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Highlights 

 4 cyanobacteria species were isolated from wastewater  

 High concentrations of N and P enhanced the cyanobacteria dominance 

 N limitation reduced the %N/VSS which may indicate inhibition of protein 

synthesis. 

 Feast and famine allowed to transform glycogen into PHB in Synechocystis sp.  

 High concentrations of C boosted both PHB and glycogen accumulation.  
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Abstract 

Accumulation of non-degradable plastics in the environment has become a 

problem of worldwide concern. In this context, polyhydroxybutirates (PHB) have arisen 

as a promising alternative as they have similar characteristics to ordinary plastics but 

these polymers can be biodegraded. PHB production by cyanobacteria has the potential 

to reduce the production costs of these bioplastics whereas a carbon neutral production 

process is achieved. However, new approaches enhancing the accumulation yields 

should be investigated to attain a competitive production process. The main objectives 

of this work were 1) to isolate different cyanobacterial species growing in different 

photobioreactors fed with wastewater and 2) to study the PHB accumulation in the 

isolated species using a three-stage feeding strategy (growth phase, feast-famine phase 

and feast phase). Synechocystis sp, Synechococcus sp, Leptolyngbya sp, and Microcoleus 

sp, were isolated from samples taken from wastewater treatment photobioreactors, 

which demonstrates the high competitivity of these species in this media. During the 

feast and famine phase, a reduction in the glycogen content was observed in 

Synechocystis sp and an increase in Synechococcus sp and mixed culture reactors, 

whereas PHB continued increasing. During the feast phase, a clear increase in both 

glycogen and PHB was observed in all the reactors, reaching a maximum of 5.04% dcw 

in Synechocystis sp. These results demonstrate that the interchange of the various 

carbon accumulation forms can be controlled by the carbon content and feeding 

strategy followed 
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INTRODUCTION 

During the last 50 years, plastics production has increased twenty fold (322 

million tonnes in 2015) and is expected to keep growing, doubling the current 

production [1]. The use of plastics has become essential in several sectors, such as 

automobiles, home appliances, computer equipment, packaging, medical applications 

etc [2]. Polypropylene and Polyethylene are the two polymers most frequently used [3]. 

Approximately the 60% of the ever-produced plastics worldwide (4900 · 106 tonnes) is 

discarded to landfill or natural ecosystems. For instance, about 5-13· 106 tonnes of 

plastics (1.5-4% of the annual production) end up in the oceans every year, where they 

are transported by marine currents around the world. It is estimated that 500,000 

tonnes of plastics are already accumulated in the oceans [1]. Considering that these 

compounds are barely degraded, environmental issues and serious pollution problems 

are arising: Some examples of the current problems are serious injuries, drowning, 

choking or the lack of appetite caused by entanglement or ingestion of plastics by 

marine and terrestrial animals [4] or the presence of micro and nanoplastics in the 

environment that can be ingested by the lower trophic levels or they can even penetrate 

the cell membrane inducing toxic effects [5]. In consequence, there is a growing interest 

in finding sustainable alternatives to mitigate the environmental problems 

aforementioned, such as the use of alternative materials like biodegradable plastics. 

Since Lemoigne isolated Polyhydroxybutyrate (PHB) from Bacillus megaterium in the 

1920s [2], this biopolymer has gained interest as a solid alternative to conventional 

plastics. PHBs are bioplastics that can be biodegraded and mineralized by 

microorganisms and they have similar characteristics to ordinary plastics (such as 

polypropylene), including an equal response to extrusion, injection moulding, or fibre 



5 
 

spinning [6–10].  Metabolix was the first company to commercialize PHB in 2004. Since 

then, the PHB market has progressively grown and many other manufacturers have 

arisen.  However, its price is still far from being competitive with conventional plastics 

(PHA is 18-fold costlier than polypropylene) [8]. 

PHBs can be produced by more than 300 different species of prokaryotes as an energy 

and carbon storage polymers [11,12], such as heterotrophic bacteria, like Cupriavidus 

necator or several species of Pseudomonas, autotrophic bacteria such as cyanobacteria 

or purple bacteria and many species of Archaea. The production of PHB by eukaryotic 

organisms, such as plants or algae, requires a previous genetic transfer of the 

corresponding genes [10]. Currently, the already established biotechnological processes 

uses heterotrophic biomass to produce PHB, as the cultivation of this biomass in big 

amounts is easier and the PHB production is much more efficient [6,10,13,14]. However, 

heterotrophic bacteria typically requires large amounts of organic carbon from vegetal 

origins, such as beet, cane molasses, corn or starch [6,12,15], which leads to competition 

for arable land used to produce crops for human consumption [11,16,17]. The use of 

these carbon sources together with the oxygenation requirements of heterotrophic 

bacteria accounts for approximately the 30-50% of the PHB biosynthesis costs, being 

one of the main bottleneck in industrial production of bioplastics [6,13,16]. 

Cyanobacteria have become a promising alternative to heterotrophic bacteria as they 

are able to produce PHB by oxygenic photosynthesis, meaning that they can use sunlight 

and recycle CO2 from industrial effluents to produce bioplastics. Hence, the production 

costs, in terms of growth media, decreases substantially whereas a carbon neutral 

production process is achieved. Furthermore, they avoid the ethical conflicts of using 

arable areas to produce non-edible products, as they can be cultivated in many non-
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agricultural places such as in building roofs or desertic regions [10,13,16,17]. However, 

the PHB production by cyanobacteria face some challenges: 

• They need long time periods to grow and accumulate PHB 

• The harvesting of the biomass could be complicated, what could mean up to a 

30% of the biomass production costs. 

• PHB productivity by direct photosynthesis is significantly lower than that of 

heterotrophic bacteria, almost always below 10% DCW [10,13,17].  

Therefore, cyanobacterial biosynthesis of PHB needs to be optimized and new 

approaches focusing on enhancing the accumulation yields and the minimization of the 

production costs, should be investigated to attain a cost-effective production process. 

One alternative to produce cyanobacterial biomass in a cost-effective and eco-friendly 

manner is to use wastewater effluents as a nutrient source [18]. Acién et al., concluded 

that using wastewater as a nutrient feedstock could reduce the production costs of 

microalgae biomass from 3€/kg to 1.8€/kg [18]. This cost reduction is related with the 

lack of sterilization of substrates or reactors, the use of cheaper equipment and the 

exploitation of low cost nutrient sources when using wastewater instead of pure 

cultures [19,20]. However, although wastewater is a promising alternative to grow 

cyanobacterial biomass it still has to overcome different problems. Mixed wastewater-

borne cultures are composed by different species of cyanobacteria, each one with 

different PHB accumulation rates, other bacteria that also can accumulate PHB and 

eukaryotic microorganisms, such as green algae, diatoms, protozoa, yeasts, etc. that are 

unable to accumulate PHB [19]. The presence of non-PHB accumulating microorganisms 

and microorganisms with low accumulating rates causes an important reduction of the 
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dry cell weight accumulation percentages in comparison with those reported for pure 

culture and synthetic substrates (Table 1). 

