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Novor: Real-Time Peptide de Novo Sequencing Software
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Abstract. De novo sequencing software has been widely used in proteomics to
sequence new peptides from tandem mass spectrometry data. This study presents
a new software tool, Novor, to greatly improve both the speed and accuracy of
today’s peptide de novo sequencing analyses. To improve the accuracy, Novor’s
scoring functions are based on two large decision trees built from a peptide spectral
library with more than 300,000 spectra with machine learning. Important knowledge
about peptide fragmentation is extracted automatically from the library and incorpo-
rated into the scoring functions. The decision tree model also enables efficient score
calculation and contributes to the speed improvement. To further improve the speed,
a two-stage algorithmic approach, namely dynamic programming and refinement, is

used. The software program was also carefully optimized. On the testing datasets, Novor sequenced 7%–37%
more correct residues than the state-of-the-art de novo sequencing tool, PEAKS, while being an order of
magnitude faster. Novor can de novo sequencemore than 300MS/MS spectra per second on a laptop computer.
The speed surpasses the acquisition speed of today’smass spectrometer and, therefore, opens a new possibility
to de novo sequence in real time while the spectrometer is acquiring the spectral data.
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Introduction

Proteomics research frequently require the de novo sequenc-
ing of new peptides from tandem mass spectrometry (MS/

MS) data. Since MS/MS data size has grown tremendously,
today’s de novo sequencing analyses are carried out more often
with computer software than by a human expert. Among its
many applications, de novo sequencing has been used to se-
quence endogenous peptides [1, 2], characterize mutations in
antibodies [3], perform proteomics analysis for organisms with
no or incomplete protein databases [4–6], and to help sequence
an entire protein [7–10].

Even when a protein database is available, de novo sequenc-
ing has been employed to assist the database search analysis. It
was used to increase database search sensitivity and accuracy
by confirming database search results [11], and to speed up
database search by using de novo sequence tags as a filter [11–
14]. However, the benefit of assisting database searches is often
diminished by the relatively slow speed of today’s de novo

sequencing software. In a typical proteomics workflow, de
novo sequencing with today’s software takes longer than data-
base searches. A significant improvement in de novo sequenc-
ing speed is desired.

Besides the speed, the accuracy of existing de novo se-
quencing software is not ideal either. Without doubt, this is
primarily due to the inherent difficulty of de novo sequencing.
When all the fragment ions at a peptide fragmentation site are
missing, even a human expert can have difficulty determining
the neighboring residues de novo. However, this does not mean
that the accuracy of today’s software has reached the theoretical
limit. Most of today’s software relies on rather simple statistical
models to define its scoring function. These models often
ignore many important factors that a human would use in de
novo sequencing. There is a reason for this: despite the sim-
plicity of such knowledge from a human perspective, adding it
in the scoring function often requires a new algorithm with
significantly increased time complexity. Additionally, it is a
nontrivial task to convert the qualitative human knowledge to
quantitative values used by the algorithm.

This manuscript attempts to address these challenges and
develop new software to achieve a real-time de novo sequenc-
ing speed with much improved accuracy over the state-of-the-
art. New methods have been proposed to enable the significant
improvements. In the following, the related work is reviewed.
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Since the late 1990s, a handful of de novo sequencing tools
have been developed and have gained different popularity at
certain periods of time. An incomplete list includes Lutefisk
[15, 16], Sherenga [17], PEAKS [18], DACSIM [19],
PepNovo [20], NovoHMM [21], PILOT [22], MSNovo [23],
pNovo [24], and UniNovo [25]. Most of these tools are either
open source or freely available to academic users, with the
exception of PEAKS, which is commercial software. Being
commercial, PEAKS is also the most actively updated and
supported. A more comprehensive review of de novo sequenc-
ing tools can be found in [26].

Each of these tools uses a scoring function to help select the
best de novo sequencing peptide for a spectrum. To define the
scoring function, most tools select a small set of scoring fea-
tures either by a human (such as [20, 21]) or with an automated
procedure [25]. Then a training dataset is used to determine the
probabilistic distribution of the actual values of these features.
The number of parameters that need to be trained usually grows
exponentially with respect to the number of features. Therefore,
these feature selection practices (whether manual or automated)
have a difficulty dealing with the sometimes informative fea-
tures. For example, it is commonly known that proline en-
hances the fragmentation at its left and reduces the fragmenta-
tion at its right [27, 28]. So it would be beneficial to consider
the current residue’s identity as a scoring feature. But this
feature’s importance is different in the following two situations:
(1) the fragmentation ions are abundant only at the left of a
residue but not at the right; and (2) the fragmentation ions are
abundant at both sides of a residue. The benefits of including
the residue identity feature probably justify the expense of the
parameter increment in the first situation, but probably not in
the second situation.

