
TFG EN ENGINYERIA INFORMÀTICA, ESCOLA D’ENGINYERIA (EE), UNIVERSITAT AUTÒNOMA DE BARCELONA (UAB)

Deployment of a HPC operational service

Quim Aguado Puig

Resum– La cendra volcànica en suspensió crea greus problemes de seguretat i econòmics al
sector aeronàutic. Les erupcions volcàniques que hi ha hagut fins ara han demostrat que és
difı́cil aconseguir prediccions precises dels núvols de cendra. En aquest treball s’ha dissenyat i
implementat un component per controlar processos HPC (en aquest cas, simulacions de dispersió
de cendra volcànica), en un sistema operacional en temps real.

Paraules clau– HPC, Sistema Operacional, Cendra volcànica, Perills atmosfèrics

Abstract– Atmospheric dispersion of volcanic ash creates important economic and safety problems
for the aviation industry. Past volcanic events have shown that is difficult to access precise forecasts of
volcanic ash clouds. This project shows the design and implementation of a component for controlling
remote HPC jobs (in this case, volcanic ash dispersion simulations), in a real-time operational system.

Keywords– HPC, Operational Service, Volcanic Ash, Atmospheric hazards

F

1 INTRODUCTION

ATMOSPHERIC hazards have caused problems to the
aviation sector for years,1 one of the main ones
are volcanic ash clouds at low and jet-cruise at-

mospheric levels. High precision forecasts of volcanic ash
will help airlines to save money, give better services to their
costumers, and provide safer flights. A famous case in Eu-
rope was in 2010, when the Eyjafjallajökull volcano erupted
in Iceland, the airspace of most eropean countries was par-
tially or totally closed, causing loses of more than 130M
EUR per day.2

1.1 Context
This project have been developed in Barcelona Supercom-
puting Center (BSC-CNS), in the Mitiga group. Mitiga is
now a spin-off of BSC, it develops and comercialize so-
lutions to evaluate and manage volcanic hazards.3 At the
inital point there were three main components developed.

• Operational service: A service running 24/7, capable
of automatically getting relevant data from volcanic
eruptions, and managing certain events for the data.

• Simulation model: An implementation of a model to
forecast volcanic ash clouds.4

• E-mail de contacte: quim.aguado@e-campus.uab.cat
• Menció realitzada: Enginyeria de Computadors
• Treball tutoritzat per: Miquel Àngel Senar Rosell (CAOS)
• Curs 2018/19

• Impact calculator: Responsible to get the affected
flight routes for a certain ash cloud.

Simulations could be launched manually. The next step
in the operational was to be able to launch the simulations
automatically.

The simulations are launched at Marenostrum, the BSC
supercomputer, so the operational needed some component
to manage the simulations that were executed remotely.
That component was the part developed in this project.

1.2 Objective

The aim of this project is to design, develop and test the
component of the operational service responsible to manage
HPC jobs in remote clusters (in this case, it’ll be used to run
simulations of volcanic ash dispersion in the air).

The programming language used is Python,5 in its ver-
sion 3.x. The main reason for using this language is that
the operational service is programmed in Python, so it’ll be
easier to integrate.

This operational component will be called Forecast, and
it’ll be composed of multiple processes.

Forecast receive as an input the necessary data to run the
simulations (meteorologycal information, volcanic eruption
data...) and it returns the result of the simulation (where the
volcanic ash will be in the future).

Error handling is also a really important part of Forecast,
as the operational will be giving data to real clients that op-
erates real flights. The internal libraries used by the opera-
tional already includes proper error handling.

Febrer de 2019, Escola d’Enginyeria (UAB)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Diposit Digital de Documents de la UAB

https://core.ac.uk/display/189883774?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 EE/UAB TFG INFORMÀTICA: DEPLOYMEN OF A HPC OPERATIONAL SERVICE

1.3 The operational service
The operational service is composed of different processes,
and groups of processes organized hierarchically. The com-
munication is done via messages and pipes, and a process
can just send messages to its parents and child, so there’s no
horizontal process communication (Fig. 1).

Some of the more important processes are:

• Oracle: Main process. It’s on the top of the hierarchy
tree, most of information in the system is controlled by
Oracle.

• Advisory: The process that gets information about
volcanic ash.

• Forecast: The process that executes volcanic ash
cloud forecasts, it has subprocesses that do specific
tasks, like managing remote HPC resources or control-
ling a group of simulations for an eruption.

Fig. 1: Operational service

There’s an internal library already developed, that allows
to create processes, manage messages and exceptions in an
easy way.