Table 1. PHB Production in non-engineered cyanobacteria under photosynthetic metabolism 

Type of culture Limitation Medium Photoperiod 
light:dark (h) 

Incubation 
period 
(days) 

Maximium 
PHB (% dcw) Reference 

Cyanobacterial dominated 
mixed culture N BG-11 12:12 8 6.5 [21] 

Cyanobacterial dominated 
mixed culture N Specified in the 

reference 24:24 2 3.8 [19] 

A mixed culture of green 
algae, cyanobacteria, 
bacteria and protozoa 

No limitation 
Digestate and 
wastewater 

secondary effluent 
12:12 35 < 0.5 [22] 

Synechocystis sp. PCC 6714 N,P BG-11 (x2 P) 24:0 16 23 [23] 

Nostoc muscorum P ES 16:8 8 21.5 [24] 

Synechococcus sp. MA19 P BG-11 24:0 10.8 55 [25] 

Spirulina subsalsa 
N 

(increased NaCl) 
ASNII 14:10 15 14.7 [26] 

 

It is well known that a lack of nitrogen (N) and phosphorus (P) in the growth media 

together with an imbalance in the C:N ratio enhances the PHB and glycogen 

accumulation [8,13,19,21]. Another strategy to enhance the carbon uptake efficiencies 

is to add the carbon in a feast and famine regime. This strategy consist in repeatedly 

alternate the full availability (feast phase) with the complete absence (famine phase) of 

carbon [19,27]. The feast and famine regime has been widely applied in the production 

of PHB by mixed bacterial cultures, as it causes a selective pressure over the PHB storing 

microbial population [27]. Furthermore, this regime not only select PHB storage 

microorganisms, but it also generates an unbalanced growth, that stimulates the 

polymer storage (which can be used as a carbon source when this nutrient is exhausted). 

On the contrary when the substrate is present in the media for a long time, bacteria 
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adapt their metabolism and growth become more important than storage [28]. Arias et 

al. applied this strategy in a cyanobacterial dominated wastewater-borne culture for the 

first time, using bicarbonate as inorganic carbon source. The authors observed that with 

transient carbon regimes the carbon uptake efficiency improved, and thus, if a 

subsequent accumulation process (feast phase) was performed a higher polymer 

content could be obtained [19].  

Based on this previous work, the first objective of the present work is to isolate different 

cyanobacterial species growing in systems fed with wastewater, which are expected to 

be the best adapted and most competitive in that environment. The second objective is, 

to study each of the isolated species separately using defined and sterilized culture 

mediums in order to select the one that accumulates more PHB. A three stages strategy 

will be applied: a first stage in which all the nutrients necessary for cells growth will be 

added; a second stage that will start when C, N, P are depleted. A feast-famine strategy 

will be used in this phase, aiming to improve the C uptake efficiency of the species; and 

eventually, a third stage in which inorganic C (IC) will be continuously supplied in order 

to boost the PHB accumulation. The present work aims to increase the limited 

knowledge about PHB accumulation in cyanobacterial growing in wastewater. 
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MATERIALS AND METHODS. 

Chemicals and reagents 

K2HPO4, NaNO3, NaHCO3, CaCl2·2H2O, NaOH, Na2EDTA, NaHCO3 and the reagents 

needed for NO3-, NO2-, NH3 and P analysis were obtained from Panreac (Barcelona, 

Spain). MgSO4·7H2O, C6H8FeNO7(ammonium ferric citrate), C6H8O7 (citric acid), HCl, 

chloroform (CHCl3) and D-glucose were purchased from Scharlau (Barcelona,Spain). 

Prepared BG-11 broth, CH3OH, H2SO4, C17H36 (heptadecane) and PHB-PHV (86:14% wt, 

CAS 80181-31-3) copolymer standard were purchased from Sigma-Aldrich (St. Louis, US). 

Description of the sampling site. 

Microalgae samples were taken from two different photobioreactors (PBRs), 

where a mixed consortium of cyanobacteria and microalgae were cultivated using water 

from the sewage treatment as feedstock. Both photobioreactors were chosen because 

the species present there, were able to grow and eliminate nutrients from wastewater. 

The first sampling site was a full-scale tubular horizontal semi-closed photobioreactor 

located at the UPC experimental area, in Viladecans (41.288 N, and 2.043 E UTM). This 

PBR had a total useful volume of 11.7 m3 and was fed daily with 2.3 m3 of a mix of water 

from a drainage channel (agricultural run-off of the different fields in the area and the 

discharge of the Gavà-Viladecans WWTP) and treated domestic water from an aerated 

septic tank (ratio 6:1). More information about the operation and design of this PBR can 

be found in [29,30]. 

The second sampling site was a 30L closed photobioreactor. Inoculated with Nostoc sp. 

(soil origin) and daily fed on a semi-continuous mode with 3L of digestate diluted in 
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secondary effluent from high-rate algal pond in a ratio 1:50 as described previously by 

Arias et al. [31].  

Media and culture conditions. 

Three different BG11 concentrations (BG11-1, BG11-2, and BG11-3) were used 

to evaluate the effect of nutrient concentration in the isolation. BG11-1 growth medium 

consists of: 1500 mg·L-1 NaNO3, 31.4 mg·L-1 K2HPO4, 36 mg·L-1 MgSO4, 36.7 mg·L-1 

CaCl2·2H2O, 20 mg·L-1 Na2CO3, 1 mg·L-1 NaMgEDTA, 5.6 mg·L-1 citric acid, 6 mg·L-1 Ferric 

ammonium citrate and 120 mg·L-1 NaHCO3. BG11-2 and BG11-3 are a 1:2.5 dilution and 

a 1:5 dilution of BG11-1 respectively.  

The plates were prepared with 1% bacteriological agar supplemented with the 

corresponding BG11 medium. The BG11 medium and the Bacteriological agar should be 

autoclaved separately (at double strength) and mixed when cooled at 50ºC, to avoid the 

formation of toxic decomposition products [32]. The inoculated plates were incubated 

at 30 ± 2 ºC under 15 hours light: 9 hours dark cycles and were illuminated with a 14W 

cool-white LED. Two illuminances of 1 or 0.1 klx were tried.  

Isolation and purification. 

After sample collection, different plating methods were applied to isolate axenic 

cultures. The isolation strategy consisted of three basic steps: 

1. Disaggregation of the biomass flocs: It was used to destroy the flocs and facilitate 

the manipulation of the microalgae samples. Two disaggregation techniques were 

evaluated: 
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•  Sonication of the biomass samples in an ultrasonic bath at 360 W during 

45s and vortexing the sample 10s after that. This cycle was repeated nine 

times as described by Abzazou et al. [33].  

• Homogenization of the sample with a Polytron™ PT 2500E (Polytron, 

Montreal, Canada) at 10000 rpm during 1min. 

Both techniques are useful for disaggregating the samples. The first one was milder, 

even so it was able to break the flocs. The second one was much faster and no loss of 

cells viability was observed in this case. However, the second technique could be 

harmful for cells with low resistance to shear stresses.  

2. Application of the plating method: streak plating and spread plating were used 

to get rid of the unwanted microorganisms (e.g. microalgae, bacteria, fungus). 

Streak plate isolation consisted in streaking the sample across the agar surface 

using a bacterial loop. As the distance from the origin increases single cell 

colonies are formed. In the spread plate method, 100 µL of sample were added 

with a micropipette and dispersed over the surface with a sterile cell spreader 

[34]. In this method three sample dilution were done to the sample to ensure 

that single colonies were formed. This way, the first sample was the undiluted 

sample (C1), the second dilution (C2) was a 1 to 100 dilution and the third (C3) a 

1 to 104 dilution.  

In both methods three different concentrations of the culture media were used 

in order to see the effect of nutrients concentration in the isolation (see Media 

and culture conditions section). After plating, the agar plates were incubated 

until single colonies were observed (approximately 2 weeks). 
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3. Isolation from the agar plate and Re-plating: once single colonies were formed, 

they were isolated from the agar plate using a platinum bacterial loop If a single 

cyanobacterial specie from a colony was observed in the bright light microscope, 

an equal colony was placed in to 2mL of liquid BG11 medium. On the other hand, 

if more than one cyanobacterial genus was identified or the presence of green 

algae or other microorganisms were identified in a colony, this colony was re-

plated in another agar plate with the same medium concentration as the initial 

plate. This process was repeated as many times as needed to obtain an axenic 

culture.  

Once axenic plates have been obtained, it is necessary to preserve them in order to pick 

up single colonies of a defined specie whenever it is necessary. To do that, an axenic 

colony is spread over a 1% bacteriological agar plate supplemented with BG11 medium 

and incubated at 30 ± 2 ºC and 1 klx for proper growth. When new colonies are formed, 

the plate is stored at 4ºC for 1 month. This process should be done periodically to 

maintain the isolated species.  