In machine learning, a common practice to solve this prob-
lem is to use as many features as possible, but let the machine
learning algorithm determine its own way to combine them
without overfitting. A very successful application of machine
learning in peptide identification is the Percolator program
[29]. Percolator uses a support vector machinery (SVM) model
to combine 20 features and calculate a new score for each
peptide-spectrum match (PSM) found by another database
search engine such as SEQUEST [30] and Mascot [31]. In
other work, Frank et al. [32] used a logistic regression model
to combine several features together to estimate the correctness
of the de novo sequencing results of PepNovo [20]. The logis-
tic regression score was used to filter PepNovo’s de novo
sequencing results. But it was not incorporated in the de novo
sequencing algorithm.

In this study, a much larger scale machine learning was
conducted using a decision tree model. Up to 169 features were
used, and decision trees with thousands of branching nodes
were learned from the training data automatically. The scoring
functions based on the decision trees are tightly embedded in
the de novo sequencing algorithm. The decision trees enable
the use of a dynamic set of features at different circumstances
and, therefore, enlist the sometimes informative features only at
the appropriate time. This avoids the combinatorial growth in

the number of parameters and reduces the time complexity of
the score calculation.

The training data for machine learning were made possible
by the recent developments in peptide spectral libraries. The
National Institute of Science and Technology (NIST) has built
such libraries for several model organisms (chemdata.nist.gov)
and made them publicly available. Another such effort is the
GPMDB project [33]. The initial motivation for building such
annotated libraries was to perform library searches, where an
experimental spectrum ismatched against the annotated spectra
in the library in order to re-identify a previously identified
peptide in new experiments [33–35]. Interestingly, here such
a library is used for a different purpose: improving de novo
sequencing that aims to identify new peptides.

Novor borrows many excellent ideas from the literature. For
example, Zhang [36] developed a method to predict the MS/
MS spectrum of a peptide by simulating the peptide fragmen-
tation process. The similarity between the predicted spectrum
and the experimental spectrum was later used as the scoring
function in his de novo sequencing program CACSIM [19].
Noticing the complexity in Zhang’s prediction method, Sun
et al. [37] showed that if only the intensity ratio between two
adjacent y-ions is concerned, the prediction could be reliably
done by just looking at a few residues nearby the fragmentation
site. This observation inspired the combined use of the relative
intensity ratio features and the residue identity features in the
second decision tree in this study.

Methods
Briefly, a new scoring function is designed to evaluate the
quality of the matching between a peptide sequence and the
input spectrum. The scoring function employs the decision tree
model in machine learning to automatically learn its thousands
of parameters from a large training dataset. Then, an efficient
algorithm is developed to compute the peptide sequence that
matches the input spectrum with the highest score. The algo-
rithm combines both dynamic programming and heuristics.
Finally, four datasets are used to benchmark the performance
of the software with the state-of-the-art de novo sequencing
tool, PEAKS. The rest of this section is divided into four
subsections, describing the scoring functions, the algorithm,
the training, and the benchmarking, respectively.

Scoring Functions

The algorithm uses two scoring functions, the fragmentation
score and the residue score, in its two different stages.

When a peptide is fragmented between two adjacent resi-
dues, the collection of the possible fragment ions is referred to
as a fragmentation site. The n-term side residues after the
fragmentation are called the prefix and the c-term side residues
are called the suffix. The prefix (suffix) mass is the total residue
mass of the prefix (suffix). Notice that the suffix mass is
determined by the precursor and prefix mass. Thus, given a
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spectrum, the prefix mass alone is sufficient to calculate all the
fragment ion masses of a fragmentation site.

The first scoring function, named the fragmentation
score, measures the probability that a prefix mass defines
a real fragmentation site for the correct peptide. In total,
nine fragment ion types: y, b, a, y(2+), b(2+), b-18, b-17, y-
18, and y-17 are considered for each fragmentation site.
These ion types provide different evidence to support the
correctness of the fragmentation site. A standard machine
learning method, the decision tree, is used to combine all
the evidence to compute a confidence value. The scoring
function continuously refines the confidence of a fragmen-
tation site by asking yes/no questions related to the scoring
features. Different answers to the current question will
cause the scoring function to ask different questions in the
next round. The strategy of asking these questions forms a
decision tree. This process is repeated until a leaf is reached
and the correctness probability stored on the leaf is returned
as the confidence score. An example of the decision tree is
given in the Results and Discussion section. Such a decision
tree is learned automatically from the training data by the
standard greedy algorithm that maximizes the information
gain [38].