2 STATE OF THE ART

Nowadays, there’s no standard way to programmatically
control HPC jobs in remote clusters.

There’s a Python library called Fyrd that controls slurm
or torque clusters.6 It does not completely solve the prob-
lem as it can’t manage remote clusters, it can just control
local instances. It works and it’s easy to add new queue sys-
tems, but some parts are not object oriented, and it doesn’t
always use best coding practices.

For making connections to remote machines, the most
secure, easy and standard way to proceed is SSH. For traffic
redirection SSH tunnels can be used,7 and to mount remote
file systems, a FUSE file system can be used through SSH.8

3 METHODOLOGY

This project has been developed using the Agile methodol-
ogy. There have been two main stages, design and devel-
opment of the Forecast component and the related libraries
and tools.

In the design stage, it was defined how Forecast must be
constructed, which libraries to use, how it has to interact
with the rest of the operational processes and what simula-
tion parameters to use for the model.

In the development stage, Forecast was developed with
the Mitiga team, it was also important to do proper tests of
all processes while developing them to avoid future errors.

Additionally, weekly reports were created by each mem-
ber of the team to track our progress.

4 DEVELOPMENT

4.1 Design
The first part of the design consisted of creating the pro-
cess structure for Forecast. Three types of processes were
designed (Fig. 2):

• Forecast: It is the main process, is the one that com-
municates with the rest of the operational system and
controls the rest of the processes.

• Ensemble: It’s a superclass (there can be derived spe-
cialized processes of it). It controls the simulations of
a specific event, like a volcanic eruption.

• JobTask: It’s also a superclass. It controls a specific
HPC job (in this case, a simulation run) in the remote
resources.

A detailed explanation of each process type is given fur-
ther in this document (See sections 4.1.1, 4.1.2 and 4.1.3).

All the design was documented using Sphinx,9 during the
programming stage, the code was also documented follow-
ing the Sphinx standards, so the documentation can be auto-
generated.

Fig. 2: Forecast processes high level view

There were multiple non-trivial problems to be solved,
those were just exposed because they weren’t essential to
start the development of the Forecast component, and they
are not supposed to be solved in this project.

• Uncertainty: How uncertainty is measured and prop-
agated into the system.

• Computational domain size: What domain size to
use for a simulation of a volcanic eruption. It has to be
big enough to be able to contain the whole ash cloud,
but small enough to be able to run the simulation in
a decent resolution in the minimum time. In section
4.2.3 is explained how this have been implemented,
and in section 7.2 a better implementation is discussed.

• Merging and post-processing: How to merge the out-
put of the different simulations of an eruption.

3

• Priority: How to assign priority to the simulations, as
there are some eruptions more important than others.

• Ensemble size: How many simulations (and with
which parameters) must be launched in each ensem-
ble.

• Deal with new information: How to manage when
new information arrives, but a previous simulation for
the same eruption have not finished.

4.1.1 Forecast process

The forecast process is responsible to launch ensembles
when it’s required by the operational. It also controls avail-
able HPC resources.

It manages the different ensembles running, keeping
track of available and allocated resources. If it’s necessary,
it can kill an ensemble at any time to get the allocated re-
sources back.

It’s not in the scope of this project to develop the Forecast
process, other people in the Mitiga group are responsible for
this task.

4.1.2 Ensemble process

Ensemble is a process superclass, specific subclasses can be
created for different simulation models.

The Ensemble is responsible to launch all the necessary
tasks and ensure that they are run in the correct order, main-
taining dependency tracking. A typical task graph of an
ensemble process can be seen in Fig. 3.

Usually, ensemble tasks will be:

• Pre-process: Get the input data, and modify it to be
meaningful for the model.

• One or multiple runs: Create one or multiple tasks to
run the simulation with different input values.

• Post-process: Merge the outputs of the different runs
in a single one.

For simplicity, simulations can’t be paused, just stopped.
Simulations don’t take a long time to run (in the order of
minutes), so it’s not necessary to implement a complex sys-
tem to be able to pause and continue simulations because
the gain would be negligible.

Fig. 3: Typical tasks DAG of an Ensemble process

4.1.3 JobTask process

JobTask is a superclass too. Each subclass will have the
actual code that will be launched in the HPC resources.

It can take input parameters, but the code executed will
be the same for every instance of a subclass.

It’s the only process of the operational service that can
run code in the HPC resources. The process is created,
launch the code, gets the results, send them to the ensemble
and dies.