Identification of cyanobacteria 

The isolated cyanobacteria were observed by both a bright light microscope 

(Motic, China) equipped with a camera (Fi2, Nikon, Japan) and a fluorescence 

microscope (Eclipse E200, Nikon, Japan) connected to a computer (software NIS-

Element viewer®). Cyanobacteria were identified and classified following the 

morphological descriptions of a cyanobacteria database [35] and a reference taxonomic 

book [36]. The morphological characteristics include cell size and shape, trichomes, 

thickness, formation of colonies, amongst others.  
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Upscaling: from plate to a laboratory scale photobioreactor.  

As mentioned previously, once cyanobacteria were isolated in plate, they were 

transferred to liquid BG-11. To do that, few colonies are picked up with a platinum loop 

and transferred to 2 mL sterile BG-11 medium contained in a 15mL test tube. When the 

color of the culture changed to a blue-green color, the biomass was transferred to a 

larger volume of medium. From 2mL to 10mL, from 10 to 50mL, from 50 to 250mL and 

from 250 to 1000mL. Eventually, the 1000 mL was the inoculum for the 2,5L lab scale 

photobioreactors. A small scale-up ratio of 1:5 is needed to achieve proper 

cyanobacterial growth. Test tubes were used for volumes from 2 to 10mL. These cultures 

were kept at 30 ± 2 ºC under 1 klx illumination and are shaken manually once a day. 

Erlenmeyer flasks were used for volumes from 50 mL to 1000 mL. These cultures were 

continuously agitated either by means of sterile air bubbling or by magnetic agitation, 

and were kept under 2.1 klx illumination at 30 ± 2 ºC. From 250 mL onwards, aeration 

with compressed air was needed to keep the pH in a proper level (pH 7-10).  It took 

about 15 days to scale up from one volume to another.  

Photobioreactors experimental set up 

Three different types of culture were tested for PHB and glycogen accumulation, 

two from the isolated species (Synechocystis sp. and Synechococcus sp.) and one mixed 

culture obtained from the first sampling site. Each reactor was inoculated with 0,5 L of 

the pure culture of the studied strain. In the case of the mix culture 2.5 L obtained from 

the first sampling site were directly added to the reactor. Two replicates were done for 

each of the isolates.  

 Three different phases were applied to each of the replicates in order to stimulate the 

PHB and glycogen accumulation: 
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1. Growing phase: N, P and C were added in the BG-11 medium in a concentration 

that cells could consume when biomass reached a concentration of 1 g· L-1 VSS 

(no extra media was added to the mix culture). N, P and C were periodically 

controlled; if N was depleted before the other nutrients, a small amount of N-

NaNO3 (4.6 g N-NaNO3 ·L-1) was added to provide the necessary amount of N for 

cell growth until the other nutrients were completely consumed. Only extra N 

was supplied, since C was already supplied as CO2 by the pH controller and 

cyanobacteria can resist long periods of time without P [37].  

2. Feast-Famine phase: the aim of this phase is to improve C uptake efficiency of 

the studied cyanobacteria. It started when N, P and C from the previous phase 

were depleted and it lasted 1 week. During this phase C was available during 6 h 

per day (feast) and non-available during the rest of the day (famine). In the case 

of the experiment with Synechocystis sp., C was added as CO2 during 3h by the 

pH controller, and it was expected to be consumed after 3h, so after 6h no more 

C would be available. Due to the difficulty of controlling the C addition by CO2 

injection, bicarbonate was used for the feast and famine phase in the 

Synechococcus sp. and mixed culture reactors. In both cases about 5 mg L-1 of 

bicarbonate were supplied at the beginning of the feast and famine phase. This 

amount of bicarbonate was expected to be consumed after 6h before the famine 

stage started.  

3. Feast phase: approximately 120 mg· L-1 of bicarbonate were added to each 

culture at the beginning of the feast phase whereas CO2 was also injected to 

control the pH. The continuous presence of C was expected to boost the PHB and 

glycogen accumulation.  
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The PHB and glycogen accumulation experiments were carried out in closed cylindrical 

PBR made of polymethacrylate with a diameter of 11 cm and a total volume of 3L (see 

Figure 1). Two replicates were performed for each of the previously isolated species, 

Synechocystis sp. (PBR1-S), Synechococcus sp. (PBR-SC) and a unique replicate for the 

Mixed culture (PBR-M), which was filled with mixed liquor from the hybrid PBR of the 

first sampling site. All the reactors were continuously agitated with a magnetic stirrer 

(VELP scientifica, Usmate, Italy) at a speed high enough to ensures complete mixing. 

Reactors were submitted to 15:9 h light:dark phases and were illuminated by two 

external 14W cool-white LED providing a medium illuminance of 2.1 klx. Temperature 

was regularly measured and maintained at 30 (±2) ºC. The pH was continuously 

measured by a pH probe (HI1001, HANNA, USA). A set point of 7.5 was used when CO2 

was injected to control the pH while a set point of 9 was set when HCl was used in order 

to prevent a massive injection of acid and the degradation of the alkalinity. Both pH 

values were selected taking into account the pH at which microalgae thrive (between 

6.5-10) [38]. The pH was controlled by an automatic pH controller (HI 8711, HANNA, 

USA) adding CO2 during the growing and the feast phases and HCl 0.5M during feast-

famine phase (except for the Synechocystis sp. experiment where CO2 was used as 

inorganic carbon source instead of bicarbonate).  
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Figure 1. Scheme of the photobioreactors (PBR) set up: a) body of the photobioreactor, b) Magnetic stirrer, c) pH 
probe, d) cool-white LED laps, e) pH controller, f) sample extraction system, g) HCl automatic addition system, h) CO2 
automatic injection system, i) NaHCO3 automatic addition system.  

 

Analytical methods 

Physicochemical properties 

The cultures were periodically analyzed to evaluate the nutrients uptake and the 

growth rate of the different species. Dissolved and total inorganic carbon (DIC and TIC) 

as well as the total dissolved carbon (TDC) and the total carbon (TC) were measured at 

the beginning of the experiment and after each of the three experimental phases 

(growing phase, feast-famine phase and feast phase). The other C forms can be 

calculated as follows:  

- Total organic carbon (TOC) = TC-TIC 

- Dissolved organic carbon (DOC) = TDC - DIC 

- Particulate organic carbon (POC) = TOC-DOC   

- Particulate inorganic carbon (PIC) = TIC-DIC 
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DIC or TIC (in case PIC was present in an important amount) were measured once a week 

during the whole experiment. 

Total nitrogen (TN), total dissolved nitrogen (TDN), nitrite (N-NO2), nitrate (N-NO3) and 

ammonia (N-NH3) were measured similarly. The other N forms can be calculated as: 

- Dissolved organic nitrogen (DON) = TDN - N-NO2 - N-NO3 - N-NH3 

- Particulate nitrogen (PN) = TN – DON - N-NO2 - N-NO3 - N-NH3 

 Nitrate, which is the most important form of inorganic nitrogen in the medium, was 

measured twice per week during the growing phase to control the N uptake.  

Total phosphorus (TP), total dissolved phosphorus (TDP) and orthophosphate (P-PO4) 

were also measured at the beginning of the experiment and after each of the three 

phases. Dissolved organic phosphorus and particulate phosphorus were calculated as:   

-  Dissolved organic phosphorus (DOP) = TDT - P-PO4 

- Particulate phosphorus (PP) = TDP – DOP - P-PO4 

Orthophosphates were measured twice per week to follow the P uptake.  