For each peak matched by one of the nine ion types, the
decision tree examines the following eight features:

1. Relative intensity: the ratio between the intensities of the
current peak and the base peak (the most abundant peak in
the spectrum).

2. Rank: the number of peaks that are the same or are more
abundant than the current peak. A small rank indicates a
significant peak.

3. Half rank: the number of peaks with intensities that are at
least half of the current peak’s intensity. A small half rank
indicates a very significant peak.

4. Local rank: similar to rank, but only the peaks in the ±50 Da
neighboring window are counted.

5. Local half rank: similar to half rank, but only the peaks in the
±50 Da neighboring window are counted.

6. Local base peak intensity: the relative intensity of the most
abundant peak in the ±50 Da neighboring window.

7. Charge state (if determinable).
8. Whether it is an isotope peak (if determinable).

These 8 × 9 = 72 features are called the fragment ion features.
Additionally, the decision tree makes use of the following

four spectrum features: the peptide mass, the precursor charge
state, the prefix mass, and the suffix mass. These lead to a total
of 76 features. Many of these features have been used previ-
ously in the literature to develop scoring functions. In particu-
lar, the idea of using peak rank as a scoring feature appeared in
[12, 39]. In this study the idea is extended to consider three new
variations: the half rank, local rank, and local half rank. The
half rank and the local rank are particularly useful. Another
main difference here is the use of a decision tree model to
combine all of these features together.

A de novo sequence candidate of length n has n� 1 frag-
mentation sites. Let p1;…; pn�1 be their correctness probabil-
ities calculated with the decision tree. Then, the score of the
sequence candidate is defined as∑i = 1

n − 1( pi − 0.1). Here 0.1 is an
empirical value to discourage the algorithm from falsely using
too many small residues (such as Gly) to increase the score.

The second scoring function, called residue score, measures
the residue correctness probability. Suppose a1a2…an is the
sequence of a candidate peptide, and p aið Þ is the correctness
probability of ai, calculated with the residue score. The score of

the peptide sequence is defined as
∑n

i¼1p aið Þ � m aið Þ
∑n

i¼1m aið Þ , where

m aið Þ denotes the mass of residue ai. Intuitively, the score of a
peptide is equal to the expected fraction of mass units that are
covered by the correctly sequenced residues.

Let X lXX r be three consecutive residues. To evaluate the
correctness of X , the decision tree for the residue score uses the
following 169 features:

� The four spectrum features used in calculating the fragmen-
tation score. (4 features)

� The 72 fragment ion features used in calculating the frag-
mentation score, for both fragmentation sites at the left and
the right of X . (72� 2 ¼ 144 features)

� The identities of X l, X , and X r. (3 features)
� The residue mass error. For a fragmentation ion type, sup-

pose two peaks at mass ml and mr are observed at the left

and the right ofX , respectively. Then mr −mlj j−mass Xð Þj j
error tolerance is used

as a feature. If one of the two peaks is missing, then the
feature value is set to 1. (9 features for 9 ion types)

� The adjacent ion ratio. For a fragmentation ion type, sup-
pose two peaks of intensities hl and hr are observed at the
left and the right of X , then log2

hr
hl
is used as a feature. When

one of the two peaks is missing, then its intensity is treated
as 0; and ∞ or �∞ is used as the value of log2

hr
hl
. If both

peaks are missing, then this feature is not used. (9 features
for 9 ion types)

For presentation clarity, the left (right) y-ion refers to the y-ion
for the fragmentation site at the left (right) of X . This naming
convention also applies to other ion types.

Algorithm

The algorithm consists of two stages: dynamic programming
and refinement. The dynamic programming stage uses the
fragmentation score. Notice that the fragmentation score is
designed in such a way that the score of a fragmentation site
can be computed without knowing the actual sequence. In-
stead, only the prefix mass is needed. This is essential for the
efficiency of the algorithm. The algorithm pre-computes the
fragmentation score for each possible prefix mass, which is
then used by the dynamic programming algorithm to efficiently
compute an optimal sequence of residues that fill up each prefix
mass and maximize the total fragmentation score. The
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algorithm is a simplified version of the dynamic programming
published in [40] and is very similar to those described in [23,
26, 41].

