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Abstract

We estimate and report life-cycle transition probabilities between employment, unemploy-
ment and inactivity for male and female workers using Current Population Survey monthly files.
We assess the relative importance of each probability in explaining the life-cycle profiles of par-
ticipation and unemployment rates using a novel decomposition method. A key robust finding
is that most differences in participation and unemployment over the life-cycle can be attributed
to the probability of leaving employment and the probability of transiting from inactivity to
unemployment, while transitions from unemployment to employment (the job finding probabil-
ity) play secondary roles. We conclude that search models that seek to explain life-cycle work
patterns should not ignore transitions to and from inactivity.
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1 Introduction

Labor market experiences are significantly different over the life-cycle: unemployment rates are

higher for younger individuals while participation rates fall dramatically for workers after certain

ages. There is also evidence of heterogeneous labor supply volatilities by age groups, as noted by

Blanchard and Diamond (1990), Rios-Rull (1996) and Jaimovich and Siu (2009). However, little is

known about the worker flows involved in this process: Is high unemployment among the young

the result of high job separation or low job finding probabilities? Are transitions in and out of the

labor force important?

In this paper we explore the dynamics of transition probabilities between employment, un-

employment and inactivity over the life-cycle, using Current Population Survey (CPS) monthly

data for male and female workers.1 We construct measures of worker flows between three labor

force states (employment, unemployment and inactivity). From this procedure we can estimate

age-dependent job finding, separation, and labor force exit and entry probabilities.

We propose a methodology to account for the relative importance of each of these transition

probabilities in shaping the life-cycle profiles of unemployment and participation rates. We simulate

the labor status of a cohort of individuals by using age-dependent Markov chains estimated from

the CPS monthly data. In this way, we can compare the empirical participation and unemployment

profiles with those obtained by our simulations when shutting down life-cycle heterogeneity of a

subset of transition probabilities.

We find that most differences in participation and unemployment rates over the life-cycle can be

attributed to the probability of leaving employment and the probability of transiting from inactivity

to unemployment. These results hold for both male and female workers. However, transitions from

unemployment to employment play only minor roles. Higher probability of leaving employment

at the beginning of the life-cycle is important to explain the differences in unemployment and

participation stocks between young and workers aged above 30. Moreover, the decrease in the

probability of transiting from inactivity to unemployment at the end of the life-cycle is relevant to

account for the increase in inactivity of old workers and their low rate of unemployment.

We also perform a second series of exercises in order to decompose the variability of unemploy-

1In terms of methodology, we follow a rich literature interested in the cyclical behavior of worker flows. See for
example Abowd and Zellner (1985), Darby, Haltiwanger, and Plant (1986), Davis (1987), Blanchard and Diamond
(1990), Hall (2006), Shimer (2007), Fujita and Ramey (2009), and Elsby, Michaels, and Solon (2009)
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ment and participation within age groups. Our results suggest that those transition probabilities

which play an important role in the case of differences between age groups are also important when

considering the heterogeneity within age groups. The partial exception to this is the job finding

rate, which seems important to account for within-age variability but not much for variability

between ages.

In light of these facts, we argue that models trying to explain unemployment over the life-cycle

should not ignore ins and outs of inactivity. Although labor market models that consider only

employment and unemployment can achieve good fit of unemployment stocks over the life-cycle,

they are not useful tools to perform counterfactual experiments nor policy analysis. On the other

hand, our analysis on sources of variation shows that neglecting inactivity related transitions would

left unaccounted at least 40%, and up to 80% of the variability of unemployment within age.

A growing literature attempts to explain the aggregate levels of unemployment and participa-

tion by focusing on search models that specifically include a life-cycle structure.2 Those papers are

motivated by labor market heterogeneity observed over the life-cycle, which potentially offers tools

to explain labor market outcomes at the aggregate level.3 Some papers in the literature highlight

the importance of ageing, which impacts participation and unemployment rates of older workers.

For instance, Hairault, Langot, and Sopraseuth (2010) study the effect of exogenous variation in

the retirement age on the employment rate of older workers. Finite horizon induces older workers

to leave the labor force because they have fewer incentives to search when unemployed if they

anticipate to be employed during a shorter period of time. Ljungqvist and Sargent (2008) offer

a quantitative theory of the US-Europe unemployment gap in which the negative effect of labor

market institutions have on incentives to search is amplified through faster human capital depreci-

ation among older workers.4 Other authors focus on the decrease in the job finding and separation

probabilities that mainly occur at the beginning of the life-cycle, which we document in this paper.

Menzio, Telyukova, and Visschers (2010) assess the importance of search frictions to generate the

2The approach in most of these papers is positive, with the exception of Chéron, Hairault, and Langot (2011) and
Michelacci and Ruffo (2010), who respectively analyze optimal employment protection and unemployment insurance
over the life-cycle.

3Aggregate unemployment rates for OECD countries exhibit marked heterogeneity (see for example, table 3 in
Jaimovich and Siu (2009)) which is driven mainly by the fate of the young and the old, but not the “prime age”
workers. Evidence of this can be found in OECD (1996) for the young and in OECD (1998) for older workers. This
sheds light on the importance of taking into account life-cycle considerations and the age composition of the workforce
in order to understand aggregate unemployment and participation rates.

4See also Kitao, Ljunqvist, and Sargent (2008).
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observed life-cycle wage profiles, as opposed to human capital accumulation. Their quantitative ex-

ercise requires a precise calibration of transitions between employment and non employment as well

as job-to-job mobility. Chéron, Hairault, and Langot (2008) generate a decreasing profile for the job

finding and separation probabilities because of finite horizon as in Hairault, Langot, and Sopraseuth

(2010). Moreover, their model produces lower employment rates among the older population.

We are motivated by the potential gains life-cycle search models provide. Studying the evolution

of worker flows helps identify theories for the behavior of stocks. Accordingly, our results offer some

guidelines for the aforementioned literature. The empirical labor market transition probabilities

that we provide can be used to assess the ability of quantitative life-cycle simulation models to

match the data. It seems that current models can be improved along two dimensions. First,

though inactivity is considered in some of them, modeling the decision to return to activity appears

as a promising avenue for future research. The literature has carefully studied the transition from

activity to inactivity: our results suggest that mechanisms based on the transition back to activity

are even more relevant, especially to explain why the unemployment rate does not increase at

the end of the life-cycle. Second, paying attention at the mechanisms behind the decrease in the

probability of job separation among the population aged below 305 is also important.

Further, our results may also be useful from a policy perspective: they give a hint on which

transitions a government needs to act in order to influence the level of unemployment and partic-

ipation of specific age groups. Implementing policies that affect unemployment and participation

through these transition probabilities may be more effective than considering policies that operate

through others.6

The need for inactivity as a third labor market state goes beyond the life-cycle literature.

