
ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús
establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184

ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso
establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/

WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set
by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en

Towards a better understanding of Bitcoin:
from system analyses to new protocol designs

Author: Advisors:
SERGI DELGADO SEGURA DR. JORDI HERRERA JOANCOMARTÍ

DR. GUILLERMO NAVARRO ARRIBAS

Departament d’Enginyeria de la Informació i de les Comunicacions
UNIVERSITAT AUTÒNOMA DE BARCELONA

A dissertation submitted to the Universitat Autònoma de Barcelona
in accordance with the requirements of the degree of DOCTOR OF

PHILOSOPHY in Computer Science.

JULY 2018

I certify that I have read this thesis entitled "Towards a better under-
standing of Bitcoin: from system analyses to new protocol designs"
and that in my opinion it is fully adequate, in scope and in quality, as
a dissertation for the degree of Doctor of Philosophy.

Cerdanyola del Vallès, July 2018

Dr. Jordi Herrera Joancomartí Dr. Guillermo Navarro Arribas

(Advisor) (Advisor)

i

Als meus pares

iii

ABSTRACT

Bitcoin has kicked off one of the biggest paradigm shifts of the last century
regarding how we understand and use money. The birth of criptocurrencies lays
the foundations of a new financial system, where the need of trusted third parties,
or central authorities, has been replaced by cryptography and an open flow of
information between all the actors of the system. By sharing all the information
regarding the operations of the system, all users can eventually agree in a
distributed ledger, known as blockchain. Such a paradigm shift, however, poses
some threads that, if not properly handled, may compromise the security of the
system.

In this thesis we have studied two of the core components of Bitcoin: its
P2P network, and the set of unspent Bitcoins. Such analysis aimed to spot the
strengths and weaknesses of the system in order to design solutions for them.
The outcomes of our analyses have been, on the one side, characterizing the
cryptocurrency P2P networks and, on the other side, spotting one of the current
Bitcoin scalability problems: the unprofitable coins.

Moreover, after analysing the system and obtaining a deep understanding of
it, the thesis has focused on designing protocols to extend Bitcoin’s functionality
in different payment scenarios. First, we have designed a solution to reduce the
likelihood of a merchant of being deceived when accepting zero-confirmation
transactions. Finally, we have designed a fair protocol for data trading using
Bitcoin, where the exchange between data and coins is performed atomically.

v

RESUM

Bitcoin ha donat peu a un dels majors canvis de paradigma de l’últim segle
respecte a com entenem i utilitzem els diners. El naixement de les criptomonedes
ha obert la porta a un sistema econòmic distribuït on la necessitat de terceres
parts de confiança, o d’entitats centrals, ha estat substituïda per la criptografia i
el flux obert d’informació entre tots els actors del sistema, construint d’aquesta
forma un registre de transaccions comú conegut com a blockchain. Aquest canvi
de paradigma, però, comporta certes implicacions que, de no ser tractades adient-
ment, poden comprometre la seguretat del sistema.

En aquesta tesis ens hem centrat en analitzar dos dels grans components de
Bitcoin: la seva xarxa P2P i el conjunt de monedes en circulació. Amb aquest
anàlisis es pretén identificar els punts forts i les febleses de Bitcoin, amb l’objectiu
de proposar solucions i/o millores per aquestes. Aquests anàlisis ens han permès,
per una banda, caracteritzar les xarxes P2P de criptomonedes, i, per altra banda,
identificar un dels actuals problemes d’escalabilitat de Bitcoin: les monedes no
rentables.

D’altra banda, i un cop assolit un coneixement suficient del sistema, la tesis
s’ha centrat en el disseny de protocols per estendre la funcionalitat de Bitcoin
en diferents escenaris de pagament. A més a més, s’ha proposat una solució per
reduir la probabilitat de ser estafat a l’utilitzar transaccions sense confirmar. I
finalment, s’ha dissenyat un protocol de compra-venta de dades utilitzant Bitcoin,
eliminant la necessitat inherent de confiança per part del comprador.

vii

ACKNOWLEDGEMENTS

En primer lloc vull donar les gràcies als meus directors, en Jordi Herrera i
en Guillermo Navarro, per confiar en mi i donar-me l’oportunitat de realitzar
aquesta tesi, pel seu suport incondicional, i per tot el que m’han ensenyat durant
aquests tres anys de tesi. M’agradaria estendre aquest agraïment a la meva
companya Cristina Pérez, amb qui he estat treballant els darrers dos anys, i
sense qui aquesta tesi tampoc hagués estat possible.

I would also like to express my most sincere gratitude to Andrew Miller for
accepting me as a visiting scholar at the UIUC and for providing me guidance
throughout the months I stayed there. It has been a pleasure having the oppor-
tunity to work with him. I would also like to thank the guys at UIUC: Surya,
Kevin, Hanyun, Tom, Deepak, Riccardo and Zane, you really made me enjoy my
stay in Illinois.

A tots els membres del grup de recerca SeNDA, i a la resta de docents
del departament, que m’heu guiat des del meu pas com a estudiant fins a la
finalització de la tesi.

Als meus companys de penúries, a en Carlos, la Sara, l’Iván, en Roger i a la
resta dels anomenats pifos, per tots el grans moments viscuts durant aquests
anys, pel suport moral, i per la quantitat de problemes resolts entre pissarres i
dinars.

Al Jose i l’Andreu, per ser-hi, sempre, i per fer aquest camí infinitament més
divertit. A la Clàudia i a la Núria, perquè amb vosaltres vaig poder tornar a
gaudir de la muntanya que tant m’estimo, i que m’ha permès desconnectar més
m’ha fet falta.

Als de casa, en especial al meus pares, per ensenyar-me a buscar la millor
versió de mi, i per recolzar-me de forma incondicional. I finalment a la Laia, per
acompanyar-me durant el camí, per ser al meu costat i ajudar-me, per aguantar
les meves xerrades sobre temes inintel·ligibles, per tot.

Gràcies.

ix

TABLE OF CONTENTS

Page

List of Tables xv

List of Figures xvii

1 Introduction 1
1.1 Motivation . 1

1.2 Objectives . 3

1.3 Contributions . 3

1.4 Thesis outline . 5

2 Bitcoin and blockchain 7
2.1 The origin of cryptocurrencies . 7

2.2 Bitcoin transactions . 8

2.2.1 The Bitcoin scripting language 10

2.2.2 Time-locked transactions . 13

2.2.3 Hash-locked transactions . 14

2.3 Blocks and mining . 15

2.3.1 Blockchain forks . 17

2.3.2 The append-only property . 18

2.4 The underlying P2P network . 18

2.4.1 Unconfirmed transactions 19

2.4.2 Double-spending transactions 19

xi

TABLE OF CONTENTS

2.5 Double-spending attacks . 20

3 Characterizing cryptocurrency P2P networks 23
3.1 Description of the Bitcoin P2P network 23

3.1.1 Properties describing Bitcoin nodes 24

3.1.2 Network overview . 27

3.2 Network characterization . 29

3.2.1 Decentralization . 30

3.2.2 Architecture . 30

3.2.3 Lookup protocol . 30

3.2.4 System parameters . 32

3.2.5 Routing performance . 32

3.2.6 Routing state . 32

3.2.7 Peers join and leave . 33

3.2.8 Reliability and fault resiliency 34

3.2.9 Security . 35

3.3 Security concerns in P2P networks 35

3.3.1 DoS Flooding . 36

3.3.2 Eclipse attacks . 37

3.3.3 User profiling . 38

3.3.4 Other attacks . 39

3.4 Conclusions . 45

4 Analysis of the Bitcoin UTXO set 47
4.1 The UTXO set . 48

4.1.1 The UTXO Bitcoin Core 0.14 format 49

4.1.2 The UTXO Bitcoin Core 0.15 format 50

4.1.3 STATUS: The UTXO analytic tool 50

4.2 UTXO set analysis . 51

4.2.1 General view . 51

4.2.2 Dust and unprofitable UTXOs 54

4.2.3 Height . 61

xii

TABLE OF CONTENTS

4.2.4 Non-standard . 63

4.3 Conclusions . 65

5 Bitcoin Private Key Locked Transactions 67
5.1 Private key locked transactions . 67

5.1.1 Designing a new Bitcoin opcode 68

5.1.2 ECDSA vulnerability . 69

5.1.3 Private key disclose mechanism 70

5.1.4 Implementation . 72

5.2 Conclusions . 76

6 Double-spending Prevention for Bitcoin zero-confirmation trans-
actions 77
6.1 Bitcoin transactions propagation . 78

6.2 Double-spending prevention mechanism 78

6.2.1 Basic prevention mechanism 80

6.2.2 Disincentive-based prevention mechanism 83

6.3 Implementation details . 85

6.4 Proposal analysis . 87

6.5 Conclusions . 92

7 A fair protocol for data trading based on Bitcoin transactions 93
7.1 Fair exchange protocols . 94

7.2 Private key locked transactions . 95

7.2.1 ECDSA vulnerability . 95

7.3 The data trading protocol . 96

7.3.1 Protocol description . 97

7.3.2 Implementation details . 101

7.3.3 Protocol fairness discussion 102

7.4 Conclusions . 106

8 Conclusions 107

xiii

TABLE OF CONTENTS

8.1 Conclusions . 107

8.2 Future work . 109

Bibliography 111

xiv

LIST OF TABLES

TABLE Page

4.1 UTXO set overview. 52

4.2 UTXO types. 54

4.3 Minimum-input size summary. 58

4.4 Multisig analysis. 64

6.1 Notation summary. 87

xv

LIST OF FIGURES

FIGURE Page

2.1 Generic transaction structure. 9

2.2 Time-locked transaction abstraction. 14

2.3 Hash-locked transaction abstraction. 15

2.4 Generic block structure. 16

2.5 Double-spending transactions. 20

3.1 Bitcoin node classification. 25

3.2 Network taxonomy abstraction. 28

4.1 Number of UTXOs per transaction. 53

4.2 Amount of bitcoins per UTXO (in satoshis). 55

4.3 Evolution of fees. 59

4.4 Percentage of dust/unprofitable UTXOs w.r.t. fee-per-byte. 60

4.5 Percentage of occupied space w.r.t. fee-per-byte rate. 61

4.6 Percentage of economic value w.r.t. fee-per-byte rate. 62

4.7 Height per transaction/UTXO. 63

4.8 UTXO type evolution by height. 64

4.9 Coinbase evolution by height. 65

5.1 Transactions involved in the scheme. 72

5.2 Bitcoin signature format. 73

5.3 Values used in the proposed script. 73

xvii

LIST OF FIGURES

6.1 Creation of the funding transaction. 81

6.2 Fast payment transaction. 82

6.3 Transactions involved in the scheme. 83

6.4 Values used in the proposed script. 86

6.5 Protocol flow chart. 88

6.6 Parties payoffs for σ= γ. 90

7.1 Transactions involved in the scheme. 96

7.2 Fair data trading protocol. 99

7.3 Split and encrypt procedure. 100

7.4 Probability of deception Ω. 104

xviii

C
H

A
P

T
E

R

1
INTRODUCTION

This thesis aims to fill some of the gaps found in the literature regarding

Bitcoin. At the time of starting the thesis, some of the insights of how Bit-

coin works where mainly unknown especially in the research community.

