This is the accepted version of the following article: Borrego lglesias, Carlos; Robles Martinez, Sergi;
Garcia-Vandellds, Gerard. Softwarecast: A code-based delivery Manycast scheme in heterogeneous and
Opportunistic Ad Hoc Networks. Ad Hoc Networks, Vol. 55 (February 2017), p. 72-86, which has been
published in final form at https://doi.org/10.1016/j.adhoc.2016.09.022. © 2017. This manuscript version is
made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

Softwarecast: a code-based Delivery Manycast scheme in
Heterogeneous and Opportunistic Ad Hoc Networks

Carlos Borrego®*, Gerard Garcia?, Sergi Robles?

@ Departament d’Enginyeria de la Informacid i de les Comunicacions
Universitat Autonoma de Barcelona
Barcelona, Spain

Abstract

In the context of Opportunistic Ad Hoc Networking paradigms, group communication
schemes (Manycast) are difficult to conduct. In this article, we propose a general delivery
scheme for Manycast group communications based on mobile code. Our proposal extends
network addressing by moving from the static header field paradigm to a software code-
based addressing scheme. We allow messages to be delivered using built-in software codes
that consider application-defined, context-aware or history-based information. Addition-
ally, we allow messages to carry a delivery state that permits them to perform refined
delivery-decision-making methods. As a consequence of this scheme, we have found that
new group communication schemes, besides the traditional ones, may be beneficial to im-
prove the network performance and to provide new functionalities to emerging scenarios
like intermittently connected networks of heterogeneous physical objects. We present an
application of this scheme to solve, following an analytical delivery method, the problem
of sending a message to k and only k nodes of a heterogeneous and opportunistic network
scenario that fit best a given criterion. We show, using simulations, that our proposal per-
forms better than traditional approaches. Finally, to show that our proposal is feasible,
we present an implementation of our proposal in a real Opportunistic Ad Hoc network, a
DTN network, compatible with the de facto standard Bundle Protocol.

Keywords: OppNet, Ad Hoc, Bundle Protocol, Mobile-code, Manycast, Secretary
Problem

1. Introduction

As portable devices, such as mobile phones, tablets, vehicles, physical objects, and
other items are being widely deployed, new network paradigms are emerging. In contrast
to traditional managed networks, these devices may be connected using Ad Hoc Networks
that lack central infrastructure. In Opportunistic Ad Hoc Networking (OppNet) [12],
these network contacts are intermittent and nodes are spontaneously pair-wise connected.

OppNet messages may be intended for a group of application instances in different
nodes from the network. The group communication scheme that allows communication
with an arbitrary number of group members specified by the sender is called Manycast. It
includes different schemes such as Anycast, Multicast and Geocast [8]. In OppNet, these
group communication schemes are still open fields of study. Traditional approaches such
as the ones employed in connected networks are difficult to apply: group membership
distribution trees are difficult to maintain during the lifetime of group sessions.

In this article, we propose a general scheme for Manycast group communication
schemes, and we apply it to OppNet. As a consequence of this scheme, new group commu-
nication schemes, besides the above-mentioned, may be achieved. This scheme improves
OppNet performance and provides new functionalities to emerging scenarios like inter-
mittently connected networks of heterogeneous physical objects, a special case of Internet
of Things (IoT) [39].

Our proposal extends network addressing by moving from the static header field
paradigm to a software code-based addressing scheme. We allow the very same mes-
sages to carry software codes to make the delivery decision. That is, the decision on
which applications should receive the application information. These decisions can be
made in terms of application-defined, context-aware or history-based information. This
is especially advantageous when the network has a large number of heterogeneous nodes
and the applications need dynamic and elaborate ways of selecting message destinations.

We show, as an example scenario to prove the potential of our proposal, a network
solution to the max-k-node delivery problem, that is, the problem of sending a message
to k elements in a network that fit best a given criterion. The solution to this problem is
tackled from a statistical perspective, very similar to other problems such as the Secretary
problem [17, 15], a well-known statistics problem in the context of search theory.

Additionally, a wide set of simulations using a simulator capable of reproducing our
proposal is presented. The results of these simulations show that our proposal performs
better than the state of the art ones since it allows new group communication behaviours
that are capable of being addressed using optimal strategies.

Finally, we present an implementation of this novel paradigm, that is compatible with
the Bundle Protocol [31], and allows applications to send bundles to refined software-
code-based Manycast destinations beyond the traditional IP-like Multicast groups. This
implementation considers different security policies in order to detect malicious software
codes.

The main contributions of this paper are: (a) Softwarecast: a general routing and
delivery scheme based on mobile code for OppNet. (b) A statistical solution to the
max-k-node delivery problem for & = 2 for OppNet using Softwarecast. (c) A secure
implementation of this scheme in the context of DTN, and compatible with the de facto
standard Bundle Protocol.

The rest of the paper is organized as follows: Section 2 reviews the state of the art.
In Section 3, Softwarecast, a general group scheme for Manycast delivery is presented.
Section 4 describes a practical application of our proposal. Section 5 covers the exper-
imentation of our proposal using simulations. In Section 6, an implementation of our
proposal in the context of the Bundle Protocol is described. Finally, Section 7 presents

the diverse conclusions that are drawn.

2. State of the art

Opportunistic Networks (OppNet) are networks characterised by intermittent network
contacts, asymmetric bandwidths, long and variable latencies and ambiguous mobility
patterns. Messages are opportunistically routed via intermediate nodes from the source
to the destination.

A very interesting case of OppNet is Delay and Disruption Tolerant Networking
(DTN), a paradigm defined by the IRTF Delay Tolerant Network Research group. They
introduced the DTN architecture (RFC 4838 [9]) and the Bundle Protocol (RFC 5050
[31]) that are an abstract service description for the exchange of messages in intermit-
tently connected networks. In DTN, messages are called Bundles and are seen as a series
of contiguous data blocks containing enough semantic information to allow the application
to make progress where an individual block may not.

These Bundles carry the application information from a source to a destination follow-
ing the store-carry-and-forward paradigm. That is, each node stores application data that
can forward whenever the node contacts another node. The Bundle architecture behaves
as an overlay network.

Concerning DTN addressing, in the Bundle Protocol, as described by Loren et al.
[10], the endpoint identifiers are the tokens by which DTN Bundles are routed to their
destinations. These tokens are not necessarily addresses because neither the scheme name
nor the scheme-specific-part is required to have topological significance. An Endpoint
Identifier’s (EID) scheme-specific-part may have topological significance, depending on
the definition of the named scheme, but alternatively, it may be a name or an expression
which must be evaluated in some way in order to be converted into a name or address (or
multiple names or addresses). A DTN system can use any URI scheme it chooses, and
there are as yet no real conventions as to how different schemes could be used and how
they might interact.

Several proposals for solving group communications in DTN networks have been al-
ready presented. Wu et al. [40] classify DTN Multicast into three categories. On one
hand, in the single node model, a single node is responsible for the Multicast delivery.
This model normally has high transmission delays. On the other hand, in multiple-copy
and single-copy models, several nodes deliver Multicast messages. These models aim to
control the communication overhead and buffer occupancy. Nelson et al. [25] approach
the concept of group-based communication in DTNs by exploring the delivery scheme
of Manycast is presented. Moreover, Gao et al. [18] present a study of Multicast in
DTNs with single and multiple data items, they investigate the essential difference be-
tween Multicast and Unicast in DTNs, and formulate relay selections for Multicast as a
unified knapsack problem by exploiting node centrality and social community structures.
Yang et al. [41] propose a node-density based adaptive Multicast routing scheme that can
handle different network scenarios than the existing Multicast delivery schemes for DTNs.
Asplund et al. [1] present a partition-tolerant Manycast algorithm for disaster area net-
works that uses a random walk gossip protocol. Zheng et al. [42] propose SemanticCast, a

content-based data distribution approach over self-organizing semantic overlay networks.
This proposal maintains a self-organizing semantic overlay based on view exchange. Fi-
nally, Soares et al. [32] propose a routing protocol which takes routing decisions based on
geographical location data, and combines a hybrid approach between multiple-copy and
single-copy schemes.

However, the above-listed group communication strategies are limited to traditional
network delivery schemes such as Multicast, Broadcast, Unicast, Geocast, etc. When
facing more complex delivery strategies like send-to-the-best-n-nodes or send-to-all-nodes-
that-satisfy-z, these proposals fail to give good general purpose and dynamic network-layer
solutions. As a consequence of this limitation, some applications are not possible to be
deployed in OppNet.

Mobile code is a good technology to implement these strategies. Borrego et al. [4], for
example, present an infrastructure in the context of grid computing based on mobile code
to describe grid resources not only taking into account the resources themselves, but also
other resources of the same type. Using primitives like “best” they improve several grid
services such as the information service and the monitoring service.

More recently, there are interesting studies using mobile code in OppNet scenarios.
Borrego et al. [5] propose a new paradigm called store-carry-process-and-forward that uses
mobile code to improve the integration of wireless sensor networks and grid computing in-
frastructures. Additionally, Borrego et al. [3] present a general purpose, multi-application
robot-sensor network based on mobile agents that run mobile code on Mobile-C platforms
[26]. This intelligent system was deployed in a concrete DTN scenario. However, the
resources needed by the mobile agents makes it inappropriate for many other scenarios.
Moreover, Borrego et al. [6] present a solution to improve DTN performance that con-
sists in extending the messages being communicated by incorporating software code for
forwarding, lifetime control, and prioritisation purposes.