To control remote jobs in a queue system like slurm, it
was decided to use the Python library Fyrd,6 as it’s the only
production ready solution right now. See section 7.1 for
discussion about possible future alternatives.

Fyrd will need a lot of code changes and new features to
be ready for the JobTask class. It lacks a lot of function-
ality needed, like getting metrics from the queue system or
controlling remote clusters over the network.

Most of the development time was spent in the JobTask
class and related libraries like Fyrd.

4.2 Programming
There were two main development stages, Fyrd develop-
ment (4.2.1), and JobTask development (4.2.2). They are
related to other components of the operational and external
libraries, so there was minor development of those too.

After developing the superclass JobTask, subclasses for
the pre-process, the run, and the post-process of the model
were programmed too.

4.2.1 Fyrd

Fyrd is a Python library to submit jobs to clusters. It has a
lot of features like dependency tracking, pandas dataframe
submission, different execution profiles or a local job man-
ager.

Most of those features are not needed for this project, but
some others are really useful. Especially the ones related
to script creation and submission to remote machines. This
features consist in creating the necessary scripts for taking
a Python function, create a pickle file for it, and execute it
in some queue system (like slurm).

Executing python functions in a local queue system is
very easy and straightforward, as shown in source code 1.

In the previous example, Fyrd waits synchronously for
the result, but it’s also easy to implement an asynchronous
version of the previous code, checking from time to time if
the results are ready.

Source Code 1: Simple fyrd example

#!/usr/bin/env python3
import fyrd
from time import sleep

@fyrd.jobify(mem='10MB', time='00:00:30')
def test_function(a, b, c):

Some high-tech time-consuming algorithm
sleep(5)
return a + b + c

result = test_function(1, 2, 3)

4 EE/UAB TFG INFORMÀTICA: DEPLOYMEN OF A HPC OPERATIONAL SERVICE

Wait for the result and print it
print(result.get())

The main problem was that Fyrd is not able to control
clusters that are in remote hosts, a lot of work was invested
to achieve this, among other functionality needed. The re-
sult was a fork of Fyrd that can control remote clusters over
the network, get metrics for jobs and use different working
paths in localhost and the remote host.10

To be able to use Python objects remotely, Pyro4 is the
best library.11 It’s safe, well tested, production ready and
easy to use. It’s used to control the remote queue system
using a Python object that can be accessed through the net-
work.

To remotely execute Python functions, a pickle file is
generated12 and saved in a remote file system mounted in
the host. The remote host will unpack the function from
the file and execute it with the correct parameters, the result
will also be saved in a pickle file.

Source Code 2: Modified fyrd example

#!/usr/bin/env python3
import fyrd
from time import sleep

def test_function(a, b, c):
Some stuff
sleep(5)
return a + b + c

Create a job for the previous
function.
The job will be executed at
the queue system of server
indicated by the uri
job = fyrd.Job(

test_function,
args=[1,2,3],
qtype='slurm',
uri='PYRO:OurObject@localhost:9090'
localpath='/tmp/path_of_localhost',
runpath='/tmp/path_of_remote_host'
)

print(job.get())

The current implementation is far from ideal, but it works
well for now until there’s a better alternative (see section
7.1).

4.2.2 JobTask

The JobTask superclass uses Fyrd to launch a job in a re-
mote cluster. It has a virtual method that must be overwrit-
ten by any subclass. This is the method that will be submit-
ted and executed in the remote cluster.

As this method is packed and sent over the network, it has
some limitations. Raising custom exceptions, or passing
custom objects as parameters can make the serializer faili.

iSee detailed list at: https://dill.readthedocs.io/en/
latest/index.html#major-features

During the development of the JobTask class, Fyrd was
also changed, as there were some needed parts that were not
present, like metrics for jobs.

Creating a new JobTask subclass is simple, as shown in
source code 3.

Source Code 3: JobTask subclass example

class MyClusterJob(JobTask):
Override the method that will be
submited and executed in the
remote cluster.
@staticmethod
def submit(param1=0,

param2=0,
param3=0):

result = (param1
+ param2
+ param3)

return dict(result=result)

One of the problems found in the implementation is that
a function and its context have to be submitted to the re-
mote cluster, but submit is a method. The steps done to
convert the method and send the necessary context are the
following:

• Avoid self: All methods expects the self object to be
passed as a first parameter. The @staticmethod
decorator is used to avoid this behaviour.

• Other important elements, like relevant imports, are al-
ready solved and pickled by the serializer (dill13) when
they’re used in the submit method.