Such situation has drastically changed in the recent years, with an increasing

dedication from the research community towards analysing all the bits Bitcoin

is made of, helping turning the system into a more robust one. However, both

the number of users and the market capitalization of Bitcoin have drastically

increased over the last years, making the system more attractive for malicious

users to tamper with. Therefore, more effort need to be devoted to ensure the

security of the system.

1.1 Motivation

Bitcoin was born during the worst financial crisis since the Great Depression of

1929. The current economic system and the role played especially by banks helped

1

CHAPTER 1. INTRODUCTION

to magnify the catastrophic outcome of such a crisis, from which some countries

are still struggling to emerge after almost a decade. Some hints given by the

author of Bitcoin1, Satoshi Nakamoto, makes us believe that the main goal of his

system was indeed to provide an alternative to banks, giving people full control

over their money without the need to trust in a system that has proven to be

flawed throughout the recent history. Bitcoin introduced the concept of blockchain,

an append only ledger to keep track of transactions, by putting together several

other concepts from the late ‘90s and early 2000s [80], such as digital cash [27, 28],

linked timestamping [10, 54, 55], merkle trees [76], proof-of-work [6, 43, 60],

etc. After the whitepaper describing Bitcoin was made public (November 2008)

and the first version of the code was finally released (January 2009), it draw

the attention of people from different areas: from decentralization maximalists,

cryptographers and researchers to enthusiasts who believed a better economic

system was possible. The system started as not much than a toy to play with for

most, but as a promise of something bigger from people who was willing to invest

his time to make the system succeed. The development of Bitcoin during the

following years was made by a large open source community of developers, with

close attention from researches who made contributions towards strengthening

the security of the system. Several hundreds new cryptocurrencies were created

over the years, some tweaking Bitcoin (ie: Litecoin or Dogecoin) and others using

the concept of blockchain to create their own distinct system (CryptoNote or

ZCash). Nowadays Bitcoin, and the hundreds of other cryptocurrencies that have

been created so far, have set the foundations towards a greater decentralization,

first in terms of economics, but also in governance and trust. We are, however, in

the early years of such a new fascinating technology, and therefore, open issues

need to be dealt with and some questions need to be answered in order to make

Bitcoin an actual alternative to fiat: from scalability issues, such as the number

of transactions per second the system can process, or the space required to store

the blockchain, to potential decentralization issues both in mining power (i.e. is

1Text found in the coinbase of the genesis block: "The Times 03/Jan/2009 Chancellor on brink of
second bailout for banks"

2

1.2. OBJECTIVES

there someone controlling and outstanding portion of the hash power?) and in

connectivity (i.e: do super nodes or bridge nodes exist?) or even usage issues, such

as fees being abnormally high, etc.

1.2 Objectives

In such a scenario, and focusing on Bitcoin, the work included in this thesis aims

to extend the knowledge and requirements of the system and to define solutions

towards a more robust, fair, and optimal system. The objective of the thesis is

twofold:

• To extend the current knowledge of the system and to analyse the issues it

may have, in order to design possible solutions.

• To provide protocols and solutions to extend the functionality of the system,

and to fill the gaps the system may have.

1.3 Contributions

This thesis has followed two main lines of work:

• Analysing the Bitcoin system and spotting potential problems.

• Designing protocols and solutions to extend Bitcoin’s functionality.

On the one hand, and regarding the analysis performed in the thesis, the

study has focused mainly in two parts. First, the Peer-to-Peer network the Bitcoin

systems builds on top of, and secondly, the set of unspent transactions outputs

required by the system to create new transactions. In this line of work, we have

made the following contributions:

1. Pérez-Solà, C., Delgado-Segura, S., Navarro-Arribas, G., and Herrera-

Joancomartí, J. Another coin bites the dust: An analysis of dust in UTXO

based cryptocurrencies, submitted to Royal Society Open Science.

3

CHAPTER 1. INTRODUCTION

2. Delgado-Segura, S., Pérez-Solà, C., Navarro-Arribas, G., and Herrera-

Joancomartí, J. Analysis of the Bitcoin UTXO set, The 5th Workshop on
Bitcoin and Blockchain Research (BITCOIN’18), 2018.

3. Delgado-Segura, S., Pérez-Solà, C., Herrera-Joancomartí, J., Navarro-

Arribas, G., and Borrell, J. Cryptocurrency networks: a new P2P paradigm,

Mobile Information Systems, 2018.

4. Delgado-Segura, S., Pérez-Solà, C., Navarro-Arribas, G., Herrera-

Joancomartí, J., and Borrell, J. Survey of network based attacks to the

Bitcoin P2P network,Actas de la XIV Reunión Española de Criptología y
Seguridad de la Información (RECSI 2016), 2016.

On the other hand, we have designed a new type of transaction within Bitcoin,

and two additional protocols that build on top of such a new transaction type.

The first of the protocols aims to give a solution to one of the typical user experi-

ence problems when using Bitcoin: transaction confirmation times. Our solution

takes advantage of zero-confirmation transactions while reducing the odds of the

merchant being deceived. The second proposed solution aims to remove the trust

users have to put in merchants when performing Bitcoin transactions. Bitcoin

transactions are final once they have been included in the blockchain, and no

reimbursement is possible if the recipient of the transaction does not agree on

doing so. Therefore, when creating a transactions customers have to trust that

merchants will deliver the product / service. Our protocol proposes a solution to

deal with such an inherent problem by providing an atomic way of exchanging

data for bitcoins. The following contributions have been made in the current line

of work:

5. Pérez-Solá, C., Delgado-Segura, S., Navarro-Arribas, G. and Herrera-

Joancomartí, J. Double-spending Prevention for Bitcoin zero-confirmation

transactions, submitted to International Journal of Information Security.

4

1.4. THESIS OUTLINE

6. Delgado-Segura, S., Pérez-Solà, C., Navarro-Arribas, G., and Herrera-

Joancomartí, J. A fair protocol for data trading based on Bitcoin trans-

actions, Future Generation Computer Systems, 2017, ISSN 0167-739X.

7. Delgado-Segura, S., Pérez-Solà, C., Herrera-Joancomartí, J., and Navarro-

Arribas, G. Bitcoin Private Key Locked Transactions, submitted to Infor-
mation Processing Letters.

8. Delgado-Segura, S., Tanas, C. and Herrera-Joancomartí, J. (2016). Reputa-

tion and Reward: Two Sides of the Same Bitcoin, Sensors, 2016, 16(6), p.

776.

9. Tanas, C., Delgado-Segura, S. and Herrera-Joancomartí, J. An Integrated

Reward and Reputation Mechanism for MCS Preserving Users Privacy,

International Workshop on Data Privacy Management, 2015, pp. 83-99.

1.4 Thesis outline

The rest of the thesis is structured as follows:

First, Chapter 2 introduces some of the preliminary concepts the thesis builds

on, along with a review of the current state of the art in such topics. From that

point on, the thesis is split into two parts, a first analytical one (chapters 3-4),

in which some of the parts of Bitcoin are analysed and reviewed, and a more

practical one (chapters 5-7), in which some proposals and protocols over Bitcoin

are designed.

Later, Chapter 3 analyses the Bitcoin P2P network especially focusing in its

security properties in order to characterize the requirements of cryptocurrency

P2P network.

Afterwards, Chapter 4 analyses the Bitcoin set of unspent transaction outputs,

introducing its design and showing statistical data about its content. The analysis

pays especial attention to dust and unprofitable outputs.

5

CHAPTER 1. INTRODUCTION

Beginning the second part of the thesis, Chapter 5 presents private key locked

transactions (PKLT), a new type of transactions where a private key is atomically

exchanged within a Bitcoin transaction.

Chapter 6 introduces the design of a double-spending prevention mechanism

for zero-confirmations transactions based on PKLT, ECDSA and the Bitcoin

scripting language.

Later, Chapter 7 introduces a fair protocol for data trading based on bitcoin

transactions which also uses PKLT as a building block.

Finally, Chapter 8 concludes the thesis and gives some guidelines for future

work.

6

C
H

A
P

T
E

R

2
BITCOIN AND BLOCKCHAIN

This chapter introduces the two main topics the thesis fits into, namely

Bitcoin and blockchain, which will be dealt with throughout the rest of

the thesis. First we will give a brief overview on both concepts along

with their origin and purpose. Afterwards, we will jump into their foundations

and what makes them an interesting research topic. Finally, we will introduce

some of the topics that will be further analysed in later chapters, such as the

Bitcoin P2P network (Chapter 3), the UTXO set (Chapter 4) and double-spending

transactions (Chapter 6).