Furthermore, several proposals in DTN have been presented to include a message
state information in DTN messages to improve DTN issues such as message routing. For
example, Spyropoulos et al. [33] present the popular Spray and Wait routing protocol
that sprays a number of copies into the network, and then waits till one of these nodes
meets the destination. The number of times a message can be replicated is included
in the message and it is decreased every time the message is sprayed. This is a very
good example of message state. Unfortunately, these message states are not able to be
implemented in the Bundle Protocol: there is no current way of including such state in
the Bundle Protocol messages.

Even though there has been considerable work on OppNet Manycast, there are many
complex group delivery transmissions that are still very difficult to conduct and may be
very useful in many OppNet scenarios. In the next sections, we define a novel OppNet
Manycast scheme to solve this problem.

3. Softwarecast: a general group scheme for Manycast delivery

In the context of OppNet, applications use the intermittently disconnected network to
exchange information. Nodes may host instances of these applications that create, or may

P
=) LR

Source
t=0 ‘Node C
Ol = Bjgk<
Node A - ‘_N?)ldeB =

Figure 1: An intermittently connected Internet of things Multicast example. Different nodes containing
application instances with different characteristics. In t=0 a message is created. Then, this message is
forwarded in a store-carry-and-forward way from the source, to Node A, then to Node B and finally to
Node C. The message is delivered to nodes A and C (darker message means delivery).

be the destination of application messages. When a node does not host any application
instance, it merely forwards messages following a given routing protocol. In contrast to
traditional Internet-like networks that require continuous end-to-end connectivity, every
OppNet node is able to send, receive and forward messages.

Messages may be addressed to a single application instance or a group of destination
application instances simultaneously, as depicted in Figure 1. As introduced by Carter
et al. [8], Manycast is a communication scheme that allows a sender client communicate
with an arbitrary number of group members.

In this article, Softwarecast, a general delivery scheme for Manycast group commu-
nications is presented. We define N as the set of all the nodes in the network. The
number of nodes in a network is the cardinal of the set N (|N|). In the very same way,
A is defined as the set of all of the application instances in a network. The number of
application instance in a network is the cardinal of the set A (J]A|). A node may run more
than one application instance.

The message state is defined as a set of variables that defines the state of a message.
Examples of message state variables could be the number of hosts a message has been
forwarded to or the number of times the message can be replicated. We define S as all of
the possible states of a message.

The delivery condition (c) is defined as a condition that allows the applications to
define refined delivery expressions to select |G| application instances from the A available
at delivery time:

c:Ax S —{0,1}

A delivery target group (G.) is defined as the set of application instances that satisfy
a given condition c:

G. = {app € Alc(app,s) = 1}

5

These delivery conditions and the message states allow messages to be delivered in
terms of refined strategies. Delivery decisions are made locally on every node in terms
of the delivery conditions. However, delivery decisions that take into account not only
information from the current node where the message is in custody, but from other nodes
as well, can be accomplished using the message state. The combination of the delivery
condition and the message state is extremely compelling: we can make the messages to
behave, in terms of message delivery, as powerful and versatile as a finite state machine.

To better understand our delivery scheme, an example in the context of disconnected
emergency scenarios is shown. The different communication application instances running
on the portable devices belonging to the emergency medical team can be characterised
in terms of their surgeon knowledge. Communication applications belonging to different
emergency personnel will have different values for this characteristic: a high value for a
surgeon and a low one for the rest of the doctors. A surgeon Manycast message may be
defined as a message directed to the set of communication application instances in the
emergency scenario intermittently disconnected network that are characterised as surgery
experts:

1 if app.surgeonKnowledge() >= threshold

c(app, s) = {

Following the emergency scenario intermittently disconnected network example, a mes-
sage could be addressed to the first k& surgeons to be found, to all of them or the best
k ones taking into account a certain criterion, like for example, its availability to come
back to the Emergency Coordination Center. In this case, it will be very advantageous to
allow the message to keep information, using the message state, such as for example the
number of messages already delivered or the maximum local value seen according to the
studied criterion.

This kind of delivery condition is much more complex than the previous ones enu-
merated in this section. In the next section, it will be discussed how to apply them to
OppNet to improve Manycast delivery.

0 otherwise

3.1. Softwarecast Messages

Given a source application instance in a source node (source) and a given payload
message (payload), a delivery condition (¢) and a message state (s), Softwarecast messages
are defined as messages (m(source, payload, ¢, s)) sent to a set of |G.| members of the set
G.. However, these conditions are difficult to be included in messages using traditional
OppNet protocols. In this paper, we propose to use mobile code to implement them. Other
proposals such as the one proposed by Borrego et al. [6, 5] already include mobile code in
their messages but for other purposes such as routing, lifetime control or prioritisation. In
Section 6, we present how to give expression to Softwarecast messages in a real OppNet
network. We will discuss now how Softwarecast can be seen as a generalisation of classic
network delivery schemes.

e Unicast is a group communication scheme where messages are sent to a single net-
work destination identified by a unique address. Softwarecast Unicast messages may

be seen as messages (m(source, payload, ¢, s)) where the ¢ condition identifies in a
boolean way the single node:

node = app.thisNode()

1 if node == destination

c(app, s) =
(app. 5) {O otherwise

Multicast is a group communication scheme where messages are addressed to a
group of destination computers simultaneously. Multicast may be seen as Software-
cast message (m(source, payload, ¢, s)) where the delivery condition c¢(app, s) selects
every application instance from a set of subscribed application instances:

1 if isSubscribed(app, group)
c(app, s) = .

0 otherwise
Anycast is a communication scheme that allows a sender to send a message to
any node that belongs to a group of nodes. An Anycast message can be seen
as a Softwarecast message (m(source, payload,c,s)) where the delivery condition
c(app, s) selects the first found application from a group of application instances in
a network. In this case, the delivery condition can be formalised as:

1 if belongs(app, group)
c(app, s) = .
0 otherwise
A Broadcast message is a message sent to all possible recipients simultaneously. A
Broadcast message may be seen as Softwarecast message (m(source, payload,c, s))
where the delivery condition c(app, s) selects every application instance from a sub-
group of size |A|, that is, every application instance in the network.

c(app, s) = true

A Geocast message is a special form of Multicast where the possible recipients of a
message are identified by their geographical locations. A Geocast message may be
seen as a Softwarecast message (m(source, payload, ¢, s)) where the delivery function
c(app, s) selects a group of application instances from a group of size m identified
by a geographical location. A geographic destination address may be expressed in
terms of any geometric figure that defines the delivery area.

1 ifapp € delivery_area

0 otherwise

c(app, s) = {

3.2. Delivery Software code

We have seen in the previous sections, generic conditions that allow applications in
OppNet to define refined delivery expressions to select application instances at delivery
time. We propose to include these conditions within the Softwarecast messages as soft-
ware mobile codes. Softwarecast messages are not delivered in terms of their destination
addresses. Instead, they are delivered in terms of these mobile codes. When a node has
accepted custody of a Softwarecast message, the node executes its delivery software code
for every application willing to receive Softwarecast messages.

These delivery software codes are created by including the delivery condition presented
in this section as the condition to deliver the message. In Algorithm 1, a generic delivery
software code is presented. Details on how messages are extended and how mobile codes
are executed can be found in Section 6.

Algorithm 1 Generic Delivery Software Code

Ensure: app is an application considered for message delivery
Ensure: s is the set of variables used by the delivery conditions to keep their state
Ensure: c(app, s) is a delivery condition

1: if c¢(app, s) then

2: deliver(app)

3: end if

3.3. Summary

In this section, we have seen a general delivery scheme that allows new communication
schemes beyond the traditional Manycast paradigms. Softwarecast allows the applications
to flexibly and accurately define which |G.| application instances should be the message
recipients in terms of real-time, application-defined, context-aware or history-based con-
ditions.

As a consequence of this flexibility, novel delivery schemes appear to be possible, and
this opens up a new way for applications to communicate. This new paradigm allows
defining delivery conditions that follow inter-application criteria: an application instance
can be selected as part of the delivery target group in terms of a condition that takes into
account other information from other applications. The result are Manycast messages
delivered to a group of application instances that may use operations such as k-first,
average, mazximum or minimum, for example.

These delivery decisions are taken after messages have been received. Therefore, nodes
that are willing to receive messages only if these messages can be delivered to a local
application must, regrettably, accept all Softwarecast messages, even if afterwards these
messages are not locally delivered. Dealing with selfish nodes that do not accept messages
for forwarding in OppNet is not a trivial matter. Incentive schemes like the ones presented
by Sanchez-Carmona et al. [30], that promote the cooperation of OppNet nodes can be
very advantageous in these situations.