Recently, several authors have pushed this idea in the case of search models. An example in

the context of the European unemployment gap is Rogerson (2008). He emphasizes that the

decline in employment occurs at a steady pace from 1956 until the mid 1990s, while the increase

in unemployment occurs in the mid 1970s. This suggests that theories focusing on the European

5As it is done for instance in Menzio, Telyukova, and Visschers (2010) and Hairault, Langot, and Sopraseuth
(2010).

6Of course, the identification of appropriate policies becomes complete once an appropriate policy analysis is
implemented. This requires analyzing the impact of a specific policy in hand through a structural model or an
experiment. Thinking about welfare consequences is also important. Nevertheless, it is worth mentioning this scope
of our results.
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labor market dilemma should focus on employment rather than unemployment to understand the

opposite evolution of European and US labor markets. We see our results as complementary to

this other strand of literature.7

The structure of the paper is as follows. In Section 2 we discuss our empirical strategy, including

data sources and estimation procedures. Section 3 describes how we construct the age-dependent

Markov transition matrices and how we simulate rates of unemployment and participation for

a given cohort. In Section 4, we present our main results, while Section 5 asks what are the

consequences of ignoring inactivity and Section 6 relates our methodology to existing methods.

Finally, Section 7 concludes.

2 Data and Empirical Analysis

Our main data source are the basic monthly data files from the Current Population Survey (CPS).8

Our sample consists individuals observed between January 1976 and July 2010, inclusively. Through-

out the paper, we perform analysis separating male and female samples. In each month (period

t) we identify workers according to their labor force status: employment (et), unemployment (ut)

and inactivity/out of the labor force (ot). Following Shimer (2007), we match individuals across

consecutive months based on interview identification numbers, gender, race and age.9 This limited

longitudinal aspect of the data10 is enough to calculate flows between these three employment states

for each month.11 We define the set of indicator variables Dxz
nt that take the value of 1 if individual

n has transitioned from labor status x ∈ {e, u, o} in period t − 1 to labor status z ∈ {e, u, o} in t

(for expositional reasons, we ignore gender indicators). Then, we take weighted averages of these

indicator variables for each month t, for each age a, and for each birth cohort c to obtain a measure

of monthly, age and cohort specific transition probabilities between employment, unemployment

7Several papers have attempted to extend basic search models to a context with endogenous labor
market participation. Examples are Alvarez and Veracierto (1999), Garibaldi and Wasmer (2005), Ravn
(2006), Krussel, Mukoyama, Rogerson, and Şahin (2008), Veracierto (2008), Pries and Rogerson (2009) and
Krussel, Mukoyama, Rogerson, and Şahin (2010), among others.

8Available from the National Bureau of Economic Research, at http://www.nber.org/data/cps_basic.html
9The unit of analysis in the CPS is a physical address, hence, the same identification number during two consecutive

months might not correspond to the same person. Admittedly, the estimates we provide may be slightly biased since
the relatively small sample of movers are qualitatively different from stayers. Other papers using this dataset have
the same shortcoming and we comment on this below.

10The matching of individuals can only be done for a maximum of 3 consecutive months, given the rotating panel
aspect of the CPS.

11We built upon Robert Shimer’s Stata codes, which are publicly available at
http://sites.google.com/site/robertshimer/research/flows
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and out of labor force states. We denote I(a, t, c) as an indicator variable that takes the value of

1 if the individual is observed in month t, belongs to cohort c and is a years old, and 0 otherwise.

Then, we define the corresponding worker flow fxz
atc as follows:

fxz
atc =

∑N
n=1D

xz
nt · ωntI(a, t, c)∑N

n=1D
x
nt · ωntI(a, t, c)

where Dx
nt equals 1 if the individual was in state x in t− 1 and ωnt is the sample weight.

Our goal is to extract life-cycle profiles for each transition. Since age-time-cohort bins are

constructed from samples of different size, we weight each transition by the square root of the

sample size of the original state (which we denote by Nx
atc) during estimation. In this way, the

variance of the estimated error does not depend on the sample size of the bin. Hence, our typical

regression equation is12

fxz
atc

√
Nx

atc =

A∑

a=1

γxza Datc

√
Nx

atc + βWatc

√
Nx

atc + εatc
√

Nx
atc (1)

where {Datc} are age dummy variables and {γxza } are their corresponding estimated coefficients, our

statistics of interest. Watc is a vector of control variables. In what follows, we show results for un-

conditional age-specific transition probabilities, because the lessons we obtain from the data remain

roughly unchanged after controlling for several standard observable variables. In the Appendix we

perform a series of robustness analysis of our results by computing transition probabilities condi-

tional on cohort, time, and state effects.13 The quantitative results of unconditional and conditional

estimates are virtually identical.

To allow for a more efficient estimation, we implement a Seemingly Unrelated Regressions

(SUR) method, where we estimate jointly the age profiles for each transition probability, including

equations for unemployment and participation rates. If we had a set of standard unweighted

equations with identical regressors, there would be no benefit for a pooling procedure: equation-

by-equation OLS would be enough to achieve efficiency. However, sample-size weighting essentially

12In our subsequent analysis, we do not need estimates of staying probability transitions ee, uu, oo, so we discard
them from the presentation.

13Since we obtain our age-specific estimates from individuals of the same age at different time periods, it makes
sense to control for cohort effects. Similarly, we control for time and US state effects because there are significant
fluctuations in labor market transition probabilities at business cycle frequencies and across states.
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introduced different regressors in each equation, making the SUR method a more efficient choice.

Moreover, we want to uncover the whole joint stochastic profile of labor market transitions along the

life-cycle. This multidimensional profile is key to study how important the volatility of each specific

flow is in accounting for the volatility of unemployment and participation along the life-cycle. We

denote by Ω the variance-covariance matrix of the estimated {γxza }.

We depict the unconditional estimated life-cycle profiles (the collection of {γxza }) in Figures 1

and 2 below in the case of the male and female population respectively.14 The shaded areas around

the profiles are 95% confidence bounds constructed from the estimated standard deviations of the

SUR model.

Figure 1: Life-cycle profiles of flows between employment (e), unemployment (u) and out of the
labor force (o) (Males)
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Note: Unconditional life-cycle profiles estimated via Seemingly Unrelated Regressions (SUR).