After dynamic programming, very often the resulting se-
quence misinterprets one or more y-ions as b-ions and causes a
significant overlap between the y-ion ladders and the b-ion
ladders. This is a commonly known artifact of such scoring
functions and algorithms. So, following a similar strategy as
published in [23] and [42], the overlapping ions are labeled as
b-ions or y-ions artificially, and the dynamic programming
algorithm is rerun multiple times, each with a different ion
labeling. However, to reduce the time complexity, Novor runs
the dynamic programming three times at most for each
spectrum.

The refinement stage of the algorithm tries to polish the
sequences obtained in the dynamic programming stage. The
following procedure is used to control the time complexity. By
using the residue score function, the top-scoring sequence
candidate is selected. Then, it is divided into mass segments
by greedily fixing the top-scoring residues. This process is
repeated until the resulting segments are so small that each
segment can be filled by at most 100 different residue se-
quences. Then the sequence in each segment is replaced by
those possible substitutes. The resulting sequences are evalu-
ated by the residue score function to possibly find an improved
de novo sequence. Such a local search procedure is iterated up
to three times for speed consideration. Further iterations did not
provide significant accuracy gains.

Model Selection and Parameter Training

The human peptide spectral library (release dateMay 29, 2014)
was downloaded from NIST’s website (chemdata.nist.gov).
The library was used for the development purposes in this
study.

The human library consists of 340,357 spectra measured
with Iontrap. It was randomly shuffled and split into three parts,
each with a different size: training data (80%), development
data (10%), and reserved data (10%). During the development
of the final method, several models were tried. For each model,
the training data were used by the machine learning algorithm
to learn the parameters, and the development data were used to
benchmark the performance. The final method presented in this
manuscript achieved the best performance on the development
data among the models tried.

Benchmarking

Datasets After all the parameters were trained and fixed
using the NIST human library, the performance of Novor was
benchmarked on four new datasets. They are (1) C. elegans:
Similar to the NIST human peptide library, this dataset is the
C. elegans ion trap peptide library (release date May 24, 2011),
downloaded from the NIST website. It consists of 67,470
spectra and was produced with the same procedure as the
human peptide library. The annotated peptide for each spec-
trum in the library was used as the ground truth for the

benchmarking. (2) Ubiquitin: This dataset was extracted from
a larger dataset recently published at the MassIVE database
(ID: MSV000078991). An Orbitrap instrument was used to
produce the data. The dataset was produced by Coyaud et al. in
their study for E3 ubiquitin ligase [43]. Out of the 80 experi-
ments for replicates and different samples, one control exper-
iment (Control_BioID_no_bait_A_v1) was chosen in this
study. The peptide identification results submitted together
with the data were also downloaded, and the ones with a
probability score of 95% or above were extracted and used as
the ground truth. If a peptide was identified by multiple MS/
MS spectra with the same charge state, only the spectrum with
the highest score was kept. A small portion of peptides that
contain modifications other than oxidation of Met, pyro-Glu,
and n-term acetyl were discarded. After this filtration process,
3398 non-redundant PSMs remained in the final list for
benchmarking. (3) UPS2: This dataset was the data file
MSups_15ul.RAW.gz in dataset 13 of the MS/MS data repos-
itory (www.marcottelab.org/MSdata/) at Marcotte’s lab at the
University of Texas, Austin. The data were generated by Vogel
et al. for confirmation purposes in their previous study of
mRNA and protein concentration [44]. To produce the data,
the standard UPS2 sample (Sigma, a mixture of 48 proteins, St.
Louis, MO, USA) was digested with trypsin, and measured
with a LTQ Orbitrap. There are 9466 MS/MS spectra in the
data file. The PEAKS DB algorithm [11] in PEAKS software
was used to make peptide assignments for the MS/MS spectra
by searching a small sequence database of the UPS2 proteins
downloaded from Sigma’s website. After the search, the PSMs
with a -10lgP score ≥20 were exported and the peptide assign-
ments were regarded as the ground truth. The corresponding
false discovery rate (FDR) was 0.02%. However, since the
database is small, FDR may not be accurate. Redundant iden-
tifications were removed in the same way as the Ubiquitin data.
The remaining 532 non-redundant PSMs were used for
benchmarking. (4) U2OS: This dataset was downloaded from
the proteomeXchange data repository (ID: PXD001220). The
data was produced by Kirkwood et al. in their study of native
protein complexes and protein isoform variation in human
osteosarcoma (U2OS) cel ls [45] . One data f i le ,
PT1541S1F16.raw, consisting of 36,169 MS/MS spectra was
used. The PEAKS DB algorithm in PEAKS software was used
to make peptide assignments by searching the UniProt human
sequence database. The decoy fusion method was used to
validate the search and the PSMs with FDR of at most 0.1%
were exported and the peptide assignments were regarded as
the ground truth. Redundancies were removed in the same way
as the Ubiquitin and UPS2 datasets. The remaining 7928 non-
redundant PSMs were used for benchmarking.