2.1 The origin of cryptocurrencies

Bitcoin [79] is the first decentralized cryptocurrency to have ever existed and

succeeded. It was released as an open source code project in 2009 by someone

under the pseudonym of Satoshi Nakamoto and his creation laid the foundations

for the design and deployment of a plethora of different cryptocurrencies, which at

7

CHAPTER 2. BITCOIN AND BLOCKCHAIN

the time of writing surpasses 1500. Bitcoin introduced the concept of blockchain,

an append only distributed data structure shared among the users of the system

that acts as a ledger in most of the deployed cryptocurrencies. Entries in such

a ledger are known as transactions, and are used to keep track of the value

transfer between different actors in the system. Transactions encapsulate the

transfer of value within the currency and require a proof of ownership of the coins

by the sender, in most cases fulfilled by providing a digital signature, and the

knowledge of a destination point, normally bound to an address. Transactions are

not confirmed until included in the blockchain. Such inclusion is not performed

one by one but grouped and encapsulated in blocks, the data structure the

blockchain is made of. The process of creating blocks is known as mining and it

is performed by miners. Each block contains a hash pointer to the previous block,

creating in that way a chain of blocks, which gives name to the technology.

2.2 Bitcoin transactions

Bitcoin transactions are, along with blocks, one of the two entities the Bitcoin

protocol builds on top of. Transactions are used to transfer coins between different

users of the system. A transaction is basically formed by two data structures: the

inputs, containing references to the coins that will be spent, and the outputs,

containing information regarding the coins that will be created. The actual

structure of a transaction can be found depicted in Figure 2.1. When a transaction

is created, a coin is spent for each one of its inputs, and a new coin is created for

each of its outputs.

Coins are also referred to as unspent transaction outputs (UTXOs) that

are, as the name already suggests, non-spent outputs from previously created

transactions. Coins consist of two main fields, the value and the output script.

The value of a coin is a pretty straightforward concept that defines how many

bitcoins the coin is worth, whereas the output script defines the conditions under

which the coin can be spent. Such conditions are encoded as scripts (using the

Bitcoin scripting language), and the most common one links the coin to a certain

8

2.2. BITCOIN TRANSACTIONS

version #inputs #outputs nLockTime

4-byte var size var size 4-byte

value scriptPubKeyscriptPubKey length

8-byte var size var size

prev_out_index scriptSig length scriptSig nSequenceprev_tx_id

32-byte 4-byte 4-bytevar size var size

inputs outputs

Figure 2.1: Generic transaction structure.

Bitcoin address. A coin can be referenced by its outpoint, a two-field structure

that uniquely identifies it. The outpoint consists of the id (prev_tx_id) and the

output index (prev_out_index) of the transaction that created the coin.

Coins can be redeemed by referencing them in the inputs of a transaction, i.e.

by including the coin outpoint. Moreover, a proof of ownership of the coins should

be provided for each coin the transactions tries to redeem, otherwise anyone will

be able to spend any coin. Such proof is encoded in the input script field of each

input which contains, in the most common case, a signature.

Regarding signatures and Bitcoin addresses, Bitcoin uses the Ecliptic Curve

Digital Signature Algorithm (ECDSA), with the secp256k1 elliptic curve, as the

cryptographic algorithm under the hood [63]. Users in the system are required

to hold at least one key pair (K = {sk, pk}) to send and receive transactions. The

secret key (sk) is used to perform digital signatures over transactions when

required, whereas the public key (pk) is used as an endpoint to send coins to. A

Bitcoin address is a simplification of a public key in the form of Base58 encoded

160-bit hash, and it is the most common type of Bitcoin transaction end point as

of today.

9

CHAPTER 2. BITCOIN AND BLOCKCHAIN

2.2.1 The Bitcoin scripting language

Bitcoin uses a stack based non-Turing-complete scripting language with no loops

known as Script to encode both input and output scripts. Two different clauses

can be found in Script, operation codes (opcodes) that define some functionality,

such as addition, subtraction, signature validation, etc, and regular data, that is

used as input of the aforementioned opcodes. Scripts work in pairs, when an out-

put script is created certain locking conditions are specified in the scriptPubKey

field. Such conditions state how the output can be redeemed. When a new trans-

action is created each input must provide proof of fulfilment of the conditions

in the form of a script, placed in the scriptSig field, and pass a correctness

validation. The correctness of a script is validated by evaluating both parts of

the script, namely the scriptPubKey of the UTXO and the scriptSig of the

input, one after the other, and analysing the final result. To do so both scripts are

pushed into the stack starting from the scriptPubKey. If the script evaluates

to true, the correctness is verified, otherwise the script is invalid making the

transaction also invalid. At the time of writing, five type of standard scripts can

be found within Bitcoin1.

Pay-to-PubKey (P2PK) is a fairly simple type of script that allows to send

coins to a given public key. The input script for P2PK scripts contains only a

signature, whereas the output script contains a public key and an opcode to

validate signatures.

ScriptPubKey: <pubKey> OP_CHECKSIG

ScriptSig: <sig>

When both scripts are put together OP_CHECKSIG validates if the provided

public key can validate the provided signature. If the validation succeeds, the

script is valid, otherwise it fails. P2PK scripts where broadly used during the

1Excluding the recently defined SegWit scripts.

10

2.2. BITCOIN TRANSACTIONS

early years of Bitcoin, however, nowadays their use has been drastically reduced

in favour of Pay-to-PubkeyHash scripts.

Pay-to-PubkeyHash (P2PKH) is a more secure type of script than P2PK that

pays to a public key hash (Bitcoin address) instead of a public key.

ScriptPubKey: OP_DUP OP_HASH160 <hash160(pubKey)> OP_EQUAL

OP_CHECKSIG

ScriptSig: <sig> <pubKey>

Regarding the script structure, the input script contains a signature and a

public key, whereas the output script contains several opcodes and a simplified

form of a Bitcoin address (ripemd160 hash). When executed, the script duplicates

the public key and the ripemd160 hash is computed over it, then the resulting

hash is compared with the provided one, and finally, the signature is validated

with the public key. If all the execution succeeds, the script is valid, otherwise it

fails, invalidating the transaction.

Pay-to-multisig (P2MS), also known as bare multisig, or M-of-N multisig, is a

type of script that allows multiple actors to be involved in the fulfilment of the

requirements to spend a certain coin. The script is designed to allow up to N
users to take part in the transactions signature, where at least M are required.

The script structure looks as follows:

ScriptPubKey: OP_N <pk1> <pk2> ... <pkN> OP_CHECKMULTISIG

ScriptSig: OP_0 <sig1> <sig2> ... <sigm>

Any combination of M signatures will verify to true, whereas if less than M

signatures are provided, the script will fail. It is worth noting that signatures

need to be provided in the same order the public keys where specified in the out-

put script. Moreover, only scripts up to 20-of-20 will be accepted by the network,

11

CHAPTER 2. BITCOIN AND BLOCKCHAIN

whereas only up to 3-of-3 are considered standard.

Pay-to-ScriptHash (P2SH) is a smarter type of script that hides the conditions

to be fulfilled behind a hash. P2SH scripts allow, for instance, the creation of

standard P2MS scripts up to 20-of-20, the creation of hash puzzles [19], etc.

Moreover, being the output script hidden behind a hash, no other user but

the creator of the coin should know how it can be spent. Finally, P2SH scripts

generate smaller output scripts, which are beneficial for coin storage and pass

most of the fees to be paid to the redeemer of a coin instead its creator, reducing

the costs of creating them. We will see the importance of optimizing the storage

of coins and the importance of fees later on in Chapter 4.

ScriptPubKey: OP_HASH160 <hash160(redeemScript)> OP_EQUAL

ScriptSig: <data> <redeemScript>

P2SH require a two step verification. First the provided redeemScript is

hashed and compared with the hash provided in the coin referred by the input

script. If the validation holds then the data is evaluated over the redeemScript.

If both evaluations pass, the script is valid, otherwise the script fails.

OP_Return, or null data scripts, are the only kind of standard scripts that do

not generate any coin, making it impossible to redeem from an output of such a

type. They are intended for storing arbitrary data in the blockchain up to a limit.

ScriptPubKey: OP_Return <0 to 83 bytes of data>

However, some conditions do apply: Every transaction can only have a single

OP_Return output, and such output value must be 0.

12

2.2. BITCOIN TRANSACTIONS

2.2.2 Time-locked transactions

At this point, we have introduced the most common way of locking transactions,

namely signature locked transactions, which require a signature performed

with a specific private key to be redeemed. However, other types of locks can

be enforced by Bitcoin transactions in order to create more complex redeem

conditions.

Time-locked transactions are those that require a certain time in the future to

be reached in order to be redeemed. Any transaction spending from a time-locked

transaction whose time lock has not been fulfilled will be dropped and therefore,

not rellayed to any other peer in the network. Depending on whether the future

time is absolute to Bitcoin, or relative to the transaction publishing time, two

types of time-locks can be found. On the one hand, absolute time-locks, those

based on the CheckLockTimeVerify opcode [103], establish a fixed date in the

future from when the transaction can be redeemed. Down below an example

of such time-lock (locked until 2022/12/13), along with a standard signature, is

provided:

ScriptPubKey: <2022/12/13> OP_CHECKLOCKTIMEVERIFY OP_DROP

<pubKey> OP_CHECKSIG

ScriptSig: <sig>

On the other hand, relative time-locks can be included in transaction through

the CheckSequenceVerify opcode. Relative time-locks establish an amount of

time to be elapsed before any future transaction spending from the locked one

can redeem it. Such elapsed time is counted from the transaction publishing time

(i.e. when a block is created including such a transaction). An example of such

time-lock (locked for 25 days), together with a traditional signature, can be found

as follows:

13

CHAPTER 2. BITCOIN AND BLOCKCHAIN

ScriptPubKey: <25d> OP_CHECKSEQUENCEVERIFY OP_DROP

<pubKey> OP_CHECKSIG

ScriptSig: <sig>

Notice that in both examples the ScriptSig, included in the transaction that

will spent the output, does not contain any time reference since the transaction

creation time is used to check the time-locks. Moreover, both examples include

a traditional signature lock. The reason behind this second lock is to restrict

the redeemer to a single person, otherwise anyone will be able to spend the

output once the requested time has been reached. Figure 2.2 depicts a general

time-locked transaction and can be seen as a representation of any of the two

introduced types.

From: Someone

Someone

1 BTC

Signed:

To: Alice
Required to unlock:

1 BTC

From: Alice 1 BTC

Signed:

To: Someone else
Required to unlock:

1 BTC

Someone else signature

m

wait until

Alice Signature

Alice

Figure 2.2: Time-locked transaction abstraction.

2.2.3 Hash-locked transactions

Hash locks are yet another type of locking conditions used within Bitcoin trans-

actions, where the knowledge of the preimage of a hash is required to redeem an

output.