TC, TDC, TIC, DIC, and TN concentrations were analyzed using a C/N analyzer (21005, 

Analytikjena, Germany). N-NO2 and N-NO3 were measured by the colorimetric methods 

described in Standard Methods (methodologies 4500-NO2- and 4500-NO3–, respectively)  

[39]. P-PO4, TP and TDP were analyzed following the methodologies 4500-P E and 4500-

P described in Standard Methods [39]. All the dissolved forms were previously filtered 

through 1-3 µm pore glass microfiber filter.  
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Total suspended solids (TSS) and volatile suspended solids (VSS) were measured 2 days 

per week following the gravimetric method 2540C and 2540 D described in Standard 

Methods [39].  

PHB and carbohydrates analysis 

PHB and carbohydrates were measured after each of the experimental phases. 

Samples were taken at the beginning of the 15h light cycle and before C addition. 50 mL 

of mixed liquor were collected and centrifugated (4200 rpm, 10 min), frozen at −80 °C 

overnight in an ultra-freezer (Arctiko, Denmark) and finally freeze-dried for 24 h in a 

lyophilizer (−110 °C, 0.049 hPa) (Scanvac, Denmark). 

PHB extraction and analysis were adapted from the methodology described by Lanham 

et al. [40]. Briefly, 1 mL of MeOH acidified with H2SO4 (20% v/v) and 1mL of CHCl3 

containing benzoic acid as internal standard were added to between 2-3 mg of 

lyophilized biomass and then the tubes were incubated in a dry-heat thermo-block 

(Selecta, Spain) during 5 h at 100ºC. Then, the tubes were rapidly cooled on ice for 30 

min, and 0.5 mL of deionized water were added to the tubes and they were vortexed 

during 1 minute to separate the different solvents by density (MeOH and water in the 

upper phase and CHCl3 in the lower phase). CHCl3 was removed with a Pasteur pipette 

and placed into a gas chromatography (GC) vial with molecular sieves to remove the 

water that could remain in the sample. The co-polymer of PHB-PHV was used as a 

standard for hydroxybutyrate (HB) and hydroxyvalerate (HV). A calibration curve with 

six points was prepared and processed in the same way as the samples. PHB was 

determined by means of GC (7820A, Agilent Technologies, USA). 
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Carbohydrates extraction was done following the methodology described by Lanham et 

al. [41] and the glycogen concentration was measured using the phenol-sulfuric acid 

method described by Dubois et al. [42]. Briefly, 2 mL of 1N HCl was added to 2 mg of 

lyophilized biomass, and then the tubes were incubated in a dry-heat thermo-block 

(Selecta, Spain) at 100ºC during 2h. Samples were left to cool down to room 

temperature (approximately 15 min) and then 0.5 mL of 5%w/v phenol solution and 2.5 

mL of H2SO4 were added to the tubes. They were vortexed and 10 min after they were 

placed in a bath at 35ºC for 15min. Eventually the absorbance at 492 nm was measured 

by means of a spectrophotometer (Spectronic Genesys 8, Spectronic instrument, UK). 

Calculations 

The growth rate was calculated by the following general formula: 

𝜇𝜇𝑋𝑋(𝑑𝑑−1) = ln(𝑋𝑋 )𝑡𝑡2−ln(𝑋𝑋)𝑡𝑡1
𝑡𝑡2−𝑡𝑡1

   (1) 

Where ln(X)t2 and ln(X)t1 are the natural logarithm of the biomass concentration given in mg 

VSS·L-1 at the end of the growing phase (t2) and at the beginning of the growing phase (t1) 

respectively. The term t2-t1 is the period of time (in days) in which the formation of biomass 

takes place (growth phase).  

The doubling time was calculated as follows: 

𝑡𝑡2 (𝑑𝑑) =  ln(2)
𝜇𝜇𝑋𝑋 (𝑑𝑑−1) 

           (2) 

The biomass to nutrients yield were calculated for the growing phase as follows: 

𝑌𝑌𝑋𝑋/𝑁𝑁−𝑁𝑁𝑁𝑁3,𝑃𝑃−𝑃𝑃𝑃𝑃4 = 𝑉𝑉𝑉𝑉𝑉𝑉 (𝑚𝑚𝑚𝑚·𝐿𝐿−1)𝑡𝑡2−𝑉𝑉𝑉𝑉𝑉𝑉 (𝑚𝑚𝑚𝑚·𝐿𝐿−1)𝑡𝑡1
𝑁𝑁,𝑃𝑃 (𝑚𝑚𝑚𝑚·𝐿𝐿−1)𝑡𝑡1−𝑁𝑁,𝑃𝑃 (𝑚𝑚𝑚𝑚·𝐿𝐿−1)𝑡𝑡2

   (3) 

Where VSS (mg·L-1)t2 and VSS (mg·L-1)t1 are the biomass concentration expressed as m VSSg·L-1 at 

the end of the studied period (t2) and at the beginning of the period (t1).  
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N, P (mg·L-1)t2 and N, P (mg·L-1)t1 are the nutrient concentration (N-NO3, P-PO4) at the end and 

the beginning of the period.  

The specific consumption rate was calculated as follows: 

𝑞𝑞𝑋𝑋/𝑁𝑁−𝑁𝑁𝑁𝑁3,𝑃𝑃−𝑃𝑃𝑃𝑃4 (𝑚𝑚𝑚𝑚 𝑁𝑁,𝑃𝑃 ·𝑚𝑚𝑚𝑚 𝑉𝑉𝑉𝑉𝑉𝑉−1·𝑑𝑑−1) =  𝜇𝜇𝑋𝑋 (𝑑𝑑−1)
𝑌𝑌𝑋𝑋/𝑁𝑁−𝑁𝑁𝑁𝑁3,𝑃𝑃−𝑃𝑃𝑃𝑃4,

     (4) 

The glycogen and PHB content were calculated as follows: 

%𝐷𝐷𝐷𝐷𝐷𝐷𝐺𝐺𝐺𝐺𝐺𝐺,𝑃𝑃𝑃𝑃𝑃𝑃  =  𝑚𝑚𝑚𝑚 (𝑔𝑔𝑔𝑔𝑔𝑔,𝑃𝑃𝑃𝑃𝑃𝑃)
𝑚𝑚𝑚𝑚 (𝐷𝐷𝐷𝐷𝐷𝐷)

· 100                      (5) 

The average volumetric and specific production rate of glycogen and PHB in each of the three 

phases (growth, feast and famine and feast phases) was calculated as follows: 

𝑟̅𝑟 𝑃𝑃𝑃𝑃𝑃𝑃,𝑔𝑔𝑔𝑔𝑔𝑔(𝑚𝑚𝑚𝑚 · 𝐿𝐿−1 · 𝑑𝑑−1) =  
𝑃𝑃𝑃𝑃𝑃𝑃,𝑔𝑔𝑔𝑔𝑔𝑔𝑒𝑒𝑒𝑒𝑒𝑒 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎(𝑚𝑚𝑚𝑚·𝐿𝐿−1)−𝑃𝑃𝑃𝑃𝑃𝑃,𝑔𝑔𝑔𝑔𝑔𝑔𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎(𝑚𝑚𝑚𝑚·𝐿𝐿−1)

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎 (𝑑𝑑)
   (6) 

𝑞𝑞� 𝑃𝑃𝑃𝑃𝑃𝑃,𝑔𝑔𝑔𝑔𝑔𝑔 (𝑚𝑚𝑚𝑚·𝑚𝑚𝑚𝑚 𝑉𝑉𝑉𝑉𝑉𝑉−1·𝑑𝑑−1) =  𝑟̅𝑟 𝑃𝑃𝑃𝑃𝑃𝑃,𝑔𝑔𝑔𝑔𝑔𝑔 (𝑚𝑚𝑚𝑚·𝐿𝐿−1·𝑑𝑑−1)

𝑋𝑋�𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎 (𝑚𝑚𝑚𝑚 𝑉𝑉𝑉𝑉𝑉𝑉·𝐿𝐿−1)
         (7) 

where r  ̅ is the average volumetric production rate in the specific phase and 𝑋𝑋� is the 

average biomass concentration during the phase. 

