents NP-complexity [15], it is not possible to en-
sure the optimality of the generated plans for all cases. Therefore, the developed
algorithm will look for the best solution during a given time limit. The developed

constraint-based approach, however, allows solving the considered problems in
an efficient way, as demonstrated in Sect. 5.

21 The optimization can be either maximization or minimization.
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A.2. Global Constraints using CPLEX

The CPLEX implementation covers: (1) the decision variables related to the
COP (cf. Sect. A.2.1) and (2) the constrains over such variables using global
constraints (cf. Sect. A.2.2).

A.2.1. Decision Variables

To state the scheduling model, CPLEX provides a high-level object which can
be used to encapsulate the CSP variables of each scheduling activity a; (cf.
Def. A.1). Such object is called interval variable. An interval variable has a start
(which corresponds to the CSP variable st(a;)), an end (which corresponds to the
CSP variable et(a;)), and a length (which corresponds to the estimated duration
of the corresponding BP activity). An interval variable allows for these values
to be variable within the model. Moreover, an interval variable may be optional,
and whether or not an interval is present in the solution is represented by a
decision variable (that corresponds to the CSP variable sel(a;)). In addition,
for supporting hierarchical activities, interval variables which do not require a
resource and which wrap the related scheduling activities are used. Therefore,
in order to model the scheduling activities in CPLEX, a three dimensional array
of interval variables is created. The first dimension corresponds to the different
BP activities that exist in the model plus the hierarchical activities. The second
dimension is related to the number of possible repetitions of such BP activities.
And finally, the third dimension is related to the number of process instances
(e.g., number of clients, patients, etc.).

Regarding the management of resources, CPLEX includes cumulative func-
tion expressions, which can be used to model resource usage functions over time.
These functions can be computed as a sum of interval variable demands on a re-
source over time. A cumulative function expression can be constrained to model
limited resource capacity by constraining that the function be < the capacity,
that is stated considering the resource availability. In addition, CPLEX provides
a mechanism to model the fact that an alternative set of roles can perform an
activity. For this, an array of optional intervals can be associated to the execu-
tion of an activity. To be more precise, an array of interval variables is created
for each scheduling activity. The size of that array is the number of alternative
roles that can execute the related BP activity. In addition, a cumulative function
variable is created for each role existing in the model.

Lastly, the management of multiple instances is carried out in CPLEX through
a high-level object called sequence. A sequence represents an aggregate of inter-
vals which are execute on sequence, e.g., by the same resource, in the same in-
stance, etc. Therefore, some efficient constraints and expressions over sequences
can be easily included in the model. Specifically, for each process instance, the
intervals related to its scheduling activities are aggregated in a sequence variable.

A.2.2. Constraints

To increase the efficiency of the search for solutions of the COP, the proposed
approach models each COP constraint with a global constraint according to a
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Table 7. Relation between the features of ConDec-R and the elements provided by CPLEX
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Existence Constraints v
Relation Constraints v v
Negation Constraints v
Choice Constraints v
Temporal Constraints v v v
Data Constraints v v
Durations v
Alternative Resource v
Resource Availability v
Hierarchy v v

well-known catalog of global constraints [1].22 Such global constraints are imple-
mented through efficient filtering rules by using high-level objects and high-level
constraints provided by CPLEX. To be more precise, the proposed global con-
straints are based on establishing high-level constraints on the interval, sequence
and cumulative function variables which were stated above. The high-level con-
straints provided by CPLEX are detailed as follows:

precedence constraints, which ensure the relative positions of intervals in the
solution,

no overlap constraints, which ensure that positions of intervals within a se-
quence in the solution are disjointed in time,

span constraints, which ensure that one interval covers the intervals included
in a set of intervals,

alternative constraints, which ensure that exactly one of a set of intervals be
present in the solution, and

cumulative expression constraints, which restrict the bounds on the domains
of cumulative function expressions.

This way, all supported features of ConDec-R are modeled through the high-

level constraints and objects provided by CPLEX as follows (cf. table 7):

The existence constraints are modeled through the presence decision variable
of intervals.

The relation constraints involve several high-level constraints. To be more
precise, the relative order between activities of such constraints is modeled
using precedence constraints. The presence decision variables are used to state
whether or not the constraint has to take place. For example, the constraints

22 Note that this catalog is independent of any constraint-based language but followed by
many of them.
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precedence(A,B) and response(A,B) state a similar order relation between A
and B. However, the constraint must be fulfilled only if A is present or B is
present respectively.

The negation constraints involve the same modeling mechanisms as existence
and relation constraints.

Choice constraints are modeled through alternative constraints. Given a set of
intervals related to some activities, such constraints allow stating the number
of these intervals that may be present in the solution.

Temporal constraints involve a temporal aspect in the existence, relation and
negation constraints. For this, the span constraints are used to state the
periods of time which affect the constraints.

Data constraints use the data separation features of CPLEX models. Such
feature allows to have a separated file where the input data is specified. Then,
this data can be easily included in the model affecting the decision variables
which are needed.

The constraints related to the duration of the activities are modeled through
the length decision variable of the intervals.

The alternative resource constraints are modeled through the alternative con-
straints to indicate that one interval of a set must be present if some activity
is executed. Then, such set of intervals are related to the number of available
resources.

The resource availability are modeled using cumulative expression to limit
the units of a role that can work in parallel.

To allow for a hierarchical reasoning, the intervals which are created for each
hierarchical activity wrap all the related activities through span constraints.

With the suggested global constraints, the constraints contained in the ConDec-

R specification can be easily included. Moreover, such constraints increase the
efficiency of the search for solutions since the related filtering rules remove in-
consistent values from the domains of the variables during the search process.
In the CSP model, initial estimates considering activity durations and existence
constraints are made for upper and lower bounds of variable domains, and these
values are refined during the search process.
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