Comparison Criteria and Baselines Novor’s performance
was compared with two baselines. The first was the PEAKS
software (ver. 7.0, Bioinformatics Solutions Inc., Waterloo,
ON, Canada). PEAKS was chosen because it is the most
popular commercial tool for de novo sequencing, and demon-
strated consistently good performance (the best or close to the
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best) in both independent and competing studies [20, 24, 25,
46, 47]. Thus, a comparison with PEAKS should suffice to
demonstrate Novor’s performance relative to the state-of-the-
art.

A residue x in the real peptide is considered as correctly
sequenced if the de novo sequence reports a residue y with
similar residue mass at approximately the same prefix mass
position. More specifically, both of the following two con-
ditions need to be satisfied: (1) mass xð Þ � mass yð Þj j≤0:1Da;
and (2) the total residue mass before x and before y differ by
at most 0.5 Da. The reason to only require approximate
match of the mass is because the mass accuracy in low
resolution mass spectrometers is not sufficient to distin-
guish residue pairs such as K versus Q, or Oxidized M
versus F.

Both PEAKS and Novor outputs a confidence score (be-
tween 0 and 100) for each residue. LetN be the total number of
residues in the real peptide sequences. For any given score
threshold t, let denovo tð Þ be the number of residues with scores
of at least t in the de novo sequences; and correct tð Þ be the
number of residues that are correctly sequenced with score at
least t. Then, the precision and recall of the algorithm at score
threshold x are defined as follows:

recall tð Þ ¼ correct tð Þ
N

;

precision tð Þ ¼ correct tð Þ
denovo tð Þ :

By adjusting the threshold t, one can trade between the
precision and recall of an algorithm. The precision-recall
curves were used to compare PEAKS and Novor.

The following parameters were used in both software
tools: precursor error tolerance = 15 ppm, fragment ion
er ror to le rance = 0.5 Da, f ixed modi f ica t ion =
carbamidomethyl of Cys, and variable modification = oxi-
dation of Met. When exporting PEAKS results, its ALC
score threshold was set to 0 to ensure that results of all the
spectra were exported. For each tool, only one de novo
sequence (the best-scoring one) is used for each spectrum.
None of the tools made an effort to distinguish Ile and Leu
because they have identical mass. So all Ile were replaced
with Leu throughout this study.

The second baseline for the comparison was a hypothetical
verifier that uses the following simple strategy to verify the
correctness of each residue in the real peptide sequence. A
fragmentation site is deemed verifiable if at least one of the b,
y, b(2+), and y(2+) ions have relative intensity ≥5%. In par-
ticular, the n-term and c-term are always treated as verifiable. A
residue is deemed verifiable if both of its two sides are verifi-
able. The percentage of the verifiable residues in the real
peptides is a good indication of the fragmentation complete-
ness, and provides an upper limit for the recall of a de novo
sequencer that uses only the abundant peaks matching the
above four ion types. The maximum recalls of Novor and

PEAKS (computed by setting the score threshold to be 0) were
compared with this verifier.

Results and Discussions
Performance Comparison

By applying different residue confidence score thresholds,
Figure 1 plots the precision-recall trade off curves of Novor
and PEAKS on the four datasets, respectively. In a filtered
result, higher precision indicates a lower error rate; and higher
recall indicates a larger number of correctly sequenced resi-
dues. Novor demonstrates a clear advantage over PEAKS in
this comparison.

By not applying any filtration at all, Figure 2 shows the
maximum recall of Novor and PEAKS on the four datasets,
respectively. For the C. elegans dataset, Novor correctly se-
quenced 37% more residues than PEAKS (54.8/39.9 = 1.37).
Similarly, the improvements are 15% (56.9/49.5 = 1.15), 20%
(41.1/34.2 = 1.20), and 7% (63.5/59.2 = 1.07) for the Ubiquitin,
UPS2, and U2OS datasets, respectively.

Figure 2 additionally shows the percentage of the verifiable
residues by the hypothetical verifier described in the Methods
section. The percentage is an upper limit for the recall of a de
novo sequencer that relies only on the abundant y, b, y(2+), and
b(2+) ions. The figure shows that Novor’s maximum recall
already exceeds this limit for each of the datasets. This is not a
contradiction because Novor makes use of additional ion types
and of less abundant peaks, as well as making use of the
sequence patterns. However, this does suggest that the way
Novor uses the weaker evidence is effective. The decision tree
model plays an important role here as it allows a large number
of scoring features to be enlisted. On the other hand, PEAKS’s
recall is bounded by the theoretical limit, except for the U2OS
dataset. This is an indication that PEAKS model cannot use the
weaker evidence as effectively as Novor can.