ScriptPubKey: OP_SHA256 <value_hash> OP_EQUAL

ScriptSig: <value>

14

2.3. BLOCKS AND MINING

Figure 2.3 depicts an abstraction of a hash-locked transaction. Hash-locks can

be used along with time-locks and signature-locks to create smarter scripts, like

in some well known Bitcoin scaling proposals such as the Lightning Network [88],

or the Duplex Micropayment Channels [35].

From: Someone

Someone

1 BTC

Signed:

To: Someone else
Required to unlock:

1 BTC

From: Someone who knows m 1 BTC

Provided values:

To: Whoever met the conditions
Required to unlock:

1 BTC

Some conditions

m

h

Provide m | H(m) = h

Figure 2.3: Hash-locked transaction abstraction.

2.3 Blocks and mining

Transactions are included in the blockchain at time intervals rather than in

a flow fashion. Such addition is performed by collecting all new transactions

of the system, compiling them together in a data structure called block and

including the block at the top of the blockchain. Every time a block containing a

specific transaction is included in the blockchain such transaction is said to be a

confirmed transaction, since it can be checked for double-spending prevention

from that point on.

Blocks are data structures that mainly contain a set of transactions that

have been performed in the system (see Figure 2.4). In order to achieve the

append-only property, the inclusion of a block in the blockchain was designed

to be a hard problem, so adding blocks to the blockchain is both time and work

consuming. Furthermore, every block is indexed using its hash value and every

new block contains the hash value of the previous one (see prev_block_hash

field in Figure 2.4). Such mechanism ensures that the modification of a block

15

CHAPTER 2. BITCOIN AND BLOCKCHAIN

magic number block size #transactions transactions

4-byte var size
(1-9 bytes)

4-byte

prev_block_hash merkle_root_hash timestamp targetversion

4-byte 32-byte 4-byte4-byte

80-byte

nonce

4-byte

block header

 var size
(up to 1MB)

Figure 2.4: Generic block structure.

from an arbitrary height in the chain would imply to modify all remaining blocks

up to the top in order to match all the hash values.

Adding a block to the blockchain is known as mining, a process that is also

distributed and that can be performed by any user of the Bitcoin network using

specific-purpose software (and hardware). The mining process uses a hashcash

proof-of-work system, first proposed by Adam Back as an anti-spam mecha-

nism [6]. The proof-of-work consists in finding a hash of the new block with a

value lower than a predefined target2. This process is performed by brute force,

varying the nonce value of the block and computing the hash over the later until

the conditions hold. Once the value has been found, the new block becomes the

top of the blockchain and all miners should discard their previous work and start

working on the new top until a newer block is found.

Mining new blocks is a key task in Bitcoin, which helps to confirm the trans-

actions of the system. Being it a hard task, and also a crucial one, miners should

be properly rewarded. In Bitcoin, miners are rewarded with two mechanisms.

The first one provides the newly created coins for each mined block. Every new

block includes a special transaction, called generation transaction or coin-

base transaction, that has no input. Coinbase transactions are the only kind

of transactions that have no input, and they are the way Bitcoin uses to mint

2Notice that the value of the target determines the difficulty of the mining process. Bitcoin
adjusts the target value, every 2016 blocks, depending on the hash power of the miners in order to
set the throughput of new blocks to 1 every 10 minutes (on average).

16

2.3. BLOCKS AND MINING

new coins. A miner looking for a new block will generate a coinbase transaction

bound to himself as a reward for his work, using any output script from the ones

showed in Section 2.2.1. The second rewarding mechanism are transactions fees.

Every transaction created in Bitcoin may include fees, which are an inclusion

incentive for miners. The higher the fees, the more likely a transaction will be

confirmed within the next block. Transaction fees are encoded in transactions as

the difference between the sum of all input amounts and the sum of all output

amounts. Therefore, any non-claimed bitcoins will be considered fees. Transaction

fees are rewarded to miners also in the coinbase transaction. The value of the

coin (or coins) generated from the coinbase transaction of a block must be at most

the block reward (R) plus the sum of all fees, otherwise the block is invalid. The

block reward follows a logarithmic distribution determined by the block height.

It started at 50Bhalves every 210000 blocks (approximately 4 years). At the time

of writing R = 12.5B.

2.3.1 Blockchain forks

Being proof-of-work a competitive approach for mining, more than one valid block

may be found in a short time frame and all data broadcast to the network as the

new blockchain head. In such situation, nodes may receive several valid blocks

and decide which one to pick, while discarding the rest. Three rules apply here.

First, the blockchain with the most work wins, being work calculated as:

n∑
i=1

2256

targeti

Where n represents the height of the latest block and targeti represents

the target difficulty of block i. Secondly, the order in which the blocks were

received, the first one wins. And finally, a tie breaking rule which compares the

memory address pointer of each block, where the higher wins. The three rules

are evaluated in the aforementioned order, and the first one not ending up in a

tie will decide which block will be picked by the node.

17

CHAPTER 2. BITCOIN AND BLOCKCHAIN

2.3.2 The append-only property

The link between blocks, the inherent difficulty of the mining process and the

consensus rules regarding which chain is valid, are what gives blockchain its

append only property. In order to remove (or modify) a transaction from the chain,

the block including that transaction needs to be modified. Modifying a block will

change its hash and therefore break the hash pointer with the next block. In

order to make such a change final, all the hash pointer up to the head need to

be updated and all the blocks re-mined, while the rest of the network continues

mining at the the current head. Therefore, once consensus has been reached, the

odds of successfully tampering with data on the blockchain decreases over time.

While performing such a modification is theoretically possible, it will require

the devotion of a substantial amount of mining power to be achieved, which will

be seen as an attack to the network and will undermine the trust users have

on the system. Such attacks are known as 51% attacks and have been widely

studied in the literature [45, 81].

2.4 The underlying P2P network

Bitcoin is built on top of a P2P network used by the currency to spread transac-

tions and blocks among peers. Transactions are broadcast between peers, aiming

to reach the whole network to eventually be included in a block. When a transac-

tion is received by a node from one of its peers, the node verifies mainly three

things: first, that the transaction has not been already seen, secondly, that it

claims non-spent coins, and finally, that the transaction is correct. If all conditions

hold, the node stores the transaction in a list of unconfirmed transactions, known

as memory pool of transactions or mempool for short, and further relays

such transaction to the rest of its peers. Otherwise, the transaction is discarded3.

3It is worth noting that if the transaction refers to any unknown coin, it is stored in a separate
list of orphans transactions. Such transactions will be accepted by the node but not relayed any
further.

18

2.4. THE UNDERLYING P2P NETWORK

Transactions stored in the mempool are known as unconfirmed transactions, or

zero-confirmation transactions.

2.4.1 Unconfirmed transactions

Transactions will leave the mempool under two circumstances: when they are

included in a block, or when they are dropped from it. Dropping reasons include

transaction being in conflict with other transactions included in the blockchain

by a new block, transaction being replaced by a newer version of the transaction,

eviction of transaction due to node’s mempool becoming full, or transaction timing

out after 14 days on it.

Transactions in the mempool can be replaced by a newer version of them

if they have been created signaling such property. Such a technique is known

as replace-by-fee (RBF) [56] and was designed to allow transaction creators to

increase the fee of an already broadcast transaction in order to boost the odds of

its inclusion in a block and avoid delays in the transaction confirmation. Transac-

tions can signal such a property by specifying a value lesser than 0xfffffffd in

the nSequence field (see Figure 2.1).

2.4.2 Double-spending transactions

Zero-confirmation transactions, in contrast to transactions included in the block-

chain, are not covered by the double-spending protection mechanism Bitcoin

provides by design. Zero-confirmation transactions are therefore a potential

target of double-spending attacks, where conflicting transactions are sent to

different nodes on the network. For instance, suppose two transactions (tx1 and

tx2) that spend the same output from a previous transaction (tx0) are created

by an attacker A. tx1 is used to pay for some goods to a merchant B, while

tx2 is used to return the funds to the attacker. In this scenario, if A can make

B believe that tx1 is the only transaction spending from tx0’s output, but tx2

finally ends up included in a block, the attack is successful. Figure 2.5 depicts

the aforementioned example.

19

CHAPTER 2. BITCOIN AND BLOCKCHAIN

From: A 1 BTC

Signed:

To: B
Required to unlock:

1 BTC

B’s signature

mAttackerFrom: Someone

Someone

1 BTC

Signed:

To: A
Required to unlock:

A’s signature

1 BTC

tx0

tx1

tx2

From: A 1 BTC

Signed:

To: A
Required to unlock:

1 BTC

A’s signature

mAttacker

Figure 2.5: Double-spending transactions.

2.5 Double-spending attacks

Double spending attacks on zero-confirmation transactions in Bitcoin have been

previously analysed in the literature by Karame et al. [64, 65]. The authors

show how, with some reasonable assumptions and without the need of special

computation nor much network overhead, an attacker has a great probability

of succeeding with a double spending attack. Moreover, the authors also show

how basic countermeasures such as waiting a few seconds before accepting a

payment or adding observers that report back to the payee are not enough on their

own to avoid these type of attacks. Furthermore, they proposed an additional

countermeasure, consisting of modifying the protocol rules so that nodes forward

double spending transactions instead of dropping them. By doing so,all nodes

may be notified of the double spending attempts. However, this mechanism

facilitates denial of service attacks and, while nodes will indeed be able to see

both transactions, they do not have the means to distinguish which of the two is

the original one.

Regarding mitigation of double spending attacks, Decker et al. [7] proposed

20

2.5. DOUBLE-SPENDING ATTACKS

some other countermeasures that can reduce the merchant’s likelihood of being

deceived by an attacker, which are: requiring the merchant to be connected to

a large random sample of nodes of the network and not accepting incoming

connections. Therefore, the attacker cannot send transactions directly to the

merchant neither identify the merchant’s neighbours.

Other research studies have indeed demonstrated that this kind of attacks

were possible, and not only was the attacker able to identify the merchant’s

neighbors but also forced them to be a set of nodes controlled by the attacker [15,

16, 68].