In Figures 1 and 2 we show the transition probabilities for both male and female workers

between the ages of 16 and 70. Besides level differences, the male and female profiles are quite

similar. Qualitatively, for both genders the employment-to-unemployment (EU), employment-

to-inactivity (EO) and the unemployment-to-inactivity (UO) transition probabilities have stable

14Since we are interested in the average transition probability conditional on Watc, our linear regression model does
not have an intercept.
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Figure 2: Life-cycle profiles of flows between employment (e), unemployment (u) and out of the
labor force (o) (Females)
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Note: Unconditional life-cycle profiles estimated via Seemingly Unrelated Regressions (SUR).

patterns between 30 to 60 years of age, while they show a negative slope at younger ages and

an increase for older workers. The job finding probability (UE) shows an increase until the mid-

20’s and then a slight but persistent decrease. The probabilities of going from inactivity to both

employment and unemployment (OE and OU) show a hump shaped pattern, peaking around age

30 and steadily decreasing from that point to age 70. Confidence bands show that the estimated

age profiles are precise, with the exception of UE.

As for quantitative (beside level) differences, the female sample exhibits a flatter profile of job

finding probabilities and less pronounced hump shape patterns of OE and OU . The main differences

are concentrated around ages 20 to 30, so they are probably linked to fertility and child rearing.

3 Markov Chain Analysis

In this section, we propose a way to account for the contribution of each transition probability into

the determination of participation (Pa = 1 − oa) and unemployment (Ua = ua/(ea + ua)) profiles

over the life-cycle. Once we get our estimates for transition probabilities, we construct age-specific

Markov transition matrices denoted Γa. Starting from initial conditions of labor force status at
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some starting age S1, we compute the predicted labor market states after twelve months as

S2 = Γ12
1 S1 with Γ1 =




γEE
1 γEU

1 γEO
1

γUE
1 γUU

1 γUO
1

γOE
1 γOU

1 γOO
1


 and S1 =




e1

u1

o1




Using the same logic, we can obtain the probability of labor market states at any age a by doing

the following calculation

Sa =

(
a−1∏

i=1

Γ12
i

)
S1 (2)

It is important for the exercise to distinguish between annual and monthly transition probabilities.

Figures 3 and 4 show the differences between the two time horizons. In the Figures, the dotted lines

are the implied transitions when we iterate the age transition matrices twelve times and compute

the specific probabilities, while the solid lines are the monthly transitions (already depicted in

Figures 1 and 2).

Figure 3: Monthly vs Annual transition probabilities (males)
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Note: Unconditional life-cycle profiles estimated via Seemingly Unrelated Regressions (SUR).

Using equation (2), we can obtain complete lifetime profiles implied by the estimated transition
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Figure 4: Monthly vs Annual transition probabilities (females)
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Note: Unconditional life-cycle profiles estimated via Seemingly Unrelated Regressions (SUR).

probabilities, i.e., Ua = ua/(ea+ua) and Pa = 1−oa using observed initial conditions. We compare

the computed lifetime sequences of participation and unemployment to the actual lifetime profiles

obtained from the data. The results are depicted in Figure 5. The estimated transition probabilities

come remarkably close to replicate the actual profiles. In each subfigure we also show the value

of 1 − R2, where R2 is the R-squared of a linear regression between the actual profile and the

counterfactual.

Looking at the female sample, participation exhibits a hump around ages 25 to 40, which can

be linked to reduced participation due to fertility and child rearing. Our method replicates this

pattern, given the gender specific estimates of OE and OU : these transition probabilities are lower

for females than for males during these years, representing women’s choices not to rejoin the labor

force if not participating.
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Figure 5: Unemployment and Participation according to annual probabilities
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Note: Unconditional life-cycle profiles estimated via Seemingly Unrelated Regressions (SUR).

4 Results

4.1 Average Profiles

With the constructed transition matrices, we perform a set of decomposition exercises. We want to

understand how influential is each specific flow on its own for the determination of unemployment

and participation profiles. Thus, we fix the age-specific transition probability of each flow (EU ,

EO, UE, UO, OE, OU) at an arbitrary age. Then, we adjust the probability of “staying” flows

(EE, UU , OO) so that the monthly transition matrices are well defined.15 The remaining five

independent transition probabilities are left unchanged. Using this alternative set of age-specific

transition matrices, we can assess the contribution of a specific flow by inspecting the loss of

goodness-of-fit derived from such a change. We call this method “all but one change”(AB1C). We

interpret this procedure as an approximated model-free counterfactual profile of unemployment and

participation, the closest thing to an ”all else constant” exercise to assess the effect of a particular

flow on the level of the stock. This method has the advantage of introducing minimal changes

15Suppose we fix γEU
a = γEU for all a. We then adjust the transition matrices for all ages by computing γ̃EE

a =
1− γEU

− γEO
a .
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to what an underlying structural general equilibrium model would provide for these transition

probabilities.

Figures 6 to 9 depict the alternative unemployment and participation profiles for both male and

female workers when the particular transition probabilities related to each subfigure are replaced by

their life-cycle averages. For example, the first subfigure in Figure 6 shows how different life-cycle

unemployment rates would be if the separation rate (EU) were the same across all ages (fixed at the

life-cycle average), instead of being age-specific. Hence, whenever there is a significant difference

between both lines, we argue that the particular transition probability contributes to the shape of

the life-cycle profile in either participation or unemployment rates.16

Figure 6: Importance of flows in Markov chains (AB1C): Unemployment, males
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Note: Unconditional life-cycle profiles estimated via Seemingly Unrelated Regressions (SUR).

Looking at Figures 6 and 7 we observe that implied unemployment profiles are barely affected

16We also perform an alternative exercise. We assess the specific contribution of only one transition rate by
constructing Markov transition matrices that keep fixed all but one transition probabilities at the average life-cycle
level. We label this method as the “all but one fixed” (AB1F) decomposition. The AB1F method need five out of
six transitions to remain fixed, which presumably would imply severe general equilibrium effects in an underlying
structural model. Accordingly, we strongly prefer the AB1C method, since it resembles more closely a counterfactual
analysis, departing only marginally from estimated values. Nevertheless, results from the AB1F decomposition are
quite similar to those obtained from the preferred method. They are available upon request.
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Figure 7: Importance of flows in Markov chains (AB1C): Unemployment, females
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Note: Unconditional life-cycle profiles estimated via Seemingly Unrelated Regressions (SUR).

by changes in the job finding (UE) and the inactivity-to-employment transition (OE) probabilities.

Changes in EU (separation probability) matter to explain higher unemployment of the young and

lower unemployment of the old. A larger effect occurs with changes in “retirement” probabilities. If

the EO flows were at its average level, we would observe smaller young unemployment and higher

old unemployment rates. Finally, the probability of transiting from inactivity to unemployment

plays a role in explaining low unemployment rates for workers older than 55 years of age. This

decomposition exercise shows that the decision of searching for a job once workers have been inactive

is the most important factor explaining low unemployment rates for old workers. Again, besides

a level effect, results are similar for both male and female population groups and the qualitative

effects of specific transition probabilities on unemployment rates seem to work identically across

genders.