However, there are many more scenarios in which Softwarecast can be advantageous
beyond those with a theoretical or statistical solutions mentioned below. For example, in

some OppNet scenarios, available destination addresses are not always known by sending
applications. To solve this problem, profilecast delivery schemes [11] allow message desti-
nations as groups of users defined by their profiles. These profiles are very effective ways
of characterising nodes in terms of node’s attributes. Nonetheless, in certain scenarios,
Softwarecast can improve profile-casting by allowing applications to send messages to a
subgroup of these members. For example, a message could be sent to a certain profile
filtered by those having high values for a certain characteristic. A sender application may
not know in advance which are high or low values for this characteristic for the given
profile. In this delivery problem, the delivery software code along with the message state
can be advantageous to implement such a complex delivery action.

4. Practical application

In this section, we propose an open OppNet problem and its solution to illustrate the
benefits of using the Softwarecast proposal introduced in the previous section. This is a
real, representative but not unique example to show the limitations of current Manycast
protocols in OppNet and how Softwarecast is an excellent solution to solve this kind of
problems efficiently. We first explain a general open problem, the max-k-node delivery
problem, then we propose a solution for this problem for a concrete case, and finally we
show how to use Softwarecast to solve it.

The problem is a special case of Manycast where an OppNet application wants to send
a message to k£ and only k application instances of an OppNet scenario that fit best a
given criterion. This delivery problem is very difficult to be conducted using traditional
proposals and may be advantageous in many different OppNet scenarios. For instance,
in emergency scenarios, such as the ones presented by Borrego et al. [6], where the
Emergency Coordination Centre could need to make a call to the best k disconnected
doctors located in the emergency area that maximise a given criterion. This criterion can
be factored out in terms of the doctor’s characteristics such as its skills on some medical
topic, problem or speciality. In emergency scenarios, as explained by Martin-Campillo
et al [22] and Mart{ et al. [21], the time the medical stay in the emergency area before
coming back to the Emergency Coordination Centre is a very delicate variable. This is
why is very important that this Manycast message will be delivered to not more than
k doctors because, otherwise, additional unwanted doctors will return to the Emergency
Coordination Centre unnecessarily.

Another example could be in the context of the consumer-buyer behaviour. A client
wants to buy k items from a group of |N| buyers which have a product each with price
prize; ; and are located in a disconnected OppNet scenario. The client wants to minimise
the prize of their k£ purchases but does not know in advance the prize of the different
offers from the different || sellers from the disconnected scenario. The goal of this
delivery method is to send a buy message in order to minimise the total cost of purchase
S prize;.

When these applications face these complex delivery challenges, traditional group
communication schemes such as Broadcast, Multicast or Unicast fail to provide optimal
strategies. Using Broadcast primitives to query the |N| possible destinations will make

the application receive only, because of the peculiarity of OppNet, responses from a subset
of N. When being forwarded to this subset of nodes using Unicast messages, all of these
messages may not arrive either, for the same reasons. We propose, in this section, to use
search theory statistical techniques that guarantee optimal strategies to solve this type
of complex delivery challenges. These strategies do not reach optimal decisions that can
only be achieved when having a complete knowledge of the network, something extremely
difficult in OppNet. However, we will see in Section 5 that these optimal statistical
strategies performance is better than the ones based on traditional network primitives.

In this section, we bring to the fore the necessity of new group delivery schemes in
OppNet and we explain how to solve this problem from a statistical and search theory
perspective. For the sake of simplicity, from now on, we consider nodes with a single
application instance. Then, we define the delivery condition as:

c:NxS—{01}

In Section 6, we will discuss how to deal with more than one application instance per
node.

4.1. The max-k-node delivery problem

The basic max-k-node delivery problem that will be discussed in this article can be
stated formally as:

As introduced in Section 3, let N be the set of all the nodes in an OppNet network:
N = {nl, o, ..., 7’L|N|}

The number of nodes in a network is the cardinal of the set N (|N|). This number
|N| is finite and known. Given a node n;, we define r(n;) as a criterion to evaluate
a node. A node n; is better than a node n;, according to r, if:

r(ni) > r(n;)

For this problem, we consider the case were this criterion remains constant. This
means that any given node n; will always have a constant r(n;).

The n nodes in a network, in a hypothetical situation when seen altogether, may
be ordered from best to worst unambiguously in terms of a certain criterion r.
Moreover, we define the criterion of order of a set of nodes P C N as:

T(P) = ZnGPr(n)
Moreover, we define P as the set of all of the possible subsets of N:
P = {{niuniza '-'7nir} - N \ @}

10

Additionally, let P, C P be the set containing all the subset of P of size k:
Py = {P € P||P| =k}
Note that:
Pel= (1)

A message is forwarded from a source to different nodes until it is delivered to k
nodes from the set IV using opportunistic contacts. When a message is received, it is
either delivered to a local application instance, forwarded to another node, or both.
Let C = {n;,,ni,, - ,n;,} € P be the set of nodes a message has been forwarded to
and let n;, , a new forwarded node for potential delivery. The delivery condition,
¢, to decide whether this message should be delivered or not to n;,_, is based only
on the node and the previously forwarded nodes:

c:NxP—{01}

In the max-k-node delivery problem a node wants to send a message to k and only
k nodes P = {n;,,ni,,- -+ ,ni, } € Pk that maximises 7(P). A solution to the max-
k-node delivery problem has to define a strategy to maximise the probability of
selecting a set in Py, O, such as:

O ={P € Py |r(P)>r(P)VP € Py}

This is equivalent to maximise a win function W that returns 1 if the k£ nodes that
fit best to targeted criteria are selected and 0 otherwise. Given a list of nodes
P = {ni,,niy,- -+ ,ni, } € Pr a message has been delivered to, we define W(P):

W(P):{l PecO

0 otherwise

There are different variations of the same problem that include scenarios where the
maximum number of nodes is unknown, scenarios where without knowing the maximum
number of nodes we do know the movement model distribution in advance and others with
a known node arrival distribution. The goal of this section is to show that this problem
may be solved using the Softwarecast proposal introduced in the previous section, not to
implement all of the variations nor to find the best one for a given scenario.

11

4.2. Optimal Delivery Method

The optimal delivery method for the max-k-node delivery problem may be approached
from a more analytical perspective. In statistics, in the context of search theory, there is
the problem of choosing the best moment to take a particular action, in order to maximise
an expected reward or minimise an expected cost.

In our max-k-node delivery problem, the decision is, when a message is forwarded to
several nodes, when it should be delivered to the upper application. If the message is
delivered to the first k encountered nodes it is quite likely that these nodes will not be the
k best nodes in terms of the studied criterion. In the same way, if we wait for delivering
the message to the last k forwarded nodes, it will be likely that we will discard the k& best
ones. However, the method of deciding after encountering every node in the network is
not feasible: nodes may not be re-encountered again anymore. Consequently, the max-k-
node delivery problem is a search theory decision problem, a problem of choosing the best
moment to take the delivery action after encountering several nodes in order to maximise
the given criterion.

4.2.1. Statistical solution for the max-k-node delivery problem

In order to understand the max-k-node delivery problem, we start by solving the max-
k-node delivery problem for k=1. In this case, it is equivalent to the Marriage problem,
explained by Freeman et al. [17]', a well-known problem in applied statistics. A person
is willing to marry a person out of |N| rankable in terms of a given criterion. The person
dates different marriage candidates and decides about whether to ask them to marry or
not. Once rejected a candidate he/she cannot be dated again. During the relationship, the
person can rank the marriage candidate among all candidates dated so far, but is unaware
of yet unseen marriage candidates. The question is about the optimal delivery method to
maximise the probability of selecting the best marriage candidate. The difficulty of this
type of problems is that the decision must be made while dating the candidate, similar
to the node encounters in the max-k-node delivery problem.

We apply to our OppNet scenario the search theory to solve the max-k-node delivery
problem for & = 1. Following the statistical approach described by Freeman et al. [17],
when we apply it to OppNet, we define v, as the number of nodes a message so far has
been forwarded to and s, the apparent rank of the vy, last forwarded node. At any time
of the max-k-node delivery problem for k = 1, the state of this process is described by
(v, s). If s # 1 there is certainly no interest in delivering the message to the vy, node as
it cannot possibly be the best. After the next node has been contacted, the new state
of the process will be (v + 1,s'), where ¢ is equally likely to be any one of the values
1,2,...,v+1. If s =1, this node is a candidate for delivery. The probability that the node
is the best of all | V| nodes is just v/ |N|. Letting P(v,s) denote the maximum expected
probability of choosing the best node to deliver the message when the state of the process
is (v, s), the principle of dynamic programming yields the equations:

! The marriage problem is also known as the secretary problem.

12

with P(n,s) = 1if s = 1 and 0 otherwise.

Lindley et al. [20] solved this problem by simple backwards recursion over v =
IN|,IN|—1,..., 1

11 1
av_5+v7+1+'"+|]\7\7—1’

The optimal action in state (v,1) (when it is clear that the vy, last forwarded node
is the best) is to deliver the message if a, < 1. Instead, if a, > 1, the optimal action
is to continue, which means doing a simple routing. If v* is defined as the integer v for
which a,_; >=1 > a,, the optimal delivery method for the max-k-node delivery problem
for £ = 1 is to reject the first v* — 1 nodes and then to deliver the message to the first
node thereafter that is better than all previous ones. The probability of winning using
this policy is (v* — 1)ay—1/|N|. As |N| — oo , both this and v*/ |N| — e¢~1 = 0.368.