 

 RESULTS AND DISCUSSION 

Isolation and purification 

Four different species were isolated, two of them from the 30L vertical column 

photobiorrector sample and the other two from the HTH-PBR sample. As it can be 

observed in Fig. 1A, the sample taken from the 30L vertical PBR was mainly dominated 

by Nostoc sp. and Microcoleus sp., but also there is a high presence of green algae as 

Chlorella sp. From this initial sample Microcoleus sp. and Synechocystis sp. could be 
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isolated (Fig. 1B,C). Microcoleus sp. can be morphologically distinguished by its densely 

packed and parallely arrenged trichomes of about 5 µm width (Fig. 1 B1, B2) [35]. 

Synechocystis sp. can be recognized by its spherical-oval shape of around 3-4 µm. They 

are usually found in pairs or single cells, but never forming colonies (Fig. 1 C1, C2) [35]. 

As it can be observed in Fig. 1 B3 Microcoleus sp. form long and eye visible filaments 

that ends covering all the plate surface. On the contrary, Synechocystis sp. form 

punctiform colonies (Fig 1C3). 

Although the initial culture was dominated by Nostoc sp. it was not possible to isolate 

them. Nostoc sp. belongs to the Nostocales order, constituted by filamentous 

cyanobacteria with specialized cells known as the heterocytes (cells specialized in fixing 

atmospheric nitrogen) [43]. Different authors have found that N2-fixing cyanobacteria 

are able to displace non-N2-fixing cyanobacteria only when low N:P ratios and low TN 

concentrations are present [44], [45], [46]. Komárek et al. found out that a N:P ratio of 

11.5 and TN concentration ranging between 0.2-1.3 mg N · L-1 could lead to  N2-fixing 

cyanobacterial bloom [43]. The N:P ratio of the BG-11 medium was 40 and the nitrogen 

was over 50 mg L-1 in all the medium dilutions. Meaning that, BG-11 media is not 

appropriate to isolate N2-fixing cyanobacteria such as Nostoc sp. Instead, a modified BG-

11 without NaNO3 should be used if the isolation of this species is required. In this work, 

no modifications of the BG-11 medium were done, as the isolation of species favoured 

in nitrogen rich waters is required, as the long-term purpose of this study is to use 

wastewater, which is usually rich in nitrogen, as a feedstock for cyanobacteria 

cultivation and biopolymers accumulation. Synechocystis sp., on the other hand, could 

be isolated although its presence was really low in the initial sample. Falkowski et al. 

suggested that when nutrient concentration and mixing are low the smallest cells are 
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the most probably selected, as they have the highest surface area to volume ratio, which 

favours the nutrients diffusion from the bulk to the cell membrane [47]. Since there is 

no mixing when isolating cyanobacteria in agar plates, the smaller cells, such as 

Synechocystis sp. are the ones that develop the most.  

Regarding the initial sample from hybrid PBR (first sampling site) (Fig. 2A), the mixed 

culture was dominated by cyanobacteria mainly belonging to the Synechococcus sp. and 

Leptolyngbia sp. However, there is also a big presence of green algae such as Chlorella 

sp. and Ulotrhix sp. Two different species were finally isolated from that sample, 

Synechococcus sp. and Leptolyngbia sp. Synechococcus sp. can be morphologically 

distinguished by its small (about 0.5 µm of diameter) long-oval cells grouped in 2 to 4 

cells chains [35]. They form punctiform colonies (Fig. 2B). Leptolyngbia sp. are waved 

filaments composed of shortly cylindrical cells. They form filamentous colonies (Fig. 2C).  

Figure 2. Microscope images of the initial sample and the strains isolated from the 30L vertical column 
photobioreactor A) Initial sample observed in bright light microscopy. B) Isolated Microcoleus sp. C) Isolated 
Synechocystis sp. B1 and C1 are observed at bright light microscopy (x1000) and B2 and C2 in fluorescence microscopy 
(x1000) and B3, C3 are images of colonies observed under the stereo microscope (x40). 
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Figure 3. Microscope images of the initial sample and the isolated strains from the HTH-PBR A) Initial sample observed 
in bright light microscopy and in fluorescence microscopy. B) Isolated Synechococcus sp. C) Isolated Leptolyngbia sp. 
B1, C1 are observed at bright light microscopy (x1000), B2, C2 fluorescence microscopy (x1000) and B3, C3 are images 
of colonies observed under the stereo microscope (x40). 

 

A total of 36 assays were evaluated during the isolation process: two different plating 

techniques, and for each of them, two different illumination conditions, 3 

concentrations of the medium and 3 dilutions of the initial sample. Both isolation 

techniques were useful to isolate any of the species. However, spread plating needed a 

dilution of the initial sample of at least 1:100 to obtain isolated colonies, whereas a 

dilution higher than 1:104 is too big when using streak plating, and no colony formation 

were observed in that case.   

Illuminances of 100 lux and 1000 lux were tried. No colonies were formed when 

culturing the plates at 100 lux, whereas 1000 lux seemed to enhance the cyanobacterial 

growth. It was also observed that colonies were formed after moving the plates placed 

at 100 lux to 1000 lux after 15 days under low illumination, which demonstrates that 

there is a minimum illumination for the cyanobacteria to start growing and that higher 
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illumination enhanced the colonies formation. Conversely, Rippka, suggested that light 

should be kept low (200-500 lux) if isolation is done without air enriched with CO2[48]. 

Therefore, a deeper study in illumination should be done if the optimal illumination 

must be found for each of the different species. 

Regarding the different BG-11 medium concentrations tested, it was observed that 

higher concentration of nutrients (247 mg N-NO3-·L-1 and 5.6 mg P-PO43-·L-1)  enhanced 

the cyanobacteria dominance over green algae. Ferragut et al. found that nitrogen 

addition and P limitation (N:P ratio > 16) promoted the cyanobacteria dominance [49]. 

These authors attributed this dominance to the capacity of cyanobacteria to accumulate 

P internally. This was also observed in a recent study by Arias et al [31], in which a N:P 

ratio leading to P limitation stimulated the cyanobacterial growth. Bista et al. observed 

that an increase in N and temperature favoured the cyanobacteria dominance over 

green algae and diatoms [50]. In opposition to these studies, Ma et al. found that 

chlorophytes grew more rapidly than cyanobacteria when N and P were in high 

concentrations [51]. These authors attribute the dominance of chlorophytes to their 

smaller cell size. Larger species have a large storage capacity, but their growth is slower, 

whereas smaller cells are capable to quickly take up the nutrients and displace the bigger 

species. Loza et al. demonstrated that cyanobacteria preferences for different nutrient 

condition (low nutrients, eutrophic and hypertrophic conditions) is species dependant 

rather than something general from the entire phylum [52]. For instance, non-

heterocystous cyanobacteria like Leptolyngbya boryana are favoured with increasing 

ammonium or NO3- levels, whereas N scarcity facilitates the development of 

heterocystous cyanobacteria [52].  
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PHB and glycogen accumulation experiments 

Growth rate 

Two of the four isolated species were evaluated for PHB and glycogen 

accumulation and were compared with a mixed culture from the photobioreactor in 

Viladecans (fed with agricultural runoff from a drainage channel). The other two species 

were not evaluated, as their growth was too slow, so they were difficultly scalable from 

an industrial point of view. Only one of the two replicates of Synechococcus sp. PBR 

reached the end of the experiment, as the other one died after contamination with 

protozoa. Growth rate and nutrient consumption were evaluated for each of the 

reactors. 

Figure 4. Evolution of the volatile suspended solids (mg VSS · L-1) during the experimental time in the different 
photobioreactors. 