Figures 8 and 9 show the decomposition for the participation rate. The pictures show that nei-

ther separation (EU), unemployment-to-inactivity (UO) nor job finding probabilities (UE) explain

much of the age differences in participation rates. If these probabilities were fixed at their average
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Figure 8: Importance of flows in Markov chains (AB1C): Participation, males
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Note: Unconditional life-cycle profiles estimated via Seemingly Unrelated Regressions (SUR).

life-cycle levels, we would observe a somehow lower participation for workers older than 40. The

most important life-cycle changes that influence participation profiles come from the “retirement”

probability (EO). The evolution of this transition probability over the cycle increases labor force

participation by as much as 20% at age 60. Finally, the OE flow seems to be quite important to

explain higher participation for the young and, especially, lower participation for the old.

Admittedly, the choice of keeping each transition probability fixed at its average life-cycle value

is arbitrary. We could also focus on another type of question. For example, what would be the

unemployment or participation life-cycle profiles if all workers had the same job finding probability

of a 20 year old worker (UE transition)? We can answer this question by using the AB1C decom-

position with fixed probabilities at arbitrary ages. Below we focus on young (20), prime age (40)

and old (60) workers.

Table 1 summarizes the results from the decomposition exercise as well as the ones of the

baseline (average probability) case. This table quantifies the qualitative examinations we perform

on Figures 6-9. Here we assess the explanatory power for the AB1C method as the drop in goodness-

of-fit generated by keeping constant a particular probability of transition. Hence, our measure of
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Figure 9: Importance of flows in Markov chains (AB1C): Participation, females
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Note: Unconditional life-cycle profiles estimated via Seemingly Unrelated Regressions (SUR).

explanatory power in this case is 1 − R2
xz, where the last term is the R-squared from a regression

between the actual life-cycle profile of unemployment/participation and the one simulated via an

adjusted Markov chain with the flow xz fixed at the specified age.

From Table 1 we see that the EO and OU flows are the most influential ones in determining

the life-cycle trajectories of unemployment. For instance, if a worker keeps his EO transition

probability fixed at its 20-year level, the Markov chain analysis would explain 85% less than what

it could if we allowed age dependent EO values. Once we fix the EO probability at other ages, this

number decreases to 20%. Thus, the EO flow is particularly important to determine unemployment

for young male workers. In contrast, the OU flow plays an important role in shaping unemployment

at all ages.

The OE flow plays a small role in shaping unemployment, but is quite relevant for participation.

We can interpret this latter flow as the job finding probability of workers exerting little effort to

find a job. These transitions are particularly important for young and old workers. An interesting

observation is the lack of relevance of the job finding probability (UE flow) at any stage in the
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Table 1: Unemployment and Participation Flow Decompositions

Males

Fixed probs EU EO UE UO OE OU

γxz fixed at 20 U 18.5 39.2 1.4 4.8 4.6 64.8
P 0.1 19.4 1.7 0.9 28.2 10.3

γxz fixed at 40 U 13.3 18.1 1.6 7.7 3.8 61.6
P 0.1 23.0 1.7 0.7 22.7 8.5

γxz fixed at 60 U 13.3 22.4 4.2 5.2 6.4 33.9
P 1.1 12.4 1.7 0.9 11.8 4.9

γxz fixed at avg U 13.5 26.1 2.1 5.4 3.8 59.7
P 0.9 13.4 1.7 0.8 18.6 7.8

Females

Fixed probs EU EO UE UO OE OU

γxz fixed at 20 U 7.7 25.2 1.1 3.7 2.7 86.6
P 0.8 18.7 1.8 0.1 45.8 14.5

γxz fixed at 40 U 7.9 16.9 1.5 4.7 4.3 81.8
P 1.2 9.5 1.8 0.9 34.0 8.9

γxz fixed at 60 U 13.3 22.4 4.2 5.2 6.4 33.9
P 1.3 11.7 1.8 0.9 17.0 5.5

γxz fixed at avg U 7.8 19.4 1.6 3.9 5.5 81.2
P 1.1 13.1 1.8 1.0 30.2 8.6

NOTES: The numbers represent the loss of goodness of fit measured by 1− R2
xz , where R2 is the R-squared from a regression

between the actual life-cycle profile of unemployment/participation and the one simulated via an adjusted Markov chain with
the flow xz fixed at the specified age.

life-cycle. The latter observation contrasts with the protagonism of this flow in explaining business

cycle variation of unemployment, as noted by Hall (2006) and Shimer (2007).

4.2 Heterogeneity within age groups

The previous analysis highlights how the differences in stocks between age groups can be explained

by differences in transition probabilities. We now develop a methodology to identify which transition

probabilities are behind the heterogeneity in unemployment and participation within each age

group. Our aim is to assess the contribution of the variance of a particular flow to the variance of

unemployment and participation at a given age a, which we denote by V ar (Ua) and V ar (Pa).

Conceptually, we take the SUR estimates {γxza } as a sequence of average transition flows from

x to z, conditional on age a. At the individual level, there is a great deal of variation conditional

on age a. The procedure we follow attempts to uncover the specific contribution of a flow xz at

age a for the variability of U and P . To do this, our first step is to draw 10,000 realizations of the

stochastic multivariate profile of transition probabilities over the life-cycle from the SUR estimates,

assuming joint normality, i.e. the joint profile has a mean vector given by the estimated {γxza } (for
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all xz ∈ {EU,EO,UE,UO,OE,OU} and all ages a = 1, .., A) and a variance-covariance matrix

Ω.17 For the second step, we fix initial conditions at age 16 and compute the 10,000 life-cycle

profiles of unemployment and participation with each one of the 10,000 simulated profiles by means

of the Markov chain method described in the preceding section. Third, once we obtain the 10,000

stochastic profiles of U and P , we calculate the corresponding variances of unemployment and

participation for each age group across all simulations. Given that the stocks can be obtained very

accurately from transition probabilities assuming a first-order Markovian process, the computed

variances should closely approximate V ar (Ua) and V ar (Pa), abstracting from sample size consid-

erations. Fourth, we compare those variances with the ones obtained when the stochastic influence

of the flow xz is shut down in order to assess the contribution of that particular flow. In the latter

case, xz is thus restricted to be the SUR estimated life-cycle profile (i.e. the “average” life-cycle

profile of this flow). We denote these additional statistics as V ar(Ua|γ
xz) and V ar(Pa|γ

xz). Finally,

we compute the ratios QU,xz
a = 1 − V ar(Ua|γxz)

V ar(Ua)
and QP,xz

a = 1 − V ar(Pa|γxz)
V ar(Pa)

. We call this method

“all but one change” (AB1C) for variance.