In a more general way, when we want to give a solution for the max-k-node delivery
problem for a general k, we apply the generalization of the best choice problem proposed
by Nikolaev et al. [27]. The solution to the max-k-node delivery problem for a general k is
a strategy where there exists an optimal set v], vy, v3, ..., v5, 1 <wvf < v <--- <wvf <|N|
such that the pth copy of the message (p < k) is delivered:

e to the first node which is the best of all the previous ones, if the message has been
forwarded to vj nodes.

e or, if not found, to the first node which is the second best of all the previous ones,
if the message has been forwarded to v3 nodes.

e or, if not found, to the first node which is the third best of all the previous ones, if
the message has been forwarded to v3 nodes.

e ctc.

e or, if not found, to the first node which is the kth best of all the previous ones, if
the message has been forwarded to v} nodes.

e or, if not found, to the (|N| — k + p)th node.

In other words, the solution to the max-k-node delivery problem, for any k, is a
complex strategy. The Softwarecast delivery scheme is capable of implementing such
complex strategies as a result of combining software code and message state. Instead,
traditional Manycast protocols are not capable of implementing such complex strategies
and, as a consequence, they are not able to solve, using optimal strategies, complex
delivery problems such as the max-k-node delivery problem or others presented in Section

3.

13

4.3. Manycast Problem k = 2

We study a special case of the max-k-node delivery problem: the max-k-node delivery
problem where £ = 2. This is a case of Multicasting where messages are sent to two
concrete nodes in an OppNet, those which fit best a certain criterion. We consider a win
event if the message is delivered to the best and second best node from a group of |N|
nodes. We follow the optimal strategy explained in the previous section introduced by
Nikolaev et al. [27]. Firstly, skip the first v} — 1 nodes and then deliver the first copy
of the message to the first node which is better than all of the previous ones, or to the
(IN] — 1)th node, if this node does not appear. Secondly, deliver the second copy of the
message to the first node which is better than all of the previous ones or, if the message
has been forwarded to more than v — 1 nodes, to the second best from all of the previous
ones, or to the |N|th node, if these nodes do not appear.

For this problem, for k = 2, Tamaki et al. [36] propose the values for v] and v} as
0.2291/|N| and 0.6065/ | N| respectively. In the experimentation section (Section 5) we
will study the performance of Softwarecast when solving this special case of the max-k-
node delivery problem for these values.

4.4. Softwarecast Approach for solving the max-k-node delivery problem

From the communication point of view, the solution to the max-k-node delivery prob-
lem is a Manycast message that has as destination address a group of two application
instances hosted in two different nodes. When it comes to solving complex Manycast
problems such as the max-k-node delivery problem, traditional Manycast OppNet proto-
cols fail to give complete solutions. In other words, the delivery of these messages cannot
be directly achieved using traditional Manycast delivery schemes such as Multicast or
Broadcast: there is no way of expressing such a refined destination using the traditional
group delivery schemes.

We propose to solve the max-k-node delivery problem using a Softwarecast message
(m(source, payload, ¢, s)) where the ¢ condition represents the optimal search theory de-
livery method.

For the max-k-node delivery problem, for any given k, the solution is a message
(m(source, payload, c, s)) where c is:

(1 (I > mazx; & forwarded > v1) ||

V

mazxe & forwarded > vq) ||
(I > maxz & forwarded > v3) ||
c(node, s) =
(I > mazxy & forwarded > vy) ||
(forwarded == (|N| —k +p))

0 otherwise

\

where p, max;, forwarded, and v} are message state variables, as defined in Section
3, that represent the number of the message to be delivered (first, second, ..., kth), the
ith best value for the studied local characteristic, the number of nodes the message has

14

been forwarded to and the optimal value for optimal delivery, respectively. Additionally,
[is the studied local value retrieved from the node.

In Algorithm 2, an algorithmic design for the strategy for the maz-k-node delivery

problem for k=2 is presented. Additionally, a concrete deliver software code for the maz-
k-node delivery problem will be shown in Section 6.1.

Algorithm 2 Algorithmic design for the maz-k-node delivery problem for k=2.

Ensure: forwarded is the number of nodes the message has been forwarded to

Ensure: k is the number of copies of the message to deliver

Ensure: localnode is the local node

Ensure: p is the number of the message copy to be delivered (first, second, ..., kth)
Ensure: [is the value for the studied local characteristic

Ensure: maz; and maxs are best and second best values for the studied local characteristic
Ensure: v} is the ith optimal value for optimal delivery

1:

NN N NN DNDDN — o e e s e s

27:
28:
29:
30:
31:

#Initialise variables
k=2
forwarded=0
p=1
maxy = 0
mazxo = 0
#Loop while the message has not been delivered to k nodes
while p < k do
forwarded + +
#Check if message must be delivered
fori=1,:i <k, i++ do
if (I > max; & forwarded > v}) ||(forwarded > (|N| —k + p)) then
deliver(localnode)
p ++
break
end if
end for
#Update max1 and mazs
if | > max, then

maxy =1

mazxo = mazxy
else

if | > maxo then

maxy =1

end if
end if
#The message must still be delivered elsewhere. Route it.
route()

end while
#The message has been delivered k times. Remove it.
delete()

15

In this section, we have described a use case as an example that illustrates very clearly
the potential of our proposal. In the following sections, we analyse the performance of
our proposal when solving this use case and we propose a way of giving expression to
Softwarecast messages in a real OppNet.

5. Simulation Results

In this section, we present a series of simulations to study the performance of our
solution for the max-k-node delivery problem for £ = 2 presented in Section 4. We show,
by means of these simulations, how effective it is to allow messages to carry software
codes to make the delivery decisions. We have chosen k£ = 2 as an illustrative Manycast
example. Other values of k can easily be achieved in a very same way. As we have seen in
Section 4.4, there is a general Softwarecast approach for solving the max-k-node delivery
problem for any given k. The difference in terms of the delivery software code size for the
max-k-node delivery problem for £ = 2 and a bigger k£ is not significant, even less in many
cases, like the one presented in this section, where the delivery software code represents
less than 1% of the total message size. Additionally, this difference regarding the size of
the message state is totally insignificant: the message state would increase in just a few
bytes for bigger k because, as introduced in Section 4.2.1, k values with the k best values
for the studied local characteristic must be kept within the message state.

The simulations in this section has been conducted using a modified version? of the
Opportunistic Network Environment (TheONE) simulator [14]. This simulator was orig-
inally created to run simulation experiments on opportunistic networks like DTN and
to provide reports and graphical representations of the results. TheONE represents the
communication among nodes and their movement. We have modified TheONE to be able
to simulate Softwarecast messages presented in Section 3 as well as other Manycast ap-
proaches in order to study our network proposal performance. Additional TheOne reports
have been programmed to study variables such as the win ratio, explained in Section 4.

5.1. Settings

In these simulations, we consider a group of different nodes that form a communication
network similar in characteristics as the one proposed by Borrego et al. [6] to make it
more realistic. In an area of 4 km? located in the surroundings of the Autonomous
University of Barcelona®, different nodes with two different group of nodes share the
network, group A and group B. The buffer size for the nodes is fixed to 2GB*. Nodes
carry a wireless interface controller operating in Ad Hoc mode with a transmit speed
fixed to 54Mbs. Maximum range obtained is 150m. There are 40 nodes of group A
and 30 of group B. Group B nodes act as simple message forwarders. Messages created

2The source code for this TheOne modification can be found at
https://senda.uab.cat/wiki/aDTN in Section “TheOne resources”.

3Map used: http://www.openstreetmap.org/node/259644263#map=15/41.5039/2.0825

4Having a MicroSDHC from a Raspberry Pi as a reference.

16

during the simulations have a variable size from 50KB to 100KB®. Messages are created
periodically using a random value between 1 and 10 seconds and are routed using a
single-copy routing protocol [28]. Nodes move inside the simulation area according to the
map previously mentioned at a maximum speed of 1.4 m/s following a random waypoint
movement model [29]. Several points of interest have been defined to make the movement
more realistic®. When Softwarecast extensions are present in the message, the size of
these extensions is 400 bytes. All simulations represent 24 hours of activity. The goal of
these simulations is to understand the performance of Softwarecast messages sent from
a single node in a network to nodes of group A in a period of time of 3 hours’. Every
simulation is repeated 100 times with different random seeds. These random seeds define
the random component of the node’s movement model.

5.2. Scenario study

In opportunistic networks, the maximum number of unique nodes a Softwarecast mes-
sage can be forwarded to is difficult to know. We have performed 100 different simulations
with different movement random seeds in order to understand the maximum number of
unique nodes a Manycast message is likely to be forwarded to in the studied scenario.
We want to understand if it is easy to find | V], that is, the maximum number of nodes a
Softwarecast message will be able to be forwarded in a fixed period of time of 3 hours.