21

C
H

A
P

T
E

R

3
CHARACTERIZING CRYPTOCURRENCY P2P NETWORKS

In this chapter we analyse the Bitcoin P2P network to characterize general

P2P cryptocurrency networks [37]. Two main reasons made us choose

Bitcoin as the subject of analysis. On the one hand, far beyond the economic

impact, being the largest cryptocurrency also conveys technical implications:

the volume of information flowing through its network, as well as its size and

heterogeneity, surpasses any other deployed cryptocurrency. On the other hand,

being Bitcoin the first open source cryptocurrency proposed, several other new

cryptocurrencies have been developed as a software fork of the Bitcoin reference

implementation, using the exact same code for the creation of their underlying

P2P network.

3.1 Description of the Bitcoin P2P network

As slightly introduced in Section 2, Bitcoin is built on top of a P2P network

used by the currency to spread transactions and blocks among peers. The initial

23

CHAPTER 3. CHARACTERIZING CRYPTOCURRENCY P2P NETWORKS

definition of such a P2P network was coded in the first release of Bitcoin, and

later on cloned in multiple new cryptocurrencies that derive from the Bitcoin

implementation. In such new cryptocurrencies, the network configuration has

been implemented almost identically. For instance, as described in [41], Litecoin,

Dogecoin, Dash and Peercoin have exactly the same network message types of

Bitcoin, being the resulting networks for those cryptocurrencies very similar and

in some cases identical to Bitcoin’s.

The Bitcoin network has largely changed from its deployment in 2009, where

the only available implementation was the reference client, until nowadays,

where the network is made of very heterogeneous peers whose hardware capabil-

ities and software implementations largely differ from each other. Furthermore,

even specific purpose protocols have been created aiming to optimize particular

tasks of the Bitcoin ecosystem.

In order to describe the existing Bitcoin network, we first identify some of

the properties that characterize Bitcoin’s peers. After that, we review the most

common peer configurations, using the properties described before. Finally, we

describe the composition of the current Bitcoin network.

3.1.1 Properties describing Bitcoin nodes

In this section we focus on describing the main properties that define a Bitcoin

node: the knowledge about the blockchain, its main functionalities, its connec-

tivity, and the protocols it uses to communicate with other nodes. Figure 3.1

summarizes such classification.

Depending on the knowledge peers have about the blockchain, their

storage requirements largely differ going from a few megabytes to dozens of

gigabytes.

On the one hand, full blockchain peers store a complete and up-to-date version

of the blockchain, which allows them to perform full validation of blocks 1. On the

other hand, pruned blockchain peers store an up-to-date version of the blockchain

1On May 2018, the total size of block headers and transactions consists of 167GB of data.

24

3.1. DESCRIPTION OF THE BITCOIN P2P NETWORK

Figure 3.1: Bitcoin node classification.

with complete blockchain data accounting for at least the last 550MB2. Even not

holding a full copy of the blockchain, pruned nodes can validate new blocks as

well as relay them. However, they cannot relay blocks older than the time frame

they hold data from. Both full and pruned nodes store a copy of the UTXO set,

allowing them to validate and relay transactions. The UTXO set will be deeply

analysed later on in Chapter 4.

Simplified Payment Verification (SPV) clients hold an up-to-date version of

the blockchain headers. Additionally, such clients may store data from some

transactions of interest. SPV clients are usually deployed in mobile devices such

as smartphones, where having the full blockchain is generally unaffordable.

SPV clients are said to be lightweight clients because they minimize the

resources needed to accomplish their functionality. However, there exist other

lightweight clients that are not based on SPV. The current alternatives are

centralized approaches, where clients connect to a set of predefined servers that

2The amount of data to be stored can be set when configuring the node.

25

CHAPTER 3. CHARACTERIZING CRYPTOCURRENCY P2P NETWORKS

relay them the information they need in order to work as wallets. This approach

requires to trust the servers. The specific amount of data about the blockchain

or cryptographic keys stored by these clients depends on each implementation.

Some of them publish their source code for public review, while others do not. The

protocol is also specific. Some examples of these kinds of wallets are Mycelium [78]

or Copay [30].

Peers can also be classified on the basis of their functionality. There are

three functionalities needed for the Bitcoin system to work. Mining is the compu-

tationally expensive task of trying to create blocks. New blocks are appended to

the end of the blockchain, thus making the public ledger grow. Peers that perform

mining are known as miners. Groups of miners are known as pools and usually

operate as client-server architectures, with the pool operator providing a pool

mining server where pool mining clients connect to and retrieve their portion

of work. Some peers perform validation and relaying of the transactions and

blocks they receive, that is, they relay to other peers valid transaction and block

data, together with network data. Some peers also have a wallet functionality,

they store a set of key pairs, keep track of the amount of bitcoins deposited on

addresses associated to those keys, and are able to create transactions that spend

those bitcoins. These functionalities do not necessarily exclude each other, thus,

a peer may perform more than one functionality at the same time. Additionally,

although not strictly necessary for Bitcoin to work, some peers may provide

other functionalities. For instance, they may provide a DNS service, that offers

information about existing peers; a block explorer service, where users can query

for transaction and block data through a graphical interface; an exchange service,

where users can buy or sell bitcoins in exchange for other currencies; mixing
services, where users are able to obfuscate the history of their coins, etc.

Depending on their connectivity, peers can be classified in listening peers or

non-listening peers. Listening peers are nodes that accept incoming connections,

while non-listening nodes are those not doing so. Although most Bitcoin full

implementations listen for incoming connections, some network configurations do

not allow establishing such connections (e.g., peers behind NAT, firewalls, etc.).

26

3.1. DESCRIPTION OF THE BITCOIN P2P NETWORK

Since its foundations, Bitcoin has grown far beyond using a single protocol,
giving place for lots of other protocols to arise. We will use the term Bitcoin
protocol to refer to the network protocol used by the current reference imple-

mentation, the Bitcoin Core client. Other protocols that currently exist on the

Bitcoin system are mainly targeted to optimize pooled mining and speed up data

propagation. Getblocktemplate [32, 33] is the most recent Bitcoin pooled mining

protocol (supersedes the previous mining protocol, getwork), where the full block

data is sent to miners. This allows miners to change the content of the block by

themselves, thus gaining autonomy with respect to the pool servers. Stratum is a

protocol first designed for lightweight clients and later extended to handle pooled

mining. When used by mining pools, pool operators only send the block header to

miners, thus optimizing the network throughput and storage requirements of

miners but giving them less autonomy to decide what to include in the blocks.

Falcon [9] is a backbone of nodes intended to make Bitcoin data propagation

faster. Peers can connect to Falcon using either the Bitcoin protocol or a specially

designed network protocol that relays packets as received (instead of waiting

for all packets of a full block to be received before starting to relay that block).

Similarly, FIBRE (Fast Internet Bitcoin Relay Engine) [47] is a protocol that

uses UDP with Forward Error Correction to decrease the delays produced by

packet loss. It also introduces the use of data compression techniques to reduce

the amount of data sent over the network. Finally, the Lightning Network [88]

was design as a layer two solution for Bitcoin scalability issues, and has been

recently deployed within Bitcoin. In contrast to the aforementioned protocols, the

Lightening Network works as an overlay of the Bitcoin network, allowing the

creation of off-chain payment channels. In this context, FLARE [89] was proposed

as an approach of routing for the Lightning Network.

3.1.2 Network overview

In terms of topology, the Bitcoin network can be characterized by splitting nodes

in three broad categories, as depicted in Figure 3.2:

27

CHAPTER 3. CHARACTERIZING CRYPTOCURRENCY P2P NETWORKS

Reachable

Non-reachable

Extended

Figure 3.2: Abstraction of the defined network subsets: nodes in the reachable
network accept incoming connections; nodes in non-reachable network just create
outgoing connections; nodes in the extended network do not implement the Bitcoin
protocol (for instance, miner clients using the stratum protocol).

• The reachable Bitcoin network is composed of all listening nodes that speak

the Bitcoin protocol. The size of the reachable Bitcoin network is estimated

to be around 10000 nodes [114].

• The non-reachable Bitcoin network is made of nodes that speak the Bitcoin

protocol, regardless of whether they are listening for incoming connections.

The size of the non-reachable Bitcoin network is estimated to be 10 times

bigger than that of the reachable Bitcoin network.

• The extended network comprises all nodes in the Bitcoin ecosystem, even

those not implementing the Bitcoin protocol. This network includes, for

instance, pooled miners communicating with the pool server using only the

28

3.2. NETWORK CHARACTERIZATION

stratum protocol. To our best knowledge, there are no estimations on the

number of nodes that belong to the extended network.

Both the reachable and non-reachable Bitcoin networks are P2P networks:

they are distributed systems build without mediation of a centralized server or

authority, they can adapt to changes in the network and their participants au-

tonomously, their nodes contribute with storage, computing power and bandwidth

to the network.

Notice, however, that such topology is purely theoretical, and it is based on

the connection capabilities of each type of node. Some studies have shown partial

results of analysis of the topology for the reachable network [77], as well as

thechniques to infer such topology [53]. However, to the best of our knowledge,

no up-to-date snapshot of the topology is known.

In this section, we have provided a detailed description of the Bitcoin network

by first describing the main properties that define a Bitcoin peer, then identi-

fying the most common Bitcoin peers, and finally providing an overview of the

network. Having described the Bitcoin network, the next section provides its

characterization as a P2P network.

3.2 Network characterization

In this section we present an analysis of the Bitcoin P2P network using the

taxonomy defined by Lua et al. [71] for the comparison of different P2P overlay

network proposals. Such an analysis aims to characterize the new P2P network

paradigm that cryptocurrency networks represent. Following the same taxonomy,

we will be able to stress the differences of such new networks in comparison with

the existing ones. The following analysis is performed aiming only at the Bitcoin

reachable network, following the classification established in Section 3.1, since it

is the only full P2P part of the Bitcoin network3.

3Notice that, even the non-reachable network is also P2P, their nodes are forced to connect to
nodes in the reachable network only.

29

CHAPTER 3. CHARACTERIZING CRYPTOCURRENCY P2P NETWORKS

3.2.1 Decentralization

Decentralization assesses to what extend the network presents a distributed na-

ture or, on the contrary, its configuration shows some centralized characteristics.