The ratios QU,xz
a and QP,xz

a give the relative contribution of a given flow xz to the variance of

unemployment and participation of age group a, a large value indicating a large contribution. The

ratios are displayed on Figure 10 in the case of unemployment, while Figure 11 depicts those related

to participation.18 They suggest that those transition probabilities which play an important role in

the case of differences between age groups are also important when considering the heterogeneity

within age groups. Moreover, results are again similar for both men and women.

In the case of the variance of unemployment of the young (say up to 30 years old), almost all

flows (except the UO transitions) display modest QU,xz
a statistics, with contributions around 20%.

Interestingly, the job finding probability is now the flow that contributes the most for these age

groups, especially in the case of men younger than 20 years old (with QU,UE
a statistics around 40%).

The probability of transiting from employment to unemployment greatly influences the variance

of unemployment of the prime-aged (say from 30 to 55 years old), with QU,EU
a statistics that can

reach almost 60% for men and 40% for women. Finally, Figure 10 indicates that the variance among

17Normality is justified by standard asymptotic normality of SUR estimator. In practice, we draw a sequence of
i.i.d. standard normal realizations and transform it into a realization of the profile using a Cholesky decomposition
of the variance matrix Ω.

18Notice that the ratios may sometimes take negative values. This may happen because of non-zero covariances
may generate an increase in variance when a flow is shut down.
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Figure 10: Variance decomposition by age group (AB1C): Unemployment
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Note: Figures show the percentage of var(U) at each age explained by fixing one flow at a time at its estimated profile. Based
on 10000 simulations, SUR weighted unconditional estimates.

older groups is mainly explained by the variability in the OU transition probability: the respective

QU,OU
a statistics steadily increase from about 30% in the case of the 55 years old population to

about 80% for those aged 70 (for both men and women).

Figure 11 shows the importance of the EO and OE transition probabilities in the case of

participation. Each one of these two flows manifests itself at specific moments of the life-cycle and

its contribution mirrors the contribution of the other one. The OE transition becomes important in

the case of the young and older populations (with QP,OE
a statistics that can respectively reach 60%

and 80%), while the EO transition tends to influence the variance of the prime-aged (with QP,EO
a

statistics that can reach 80% in the case of males and 60% for women). Notice the differences

between males and females over the prime-age periods: the contribution of the OE flow is 20

percentage points larger in the case of females, while this difference is compensated by a larger EO

contribution in the case of males. Finally, the OU transition is somewhat important in the case of

the young and older populations (around 20%).

The exercise on the variance within age group is subject to the following caveat. The estimated
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Figure 11: Variance decomposition by age group (AB1C): Participation
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Note: Figures show the percentage of var(U) at each age explained by fixing one flow at a time at its estimated profile. Based
on 10000 simulations, SUR weighted unconditional estimates.

variance-covariance matrix Ω is influenced by the heterogeneity within group but also by the sample

size of the respective {γxza } estimates. Ideally we would like our results to be the outcome of the

former, with the latter playing no role. It turns out that this is not true because the levels of

unemployment and participation are not constant over the life-cycle, implying that some transition

probabilities are better estimated for some age groups because they are characterized by a larger

sample size. For example, the estimated OE and OU transitions are more precise among the older

populations because they are characterized by a larger proportion of non-participants, while the

precision of the estimates of the EU , EO, UE and UO transition probabilities is worse for these

age groups. However, a comparison of the size of the confidence bands in Figures 1 and 2 with the

importance of the contributions in Figures 10 and 11 suggests that this caveat is not quantitatively

important: it turns out that the flows that display the largest QU,xz
a and QP,xz

a statistics are also

estimated with more precision when their contribution is the highest. Hence, their QU,xz
a and QP,xz

a

statistics reported in Figures 10 and 11 can be seen as a lower bound. See also the discussion in

Section 6.2.
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5 Ignoring transitions to and from inactivity

5.1 Average Profiles

What happens if we abstract from inactivity in our models, as a majority of search and matching

models do? To answer this question we extend the ideas regarding the AB1C decomposition, but

we allow both UE and EU to be fixed at arbitrary values over the life-cycle. We denote this

decomposition as “all but two change” (AB2C). Alternatively we could ask how unemployment

and participation profiles would look like if we only allow EU and UE transitions to occur. Using

the same nomenclature we could label this procedure as AB2F, “all but two fixed”. This latter

setup resembles traditional two state search models since they completely abstract from inactivity

transitions. Under both decompositions we consider two scenarios: in the first one, we fix transition

probabilities at their life-cycle means; in the second one, we set them to zero.19

Figure 12: Alternative Decomposition of life-cycle Unemployment rates, males
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Note: Unconditional life-cycle profiles estimated via Seemingly Unrelated Regressions (SUR).

19However, it is more difficult to give a meaningful counterfactual interpretation to these exercises. We can think
of our estimated transition probabilities as being the equilibrium outcomes from an underlying structural model.
Thus, the more probabilities we change in our empirical counterfactual analysis, the more “equilibrium conditions”
are implicitly changed, leading to adjustments that we cannot account for.
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Figure 13: Alternative Decomposition of life-cycle Unemployment rates, females
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Note: Unconditional life-cycle profiles estimated via Seemingly Unrelated Regressions (SUR).

This rationale highlights a great danger in pursuing modeling strategies that ignore inactivity.

As we see in Figures 12 and 13, the fit of the model in which inactivity transition probabilities are

zero is nearly perfect for males and females (southeast subfigures). We could naively think that it

is appropriate to omit inactivity from structural models as a modeling strategy. Even though such

a model would likely give a good fit to the data, this approach has important shortcomings. First,

the supposed accuracy is only true for averages (see the next section) leaving a great deal of within-

age variation unaccounted. Second, such a model would be useless for running any counterfactual

experiments and misleading for policy purposes. This is especially relevant if welfare implications

are considered, since we would be omitting the welfare of agents transiting in or out of the labor

force. If we perform a counterfactual experiment in a model with only UE and EU transitions,

we are really doing two things: changing the aspect of interest of the model, and adjusting some

unknown equilibrium conditions in order to keep inactivity transitions fixed at zero. Hence, the

model structure is not invariant to policy changes.
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5.2 Heterogeneity within age groups

We now explore what would be the consequences of ignoring probability transitions in and out

the labor force for the cross-sectional heterogeneity of unemployment and participation within age

groups. We employ three methods that are in line with the methods we use for the differences

between age groups.

The AB2C method keeps fixed only one flow at the estimated life-cycle profile. Here we focus on

the EU and UE transitions, which are the only ones considered in standard two-state labor search

models. Once we obtain a joint stochastic simulation of probability transitions for all flows, we

substitute the particular profiles of EU and UE by their SUR estimated counterparts, the life-cycle

“average” profile. Using the Markov chains and initial conditions at age 16, we learn how much

variation in U and P is shut down at each age by keeping this two flows fixed. We report the ratio

Q
AB2C,(EU,UE)
a = 1− V ara(U |γEU ,γUE)

V ara(U) .