 
As observed in Figure 4, the PBRs inoculated with pure cultures started with a biomass 

concentration of around 100 mg VSS·L-1. These cultures grew until reaching values 

between 750 mg·L-1 and 1000 mg·L-1. In the case of PBR-M the biomass growth was less 

pronounced, starting with a biomass concentration of 690 mg VSS·L-1 and reaching a 

value of 1037 mg VSS·L-1 at the end of the growth phase. The sample taken from the first 

sampling site was directly inoculated in the reactor without adding any extra nutrient. 



26 
 

The biomass had already grown in the sampling site and nearly all the nutrients from 

the wastewater influent had been consumed there, so when the sample was introduced 

in the lab reactor, low concentrations of nutrients were left to be consumed, explaining 

the higher initial biomass concentration and subsequent slower growth rate. Actually, 

the biomass in this reactor was reaching the stationary phase when it was inoculated to 

the lab scale reactor.  

The biomass composition remained constant during the whole experiment in both 

replicates of the Synechocystis sp. experiment. For the Synechococcus sp. reactors, as 

mentioned before, the two replicates was contaminate by protozoa from the very 

beginning and just one of them survived. Firstly, many protozoa in the cyst form were 

observed and almost none in the proliferative stage. As the experimental time 

advanced, some of the protozoa evolved to the active form. These protozoa can engulf 

the Synechococcus sp. biomass leading to a marked decrease in the growth and 

abundance of the Synechococcus sp. population. At this point, a clear aggregation of the 

biomass was observed. This flocculation process may be considered as a defence 

strategy, induced by the presence of protozoa, to prevent further predation [53,54]. In 

spite of the protozoa presence, Synechococcus sp. were able to grow and dominate the 

culture during all the experimental time, what is more, a clear decrease in the protozoa 

cyst form were observed and the active protozoa were maintained stable (Figure 5. B1, 

B2). This kind of contaminations is practically unavoidable if these processes are scaled 

up to industrial scales [55], so strategies to minimize the cyanobacterial predation 

should be further studied.  
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In the mixed culture the population was mainly dominated by cyanobacteria of the 

Synechocystis sp. and Leptolyngbya sp, and the percentages of these two genera 

remained constant for the entire experimental time (Figure 5. A1, A2) 

 

Figure 5. Images of the Mixed culture (A) observed with fluorescence microscope (Eclipse E200, Nikon, Japan) in the 
optical mode and the fluorescence mode and merged with the image processing software ImageJ. The green part 
indicates autoflorescence generated by the cyanobacteria presence. Images of the Synechococcus sp. culture (B) 
taken under light microscope (x1000). A1 and A2 are image of the Mixed culture at days 14 and 3 respectively.  B1 
and B2 are image of the Synechococcus sp. culture at days 8 and 26 respectively. 
 

The growth phase lasted 31 days in the Synechocystis sp. experiment (PBR1-S and PBR2-

S), 22 days in the Synechococcus sp. experiment (PBR-SC) and 23 days in the mixed 

culture (PBR-M). The duration of the growth phase depended on the growth rate of each 

specie and the nutrient consumption rate. As shown in Table 2, PBR-SC was the culture 

with a higher growth rate (0.131 d-1) leading to a duplication time of 5.3 days. Despite 

the effect of the contamination by protozoa, Synechococcus sp. were able to grow faster 

than the Synechocystis sp. or the mix culture. Probably, if there had not been 

contamination the growth rate would had been even higher. Values between 0.3 and 

2.8 d-1 for Synechocystis sp. [56–60]  and between 0.3 and 1.23 d-1 for the Synechococcus 
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sp. [59–61] have been reported in the literature, which are about one order of 

magnitude higher than the ones observed in the present study. This slower growth may 

be related with the medium light intensity applied to the PBRs. Gonçalves et al., studied 

the effect of light and temperature on the growth rate of two species of cyanobacteria, 

concluding that the optimal irradiance and temperature for Synechocystis Salina was 

180 µmol photon·m-2  s-1 PAR and 25ºC [57]. In the present study, an average 

illumination of 2.1 klx (about 36 µmol photon·m-2 ·s-1 PAR ) and a temperature of 30 ± 2 

ºC were applied. Further optimization of the illumination should be performed in order 

to increase the growth rate and the nutrients consumption rate. This way, less time will 

be needed during the growth phase, speeding up the whole PHB production process.  

 
Table 2.  Growth rate, duplication time, nutrients uptake rate, yields in each of the experiments. 

Studied Genus PBR µX (d-1) t2 (d) q N-NO3 

 (mg N· g VSS-1· d-1) YX/N-NO3 qP-PO4 

 (mg P· g VSS-1· d-1) YX/P-PO4 

Synechocystis Sp. 
PBR1-S 0.083 8.4 5.89 14.07 0.43 191.03 

PBR2-S 0.077 9.0 10.20 7.53 0.45 170.22 

Synechococcus Sp. PBR-SC 0.131 5,3 8.69 15,07 0.27 492.94 

Mixed culture PBR-M 0.021 32,6 0.85 25.10 0.05 433.02 

 

Nutrients uptake 

N and P uptake 

Nutrients consumption profiles for the different PBR are represented in Figure 6. 

As can be observed PBR2-S, exhausted all the NO3- within the first 4 days of experiment, 

what means a specific uptake rate of 10.2 mg N·g VSS-1 d-1. Authors attribute this quick 

consumption to a period of instability caused by the presence of organic carbon (Figure 

8. C2). The presence of organic carbon can change the cyanobacteria metabolism to 

mixotrophy, which in turn can reduce photoinhibition and increase the metabolic 
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activity. Given that NO3- uptake is energy dependant [62], the presence of organic 

carbon may have supplied extra energy for the NO3- reduction. In the 6th day of the 

experiment, NO3- was added to PBR2-S reactor to equalise the concentration with the 

other replicate of Synechocystis sp. From that point onward, the NO3- consumption 

followed the same pattern in both replicates. If the instable period of PBR2-S is not taken 

into account, PBR-SC was the reactor with a higher NO3- uptake (Table 2), followed by 

the mixed culture, and the two replicates of Synechocystis sp. cultures.  

The culture with the highest N yield was the mixed culture, followed by PBR-SC, PBR1-S 

and PBR2-S (Table 2). This means that PBR-M was the most efficient using the NO3- to 

grow. In contrast, PBR2-S had a much lower yield than the other reactors, which is again 

related with the quick consumption of NO3- at the beginning of the experiment, that was 

not translated in a faster growth rate. A yellowish colour was detected in PBR-M from 

day 31, indicating a clear chlorosis process. Chlorosis is generally related to a lack of 

nutrients, and consists basically of a degradation of the pigments of the cyanobacteria 

[63]. No colour changes were observed in the other reactors. The differences between 

cultures may be related to the previous growth phase, since the isolated cultures grew 

in a higher NO3- concentration medium than the mixed culture, what led to a higher 

accumulation of nitrogen in cells. Figure 8. B 1-4 shows this observation, where it can 

also be seen that the %N/VSS after the growth phase was higher than a 9% in all the 

isolated cultures and below the 7% in the mixed culture.  

Figure 6. b) shows the PO43- consumption. In all the isolated reactors a PO43- release was 

observed in the 4 first days of the experiment. This release of PO43- can be directly 

related to pH. During the upscaling process the pH can reach values of 10, which can 
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have caused the precipitation of dissolved PO43- present in the inoculated biomass. 

When the pH was maintained below 9, the precipitated forms of P were dissolved again, 

accounting for the increase in soluble PO43-. No PO43- were detected in PBR-M until day 

23, when an unexpected drop in the pH caused by malfunction in the peristaltic pump 

occurred. This pH drop may have caused the death of some cells explaining the increase 

in organic P and its following mineralization (Figure 8. A4). The two PBRs with 

Synechocystis sp. were the reactors with a higher specific P consumption rate (0.43 mg 

P g VSS-1·d-1 and 0.45 mg P·g VSS-1·d-1 respectively, see Table 2). This rate seemed to be 

related to the initial concentration, since the higher it became, higher the consumption 

rate was.  