In that sense, the Bitcoin network is a non-structured P2P overlay with some

similarities with Gnutella [66]. With a flat topology of peers, in the Bitcoin net-

work every peer is a server or client and the system does not provide centralized

services neither information about the network topology.

3.2.2 Architecture

The architecture describes the organization of the overlay system with respect

to its operation. As we already mentioned, the Bitcoin network presents a flat

architecture with no layers nor special peers. The network is formed by peers

joining the network following some determined basic rules, where randomness is

an essential component. Such random behaviour in the network creation intends

to generate an unpredictable and uniform network topology, unknown to its users.

As we will see in Section 3.3, such lack of knowledge about topology is needed for

security reasons.

3.2.3 Lookup protocol

One of the main problems in P2P networks, specially those used for content

distribution, is the lookup query protocol adopted by the overlay to find the

desired content. However, although Bitcoin network can be regarded as a content

distribution network (where content are transactions and blocks), the information

flowing in the network is completely replicated in every node. Hence, there is

no need for such a lookup protocol, since information is always available at one

hop at most. However, information propagation has to be performed in order to

synchronize all peers of the network with the same data. Such propagation is

performed through a controlled flooding protocol.

Mainly, the controlled flooding protocol works on a push basis, propagating the

data as it is generated. In order to reduce the amount of traffic while maintaining

30

3.2. NETWORK CHARACTERIZATION

a low latency propagation, each node selects (for every piece of information to

be forwarded) a small subset of his connected nodes and sends the information

to them. Instead of being directly sent, data availability is announced to the

selected peers, and in case a peer lacks some of the announced information, it will

be requested back to the announcer. Two type of data structures are propagated

through the network following the aforementioned approach: transactions and

blocks.

• Transaction propagation: transactions are the basic data structure flowing

though the Bitcoin network, and the one most usually seen. Every single

node, independently of its type, can take part in a transaction by simply

using a wallet. Transactions flow though the network aiming to reach every

single node to, eventually, be included in a block.

• Block propagation: blocks are the data structure the blockchain is made

of, and include some of the transactions that have been created during the

block mining process. Unlike transactions, blocks require a tremendous

hashrate to be generated, which virtually limits their creation to mining

pools. Moreover, the block generation throughput is set by design to 6 blocks

per hour on average, periodically adjusting the block mining difficulty

according to the total network hashrate.

Nonetheless, a pull data synchronization mechanism is also performed in

the network, and while having a quite specific use, it is fundamental for proper

operation of the system. Its main purpose is to synchronize the blockchain of

outdated nodes, that have been off-line when data was originally propagated.

Outdated nodes request an on demand synchronization to their peers during the

bootstrapping phase, obtaining all the missing blocks in their local blockchain.

Such request does not refer to specific blocks but to all blocks above the last block

the enquirer is aware of. Beside blocks, on demand propagation of other type of

data, such as transactions, is not set by default. Only nodes that have build a

full index of transactions along the blockchain, like block explorer services, can

31

CHAPTER 3. CHARACTERIZING CRYPTOCURRENCY P2P NETWORKS

provide this type of data, since regular nodes only keep track of transactions

bounded to their addresses.

3.2.4 System parameters

Different P2P network overlays require a set of system parameters for the

overlay system to operate. For instance, structured P2P networks require to

store information on the distribution of peers in the network in order to improve

routing performance. However, the Bitcoin P2P network, in line with other

unstructured P2P overlays, does not require any special system parameters for

the normal behaviour of the network. Every single node can join the network

with no prior knowledge of it. Apart from that, some default parameters are used

by nodes, such as the maximum connection limit set to 125, the minimum relay

fee for transactions set to 1 sat/byte, or whether the node will relay non-standard

transaction or not, among others. However such values are not a restriction and

each node can set them to match their needs.

3.2.5 Routing performance

Differing from traditional P2P networks, Bitcoin does not follow a multi-hop

routing scheme. Peers in the network store a replica of all the information that

has been flowing through the system up to the date, namely the blockchain. In

that way, no queries are forwarded between peers, since all information should

be found at one hop. Therefore, data is guaranteed to be located if the network

is synchronized, and no routing protocol is needed nor used, apart from the

synchronization protocol.

3.2.6 Routing state

Despite being a content distribution network, the routing state of Bitcoin cannot

be directly defined due to the randomness and dynamism of its topology, and

to the fact that it is not known. Moreover, as we have pointed out before, no

multi-hop routing is performed since data can be found at one hop at most.

32

3.2. NETWORK CHARACTERIZATION

3.2.7 Peers join and leave

How to build the network is a classic problem P2P networks have to deal with.

From building the network from its roots, to how nodes deal with peers discon-

nection, P2P networks need to be highly adaptable to avoid partitioning. In order

to deal with this problem, and also provide a fair and secure way to choose the

peers to connect to, the Bitcoin network performs a particular network discovery

mechanism.

By default, all nodes maintain up to 125 connections with other peers. Each

node will start 8 of those connections with other peers (namely outgoing con-

nections), and will accept up to 117 from potential peers (namely incoming

connections). Despite the name, all connections are bidirectional. In order to

pick the outgoing connections, every single node will look for a subset of nodes it

stores in a local database (the addrman). The addrman is formed by two different

tables: tried and new. Tried table contains addresses from peers the node has

already connected to, and new table contains addresses the node has only heard

about. Additionally, when the node tries to establish a connection to the network

for the first time, it queries a well known list of DNS nodes that will provide a

set of on-line potential peers4.

Nodes try to always maintain their 8 outgoing connections, selecting new

peers from the database if any of the established connections is dropped. Peers

are stored and selected from the database following a pseudo-random procedure

that gives the network high dynamism and keeps its structure unknown. Peers

information can be obtained by a node following two ways. First of all, a node can

request such data to its neighbours, in order to fill up its database, or can receive

such information spontaneously from one of its peers without any kind of request.

In both cases, up to 2500 peers addresses from the neighbour’s addrman (both

from tied and new) are sent to the requester. Such addresses are stored in the

requester’s new table. On the other hand, a message containing a single address

can be sent to a node when a node wants to start a connection with a potential

4Further information about how peers are stored and selected can be found in [57].

33

CHAPTER 3. CHARACTERIZING CRYPTOCURRENCY P2P NETWORKS

peer. By sending its address, the sender notifies the receiver that he has been

picked as a peer, and, if the later has room for more incoming connections, the

communication is established. Peer addresses received in that way are stored in

tried table. All addresses are stored in the database along with a timestamp, that

helps the node to evaluate the freshness of such address when selecting a peer.

3.2.8 Reliability and fault resiliency

Reliability and fault resiliency analyse how robust the overlay system is when

subjected to faults. Typically, such robustness measurements are related to non

intentional failures, for instance by a massive disconnection of peers of the

network or an increasing volume of information being transferred through the

network, but do not include intentional attacks that would be categorized inside

the security properties of the network.

Bitcoin implements a distributed consensus protocol resilient to Byzantine

faults. That is, the protocol is resistant to arbitrary faults produced in the partic-

ipating peers, from software errors to adversary attacks. The main idea behind

this protocol is to use a proof-of-work system to build the public ledger where

transactions are stored. Appending new information to the public ledger requires

a huge amount of computer power, thus preventing attackers to monopolize

ledger expansion and censuring transactions. In a similar way, changing the

content of the blockchain is also computationally expensive, as we have already

introduced in Chapter 2.3 Additionally, the blockchain is replicated on all full

blockchain nodes, contributing to the fault resiliency of the system and providing

high availability of the ledger data.

Assuming that categorization, the Bitcoin P2P network has been designed

with a high level of reliability due to the redundancy that implies the storage of

all the relevant information in every peer of the network. With this approach, the

high inefficiency level in terms of storage space is translated into a high resilience

of the network since the availability of a single node in the network contains

the information to keep the system alive. Moreover, the proof-of-work system

34

3.3. SECURITY CONCERNS IN P2P NETWORKS

allows peers to (eventually) reach a consensus, even in presence of attackers

trying to subvert the system. As a drawback, the consensus protocol is rather

slow, with transactions needing 11 minutes (median confirmation time for May

5th, 2018 [20]) to confirm, and expensive, requiring the consumption of lots of

energy for each mined block.

3.2.9 Security

Security in P2P networks has always been a broad topic since multiple security

threats can be identified in different P2P implementations. The interested reader

can refer to Wallachs’s survey [110] for an introduction to the topic of security in

general P2P networks; to Bellovin’s paper [12] for a description focused on the

security issues affecting specific P2P protocols such as Napster and Gnutella;

and to [105] for an introduction to security problems in P2PSIP communications.

However, in P2P cryptocurrency networks, security takes a different twist.

At first sight, one could believe that the threats P2P cryptocurrency networks

face are a subset of the threats found in standard P2P networks. However, as

we will see in detail in next section, most of the threats encountered in general

P2P networks do not apply directly to P2P cryptocurrency networks, due to the

cryptographical mechanisms used by the currencies and the degree of security

offered by their protocols.

Additionally, one can also believe that multiple new threats will also arise

in cryptocurrencies due to the sensitivity they have as money transfer networks.

However, as we will see in the next section, this is not the case.

In the next section (Section 3.3), we provide a detailed review of the most

common security threats identified for typical P2P networks and discuss to what

extent they affect the Bitcoin network.

3.3 Security concerns in P2P networks

Security in P2P networks has been extensively studied in the literature. In this

section we provide a broad overview of the main security problems that arise in

35

CHAPTER 3. CHARACTERIZING CRYPTOCURRENCY P2P NETWORKS

P2P networks, we review how each of the security problems may affect the Bitcoin

network and, from those which affect it, we explain the specific countermeasures

Bitcoin provides in order to defend from them.

The list of reviewed attacks goes over the most typical types of attacks and

security flaws found in common P2P networks. It is clear that specific networks

and applications might present specialized attacks but in most cases they can be

seen as an specification of the attacks presented here.

So as to provide a clear picture of how common P2P attacks affect Bitcoin,

we first review the three attacks that have been shown to be clearly applicable

to Bitcoin. After that, we include a list of attacks identified for common P2P

networks but that do not have such a high impact on Bitcoin, reviewing why the

attacks do not apply to the specific Bitcoin network and detailing the particular

cases where those attacks (or some variation) may somehow relate to Bitcoin.