4.2.3 Pre-process JobTask

A simple implementation of the pre-process for the model
was programmed. It does the following steps:

• Computational area: Computes the area that will be
simulated, temporally it’s just a fixed size square near
the volcano. It has to be big enough to fit all the ash
cloud. A better implementation for getting this area is
discussed in section 7.2.

• Compute z layers: Based on the ash column height
and the volcano type, it computes how many vertical
layers (z) have to be simulated.

• Generate the input template: With the data passed
by the Ensemble and computed by the pre-process, it
creates an input template for the model to run.

• Process the meteo: It processes the meteorology, in
order to have it on the same scale than the other data
used by the model.

4.2.4 Run JobTask

This is the actual process that runs the model. It’s more
simple than the pre-process, as most of the data processing
work is already done.

5

• Fill the input template: The pre-process job gener-
ates a template, but this have to be filled with specific
elements for each simulation. Those are the elements
changed in different simulations of a single Ensemble.

• Generate additional files: Some other files are
needed by the model to run properly.

• Run the model: Now that all needed information is
prepared, the model is run.

The results will be saved in a file of the local file system
of the HPC resource. This file system is mounted in the
operational machine to access the results in an easy manner.

4.2.5 Post-process JobTask

Only one simulation per Ensemble is launched at this mo-
ment, so the post-process don’t have to do any transforma-
tion to data.

In the future, when multiple simulations are launched for
each Ensemble, it’ll be necessary to implement a merging
strategy to combine all the simulation data.

5 RESULTS

The combination of the work done in this project, and the
work done by other people of the Mitiga team, allowed to
automatically launch and get the results of volcanic ash sim-
ulations.

A lot of additional functionality was added to the Fyrd
library, some bugs were also solved.

6 CONCLUSIONS

Despite the difficulty of implementing this functionality,
modifying existing libraries and integrating them with a
working operational service, the project has been finished
successfully.

I’ve gained a lot of experience about the whole software
process, from design to testing, on real products that will be
used by important clients.

A lot of time was used to design Forecast, it was impor-
tant as there were several people involved, a common base
and design were needed before everyone started to develop
its parts. I’ve learned to do class diagrams, specifications
writing, and how teams are managed correctly, giving me
some valuable experience for creating serious software.

Some parts of the development were not as hard as ex-
pected, I already did an internship in BSC with the Mitiga
team, so I was familiar with the codebase and could start
coding faster. Other parts were a lot harder, especially Fyrd,
as it needed a lot of modifications, and it uses some special,
not really friendly and maintainable, Python featuresii.

It has been interesting to work with scientific models
like Fall3D,4 managing it in the remote HPC resources and
even reprogramming parts of its data pre-processing parts
in Python. Using the Marenostrum supercomputer to run
the model, and working with people that write and maintain
HPC code was also a really interesting and valuable experi-
ence for me.

iiGlobal variables and relative dynamic imports are used. OOP is not
used in all its parts.

Additionally, I’ve learned about vulcanology, the airline
sector, and atmospheric models. This knowledge, even if
it’s not directly related to my studies, helped me to know
better how some parts of this world works.

Most of the code written during this project is not avail-
able, and some information has been not specified on pur-
pose, due to the commercial nature of the whole operational
service.

7 FUTURE STEPS

In the future, I will continue working with the Mitiga team
to finish and improve the operational service. There are
some parts of this project that probably will be changed in
the future. One of those is trying to find a Fyrd replacement
(section 7.1). The pre-processing of the ash clouds disper-
sion model can be improved too (section 7.2).

7.1 Carcosa
Fyrd is far from ideal for this project. It has a lot of func-
tionality that’s not needed and lacks a lot of functionality
that’s needed.

To try to solve this problem I developed a library, called
Carcosa, designed from scratch for our needs.14

The main goals are:

• Well designed: It’s designed thinking on remote clus-
ters, not just local ones. It uses object-oriented pro-
gramming and follows the best coding practices.

• Simple: It has just the minimum functionality needed.
It does not have fancy features like Fyrd (dependency
tracking, local job queue server...). This makes its pro-
gramming and maintenance simpler, and it’s less prob-
able to introduce bugs.

• Modern: It uses modern features of Python, like type
annotations, that allows static analysis of the code to
check for bugsiii.

• Well tested: Tests are fundamental to avoid bugs
and undesired behavior, every part of Carcosa will be
tested.

• Well documented: Sphinx9 documentation with de-
tailed API reference, examples and design decisions.