Much higher specific consumptions rates were observed by other authors, which is again 

related to the slow growth rate due to the lack of light. For instance, a specific N uptake 

rate of 242 mg N·g·d-1 for Synechocystis sp. PCC 6714 MT were found by Kamravamanesh 

et al. [64] and 460 mg N· g · d-1 for Synechocystis sp. PCC6803 by Kim et al. [65] 

 

Figure 6. N- NO3- (a) and P- PO43- (b) profile for all the photobioreactors. 
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Carbon uptake 

The three experimental phases can be clearly distinguished in the carbon profiles 

of all the reactors (Figure 7.). During the growth phase, IC increased due to the CO2 

injection by the pH controller. When N and P were almost depleted, the pH control done 

by CO2 was replaced for HCl additions. At this point IC started to decrease until reaching 

the feast-famine phase (C, N, P exhaustion). At the feast-famine phase small C additions 

were done. Inset A.1 in Figure 7. shows a feast cycle for the Synechocystis sp. PBRs. In 

these reactors the feast-famine phase was done by CO2 additions during 3h by the pH 

controller. Two additions were done in PBR1-M, one at the beginning of the famine cycle 

and the other after 3h; one addition was done in PBR2-M after 3h from the beginning of 

the cycle. Not all the C added was consumed during the 6h that the feast cycle lasted. 

On the contrary, C accumulated as feast-famine were performed. This means that there 

was not a complete depletion of the IC throughout the famine cycle. Seeing that IC 

control by means of CO2 addition was complicated, NaHCO3 was used for the other two 

experiments. In insets B.1 and C.1 of Figure 7, the feast cycle of PBR-SC and PBR-M are 

shown. In this case, one addition of NaHCO3 was done every day at the beginning of the 

feast-famine cycle, resulting in an IC concentration of 3.53 mg C·L-1 for PBR-SC and 7.23 

mg C·L-1 for PBR-M. At the end of the feast cycle an IC concentrations of 1.97 mg C·L-1 

and 1.4 mg C·L-1 were found in PBR-SC and PBR-M respectively. In both reactors a really 

low concentration was left at the end of the feast cycle, so it can be concluded that there 

will be C limitation during the famine phase. When comparing the PBRs performance it 

was clear that PBR-M had a higher IC consumption capacity than PBR-SC and PBR-S, 

being the replicates of PBR-S the ones with lower IC consumption rate. Although there 

is not a general affinity for one C form, it seemed that bicarbonate uptake is faster than 
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CO2. According to Benschop et al. preference for a specific C form depends on the 

concentration, at low IC concentrations, HCO3- supports the majority of the 

photosynthesis, whereas at higher IC concentrations the CO2 uptake become more 

important [66]. After the feast-famine phase HCO3- was added reaching values of 173 

mg C·L-1, 129.8 mg C·L-1, 81,5 mg C·L-1 and 96.79 mg C·L-1 for the PBR1-S, PBR2-S, PBR-SC 

and PBR-M respectively. In the case of PBR-M and PBR-SC a precipitation of IC was 

observed during the Feast phase (Figure 8. C3 and C4). The precipitated IC represented 

a 63% and a 33% of the added IC at the beginning of the phase for PBR-M and PBR-SC 

respectively. Therefore, the quick drop in IC observed in Figure 7. C was mainly due to C 

recipitation rather than consumption, whereas IC consumption was the main cause of 

the drop in PBR-SC.  
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Figure 7. A and B are the inorganic carbon concentration profiles for the Synechocystis sp. and Synechococcus PBR 
respectively. C is the total inorganic carbon (dissolved + particulate inorganic carbon) profile of the mixed PBR. Insets 
A.1, B.1 and C.1 are a feast-famine profile of days 34, 25 and 24 respectively.  

 

P, N and C mass balances 

 The mass balances of P, N and C are shown in Figure 8. The sum of all the 

different forms of N and P should be held constant during the whole experiment. The 

small oscillations observed should be atributed to experimental errors. In the case of C, 

CO2 was not considered in the balance as dissolved CO2 concentration was not 

measured. So, an increase in C was expected during the phases where CO2 was used to 
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control the pH (in all the phases for reactors PBR1-S and PBR2-S, during the growth and 

feast phases in PBR-SC and during the feast phase in PBR-M). CO2 was added only in the 

feast phase in PBR-M as high presence of particulated inorganic carbon (PIC), was 

observed at the beginning of the experiment (approximately 126 mg C·L-1). Hence, pH 

control was done with HCl addition at the initial phases to get rid of all the IC forms.  

Regarding the evolution of the concentration of the different forms of P and N forms, it 

is evident that all the dissolved forms were fixed in the biomass, with the exception of 

PBR-M reactor, where the amount of NO3- gained for cell growth was equal to the 

dissolved organic nitrogen (DON) released due to an important rate of cellular lysis. 

Figure 8. A1, A2 and A3 show that the %P in the biomass was higher the first day of the 

experiment and below 1% during the rest of the experiment for PBR1-S, PBR2-S and PBR-

SC. This decrease may be attributed to the dissolution of the precipitated forms of P. 

This is further supported by the fact that PBR1-S, which is the reactor with the highest 

difference between the %P at first day and day 31, was also the one with a higher P 

release (Figure 6. B) whereas PBR-SC, which was the one with less P release is also the 

one with less %P diffference. Regarding the % N, the N content in the cell decreased in 

all the PBRs (except for PBR2-S). N is a major constituent of aminoacids and nitrogenous 

bases. A decrease in the % N may be related to an inhibition in the biosynthesys of 

proteins due to a lack of N, which in turn enhaces the NADPH pool. This surplus of 

reducing power has been observed by many authors as the responsible for the increase 

in the PHB and glycogen accumulation in the cell [8,13,21,38].  

A small concentration of dissolved organic carbon (DOC) was observed in all the reactors 

at some point. However, in all the cases, excluding the DOC value of PBR2-M at day 1 
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(Figure 8. C2), the maximum DOC concentrations reached were below 65 mg C· L-1. This 

fact ensures that the PHB production was photoautotrophic, since heterotrophic 

bacteria need OC loads > 300 mg C·L-1·d—1 to synthethize PHB [21]. Concerning the %C, 

in Figure 8. C1 and C2 it can be observed that in PBR1-S and PBR2-S it increased over the 

experimental time. This is an indicator that cells were accumulating C, reaching values 

of 68% and 69.5 % of C per mg of VSS n PBR1-S and PBR2-S respectively. On the contrary, 

in the other two PBR a decrease in the %C was observed during growth phase. Part of 

the %C was recovered in PBR-SC whereas it continue decreasing in PBR-M.  

 

Figure 8. Balances of the different studied forms of phosphor (a), nitrogen (b) and carbon (c) in [mg·L-1] and the 
percentages of particulate organic phosphor, nitrogen and carbon in the biomass at the beginning of the experiment, 
after the growth phase, after the fest-famine phase and at the end of the experiment. A1, b1, c1 correspond to PBR1-
S, a2, b2, c2 to PBR2-S, a3, b3, c3 to PBR-SC and a4, b4, c4 to PBR-M. DIP, DIN and DIC are the dissolved inorganic P, 
N and C, PP and PN are the particulate P and N, DOP, DON and DOC are the dissolved organic forms of P, N and C, PIC 
is the particulate inorganic carbon and POC the particulate organic carbon.  
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PHB and glycogen accumulation 

The main objective of this work was to study the effect of a feast-famine phase 

and a posterior feast phase in the PHB and glycogen accumulation in cyanobacteria 

isolated from wastewater treatment. Figure 9 shows the PHB and glycogen percentages 

profiles during the experimental time.  