In favor of a clear and concise presentation, we have not explicitly covered

some recent attacks, such as [24], which do not directly affect or involve the

Bitcoin network. Network related attacks such as [4] are also out of the scope of

the study, since they rely on BGP hijacking.

3.3.1 DoS Flooding

Denial of service (DoS) attacks are possible in most P2P scenarios and are

especially relevant, for example, in P2P streaming applications [23, 97, 111].

Given their dynamic nature, P2P networks are usually more resilient against

generic DoS attacks than more static networks. Targeted DoS attacks to specific

parts of the P2P network (a given node) or services are usually more important.

There exist several potential DoS flooding attacks in Bitcoin, but the system

has countermeasures in place. Transaction flooding is prevented by not relaying

invalid transactions and imposing fees to valid transactions. On the one hand,

transactions are signed by the senders in order to prove they are authorized

to transfer those bitcoins. If the signatures of a transaction are not correct,

the transaction is considered invalid and it is not relayed to the network. On

36

3.3. SECURITY CONCERNS IN P2P NETWORKS

the other hand, and due to the increased of use of Bitcoin, most miners do not

accept transaction without fees, making a transaction flooding attack expensive.

Block flooding is prevented by only relaying valid blocks, which must contain

a valid proof-of-work. In order for a block to contain a valid proof-of-work, its

hash must be lower than a given target. Obtaining a block with such a hash

is a computationally expensive task, thus performing DoS attacks with block

data is infeasible. Network data flooding is easier than the previous two cases,

because it is indeed possible to create valid network messages without paying

fees nor spending computation cycles. However, Bitcoin has a banning protocol:

peers may ban other peers for one entire day if their banning score surpasses

a certain threshold. Such a score is increased due to sending duplicate version

messages, sending large messages, as well as sending invalid blocks. Given the

nature of Bitcoin, cpu usage DoS is possible by trying to make peers spend lots of

time validating a transaction or a block. In order to prevent this kind of attacks,

Bitcoin tries to catch errors before starting to validate a transaction, limits the

number of signature operations per transaction and per block, and limits the size

of the scripts. Finally, previous versions of the Bitcoin client were also susceptible

to continuous hard disk read attacks, where an attacker repeatedly sent double-

spend transactions that passed the initial checks and required to retrieve data

from disk in order to be fully validated. This attack is now prevented by checking

that the inputs of the transaction that is being validated are in the UTXO set

before retrieving any information from disk.

3.3.2 Eclipse attacks

An eclipse attack occurs when an attacker creates (or has control of) a large

number of distinct nodes that populate the whole neighbourhood of the victim

node [25]. The attacker can then eclipse the view of the network that has the

victim. Common solution for sybil attacks are usually insufficient to defense

against eclipse attacks [95].

In a cryptocurrency network, isolating a node from the rest of the network

37

CHAPTER 3. CHARACTERIZING CRYPTOCURRENCY P2P NETWORKS

may enable two other attacks to the eclipsed peer. First, an eclipsed peer may

undergo a censorship attack because the victim’s transactions must pass through

the attacker’s nodes in order to reach the network. Therefore, the attacker may

decide not to forward these transactions, thus censoring the victim. Secondly, if

the eclipsed victim is a miner, the attacker can drop or delay the propagation of

the new blocks found by the rest of the network. As a consequence, the victim

wastes computation time trying to mine on top of old blocks.

Bitcoin has many defense mechanisms to prevent eclipse attacks, some of

which were added recently, after a study pointed out some of the flaws of the

implementation at the time [57]: the client restricts the amount of outgoing

connections to addresses in the same network, randomizes the address selection

procedure, and maintains a big list of peers, among others.

3.3.3 User profiling

In some P2P networks, it is easy to record all the activities of a given node,

allowing attackers to easily create identifying profiles of users and their activities.

This is relevant in anonymous systems or systems that want to guarantee a

certain degree of anonymity [22, 105].

Bitcoin provides pseudonymity by allowing users to receive payments to their

addresses, which are not initially linkable to their identities. The use of new

addresses for each transaction in the system is intended to provide unlinkability

between the different actions a single user performs through Bitcoin. Therefore,

user profiling in Bitcoin usually consists in attacking the unlinkability between

the different addresses a single user has. Three different approaches have been

taken to perform address clustering: using network layer data [67], performing

analysis over the transaction graph [1, 85, 92], and analysing Bloom filters [49].

The idea of using network layer data to cluster addresses is straightforward:

if an attacker is able to connect to all the peers of the network, the first node

that sends him a given transaction should be the creator of that transaction.

Therefore, if the attacker first receives two different transactions from the same

38

3.3. SECURITY CONCERNS IN P2P NETWORKS

peer, he can infer that the source addresses of both transactions belong to the

same user. However, as simple as the attack may seem conceptually, it is not

that easy to perform in practice. It is not trivial to connect to all nodes of the

network, since most of them do not accept incoming connections. Moreover, some

peers anonymize their connections using Tor. Finally, collected data is very noisy

and, therefore, it is not easy to make strong claims when analysing it. Regarding

transaction graph analysis, there exist mixing services that are able to effectively

break the relationship between an address and its past. Finally, concerning

to the usage of bloom filters, users must be very careful when choosing the

parameters of the filter and when generating different filters that match the

same set of addresses and public keys. In that sense, new protocols are being

designed to allow lightweight clients to retrieve their transactions of interest

while maintaining privacy [86].

Bitcoin’s scalability problems have triggered the search for new solutions

that would allow to increase the transaction throughput of the network. Several

proposals provide mechanisms to create off-chain payment channels, so that

secure transactions between Bitcoin users may be performed without needing to

include all the transactions into the blockchain. In turn, these solutions may also

entail privacy problems that are yet to be carefully studied [58].

3.3.4 Other attacks

After analysing the three main attacks that have threatened the Bitcoin network

over the last years, we summarize other common P2P attacks that have a lesser

impact on Bitcoin. We will show how some of those attacks could be used as a

preliminary phase to achieve one of the three previously introduced ones, while

others are not harmful for the Bitcoin network due to its design.

3.3.4.1 ID attacks

Two different sub-attacks can be identified in this category:

39

CHAPTER 3. CHARACTERIZING CRYPTOCURRENCY P2P NETWORKS

ID mapping attack: when a node changes its own identifier with malicious

purposes. As an example, in DHT-based P2P networks a node can gain control

over given resources by changing its own identifier [26]. These kind of attacks are

more difficult in networks where the identifier is derived from a public key [96].

ID Collision Attack: similarly to previous attacks, here the attack is considered

to happen when there are duplicated identifiers. The problem is usually prevented

by ensuring the uniqueness of identifiers [105].

There is no clear concept of a peer identifier in Bitcoin. Two different proper-

ties could be considered identifiers in Bitcoin, depending on the exact entity one

wants to identify: IPs and Bitcoin addresses. IPs allow to identify peers, whereas

addresses are linked to users. A malicious peer may benefit from a change of IP

if it is banned for misbehaviour. Being able to change the IP allows a peer to

effectively reset its banning score (refer to Section 3.3.1 for details.). Regarding

the second kind of identifiers, Bitcoin addresses, the recommended behaviour for

users is indeed to change them frequently. In fact, the suggestion is not to reuse

addresses but to create a new address for each transaction made in the system,

which helps protecting users privacy.

3.3.4.2 Sybil attack

A sybil attack is a well know attack in P2P networks, where a malicious user cre-

ates multiple identities in order to control the system or parts of the system [42].

This has been very extensively studied in the literature in the context of several

P2P technologies [69, 82].

Sybil attacks may be a problem in Bitcoin if they are able to eclipse all

the connections from a peer (see Section 3.3.2 for details of eclipse attacks).

However, besides its extension to an eclipse attack, a peer with multiple identities

cannot harm the system regarding the main content of the network: blocks and

transactions. The former cannot be counterfeit without the corresponding proof-

of-work and the generation of the later entails an associated fee (in a similar way

that described in flooding attacks in Section 3.3.1). Nevertheless, if lots of sybil

nodes start performing a huge amount of connections to the existing network,

40

3.3. SECURITY CONCERNS IN P2P NETWORKS

they may monopolize all available incoming connection slots, and the system

decentralization could be reduced.

3.3.4.3 Fake bootstrapping

Network access in P2P environments starts by connecting to one or multiple

nodes of the network. This first contacted node is known as the bootstrap node.

A malicious bootstrap node can influence the view of the network for the new

user [25]. Several solutions already exist for this problem in general P2P net-

works, such as not relaying in a single bootstrap node, use of cached peers for

subsequent connections, random address probing, using external mechanisms,

specific bootstrapping services, or using network layer solutions (e.g. use of an

special multicast group for bootstrapping) [31, 40, 105].

Bitcoin deals with bootstraping issues by defining a local peers database on

every single node that is queried following a pseudo-random protocol to obtain a

subset of potential peers (see Section 3.2.7 for details). In that way, Bitcoin applies

most of the solutions for the fake bootstrapping protocol, such as not relaying in a
single bootstrap node by establishing 8 outgoing connections on every bootstrap,

use cached peers for subsequent connections by using peers stored in tried table,

random address probing by using a pseudo-random protocol to store and retrieve

peers addresses from the addrman, and using external mechanisms by querying a

list of well known DNS nodes or even using a list of hardcoded nodes, if the DNS

cannot be reached.

3.3.4.4 Unauthorized resource access

P2P networks often use some sort of private data that has to be protected from

unauthorized access. Common solutions are those typically employed for dis-

tributed access control [106, 115].

Bitcoin is based on public key cryptography, where private keys are needed to

authorize payments. Therefore, private keys must be kept secret and two methods

are usually employed: encryption and offline storage. By using encryption, private

41

CHAPTER 3. CHARACTERIZING CRYPTOCURRENCY P2P NETWORKS

keys remain secure even if an attacker is able to retrieve the key file as long as

the encryption key remains secret. As for offline storage, different approaches

can be followed, from the usage of dedicated hardware devices to paper wallets.

Notice that, unlike other uses of public key cryptography where private keys

need to be online (for instance in the handshake process in TLS), Bitcoin network

operation does not involve private information since validations are performed

using public information. For that reason, offline storage of private keys does not

impact the network performance.