In Figure 3(a), the inter-unique-message-node-contact time for a period of 3 hours is
studied for these different random seeds. This represents the time, on average, between
contacts of messages with nodes that have never been forwarded to before. It can be
seen that this time for the different random seeds is very variable, as seen by its standard
deviation. Additionally, in Figure 3(b), for the same simulations, we see an aggregated
view of the frequency of the total number of contacts after 3 hours. We see that the
average is 17.9, but again, there is quite a big variability. Finally, in Figure 4(a), we see
the maximum number of unique nodes a Broadcast message is forwarded to in the same
period. The average is 17.9, but we see that there is a wide number of different values.
We understand by this three figures that choosing an |N| for this scenario is not an easy
decision.

In Figure 4(b), we see the result of 9175 simulations for the win ratio in terms of
the different values of v}, v and |N| where 2 <= v < v < |[N| <= 40 (40 is the
number of nodes in group A). We see that the maximum win ratio is obtained with the
values v; = 4,v5 = 8 and |N| = 38 obtaining a win ratio of 0.63. This combination of
vi, vy and |N| is very difficult to foresee, according to the variable statistics presented

5This size is representative of messages used in emergency scenarios as learnt by our research group
from projects like the ones presented by Martin-Campillo et al. [23] and Mart{ et al. [21] and some others
from other external studies [19, 7].

6P1: 41.5008155, 2.0905975, P2: 41.50361, 2.0938, P3: 41.50392, 2.08922, P4: 41.50851, 2.08998, P5:
41.50508, 2.08402 P6: 41.49975, 2.08078

THalf the time the paramedic personnel stays in the emergency area before coming back to the Emer-
gency Coordination Centre.

17

105 000us | 5][][] [b]l update: i]<] @ |_75093 _scresnshot

o profile-A-2 local=0.3

/ q \
profile-A-25 Ioca|=0§9\7 . !

N

profile-A-31local=0.43 | _

Figure 2: In this figure, a snapshot from a simulation is depicted. Three nodes with different local
values for a studied characteristic are shown. The two nodes in the left part of the figure are in contact.
A message m is forwarded from node profile-A-2 to node profile-A-31 and to node profile-A-25. The
message is delivered to this latter according to the delivery condition in m.

lg 10000 Time between contacts —— | Max unique contacts i
2 Average 7 Average (17.9) ————— 1
£
£ 6 .
[1000 i
g
< € 5
s 3
2 100t ~ g g 4]
= o
8 L os 1
- |
o 10 IS SN {111, S .|| L 2 i
=} =l L
g
< 1 1 . B
8
£ 1 0 i i
0 20 40 60 80 100 0 5 10 15 20 25 30 35 40 45
Random Seed Number of message contacts (#)
(a) Inter-unique-message-node-contact time in (b) Distribution of the number of unique nodes a
seconds as a function of the different random node is forwarded to during the simulation.

seeds for the 100 different simulations. Global
average for all simulations is 8.24 seconds.

Figure 3: Study of the movement model behaviour: inter-unique-message-node-contact time and distri-
bution of the number of unique nodes a node is forwarded to.

in figures 3(a), 3(b) and 4(a). We choose for future simulations a compromise value for
|N| as being 40, the maximum number of nodes of group A. As a consequence, following
the statistical model presented in 4, values for vf and v} are v{ = 0.2291 % |[N| ~ 9 and
vy = 0.6065 * | N| ~ 25. As we will see in this section, it gives an excellent result.

5.3. Comparing to traditional approaches

We compare in additional simulations, four ways of solving the max-k-node delivery
problem for a period of 3 hours. This means we want to maximise the number of messages
delivered to the best 2 nodes from a certain group in terms of a certain criterion in 3 hours
time.

Firstly, we simulate the performance of our analytical proposal introduced in Section

18

30

Max unique contacts ——
Average (32.10)

. L
15] lll]il ! M
1
SM?“ Pl L]

0
0 5 10 15 20 25 30 35 40
Number of message contacts (#)

Win ratio as a function of r1, r2and N[= » |

Frequency (#)

(a) Distribution of the number of unique nodes (b) This figure represents 9175 simulations to anal-
a flooding message is forwarded to during the yse the win ratio as a function of v}, v and |N].
simulation. We loop over the different values of v} and vy where

2 <=} <vj <|N| <= 40.

Figure 4: Study of the movement model behaviour: flooding message number of unique node contacts
and win ratio as a function of v}, v3 and |N|.

4, using v} =9, vi = 25 and |N| = 40 (SC-Softwarecast in the figures). As explained in
Section 4.3, the strategy to solve the max-k-node delivery problem is to skip the first 8
nodes and then deliver the first copy of the message to the first node which is better than
all of the previous ones, or to the 39th, if this node does not appear. Secondly, deliver the
second copy of the message to the first node which is better than all of the previous ones
or, if the message has been forwarded to more than 24 nodes, to the second best from all
of the previous ones, or to the 40th, if these nodes do not appear.

Secondly, we have compared our Softwarecast proposal with a multi-copy version of
Softwarecast (MC-Softwarecast in the figures). In this case, messages are not being routed
following single-copy routing algorithm but a multi-copy one similar to Spray and Wait
[13] in binary mode: messages define an initial number of copies (L = 2) and, when
being forwarded to other nodes, half of their Softwarecast messages are forwarded to
the contacted node (one copy since L = 2). These multi-copy Softwarecast messages,
when being forwarded, follow a strategy similar to the Marriage Problem [16] explained
in Section 4 with v = 40/e = 14.7: messages are not considered for delivery before being
forwarded to 15 nodes and after the 15th contacted node the message is delivered to the
first node whose retrieved value is bigger than all of the precedents. We will see in the
following simulations that the multi-copy approach performs worse than the single-copy
because, in a not insignificant number of times, both copies of the Softwarecast message
select the same node for message delivery.

Thirdly, we analyse the performance of a classic approach of solving the max-k-node
delivery problem. Since traditional Manycast can not be directly applied to this problem
since nodes are not capable of knowing the value for the studied criterion for other nodes,
we compare our proposal with another that uses traditional up-to-date network primitives.
In this traditional proposal, the sender sends queries to the different nodes belonging to

19

the given group to retrieve the value of the studied criterion. These queries are performed
using EBP [2], an efficient Broadcast protocol that retransmits a message only when the
forwarder is surrounded by at least a certain number of neighbours and if at least one
of these neighbours has not received the message yet. Afterwards, the sender chooses
from the received messages the best 2 ones and sends a Unicast message to both of them.
These Unicast messages and the query responses are routed using Spray and Wait [13].
We call this traditional approach a two-step Broadcast-Unicast-based delivery solution
(2sBcastUcast in the figures).

Finally, we analyse the performance of an Oracle routing [37] where nodes have a
perfect knowledge of the network. This perfect knowledge is impossible to be obtained
in almost every OppNet scenario. However, we simulate it to understand which are the
better results we can achieve for the studied scenario.

In Figure 5(a), the win ratio is studied. Three different delivery schemes are studied
in this figure. The two-step Broadcast-Unicast-based and the Softwarecast are compared
with a hypothetical Oracle-based delivery scheme. In this delivery scheme, messages have
the perfect knowledge of the network in terms of the studied criterion and they are able
to make perfect delivery decisions. As it can be seen, both Softwarecast delivery schemes,
single-copy and multi-copy, perform better than the Broadcast-Unicast-based (0.35, 0.28
and 0.16 on average), but not as good as the maximum as seen from the Oracle-based (0.9
on average). In Figure 6(b), we analyse for the series of these simulations the number of
messages delivered for a period of 3 hours on average after v} contacts, after v5 contacts
and when the number of unique nodes contacted is exactly the maximum number of
existing nodes for the targeted destination. As expected, the first two delivery options
join the 99% of the messages delivered (42,5% for the first one and 56,8% for the second
one).

In Figure 5(b), the latency time is studied comparing the four different schemes: single-
copy Softwarecast, multi-copy Softwarecast, Oracle and two-step Broadcast-Unicast-based.
In this case, the latency for both Softwarecast, highly improves the two-step Broadcast-
Unicast-based, and they very close to the optimal one, the Oracle delivery.

In Figure 6(a), the number of hops is studied for the same series of simulations.
We see that both Softwarecast proposals employ less number of hops than the two-step
Broadcast-Unicast-based, but still, is worse than the Oracle one.

We have seen in this section, using simulations and based on a particular scenario,
that allowing messages to carry software codes to make the delivery decisions can solve
some OppNet problems like the max-k-node delivery problem. In the next section, we
propose an implementation of our proposal to show its viability in a real OppNet network.

6. Softwarecast in the Bundle Protocol

In this section, we show the viability of our proposal, introduced in Section 3, by
extending the Bundle Protocol (RFC 5050 [31]) in order to allow Softwarecast messages
to be implemented in a real OppNet. We have chosen to design our implementation in the
context of DTN networks ([9, 38]), a special type of OppNet that is based on the Bundle

20

‘ 7000
Latency (s)
6500 | 1
T | 6000 | 1
0 | 5500 | 1
o & 5000 1
g 06 1 g as00p 1
= S 4000 | 1
041 | 3500 g
0ozl | 3000 |- 1
2500 |- 1
0 2000
Oracle SC-Softwarecast MC-Softwarecast 2sBcastUcast Oracle SC-SoftwarecastMC-Softwarecast 2sBcastUcast
(a) Win ratio in (0,1) for the four group (b) Latency in seconds for the four group deliv-
delivery schemes: Oracle-based, single-copy ery schemes: Oracle-based, single-copy Software-
Softwarecast (SC-Softwarecast), multi-copy cast (SC-Softwarecast), multi-copy Softwarecast
Softwarecast (MC-Softwarecast) and two-step ~ (MC-Softwarecast) and two-step
Broadcast-Unicast-based (2sBcastUcast). Broadcast-Unicast-based (2sBcastUcast).