The second method is called AB2F-mean. Accordingly, we stochastically simulate a joint life-

cycle profile for all flows and then substitute all flows but the EU and UE transitions by their

estimated SUR profiles. We run the Markov chain with these probabilities and obtain a “perturbed”

life-cycle U profile. We compute the variance of U induced by these perturbed profiles and report

the statistics Q
AB2F,−(EU,UE)
a = V ara(U |γEU ,γUE)

V ara(U) .

We finally compute the method AB2F-0, which literally reflects what two-state labor market

search models do: they constraint flows in and out of the labor force to be zero. We assess the

contribution of EU,UE flows as we did in the previous stage. For this method, we also report the

implied variance when participation is ignored over V ara(U).

Figure 20 reports the statistics calculated when applying each one of the three methods dis-

cussed above. Results are similar across exercises and basically indicate that when ignoring the

participation decision, one is most likely to underestimate variances of unemployment over the

life-cycle. The graphs suggest that the EU and UE transition probabilities are relevant for the

variance of unemployment of young and prime aged, with a contribution that oscillates around 50%

for women and 60% for men. However, the contribution is significantly lower for older workers: all

statistics drop to a level below 20% at the end of the life-cycle. Nevertheless, the analysis shows

that at every point of the lifecycle, a large proportion of the variance of unemployment (between

40 to 80% for males, and between 50 to 80% for females) is explained from variation of transitions
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Figure 14: Ignoring inactivity: unemployment variance decomposition by age group
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Note: Each figure reports V ar(Ua) changes, based on 10000 simulations, SUR weighted unconditional estimates.

from and to inactivity. In addition, the joint contribution of EU and UE flows to explain unem-

ployment variation does not depend on the particular profiles chosen (average lifecycle profiles or

zero). This suggests that flows involving inactivity are a robust source of cross sectional variation

for unemployment. Thus, when it comes to counterfactual experiments, any policy intervention

with heterogeneous responses of inactivity-related transitions across the relevant population may

induce significant effects in the cross-sectional unemployment responses. As an example, policy

changes in the replacement ratio of an unemployment insurance program may increase the vari-

ability of individual unemployment not only through the usual channels as the job finding rate UE

or the separation rates EU . Our analysis suggests that you should not be surprised if 40% or 50%

of the responses in unemployment comes from induced changes over decisions involving leaving or

entering the labor force. Of course, a two-state labor market model would be forced to attribute

most of this additional variability to either EU or UE flows.
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6 Further analysis and relation to existing methods

6.1 Average Profiles

Our decomposition method is similar to the one used by Pissarides (1986) and Shimer (2007).

More specifically, unemployment and labor force participation approximations in the latter are

the result of iterating the Markov chains an infinite number of times. Labor states obtained from

twelve months of transitions (to simulate one year in the life of a worker) with empirical transition

probabilities are not very different from the Markov chain limit. In most cases, the approximation is

accurate so that we can construct theoretical counterparts to the observed proportion of individuals

in each of the three considered states {e, u, o} at age a using the Markov chain limit. Therefore,

the approximation at any age a can be constructed by solving the following linear system20

(
γEU
a + γEO

a

)
ẽa = γUE

a ũa + γOE
a õa

(
γUE
a + γUO

a

)
ũa = γEU

a ẽa + γOU
a õa

(
γoea + γOU

a

)
õa = γeoa ẽa + γuoa ũa

The interpretation of these equations is straightforward. The left hand sides of these equations

represent the flow of individuals transiting away from states {e, u, o} respectively, at the end of age

a. The right hand side accounts for the number of individuals transiting into those same states.

These two numbers must be the same, assuming a stationary age-specific population structure and

stationary transition probabilities γxza . Solving for the states, we get functional forms that relate

them to age specific transition rates only.

ẽa = ẽ(γUE
a , γUO

a , γOE
a , γOU

a )

ũa = ũ(γEU
a , γEO

a , γOE
a , γOU

a )

õa = õ(γEU
a , γEO

a , γUE
a , γUO

a )

accordingly, we can construct these “theoretical” counterparts for participation (P̃a = 1− õa) and

unemployment rates (Ũa = ũa/(ẽa + ũa)) using the above equations and our estimates of {γxza }

20The limiting labor states e, u, o are just the normalized eigenvector (so that its components add up to 1) associated
to an eigenvalue of value 1.
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from regression (1). In Figure 15 we plot the observed versus theoretical (constructed) rates, for

both men and women.

Figure 15: Participation and Unemployment rates: actual vs. limit of Markov
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Note: Unconditional life-cycle profiles estimated via Seemingly Unrelated Regressions (SUR).

As seen from the Figure, the theoretical rates follow closely their observed counterparts and pose

a reasonable approximation to the observed profiles. Notice that in order to calculate stocks

of unemployed, employed and inactive workers, the method above does not rely on initial condi-

tions/distribution of workers across employment states but only age-specific transition probabilities.

The goodness of fit of the theoretical rates is due to high monthly transition probabilities, which

dwarfs the effect of initial conditions.

Given that theoretical participation and unemployment rates depend only on age-specific transi-

tion probabilities, we can assess their relative importance in explaining aggregate life-cycle profiles.

Using the same logic as in the “all but one change” (AB1C) method,21 we compute the limiting

states at each age by using our estimates γxza . However, we keep fixed a particular transition prob-

ability at its mean life-cycle value, one at a time, and we allow the rest of them to change according

21This is in contrast to what Shimer (2007) does in the context of a business cycle decomposition. He fixes all
transition probabilities at their mean and changes only one, what we labeled the AB1F method above.
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to age. We present these decompositions for unemployment and participation in Figures 17 and 19

below.

Figure 16: Decomposition of life-cycle Unemployment, limit Markov for males
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Note: Unconditional life-cycle profiles estimated via Seemingly Unrelated Regressions (SUR).

When comparing the results from this “limit” method to the ones we see in the Markov chain

analysis, we get roughly identical results. In terms of participation, the most important transition

probability is the one from employment to inactivity EO. If this transition probability were to be

constant throughout the life-cycle, the participation profile would be flatter. The EO probability is

very important to determine early and late life employment status. Also, movements from inactivity

into the labor force (both OE and OU probabilities) determine to a great extent unemployment

after the age of 60.

As for the life-cycle profile of the unemployment rate, again the EO probability plays an impor-

tant role, followed by the EU as well as the OU transition probabilities. The job finding probability

(UE) does not affect differences in life-cycle participation and unemployment significantly. It turns

out that the transitions into and out from the labor force are quite important in shaping unem-

ployment and participation rates life-cycle profiles.
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Figure 17: Decomposition of life-cycle Unemployment, limit Markov for females
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Note: Unconditional life-cycle profiles estimated via Seemingly Unrelated Regressions (SUR).