 At the beginning of the growth phase, glycogen content was about a 10% in both PBR-

SC and PBR-M, and PHB was not detected in none of them (Fig. 9b and 9c). This 

demonstrates that glycogen, differently than PHB, can be accumulated even without N 

and P limitation, what demonstrates that glycogen is the main C storage polymer [67]. 

Figure 9. PHB and glycogen profiles for a) Synechocystis sp. reactors (PBR1-S and PBR2-S) b) Synechococcus sp. reactor 
(PBR-SC) and c) Mixed culture reactor (PBR-M). 

 

Throughout the Feast-famine phase, the PHB percentage increased gradually in all PBRs 

of Synechocystis sp. with a specific productivity of 3.32·10-3 mg PHB·mg VSS-1·d-1 and 

3.14·10-4 mg PHB·mg VSS-1·d-1 for PBR1-S and PBR2-S, respectively (see Table 3). 

However, glycogen percentages decreased in PBR1-S and PBR2-S reactors in this phase, 

implying that there was some interconversion from glycogen to PHB formation. On the 

contrary, in PBR-SC and PBR-M, glycogen concentration increased at a specific rate of 

4.25·10-3 mg Gly·mg VSS-1·d-1 and 3.37·10-2 mg Gly·mg VSS-1·d-1 for PBR-SC and PBR-M, 

respectively (see Table 3).  
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Table 3. Kinetic and stoichiometric parameters of the feast-famine and the feast phase of the different reactors. 

 PBR1-S PBR2-S PBR-SC PBR-M 
Feast-Famine phase 

𝑟𝑟 �𝑃𝑃𝑃𝑃𝑃𝑃 (mg PHB·L-1·d-1) 1.667 0.405 n.m n.m 
𝑞𝑞 �𝑃𝑃𝑃𝑃𝑃𝑃 (mg PHB · mg VSS-1·d-1) 1.90 · 10-3 5.09 · 10-4 n.m n.m 
Max %PHB 1.66% 1.05% n.m n.m 
𝑟𝑟 �𝑔𝑔𝑔𝑔𝑔𝑔 (mg Gly·L-1·d-1) -0.620 -11.486 3.488 31.769 
𝑞𝑞 �𝑔𝑔𝑔𝑔𝑔𝑔 (mg Gly · mg VSS-1·d-1)) -7.06 · 10-4 -1.44· 10-2 4.25 · 10-3  3.37 · 10-2 
Max % Gly 24,30% 17,96% 14.83 % 38.75 % 

Feast phase 
𝑟𝑟 �𝑃𝑃𝑃𝑃𝑃𝑃 (mg PHB·L-1·d-1) 4.627 0.731 n.m n.m 
𝑞𝑞 �𝑃𝑃𝑃𝑃𝑃𝑃 (mg PHB · mg VSS-1·d-1) 4.7 · 10-3 9.9· 10-4 n.m n.m 
Max %PHB 5.03% 1.85% n.m n.m 
𝑟𝑟 �𝑔𝑔𝑔𝑔𝑔𝑔 (mg Gly·L-1·d-1) 66.740 23.006 11.747 -38.746 
𝑞𝑞 �𝑔𝑔𝑔𝑔𝑔𝑔 (mg Gly · mg VSS-1·d-1)) 6.79 · 10-2 3.12 10-2 1.43 · 10-2  -19.701 
Max % Gly 68.97% 33.68% 24.20 % 38.75 % 

n.m (not measured): Unfortunately, PHB concentrations could not be measured for PBR-SC and PBR-M due 
to the malfunction of the chromatograph before this master’s project presentation.  

 

These differences can be related with the differences in the C addition. As explained in 

the previous section, IC addition with CO2 does not allow to reach a complete depletion 

of IC, whereas bicarbonate additions were completely depleted after sometime. When 

IC was added in the feast phase, a fast increase in both PHB and glycogen were observed 

in PBR1-S, PBR2-S and PBR-SC (see Figure 9a and 9b) being more important the glycogen 

boost. In the case of PBR-M, the glycogen concentration decreased up to 14.4% at a 

specific rate of -19.7 mg Gly·mg VSS-1·d-1. This decrease is explained by the high C 

precipitation rate in this PBR. This precipitation probably occurred at the beginning of 

the feast phase, so C was not completely available during this period. The maximum PHB 

and glycogen accumulation percentage were a 5% and 68.9%, respectively, and were 

reached in PBR1-S. These percentages of PHB are quite low compared to previous 

studies (see Table 1), whereas the glycogen accumulation achieved was in accordance 

with previous results [21,23]. 
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These outcomes seem to indicate that small amounts of IC need to be provided so the 

C interconversion can occur. As observed in the previous section, CO2 was more slowly 

consumed than bicarbonate, therefore a small amount of IC was always present in the 

PBR1-S and PBR2-S reactors, whereas in the other two reactors C was completely 

depleted. This small amount of C left in these reactors may allow the cell to generate a 

higher glycogen pool during the light phase and maintain a certain internal IC level 

necessary to convert glycogen to PHB. On the contrary, the quick consumption of 

bicarbonate in PBR-SC and PBR-M may have generated a higher glycogen pool during 

the feast cycle, but part of this glycogen pool was probably consumed in the famine cycle 

for the cell maintenance when IC was depleted in the media. When C was present during 

the dark cycle, it could be used-up to generate the essential molecules for the cell 

maintenance, whereas glycogen could be converted to PHB in order to gain energy and 

recover the NADP+ needed in other metabolic processes [55]. If C was completely 

depleted, the glycogen and PHB reserves would be used to generate the essential 

molecules instead of convert glycogen to PHB. Something similar was observed in a 

previous study of Arias et al, where a clear decrease in PHB was observed during the 

dark phase when IC was completely depleted, whereas a rise in PHB when a small C 

concentration was present in the media was found. Glycogen, instead, was reduced in 

any case [19]. On the other hand, as observed during the feast phase, if an excess of C 

was added, a boost in both glycogen and PHB was observed, rather than a carbon 

interconversion.  

C interconversion has been observed in many recent studies [19,21,23,55,67]. For 

instance, Kamravamanesh et al, observed that when polyphosphate (PolyP) was no 

longer available, glycogen conversion to PHB occurred [23]. And Troschl et al, described 
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that PHB accumulation occurred in 3 consecutive phases: a growth phase, a subsequent 

N limitation and glycogen and PHB production from CO2 and a final interconversion of 

glycogen to PHB [55]. However, none of them has studied the effect of IC concentrations 

on the C metabolic pathway. Therefore, in order to verify the previous hypothesis, it will 

be necessary to further study the metabolic pathways of C with C starvation, low C 

concentrations or high C concentrations. 

 

Conclusions 

In this study, PHB and glycogen accumulation were studied in two different species of 

cyanobacteria under a three-phase strategy (growth phase, feast and famine phase and 

feast phase). Synechocystis sp, Synechococcus sp, Leptolyngbia sp. and Microcoleus sp. 

were isolated from wastewater-borne cultures from two photobioreactors fed with 

different types of wastewater. During the isolation procedure it was observed that:  

 High N and P concentrations promoted the cyanobacteria dominance over green 

algae.  

 There was a minimum illumination for cyanobacteria to start growing.  

 Small cells were selected when isolation was done in agar plates as they have a 

highest surface area to volume ratio.  

Optimization of the growing conditions is needed to minimize the time consumed 

for the growth phase during the PHB and glycogen accumulation experiments. The 

maximum PHB and glycogen accumulation percentage reached were 5% and 68.9%, 

respectively. Moreover, it was observed that glycogen conversion to PHB depended 

on the C concentration in the media. These results demonstrate the necessity to 
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further study the mechanism of glycogen conversion to PHB and the effect of C in 

this process. This mechanism could be considered an opportunity to reach high PHB 

contents that would be impossible if PHB was synthesised only by means of CO2 

uptake.  
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