Figure 5: Performance studied by analysing the win ratio and the latency for four group delivery schemes:
Oracle-based, single-copy Softwarecast (SC-Softwarecast), multi-copy Softwarecast (MC-Softwarecast)
and two-step Broadcast-Unicast-based (2sBcastUcast).

60

, , 160
140 |- |
50 1
120 q
40 B
u) & 100 f 1
2 &
o 12]
2 g
5 30 1 S 80 1
: <
£ 60 4
2 20+t 1 =
40 1
10} 1
20 - 1
0 - c
Oracle SC-Softwarecast MC-Softwarecast 2sBcastUcast <=V4 <=V, <=N
(a) Number of hops per message for four group (b) Win events to analyse the proportion of mes-
delivery schemes: Oracle-based, two-step sages delivered during a period of three hours on av-
Broadcast-Unicast-based and Softwarecast erage after vj contacts, after v3 contacts and when
(multi-copy and single-copy). the number of unique nodes is exactly |N].

Figure 6: Performance studied by analysing the win ratio and the latency for four group delivery schemes:
Oracle-based, two-step Broadcast-Unicast-based and Softwarecast (multi-copy and single-copy).

Protocol. By this, we show that our proposal may be implemented and so we prove its
feasibility.

In the context of OppNet, a DTN node is a network node that implements the Bundle
Protocol (BP) [31]. Nodes in the network may host application instances that create, or
may be the destination of DTN messages (bundles) or simply messages. When a DTN
node does not host any application instance, it merely forwards messages following a given

21

routing protocol.

A Manycast message, as seen in section 3, contains a message source, its payload,
and a delivery condition. We propose in this section, to implement delivery conditions
using software mobile codes. Mobile code [34] is a well-known technology designed for
transferring software code between systems and to be executed on a remote system without
the need of an installation by the recipient.

For this purpose, we use Active-DTN [6], a DTN solution based on the Bundle Protocol
where messages have an active routing behaviour. In Active-DTN, active messages are
messages that beyond being data wrappers, they can carry software code for routing
purposes. There are three basic software codes that can be included in a Active-DTN
message : forwarding, lifetime control and priority. In this section, we explain how to
extend this network paradigm with additional software codes to achieve Softwarecast
Multicast delivery.

Active-DTN uses RFC 6258 [35], an extension block that may be used with the Bundle
Protocol that defines how a message can be extended by means of adding a set of Metadata
Extension Blocks (MEB). The purpose of MEBs, as defined in RFC 6258 [35], is to
carry additional information that nodes can use to make processing decisions regarding
messages. Active-DTN defines a Mobile code Metadata Extension Block (MMEB) as
a type of MEB with the necessary fields for the inclusion of software code for routing
purposes.

We propose to define an additional software code, the delivery software code, to include
mechanisms to be able to implement the delivery conditions presented in Section 3. This
software code will be then included in DTN messages as message extensions following
RFC 6258 [35].

However, these software codes need a state that must be kept when being forwarded
from one DTN node to another. This state represents historical information that allows
the delivery software code to be capable of performing appropriately in new environments.
Additionally, communication among forwarding and delivery software codes may be nec-
essary to be able to implement all the Manycast delivery schemes presented in Section 3.
For these purposes, we propose extending messages with a software code state that allows
precisely this: persistent data storage and inter-software codes communication.

Primary block

Mobile Code] Delivery
Metadata Extension
Block (MMEB)

State

Payload block(s)

Figure 7: MEBs fit between the primary and the payload blocks of a Bundle message.

Our proposal is to extend Bundle messages with two types of blocks: delivery and
software code state as depicted in Figure 7. These extension blocks are divided into

22

additional fields following Active-DTN as described by Borrego et al. [6].

6.1. Implementation

In this section, we describe an implementation of the extensions described in Section 3.
A first Active-DTN implementation was introduced by Borrego et al. [6]. In this section,
we will focus on the Active-DTN details concerning the requirements to implement the
Softwarecast messages in the context of the Bundle Protocol®. In Figure 8(a), an overview
of the Active-DTN implementation is presented. Two different levels are depicted in this
figure: the application level and the Bundle level.

The Bundle I/O manager is the module in charge of receiving Bundle messages from
local application instances, through the Application Manager, or from other DTN nodes.
When receiving a bundle message, the Bundle I/O manager executes, if found, its delivery
software code for every local application instance willing to receive Softwarecast messages.
Then, if the Bundle message requires being forwarded, it is enqueued in the Bundle Queue.

The Custody Manager dequeues Bundle messages when neighbours are discovered.
For every Bundle message, it executes its forwarding software code, if any, to choose
among the possible neighbours to be forwarded. If no forwarding software code is found,
a default forwarding algorithm is applied.

The Application Manager is responsible for communicating with the application in-
stances registered to the Active-DTN platform. Each application instance registers to
the platform performing a connection through a local socket. Once registered, they can
issue commands to the platform, for example indicating which Bundle messages want to
receive, send Bundle messages, etc.

Additionally, application instances and devices, such as GPS or another type of sensors,
once registered, can feed the Routing Information Table (RIT [6]), a place where software
codes may read and write information that can be used for future forwarding or delivery
decisions. Each application instance has its own table and also has access to a common
table shared among all of them. For performance reasons, tables inside the RIT are
implemented as hash tables. The RIT Manager module performs the entry cleaning in
order to prevent permanent memory exhaustion problems.

The Neighbour Discovery Module send beacons, as UDP Multicast datagrams, an-
nouncing the presence of the node and listens for beacons from other platforms. It main-
tains a neighbour table with information about the discovered neighbours which is used
by the Custody Manager to send beacons to the nearby nodes.

The Execution Manager is responsible for executing the software codes carried by the
messages. Following, we analyse the security aspects aDTN provides to guarantee security
against malicious software codes.

The software codes are executed in a virtual machine that interprets the eBPF instruc-
tion set?, but support for other software code language formats is possible by extending
the Execution Manager. For example, the first Active-DTN implementation presented by

8Source code for Softwarecast Active-DTN can be found at https://github.com/SeNDA-UAB/aDTN-
platform/tree/softwarecast
9https://www.kernel.org/doc/Documentation/networking/filter.txt

23

\- Apps \- Devices

Client Server
‘o——— START BUNDLE
bea_cops —— oK
profile info - RIT /
Neighbour SET DESTINATION <DEST>
Discoverer - 5
RIT oK
% Manager
START MMEB
Neighbour Bundle Agent
List - OK
Execution «-—
e\-NeN Manager Sec SET DELIVERY <ARCH> <CODE>
& oot Sy e
—) oK
bundles Bundle hﬁ::taodgr -
1/0 Manager (B)undle g END MMEB
&) -
OK
Queue -———————
Manager
———SEpsNOE
OK
S—
— e -
data transfer action base execution

(a) Structure of the Active-DTN platform. (b) Example of a Bundle creation protocol: a Bun-
dle is created with the forwarding MMEB and the
delivery extension.

Figure 8: Bundle extensions.

Borrego et al. [6] used standard C code executed using TinyCC as compilation back-end,
but we have found that we could improve the security of the execution while maintaining
the performance and code size using eBPF software codes. A comparative between the
two execution environments is shown later.

The eBPF architecture is an extension of the classical BPF (BSD Packet Filter [24])
instruction set with additional functionalities, like the ability to call external functions.
It has been designed to be fast and secure, and currently it is being used by the Linux
kernel to execute user-provided software code in kernel space for network packet filtering
and tracing purposes.

The eBPF instruction set only allows to perform memory accesses within its own
stack and registers, and to call a predefined set of external functions. These measures
isolate the execution from the rest of the system. Additionally, before executing an eBPF
program, the software code is statically analysed by the verifier to ensure that it can not
compromise the system. The verifier simulates the execution of the program, bounds-
checks all memory accesses and verifies that the software code will terminate by checking
that the program has at most 4096 instructions with no infinite loops. Additionally, it
ensures that all register operations are safe: it is not allowed to read a register before
setting it and each register is tracked to make sure it always has the right type of data.

An additional layer of security is provided by executing the Execution Manager as a
standalone process with a socket based interface, therefore it can be isolated in a container
or in a virtual machine.

Fast execution is achieved by compiling the software code to native code before being
executed (JIT compilation). By design, the eBPF instruction set maps to the architecture
of modern CPUs so that the JIT compilation can be performed very fast. Once native

24

Size | Compilation time | Execution time | Overall Time | Security
eBPF | 496 B | 54884 ns 360 ns 55244 ns High
C 418 B | 31625926 ns 180 ns 31626106 ns Medium

Table 1: A comparison between C and ePBF for the delivery software code for Listing 1.

compiled, the code can be cached to avoid further recompilations. Software codes are
easily written in C and then compiled to eBPF using the Clang compiler before being
included in the message.