These results contrasts to Shimer (2007) and Fujita and Ramey (2009) findings in relation to

the business cycle. These authors show that UE and EU flows are enough to account for the

cyclical fluctuations of the unemployment rate. For life-cycle analysis, our evidence shows that

inactivity transitions are key to understand the unemployment and participation by age.

6.2 Heterogeneity within age groups

The Pissarides-Shimer decomposition can also be applied to extend the analysis of Section 4.2.

Specifically it allows to separate the statistics depicted in Figures 10 and 11 as the product of two

components. The first component is the variance of each {γxza }, while the second component is the

marginal effect of the variance in unemployment or participation with respect to each transition

probability, which we denote by ∂Ũa

∂γxz
a

in the case of unemployment and ∂P̃a

∂γxz
a

in the case of partic-

ipation. By using the limit of the Markov chain and a first-order Taylor expansion, we obtain an

approximation of the marginal effect for each age group. Those are reported on Figures 20 and

21.22 Comparing these Figures with Figures 10 and 11 suggests that for the case of unemployment

22More details on how these semi elasticities are approximated are given in the Appendix.
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Figure 18: Decomposition of life-cycle Participation, limit Markov for males
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Note: Unconditional life-cycle profiles estimated via Seemingly Unrelated Regressions (SUR).

profiles, the variability of each flow is the main indicator of its influence, given that the computed

semi elasticities are constant and small over the life-cycle (with the exception of OU probabilities).

On the other hand, participation is influenced in a mixed way by the transition probabilities: EU ,

EO, OE and OU exhibit non-constant profiles of semi elasticities over the life-cycle, while those

related to UE and UO are flat and almost equal to zero.

7 Conclusion

In this paper we estimate and report life cycle transition probabilities across labor market states

for male and female workers in the US, using data from the Current Population Population Survey.

We construct measures of worker flows between labor force states according to age. This procedure

gives us a consistent set of facts from which we can identify age dependent job finding and job

destruction rates as well as labor force exit/entry rates.

Using our estimates, we find that most differences in participation and unemployment rates

over the life-cycle, both in terms of averages and variances, can be attributed to the probability of

27



Figure 19: Decomposition of life-cycle Participation, limit Markov for females
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Note: Unconditional life-cycle profiles estimated via Seemingly Unrelated Regressions (SUR).

leaving employment and the probability of entering unemployment from inactivity. On the other

hand, the job finding rate plays a role explaining heterogeneity but explains little of the life-cycle

unemployment average profile.

We argue that two-state labor market models are not appropriate to perform counterfactual

experiments for policy analysis even though they may provide a good fit to unemployment facts.

The data shows a great deal of inactivity transitions, whose variation greatly affects unemployment

and participation life-cycle profiles. In our analysis of the unemployment and participation variation

by age, we find that inactivity related flows (EO,UO,OE, and OU) jointly account for a sizable

amount of dispersion, ranging from 40% (for prime-aged males) to 80% (old males and females).

If a model ignores flows in and out of inactivity, any policy experiment in such artificial economy

would also involve an unknown change of general equilibrium conditions in order to maintain

inactivity transition probabilities fixed at zero. Even though one may incorporate inactivity as a

labor force entry during youth and a retirement decision, the large amount of transitions into and

out from inactivity for prime-aged workers suggests that such an approach may be insufficient. In
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Figure 20: Within-group variability: unemployment marginal effects
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Note: Figures show approximated derivative ∂U/∂γ, where γ are the unconditional life-cycle profiles estimated via Seemingly
Unrelated Regressions (SUR).

the case of female workers, fertility and child rearing considerations makes our recommendation

even more valid. Indeed, it is quite suggestive that the transitions explaining most of unemployment

and participation levels and variations are the same for both males and females, as shown in our

analysis.

Our main conclusion is that further study of job market experiences over the life-cycle should

always include the inactivity state and endogenous participation decisions. Not doing so would bias

the imputed importance of other factors determining participation and unemployment during the

life-cycle and thus, aggregate participation and unemployment rates.
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Figure 21: Within-group variability: participation marginal effects
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Unrelated Regressions (SUR).
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A Appendix

A.1 Approximation of variance and its decomposition

Using the limit of the order-one Markov chain, we can obtain an approximation for the unemploy-
ment and participation rates conditional on age as in Shimer (2007). In this way, we obtain

Ua ≈ Ũa =
γoea γeua + γoua (γeua + γeoa )

γoea (γuoa + γeua ) + γuea (γoea + γoua ) + γoua (γeua + γeoa )

Pa ≈ P̃a =
γuea (γoea + γoua ) + γoea (γuoa + γeua ) + γoua (γeua + γeoa )

γuea γeoa + γeoa γuoa + γuoa γeua + γuea (γoea + γoua ) + γoea (γuoa + γeua ) + γoua (γeua + γeoa )

From these approximations, it follows a variance decomposition that is similar to Fujita and Ramey
(2009) and Elsby, Michaels, and Solon (2009) although they do it in terms of unemployment varia-
tion instead of unemployment and participation levels. First, we approximate these unemployment
and participation via a first-order Taylor expansion around the age conditional mean of each flow,
γa ≡ {γxz

a } for x, z ∈ {e, u, o}.

Ũa ≈ Ũa(γa) +
∑

x

∑

z 6=x

∂Ũa

∂γxza
(γa)(γ

xz
a − γxza )

Once we linearize, we compute the corresponding variance of Ũa and

V[Ũa] ≈
∑

x

∑

z 6=x

(
∂Ũa

∂γxza
(γa)

)2

V[γxza ] + 2
∑

x

∑

z 6=x

∑

y 6=x

∑

w 6=y

∂Ũa

∂γxza
(γa)

∂Ũa

∂γywa
(γa)COV[γxza , γywa ]

As seen from the expression above, the approximated rate of unemployment Ũa and its variance

V[Ũa] are affected directly by all marginal effects ∂Ũa

∂γxz
a

. The same procedure trivially applies to the

approximated participation P̃a.
The specific partial derivatives are

∂Ũa

∂γeua
= Ũa(1− Ũa)

γoea + γoua
γeua γoea + γeoa γoua + γeua γoua

∂Ũa

∂γeoa
= Ũa(1− Ũa)

γoua
γeua γoea + γeoa γoua + γeua γoua

∂Ũa

∂γuea
= −Ũa(1− Ũa)

γoea + γoua
γoea γuea + γoea γuoa + γoua γuea

∂Ũa

∂γuoa
= −Ũa(1− Ũa)