Although it is normal that software has different perfor-
mances on different datasets, factors that might have affected
the two tools’ performances on the four datasets are discussed
in the following. Novor was trained with the NIST human
spectral library, which was created with a procedure similar
to that of the C. elegans dataset. This might have given Novor
an advantage on the C. elegans data. In contrast, PEAKS DB
was used to determine the ground truth for U2OS. Since PEAK
S DB makes significant use of PEAKS de novo sequencing
results in different steps of its search [11], PEAKS might have
received an advantage on the U2OS data. This may also ex-
plain why the maximum recall of PEAKS exceeds the hypo-
thetical verifier on the U2OS dataset. The ground truth for
UPS2 was also determined by PEAKS DB. But the database
for UPS2 was small. Thus, the de novo sequencing results did
not make a difference in the protein short listing step of PEAKS
DB [11]. Consequently, PEAKS might have received a smaller
advantage on UPS2 than on U2OS. The Uniquitin dataset is a
neutral comparison.
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Novor truly excelled in speed. Figure 3 illustrates the aver-
age speed of Novor on the UPS2 dataset on a MacBook Pro
laptop computer (Retina, Mid-2014, 2.8GHz Quad-core Intel
Core i7, 16GB RAM, 1 TB SSD). The average precursor mass
of the UPS2 dataset is 1731 Da, corresponding to an average
peptide length of 17. No significant speed variation was ob-
served across different datasets. Novor supports bothWindows
and Mac. However, PEAKS is a Windows program and does
not support Mac. To determine the speed ratio between the two
programs, Novor was additionally run on a Windows comput-
er. A speed ratio 1/13 (PEAKS/Novor) was determined by
running both programs on the same Windows computer sepa-

Figure 1. The precision-recall curves of Novor and PEAKS on the four testing datasets, respectively
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rately, using the identical input, and ensuring that each of them
consumes near 100% of the CPU power when running. PEAK
S speed shown in Figure 3 was estimated by using this ratio.

Decision Trees and Their Advantages

The machine learning algorithm learned two decision trees
from the NIST human library, one for the fragmentation score
and the other for the residue score. Compared with many other
models in machine learning, a unique advantage of a decision
tree is that a human can inspect and make sense of it. Here, a
small portion of the residue score tree, nearby the root, is shown
in Figure 4.

The figure can be viewed as a flowchart. At the beginning of
the flow chart, no feature has been checked yet and the prior
probability for the residue being correct is 23% (determined
using the training data). However, if both y-ions at the left and
right of the concerned residue are observed, and the mass error
is small, the correctness probability is increased to 61%. If
otherwise, the probability is dropped to 13%. Similarly, the
observation of both b-ions increases the probability further to
78%. This way, with increasing evidence used, the probability
estimation becomes increasingly accurate.

Proline is used as a branching condition twice in Figure 4. In
the upper occurrence, the left y-ion is not abundant, so a proline
reduces the confidence. In the lower occurrence, the right y-ion
is not significant in its neighborhood, so a proline increases the
confidence. Further, the lowest branching node in Figure 4
indicates that if a proline is the current residue, a left y-ion that
is very significant in its neighborhood will increase the confi-
dence. These branching conditions all conform to the common
knowledge that a proline enhances the fragmentation at its left
and reduces at its right [27, 28].

During decision tree learning, the learning algorithm auto-
matically finds an optimal branching condition based on one or
a few features, and uses it to branch an existing leaf node
further to maximize the information gain. Such branching is
repeated until a leaf node does not have enough training data to
confidently support further branching. The resulting decision
trees have more than 7000 branching nodes for the fragmenta-
tion score, and more than 14,000 branching nodes for the
residue score.

Despite the trees’ daunting sizes, their depths are very lim-
ited. The average path length from the root to a random leaf is
only 15.8 for the first tree, and 18.4 for the second. To calculate
a score, the algorithm starts with the root node, repetitively
moves down to one of the two child nodes depending on the
condition of the current node, and reports the probability when a
leaf node is reached. The small tree depths mean only a small
number of nodes are checked in each score calculation; this
contributes greatly to the overall speed improvement.