Figure 9(a) shows the size of the compiled eBPF code and the size of the resulting
native compilation as a function of the uncompiled C code. Although it is difficult to know
the time that would take a given processor to execute a certain number of instructions,
as it highly depends on the processor architecture and the compiler optimizations, we
can see, as depicted in Figure 9(b), that the cost of compiling code from eBPF to native
bytecode and then executing it is in the order of hundred of thousands of instructions.
As a reference, a Raspberry Pi'” is capable of executing several hundreds of millions of
instructions per second (MIPS).

In Listing 1, as an example, a delivery code for the maz-k-node delivery problem for
k=1 is presented!!.

1 int forwarded = getState (0);

2 int max = getState (1);

3 int localvalue = ritGet("/localnode/value");
4+ if (forwarded > 20 && localvalue > max) A{

5 deliverMsg();

6 Y else {

7 setState (0, ++forwarded);

8 setState (1, max(max,local));

s }

Listing 1: Example of a Software Code: A Delivery Code for the max-k-node delivery problem for
k=1.

Following, we present a comparison between the previous execution environment, as
introduced by Borrego et al. [6] and the new Execution Manager presented in this study.
The results of this comparison are shown in Table 1. The compilation and execution times
are measured in a desktop computer with a Xeon X5650 processor and 18GB of RAM.
The results show that the overall execution time (compilation time + execution time) has
improved with the new Execution Manager.

The current implementation has been coded in C language and provides a simple text-
based communication API for application instances and routing algorithms to interact
with the platform. In Figure 8(b) a sending example of a Bundle message with a delivery

10The Raspberry Pi is a low cost, credit-card sized popular computer.
HThe resulting code compiled to eBPF can be found at:
https://github.com/SeNDA-UAB/aDTN-platform/tree/softwarecast/swcodes

25

code is depicted.

The software code state is initialized by adding a software code state Algorithm Type.
Both forwarding and delivery algorithms may access and modify this content by using
the setState() and getState() functions. Internally, data is stored in the last field from
the MMEB block, the Routing Metadata field, as introduced in this section. Different
variables may be stored, and its retrieval is possible without needing any additional length
fields since the state variables are delimited using an end of variable character.

800

1e+09

‘ ‘ Size of eBPF instrucions (num * 8B) - _ C—>eBPF
700 Function size (x86_64 compiled) % 16408 ell?sPF—>Natlive
@ Native execution
—_ Q
2 600 g 1o
S =
o) =
g o § Tes06
8 S
> = 100000
2 400 g
3 % 10000
2 300 =
g ——— 2 1000
2 — s
8 200 — - 100
[
Qo
100 — 5 10
P4
0 i 1
0 50 100 150 200 250 300 850 0 50 100 150 200 250 300 850
Uncompressed code length (bytes) Uncompressed code length (bytes)
(a) Compiled eBPF and native code size as a (b) Number of instructions as a function of the un-
function of uncompiled C code size. compressed software code length.

Figure 9: Software code compilation performance.

6.2. Ezperimentation

In this section, we present a real experiment to test the Active-DTN Softwarecast
implementation in the Bundle Protocol. The objective of this experimentation is to study
the performance of 100 Softwarecast messages that are sent to the 2 best nodes in the
network according to a given criteria. Messages are delivered using the delivery software
code presented in Algorithm 2.

The experimentation uses a network that consists of 8 Raspberry Pi'? (n; —ng). These
nodes are ordered following a criteria r, such that r(n;) > r(n;) if i < j.

In order to obtain intermittent connectivity among the nodes in the network, nodes
are placed together, as depicted in Figure 10, and are disconnected from certain nodes,
following a scheduled connectivity plan, using iptables'®. Every 10 seconds the INPUT,
OUTPUT and FORWARD chains from the 8 nodes are updated automatically. In the
table from Figure 10, an example of the state of the network connectivity is shown.

12Raspberry Pi Broadcom BCM2835 SoC full HD, 700MHz Low Power ARM1176JZ-F, 512MB
SDRAM, 4GB SD with Raspbian (Debian-based), equipped with a Wireless Edimax EW-7811Un
(802.11b/g/n up to 150Mbps) with WMM-Power save mode, a GPS receiver NL-302U (baud rate: 4800
bauds, IPX6 protection class), NTP and a dual output 5000mAh battery.

13 Administration tool for IPv4 packet filtering and NAT.

26

Z
o}
Q.
)
2
3
N
S
w
S
~
3
[sH
S
[
3
N
3
o

3333
N R

3
>

S
3
—ooorROOO

[oNeNeN TN NoloNe}
[Nl S oloNeNoNel
[=N N ololoNoNoNe]
HOOoOOoO,OOO

OO O OO KO
[=ReoloNoNeNSY =

S
ot
[=ReNoNoNoloNol

3
©

Figure 10: Experimentation layout and state of the network connectivity example.

We have included in these 100 messages a delivery software code that implements
the optimal stopping strategy described in Section 4.3. Messages are delivered using the
delivery software code presented in Algorithm 2. Payload size for these messages was
10K. The delivery software code size was 400 bytes. From the 100 messages sent, 35%
were optimally sent to nodes n; and no, the best ones according to criteria . The average
latency time for these messages was 83 minutes with a standard deviation of 10 minutes.

With the implementation described in Section 6.1, and the experimentation shown in
Section 6.2, we show that it is feasible to define Softwarecast messages in Opportunistic
Networks. From the implementation point of view, the most challenging part has been
covering the security aspects for the fact of including software codes within the messages.
We have found that it is possible to implement a fast and secure execution environment
that fulfils the requirements of our proposal.

7. Conclusions

In this paper, we have presented a general delivery scheme based on mobile code to
improve OppNet Manycast. This delivery scheme allows messages to carry software codes
to make the application delivery decisions, that is, whether a message should be delivered
to an application when being forwarded to a node.

Our proposal extends network addressing by moving from the static header field
paradigm to a message-built-in software-code-based addressing scheme. These software
codes may use a state also carried by the messages. The software code state allows to
implement refined delivery behaviours so accurate delivery-decision-making methods can
be performed. The result is a very powerful and versatile alternative to OppNet Manycast
because delivery decisions can be made taking into account application-defined, context-
aware or history-based conditions.

Following this delivery scheme and in order show how advantageous and powerful our
proposal is, we have presented a statistical solution to the problem of sending a message
to k and only £ nodes of an OppNet scenario that fit best a given criterion. This problem,

27

the max-k-node delivery problem, is mainly a delivery problem and it is very difficult to
be conducted using its optimal delivery method by means of traditional network schemes
like Manycast, Unicast or Broadcast. The max-k-node delivery problem is not the only
problem that can be optimally solved. Our proposal opens new pathways for Manycast
in OppNet.

Using a simulator capable of reproducing Softwarecast messages, we show that our
proposal improves traditional ways of solving the max-k-node delivery problem for k = 2
in terms of win ratio and latency. We think this alternative can be advantageous in many
OppNet cases like disconnected emergency scenarios or intermittently connected networks
of heterogeneous physical objects. Specially when the network has a large number of
heterogeneous nodes and the applications need dynamic and elaborate ways of selecting
message destinations.

We present a down-to-earth implementation in the context of a real OppNet network to
allow applications to send Softwarecast messages using the de facto standard for DTN, the
Bundle Protocol. This implementation shows to be secure, performant, reliable, effective
and powerful enough to reify our Manycast network delivery scheme.

As future lines of research, we plan to evaluate if sending first the delivery software
code without the payload information could be beneficial for the network. When doing
this, the payload message will only be forwarded if the result of the delivery software code
is positive. However, we will have to evaluate how this will affect the performance of the
network when, once decided that the message should be delivered, the contacted node
with the payload information will not be available for routing anymore.

Acknowledgements

This work was partly supported by the Catalan AGAUR 2014SGR-691 project and
the Spanish Ministry of Science and Innovation TIN2014-55243-P project. The authors
thank Cristina Fernandez for her generous help with the mathematical model and the
anonymous reviewers for their careful reading of the original manuscript and their many
insightful comments and suggestions.

References

[1] Mikael Asplund and Simin Nadjm-Tehrani. A partition-tolerant manycast algorithm for
disaster area networks. In Reliable Distributed Systems, 2009. SRDS’09. 28th IEEE Inter-
national Symposium on, pages 156-165. IEEE, 2009.

[2] Wafa Badreddine, Claude Chaudet, Federico Petruzzi, and Maria Potop-Butucaru. Broad-
cast strategies in wireless body area networks. In Proceedings of the 18th ACM International

Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems, pages
83-90. ACM, 2015.

[3] Carlos Borrego, Sergio Castillo, and Sergi Robles. Striving for sensing: Taming your mobile
code to share a robot sensor network. Information Sciences, 2014.

28

[4]

Carlos Borrego and Sergi Robles. Relative information in grid information service and grid
monitoring using mobile agents. In 7th International Conference on Practical Applications
of Agents and Multi-Agent Systems (PAAMS 2009), pages 150-158. Springer, 2009.