It’s still in early stages of development and not ready for
production yet.

This library was developed outside Mitiga and BSC, and
have no associatoin with them.

7.2 Model pre-process
One of the main problems in the pre-process of the model
is knowing the computational area. We have no knowledge
in advance of where the ash cloud will move.

Right now, as a temporal solution, a fixed sized box
around the volcano is used, but this is far from ideal. The
box has to be big enough to ensure that the ash cloud won’t
go out of the computational domain, but this is just a best

iiihttps://docs.python.org/3/library/typing.html

6 EE/UAB TFG INFORMÀTICA: DEPLOYMEN OF A HPC OPERATIONAL SERVICE

effort strategy, as we don’t know for sure that the ash won’t
go out of the box until the simulation is finished.

The result of this strategy is that we have really big com-
putational domains, that can slow down the simulation run.
This is not critical at this moment as simulation times are
small, and the operational is not launching a lot of simula-
tions. In the future, having a good strategy to choose the
computational domain can save a lot of money in HPC re-
sources, and alse save time to give data to clients faster.

Fig. 4: Volcanic ash clouds of hypothetical Etna eruption 1

Fig. 5: Volcanic ash clouds of hypothetical Etna eruption 2

Consider ash clouds for Etna eruptions from figure 4
and 5. They obviously need different computational areas,
for example, in the eruption of Fig. 4, British or French
airspace don’t need to be simulated. In the eruption of Fig.
5, Ukraine and Romania don’t need to be included in the
simulation.

Choosing a good and small computational area allows to
run the model faster, or running a simulation with more pre-
cision in the same period of time.

To choose a good computational area it’s needed to know
in which direction, and how far the ash clouds will move.
To know this information, a simulation must be run, and a
computational area must be chosen.

To break this loop, a low-resolution simulation can be
run with an extremely big computational area (a continent,
or even the world). With the results of this simulation, the
direction and extension of the ash cloud can be estimated,
and a good computational domain chosen for the real simu-
lations.

8 AKNOWLEDGEMENTS

This project wouldn’t have been possible without the help
and support of the responsible in BSC, Mauricio Hanzich,
and the responsible in UAB, Miquel Àngel Senar.

I also want to thank the entire Mitiga for helping me ev-
ery time I needed, and for trusting me as a full member of
the team.

Thanks to other coworkers at BSC that also helped me,
and made nicer lunch times.

Last but not least, thanks to my family, my close friends
and especially my partner for all their support during this
project.

REFERENCES

[1] “Volcanic ash–danger to aircraft in the north pacific.”
https://pubs.usgs.gov/fs/fs030-97/.
Accessed: 2018-12-04.

[2] “Ash cloud costing airlines £130m a
day.” https://www.theguardian.
com/business/2010/apr/16/
iceland-volcano-airline-industry-iata.
Accessed: 2018-12-04.

[3] “Mitiga solutions.” http://www.
mitigasolutions.com/. Accessed: 2019-
01-17.

[4] A. Folch, A. Costa, and G. Macedonio, “Fall3d-7.1,”
01 2016.

[5] “Python.” https://www.python.org/. Ac-
cessed: 2019-01-20.

[6] “Fyrd: A pythonic way to submit jobs to any clus-
ter with dependency tracking.” https://github.
com/MikeDacre/fyrd. Accessed: 2019-01-20.

[7] “The secure shell (ssh) connection protocol.” https:
//www.ietf.org/rfc/rfc4254.txt. Ac-
cessed: 2019-01-20.

[8] “A network filesystem client to connect to ssh
servers.” https://github.com/libfuse/
sshfs. Accessed: 2019-01-20.

[9] “Sphinx: A tool that makes it easy to create
intelligent and beautiful documentation.” http:
//www.sphinx-doc.org/en/master/. Ac-
cessed: 2019-01-20.

[10] “Custom fyrd branch.” https://github.com/
raul-delacruz/fyrd/tree/pyro_slurm.
Accessed: 2019-01-20.

[11] “Pyro4: Python remote objects.” https:
//pythonhosted.org/Pyro4/. Accessed:
2019-01-20.

[12] “Pickle: Python object serialization.” https:
//docs.python.org/3/library/pickle.
html. Accessed: 2019-01-20.

[13] “Dill: serialize all of python.” https://dill.
readthedocs.io/. Accessed: 2019-01-20.

REFERENCES 7

[14] “Carcosa: Library to programmatically control remote
clusters using python..” https://github.com/
quim0/carcosa. Accessed: 2019-01-20.