The small tree depths also explain why one can use many
scoring features without leading to the combinatorial explosion
of the number of parameters. Note that the average depths of
the trees are much smaller than the number of features used.
This indicates that most of the features are deemed only some-
times informative by the algorithm. A feature was not used on a
specific path if it did not demonstrate significant correlation to
the correctness of the fragmentation site or residue, given the
other conditions already checked on the path. Since the features
only appear on the few paths where they provide significant
information, their contribution to parameter number increment
is bounded by their actual contribution of useful information.
This makes it possible to use a large number of features. As a
result, the scoring function’s accuracy is increased.

Effectiveness of Machine Learning

Further inspection of the decision tree revealed that the learning
algorithm automatically learned to use much human knowl-
edge from the data. Figure 5 shows another small portion in the
middle of the residue score tree, where several features have
already been checked and the correctness probability after
seeing the values of those features is 51%. The first branching
node shown in the figure checks the left b-ion. If its half rank is
less than 16, which is unusually abundant for a b-ion, the
correctness probability drops to 27%. This adjustment is oppo-
site to many empirical scoring functions (such as the one used
in [18]), where a very abundant ion always increases the score.
However, because the spectrum of a tryptic peptide generally
has weaker b-ions than y-ions, an overly abundant b-ion peak is
unusual and may suggest that the peak is actually a y-ion, but
has been misinterpreted as a b-ion in the algorithm’s dynamic
programming stage. This is a common error in the dynamic
programming stage. The decision tree model learned it auto-
matically and tries to fix it in the refinement stage.

Interestingly, the learning algorithm also learned that the
situation is totally reversed if the current residue is a proline,
which usually causes a very abundant left b-ion. If it is a

Does left b-ion overlap 
with some y-ion?

Are both left and right b-ions observed 
and mass error < 15/16 error tol.? 

Is left y-ion abundant 
(half rank < 32)?

Are both left and right y-ions observed 
and mass error < 3/8 error tolerance? 

Is it a proline? 
Is right y-ion very abundant 
(half rank < 16)?

Is right y-ion significant in its 
neighborhood (local rank < 8)?

Is it a proline? 

Is left y-ion very significant in its 
neighborhood (local rank < 4)?

Figure 4. A small portion of the decision tree automatically
learned by the machine learning algorithm. The tree is drawn
upside down, following the computer science convention. The
percentage value on each edge is the correctness probability of
a residue in a de novo sequence, given the branching condi-
tions on the path from the root to the edge
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proline, the correctness probability increases to 88% from 27%.
Glycine and serine have similar effects, but to a lesser extent.
The effects of proline, glycine, and serine in Figure 5 concur
with the rules discovered in [28]. A quick examination of the
decision tree found many places with similar structures as the
one in Figure 5.

It is worth noting that such rules involving Pro, Gly, and Ser
in Figure 5 were automatically learned by the machine learning
algorithm from the data. The only input from the programmer
was that the learning algorithm should consider using the
residue identity as one of the 169 scoring features. However,
the programmer did not need to tell the learning algorithm
which residues to use and what the actual effects of each
residue were. In fact, the programmer did not even need to tell
the learning algorithm that there is a relation between the
residue identity and the fragment ion abundance. Figure 5
shows that the combined effect of the peptide fragmentation
mechanism and the errors in a step of the de novo sequencing
algorithm can be learned together by machine learning, which
is a difficult task for a human.

The NIST human peptide spectral library was used in the
machine learning. Besides its large size (over 340,000 spectra),
another important property of the library is that each entry is a
consensus spectrum obtained by merging many spectra of the

same peptide. These spectra were often acquired from different
experiments. As a result, the consensus spectrum averages out
many experiment-specific factors, and better reflects the true
peptide fragmentation mechanism than any individual spectrum
does. This provides excellent training data for machine learning.

De Novo Sequencing the Mass Gaps

When the fragment ions between two or more adjacent residues
are all missing, a mass gap is created. By considering the
relation between peak intensities and the adjacent residues,
Novor does a much better job than a random guess when filling
these mass gaps. This fact is illustrated by examining the
dipeptide mass gaps in the C. elegans data. More specifically,
a mass gap caused by a dipeptide X 1X 2 is considered when all
of the following conditions are satisfied: (1) at each side of the
dipeptide, at least one of b, y, b(2+), and y(2+) ions shows up;
(2) for the fragmentation between X 1 and X 2, none of the nine
fragment ions used in Novor shows up; and (3) the second
condition still holds if X 1X 2 is replaced with X 2X 1.