Carlos Borrego and Sergi Robles. A store-carry-process-and-forward paradigm for intelligent
sensor grids. Information Sciences, 222(0):113 — 125, 2013.

Carlos Borrego, Sergi Robles, Angela Fabregues, and Adrian Sanchez-Carmona. A mo-
bile code bundle extension for application-defined routing in delay and disruption tolerant
networking. Computer Networks, 87:59-77, 2015.

Raffaele Bruno, Marco Conti, and Andrea Passarella. Opportunistic networking overlays
for ICT services in crisis management. In Proceedings of International Conference on In-
formation Systems for Crisis Response and Management ISCRAM, 2008.

Casey Carter, Seung Yi, Prashant Ratanchandani, and Robin Kravets. Manycast: Explor-
ing the space between anycast and multicast in ad hoc networks. In Proceedings of the
9th annual international conference on Mobile computing and networking, pages 273-285.

ACM, 2003.

Vinton Cerf, Scott Burleigh, Adrian Hooke, Leigh Torgerson, Robert Durst, Keith Scott,
Kevin Fall, and Howard Weiss. RFC 4838, delay-tolerant networking architecture. RFC
4838 (Informational), 2007.

Loren Clare, Scott Burleigh, and Keith Scott. Endpoint naming for space delay/disruption
tolerant networking. In Aerospace Conference, 2010 IEEE, pages 1-10. IEEE, 2010.

Xia Deng, Le Chang, Jun Tao, Jianping Pan, and Jianxin Wang. Social profile-based
multicast routing scheme for delay-tolerant networks. In Communications (ICC), 2013
IEEE International Conference on, pages 1857-1861. IEEE, 2013.

Mieso K Denko. Mobile Opportunistic Networks: Architectures, Protocols and Applications.
CRC Press, 2016.

Nahideh Derakhshanfard, Masoud Sabaei, and Amir Masoud Rahmani. Sharing spray and
wait routing algorithm in opportunistic networks. Wireless Networks, pages 1-12, 2015.

Michael S Desta, Esa Hyytid, Ari Keranen, Teemu Kéarkkéinen, and Jorg Ott. Evaluating
(Geo) content sharing with the ONE simulator. In Proceedings of the 11th ACM interna-
tional symposium on Mobility management and wireless access, pages 37-40. ACM, 2013.

Moran Feldman, Ola Svensson, and Rico Zenklusen. A simple o (log log (rank))-competitive
algorithm for the matroid secretary problem. In Proceedings of the Twenty-Sizth Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 1189-1201. SIAM, 2015.

Thomas S Ferguson. Who solved the secretary problem? Statistical science, pages 282—289,
1989.

PR Freeman. The secretary problem and its extensions: A review. International Statistical
Review/Revue Internationale de Statistique, pages 189206, 1983.

29

18]

[19]

[20]

[21]

23]

[24]

[27]

[28]

[29]

[30]

Wei Gao, Qinghua Li, Bo Zhao, and Guohong Cao. Multicasting in delay tolerant networks:
a social network perspective. In Proceedings of the tenth ACM international symposium on
Mobile ad hoc networking and computing, pages 299-308. ACM, 20009.

Peng Jiang, John Bigham, and Eliane Bodanese. Adaptive service provisioning for emer-
gency communications with DTN. In Wireless Communications and Networking Conference
(WCNC), 2011 IEEE, pages 2125-2130. IEEE, 2011.

Denis V Lindley. Dynamic programming and decision theory. Applied Statistics, pages
39-51, 1961.

Ramon Marti, Sergi Robles, Abraham Martin-Campillo, and J Cucurull. Providing early
resource allocation during emergencies: The mobile triage tag. Journal of Network and
Computer Applications, 32(6):1167-1182, 2009.

Abraham Martin-Campillo, Jon Crowcroft, Eiko Yoneki, and Ramon Marti. Evaluating op-
portunistic networks in disaster scenarios. Journal of Network and Computer Applications,
36(2):870-880, 2013.

Abraham Martin-Campillo, Carles Martinez-Garcia, Jordi Cucurull, Ramon Marti, Sergi
Robles, and Joan Borrell. Mobile agents in healthcare, a distributed intelligence approach.
In Computational Intelligence in Healthcare 4, pages 49-80. Springer, 2010.

Steven McCanne and Van Jacobson. The BSD packet filter: A new architecture for user-
level packet capture. In Proceedings of the USENIX Winter 1993 Conference Proceedings
on USENIX Winter 1993 Conference Proceedings, pages 2—2. USENIX Association, 1993.

Samuel C Nelson, Yih-Chun Hu, and Robin Kravets. Anycast, multicast and beyond: The
role of manycast in DTN communication. 2011.

Stephen S Nestinger, Bo Chen, and Harry H Cheng. A mobile agent-based framework for
flexible automation systems. IEEE/Asme Transactions on Mechatronics, 15(6):942-951,
2010.

ML Nikolaev. On a generalization of the best choice problem. Theory of Probability & Its
Applications, 22(1):187-190, 1977.

Biren Patel and Vijay Chavda. Comparative Study of DTN Routing Protocols. Interna-
tional Journal of Advanced Research in Computer and Communication Engineering, 4(5),
2015.

Aniket Pramanik, Biplav Choudhury, Tameem S Choudhury, Wasim Arif, and J Mehedi.
Simulative study of random waypoint mobility model for mobile ad hoc networks. In
Communication Technologies (GCCT), 2015 Global Conference on, pages 112-116. IEEE,
2015.

Adridn Sanchez-Carmona, Sergi Robles, and Carlos Borrego. Endeavouring to be in the
good books. Awarding DTN network use for acknowledging the reception of bundles. Com-
puter Networks, 83:149-166, 2015.

30

31]

[32]

[33]

[34]

[35]

[36]

Keith L Scott and Scott Burleigh. Bundle protocol specification. RFC 5050 (Experimental),
November 2007.

Vasco NGJ Soares, Joel JPC Rodrigues, and Farid Farahmand. GeoSpray: A geographic
routing protocol for vehicular delay-tolerant networks. Information Fusion, 15:102-113,
2014.

Thrasyvoulos Spyropoulos, Konstantinos Psounis, and Cauligi S Raghavendra. Spray and
wait: an efficient routing scheme for intermittently connected mobile networks. In Proceed-
ings of the 2005 ACM SIGCOMM workshop on Delay-tolerant networking, pages 252-259.
ACM, 2005.

Shashank Srivastava, Divya Kumar, and Shuchi Chandra. Trust analysis of execution
platform for self protected mobile code. In Advances in Computing, Communications and
Informatics (ICACCI), 2015 International Conference on, pages 1904-1909. IEEE, 2015.

Susan Symington. Delay-tolerant networking metadata extension block, 2011.

M Tamaki. Recognizing both the maximum and the second maximum of a sequence. Journal
of Applied Probability, pages 803-812, 1979.

Sergio Martinez Tornell, Carlos Miguel Tavares Calafate, Juan-Carlos Cano, and Pietro
Manzoni. DTN Protocols for Vehicular Networks: An Application Oriented Overview.
IEEE Communications Surveys and Tutorials, 17(2):868-887, 2015.

Athanasios V Vasilakos, Yan Zhang, and Thrasyvoulos Spyropoulos. Delay tolerant net-
works: Protocols and applications. CRC press, 2016.

Felix Wortmann, Kristina Fliichter, et al. Internet of things. Business & Information
Systems Engineering, 57(3):221-224, 2015.

Jie Wu and Yunsheng Wang. Opportunistic Mobile Social Networks. CRC Press, 2014.

Peng Yang and Mooi Choo Chuah. Context-aware multicast routing scheme for disruption
tolerant networks. In Proceedings of the 8rd ACM international workshop on Performance
evaluation of wireless ad hoc, sensor and ubiquitous networks, pages 66-73. ACM, 2006.

Zhong Zheng and Yijie Wang. SemanticCast: Content-Based data distribution over self-
organizing semantic overlay networks. In Parallel and Distributed Computing, Applications
and Technologies (PDCAT), 2010 International Conference on, pages 42-49. IEEE, 2010.

31

	Introduction
	State of the art
	Softwarecast: a general group scheme for Manycast delivery
	Softwarecast Messages
	Delivery Software code
	Summary

	Practical application
	 The max-k-node delivery problem
	Optimal Delivery Method
	Statistical solution for the max-k-node delivery problem

	Manycast Problem k=2
	Softwarecast Approach for solving the max-k-node delivery problem

	Simulation Results
	Settings
	Scenario study
	Comparing to traditional approaches

	Softwarecast in the Bundle Protocol
	Implementation
	Experimentation

	Conclusions

	Texto1: This is the accepted version of the following article: Borrego Iglesias, Carlos; Robles Martínez, Sergi; García-Vandellós, Gerard. Softwarecast: A code-based delivery Manycast scheme in heterogeneous and Opportunistic Ad Hoc Networks. Ad Hoc Networks, Vol. 55 (February 2017), p. 72-86, which has been published in final form at https://doi.org/10.1016/j.adhoc.2016.09.022. © 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