γoea
γoea γuea + γoea γuoa + γoua γuea

∂Ũa

∂γoea
= −Ũa(1− Ũa)

γoua (γeoa γuea + γeoa γuoa + γeua γuoa )

(γoea γuea + γoea γuoa + γoua γuea )(γeua γoea + γeoa γoua + γeua γoua )

∂Ũa

∂γoua
= Ũa(1− Ũa)

γoea (γeoa γuea + γeoa γuoa + γeua γuoa )

(γoea γuea + γoea γuoa + γoua γuea )(γeua γoea + γeoa γoua + γeua γoua )
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For participation, we have that

∂P̃a

∂γeua
= P̃a(1− P̃a)

(γeoa − γuoa )(γoea γuea + γoea γuoa + γoua γuea )

(γeoa γuea + γeoa γuoa + γeua γuoa )(γeua γoea + γeoa γoua + γeua γoua + γoea γuea + γoea γuoa + γoua γuea )

∂P̃a

∂γeoa
= P̃a(1− P̃a)−

(γoea γuea + γoea γuoa + γoua γuea )(γeua + γuea + γuoa )

(γeoa γuea + γeoa γuoa + γeua γuoa )(γeua γoea + γeoa γoua + γeua γoua + γoea γuea + γoea γuoa + γoua γuea )

∂P̃a

∂γuea
= −P̃a(1− P̃a)

(γeoa − γuoa )(γeua γoea + γeoa γoua + γeua γoua )

(γeoa γuea + γeoa γuoa + γeua γuoa )(γeua γoea + γeoa γoua + γeua γoua + γoea γuea + γoea γuoa + γoua γuea )

∂P̃a

∂γuoa
= −P̃a(1− P̃a)

(γeoa + γeua + γuea )(γeua γoea + γeoa γoua + γeua γoua )

(γeoa γuea + γeoa γuoa + γeua γuoa )(γeua γoea + γeoa γoua + γeua γoua + γoea γuea + γoea γuoa + γoua γuea )

∂P̃a

∂γoea
= P̃a(1− P̃a)

γeua + γuea + γuoa
γeua γoea + γeoa γoua + γeua γoua + γoea γuea + γoea γuoa + γoua γuea

∂P̃a

∂γoea
= P̃a(1− P̃a)

γeoa + γeua + γuea
γeua γoea + γeoa γoua + γeua γoua + γoea γuea + γoea γuoa + γoua γuea

34



A.2 Robustness [NOT FOR PUBLICATION]

In this appendix we present the same figures as in the body of the paper, but where our estimates
include controls for time, cohort and state variation in matrix D below:

fxz
atc

√
Nx

atc =

A∑

a=1

γxza Datc

√
Nx

atc + βWatc

√
Nx

atc + εatc
√

Nx
atc (3)

Our conclusions remain intact when we obtain these estimates conditional on time (through
splines of orthogonal polynomials over 6 years), cohort, and state effects. They are very similar to
the results using unconditional estimates reported in the body of the paper.

Figure 22: Life-cycle profiles, males
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Note: Life-cycle profiles conditional on time, cohort and state estimated via Seemingly Unrelated Regressions (SUR).
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Figure 23: Life-cycle profiles, females
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Note: Life-cycle profiles conditional on time, cohort and state estimated via Seemingly Unrelated Regressions (SUR).

Figure 24: Unemployment and Participation according to annual probabilities
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Note: Life-cycle profiles conditional on time, cohort and state estimated via Seemingly Unrelated Regressions (SUR).
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Figure 25: Importance of flows in Markov chains (AB1C): Unemployment, males
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Note: Life-cycle profiles conditional on time, cohort and state estimated via Seemingly Unrelated Regressions (SUR).

Figure 26: Importance of flows in Markov chains (AB1C): Unemployment, females
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Note: Life-cycle profiles conditional on time, cohort and state estimated via Seemingly Unrelated Regressions (SUR).
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Figure 27: Importance of flows in Markov chains (AB1C): Participation, males
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Note: Life-cycle profiles conditional on time, cohort and state estimated via Seemingly Unrelated Regressions (SUR).

Figure 28: Importance of flows in Markov chains (AB1C): Participation, females
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Note: Life-cycle profiles conditional on time, cohort and state estimated via Seemingly Unrelated Regressions (SUR).
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Figure 29: Variance decomposition by age group (AB1C): Unemployment
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Note: Life-cycle profiles conditional on time, cohort and state estimated via Seemingly Unrelated Regressions (SUR). Figures
show the percentage of var(U) explained by fixing one flow at a time, based on 10,000 simulations.

Figure 30: Variance decomposition by age group (AB1C): Participation

0
.2

.4
.6

.8
1

20 30 40 50 60 70

age

var(P), only EU fixed

0
.2

.4
.6

.8
1

20 30 40 50 60 70

age

var(P), only EO fixed

0
.2

.4
.6

.8
1

20 30 40 50 60 70

age

var(P), only UE fixed

0
.2

.4
.6

.8
1

20 30 40 50 60 70

age

var(P), only UO fixed

0
.2

.4
.6

.8
1

20 30 40 50 60 70

age

var(P), only OE fixed

0
.2

.4
.6

.8
1

20 30 40 50 60 70

age

var(P), only OU fixed

male female

Note: Life-cycle profiles conditional on time, cohort and state estimated via Seemingly Unrelated Regressions (SUR). Figures
show the percentage of var(U) explained by fixing one flow at a time, based on 10,000 simulations.
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Figure 31: Alternative Decomposition of life-cycle Unemployment rates, males
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Note: Life-cycle profiles conditional on time, cohort and state estimated via Seemingly Unrelated Regressions (SUR).

Figure 32: Alternative Decomposition of life-cycle Unemployment rates, females

0
.0

5
.1

.1
5

.2
.2

5

P
ro

b
   

20 30 40 50 60 70

age

actual AB2C, EU,UE at mean

1−R2=.03

0
.0

5
.1

.1
5

.2
.2

5

P
ro

b
   

20 30 40 50 60 70

age

actual AB2C, EU,UE at zero

1−R2=.05

0
.0

5
.1

.1
5

.2
.2

5

P
ro

b
   

20 30 40 50 60 70

age

actual AB2F a tmean but EU,UE

R2=.798

0
.0

5
.1

.1
5

.2
.2

5

P
ro

b
   

20 30 40 50 60 70

age

actual AB2F at zero but EU,UE

R2=.937

Note: Life-cycle profiles conditional on time, cohort and state estimated via Seemingly Unrelated Regressions (SUR).
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Figure 33: Ignoring inactivity: unemployment variance decomposition by age group
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Note: Life-cycle profiles conditional on time, cohort and state estimated via Seemingly Unrelated Regressions (SUR). Each
figure reports var(U) changes, based on 10000 simulations.
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