For these mass gaps, the times that Novor computed the
correct and reversed dipeptide sequences, respectively, were
counted. Table 1 shows the results on the 20 most frequent
dipeptide mass gaps. Not surprisingly, many of them have a
proline for their first residue, which causes the middle frag-
mentation to be missing. For these dipeptides, Novor is highly
effective in determining the order of the two residues. Howev-
er, for some other dipeptides, such as VL and LV, Novor’s
success rate is no better than a random guess. This is likely
because these mass gaps are indeed caused by randomness
instead of any systematic mechanisms. This experiment shows
that an ideal de novo sequencing algorithm’s ability may
potentially exceed the fragmentation completeness of the MS/
MS spectrum.

Possible Applications

Real Time De Novo Sequencing At a speed of over 300
spectra per second on a laptop computer, Novor has reached
a new threshold, making it significantly faster than the acqui-
sition speed of today’s mass spectrometry instruments. This
enables the possibility to incorporate it in the spectrometers’
controlling software and de novo sequence on-the-fly. The
output of the instrument will become both raw data and the
peptide sequence tags. In many applications, such ability will
simplify the interface between the instrument and its users, and
make the spectrometers more accessible to biologists and

Is it a proline? 

Is it a serine? 

Is left b-ion unusually 
abundant (half rank < 16)?

Is it a glycine? 

Figure 5. Another small portion in the middle of the residue
score decision tree. Proline, glycine, and serine demonstrate
similar effects to the correctness probability after seeing an
unusually abundant left b-ion

Table 1. The Number of Times that Novor Sequenced a Dipeptide Mass Gap with the Correct and Reversed Dipeptide Sequences, respectively

Dipeptide PL PV PA PE GL PD AL PQ SL TL
Correct 640 459 418 213 139 200 103 142 126 79
Reversed 48 8 16 34 67 2 53 1 16 37

Dipeptide PT PS PG PF VL PN LV GS GQ GF
Correct 106 85 87 91 51 89 34 22 40 34
Reversed 5 15 7 2 40 1 42 46 24 24
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bioinformaticians. An analog of this is the next-generation
genome sequencer that outputs DNA reads directly. Similar
to the de novo sequencing tags, these DNA reads also contain
errors, and a quality score is used to indicate the confidence of
each nucleotide. Comparing them with mass spectral data, the
peptide sequences are much easier to understand by a program-
mer, which may encourage more bioinformatics groups to
work in mass spectrometry-based proteomics.

Another noteworthy fact is that the de novo sequencing
result is available to the mass spectrometer controlling software
in a few milliseconds. Hence, theoretically the controlling
software can incorporate the de novo sequencing results of
previously acquired spectra in making its next acquisition
decision. The advantage of such incorporation is unknown.
However, it has been demonstrated previously that the real-
time availability of peptide identificationwith a database search
approach can help improve acquisition efficiency [48].

De Novo Sequencing and Database Search As shown in
Figure 2, peptides identified with database searches contain
only 37% to 57% residues that can be confidently verified with
abundant fragment ions at both sides. This fragmentation in-
completeness is a challenge to both de novo sequencing and
database search. Because of fragmentation incompleteness, a
database search tool cannot guarantee the correctness of every
single residue of the identified peptide. This can be problematic
when the real peptide is a modified or mutated peptide that is
not in the database: the database search enginemay still report a
similar sequence from the database that differs from the correct
sequence by only a few residues. Such errors at residue levels
cannot be detected by the commonly used result validation
methods that target the peptide level errors, including the
target-decoy method [49–51], the decoy fusion method [11],
and the mixed model expectation-maximization method [52].
Before the instrument is perfected, it would be useful to at least
find out which residues of the database search peptide are
confidently determined. A promising way in this direction is
to match the de novo sequencing result with the database
search result. The residues that the two results agree upon
should have a much higher confidence than the others. Such
examination was thought to be expensive because de novo
sequencing used to take a longer time than database searching.
But now, Novor can de novo sequence a typical LC-MS run
(say, 18,000 MS/MS spectra) in merely a minute on a laptop
computer. This makes the above proposal a valid choice for
every proteomics data analysis workflow.

Conclusion
Compared with the state-of-the-art, Novor significantly im-
proved the de novo sequencing accuracy and is more than an
order of magnitude faster. At a speed of 300 spectra per second
on a laptop computer, Novor exceeds any mass spectrometer’s
throughput. This makes it possible for the mass spectrometer to

output peptide sequence tags directly by de novo sequencing
on-the-fly. De novo sequencing now only requires a fraction of
database search time and, therefore, becomes very inexpensive
to be incorporated in any proteomics workflow. A fully-
functional free academic license of Novor software can be
downloaded from www.rapidnovor.org/novor.
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