3.3.4.5 Malicious Resource Management

A malicious node can deny existence of a given resource under its responsibility,

or claim to have a resource it does not have. This is specially relevant in content

distribution applications, and common solutions are replication of resources [51]

or use of error correcting codes to reconstruct missing parts of the resource [112].

Bitcoin network is protected against malicious resource management by, on

the one hand, the high amount of data redundancy information of the network

and, on the other hand, the multiple neighbours a node of the network is con-

nected to. As long as nodes establish connections with multiple peers, if a given

neighbour denies the existence of a certain resource, the node can learn it from his

other neighbours. Moreover, if a neighbour says he has some resource he actually

does not have, peers will notice when they try to retrieve it, since transactions

and blocks are identified by their hash.

3.3.4.6 Free-Riding

A free-rider in a P2P network is a node that attempts to benefit from the resources

of the network (provided by other users) without offering their own resources in

exchange [59, 84]. Depending on the application, this might not be an issue or

even might not be considered a security problem. It is usually described in content

distribution applications and the main solutions proposed rely on incentive or

penalty based mechanisms [46].

42

3.3. SECURITY CONCERNS IN P2P NETWORKS

Bitcoin is sustained by an equilibrium of economic incentives. Miners are

remunerated for their work by obtaining a reward for each block they successfully

mine. Additionally, transaction senders (and, although indirectly, also transaction

recipients) may include a fee to their transactions, which is also collected by the

miner of the block that contains the transaction. As a consequence, miners are

encouraged not only to create blocks but also to include transactions on those

blocks. There is, however, a set of nodes whose role is important in ensuring

the decentralization of the network and that do not directly receive economic

incentives for their work: full clients. While these clients store the blockchain

and perform validation and relaying of transaction and blocks, they do not get a

direct economic reward in return for their work.

3.3.4.7 Man-in-the Middle (MITM)

In the context of P2P networks, a MITM attack is usually considered a routing

attack, similarly to classical network MITM attacks. P2P networks which require

multi-hop routing, will need to include measures similar to onion routing in order

to secure connections between all nodes along the path [52, 62].

MITM attacks in Bitcoin are not a problem for transaction and block integrity,

because transactions are cryptographically signed and blocks must contain a

valid proof of work. Transaction malleability may be a problem in very specific

scenarios (refer to Section 3.3.4.10 for a detailed explanation). Censorship is

not a problem either, because a single peer maintains different connections. An

attacker must be in the middle of all of them to hide information to the peer (thus

resorting in eclipse attacks).

3.3.4.8 Replay attack

A replay attack is produced when a legitimated transmission is delayed or lately

replayed with malicious purposes. This is a very common network attack that

can affect P2P networks in several ways, but it is usually solved at a protocol

level.

43

CHAPTER 3. CHARACTERIZING CRYPTOCURRENCY P2P NETWORKS

Replaying transactions or blocks that have been sent to the network does not

have any effect on Bitcoin network. Nevertheless, delaying block propagation

may be a beneficial strategy for miners [45]. By not immediately propagating

a block the miner has just found, the miner can start working on top of this

newly found block while making other miners lose time working on the previous

block. This strategy is known as selfish mining and reduces the bound on the

percentage of hashing power an attacker must have in order to successfully

control the information appended to the ledger.

3.3.4.9 Routing disfunction

Routing disfuntion can be presented in different aspects. On the one hand,

incorrect routing involves attacks where a node routes messages incorrectly (or

drops them) [25]. These attacks might not be relevant in P2P networks that do

not provide multi-hop routing. Due to the flooding mechanism used to propagate

information through the network, the consequences of a single node dropping

messages are negligible.

On the other hand, in a fake routing update, the attacker tries to corrupt a

given route (equivalently to corrupt a routing table for a given node) [25, 72, 96].

As we have mentioned previously in Section 3.2, there are no routing tables in

the Bitcoin network. The most similar information a peer stores is addresses

from other peers. Note that no information about where peers are in the network

nor their connections are stored by the Bitcoin client, just the address and a

timestamp. Therefore, the attack that better resembles fake routing updates in

Bitcoin is to send fake addresses. This kind of attacks are usually performed as a

first step in eclipse attacks, already described in Section 3.3.2.

3.3.4.10 Tampering with message bodies

When using multi-hop routing, intermediate nodes can modify the content of the

relaying packets. End-to-end integrity has to be provided in order to, at least,

detect this type of attacks [105]. Tampering with the content of a block will change

44

3.4. CONCLUSIONS

its hash, what which also invalidate its proof-of-work, making it an infeasible

attack on Bitcoin. However, transactions are a signed data structure with the

signature cryptographically protecting its integrity. Therefore, an attacker cannot

tamper with a transaction to its will, for instance, by changing its destination

address. There is, however, a very specific situation where this kind of attack

would be possible. Bitcoin transactions are malleable, that is, an attacker can

change some part of the transaction while keeping the signature valid. This

happens mainly because not all parts of the transaction are signed (e.g. the

signatures themselves are not signed). Malleability is a problem for Bitcoin when

a user is dealing with zero-confirmation transactions (refer to Chapter 2.4.2).

If a transaction is part of a protocol where transactions are identified by their

hash, like off-chain protocols, the attacker can take advantage of it. However, a

solution for such a problem, called segregated witness [70], has recently been

deployed within Bitcoin. Segregated witness teaks the transaction serialization

format moving signatures to a new field called witness. The witness is not part of

the fields hashed to compute the transaction identifier, what solves the signature

malleability problem, and therefore reduces the impact of such attack.

3.4 Conclusions

In this chapter we have characterized P2P cryptocurrency networks by providing

an analysis of the most relevant cryptocurrency nowadays: Bitcoin. By charac-

terizing P2P cryptocurrency networks using well-known taxonomy in the field

of P2P networks, we can conclude that such networks present a new paradigm

due to the main properties that a cryptocurrency has to provide: reliability and

security.

P2P cryptocurrency network reliability stands on top of a strong redundant

mechanism regarding system information. As a result, the relevant information

is replicated in all the peers of the network. With this approach, the availability of

a single full node in the network contains the information to keep all the system

alive. Notice that this approach turns out to a high inefficiency state regarding

45

CHAPTER 3. CHARACTERIZING CRYPTOCURRENCY P2P NETWORKS

storage space, so this strategy is not followed by any other P2P network paradigm.

Furthermore, such approach also demands new synchronization mechanisms to

provide all nodes with the same correct information.

Trough the security analysis, we have shown how most of the attacks to

regular P2P network do not apply to cryptocurrency network by design. However,

due to its use as a financial network, a few of them can pose high threads, this

being the case of eclipse attacks, which can make users incur in monetary loses.

Hence, some information about the network needs to be protected, as it is the

case of the topology. Due to data being available at one hop and to the controlled

flooding protocol, such information is not required to maintain the network

synchronized. Notice that this topological secrecy property of P2P cryptocurrency

networks is not so relevant in other P2P network paradigms and, for that reason,

the mechanisms to achieve it are also particular of such environments.

46

C
H

A
P

T
E

R

4
ANALYSIS OF THE BITCOIN UTXO SET

B itcoin makes use of the Unspent Transaction Output (UTXO) set in order

to keep track of transaction outputs that have not been yet spent and thus

can be used as inputs of new transactions (see Chapter 2). Bitcoin full

nodes keep a copy of the UTXO set in order to validate transactions and produce

new ones without having to check for unspent outputs throughout the blockchain.

This allows, for instance, the use of sthe o called pruned nodes (introduced in

Bitcoin Core v0.11 [99]), which can operate without having to persistently store

the whole blockchain.

The UTXO set is therefore a key component of Bitcoin. The format, content,

and operation of this set has an important impact on Bitcoin nodes’ operations.

The size of the UTXO set directly impacts on the storage requirements of a

Bitcoin node, and its efficiency directly determines the node validation speed.

We believe that a deep understanding of the Bitcoin UTXO set is needed to

clearly understand the operation of Bitcoin, helping to find potential scalability

and efficiency problems. To that end, we present STATUS (STatistical Analysis

47

CHAPTER 4. ANALYSIS OF THE BITCOIN UTXO SET

Tool for UTXO Set), a tool to analyse the UTXO set of Bitcoin. To the best of

our knowledge, there is no clear description in the literature of the UTXO set,

its format, and how to actually analyse it. We provide, in this chapter, such

description along with a deep analysis of the set, and the tools needed to perform

it [39].

4.1 The UTXO set

The Unspent Transaction Output (UTXO) set is the subset of transaction outputs

that have not been spent at a given point in time. Whenever a new transaction

is created, funds are redeemed from existing UTXOs, and new ones are created.

Basically, transactions consume UTXOs (in their inputs) and generate new ones

(in their outputs). Therefore, transactions produce changes in the UTXO set.

Regarding UTXOs, they can be identified by their outpoint, a two field data

structure containing the transaction id and the output index of the transaction

that created them. They store two data fields: the amount they are holding, and

the locking script (scriptPubKey) that specifies the conditions under which they

can be redeemed.

The main purpose of the UTXO set is speeding up the transaction validation

process. When a new block is appended to the blockchain, full nodes update their

vision of the UTXO set, removing the outputs that have been spent in the block

and adding the newly generated ones. Being all unspent transactions outputs

stored in the set, there is no need to scan throughout the blockchain to check for

double-spends, but just check if the inputs of a transaction can be found in the

set.

The format and the storage requirements of the UTXO set may differ depend-

ing on the specific implementation. However, their content must be consistent

between all the implementations, since all of them need to be able to verify every

transaction. For our analysis, we have chosen the Bitcoin Core implementation

of the set, since we aim to extend our analysis to other cryptocurrencies based

on Bitcoin in the future, which may use the same approach. However equivalent

48

4.1. THE UTXO SET

results can be obtained by any other implementation that follows the UTXO set

approach.

In the Bitcoin Core’s implementation, the UTXO set is stored in the chainstate,

a LevelDB database that provides persistent key-value storage. LevelDB [50]

is used to store the chainstate since Bitcoin v0.8. Apart from the UTXO set,

the chainstate stores two additional values: the block height at which the set

is updated and an obfuscation key that is used to mask UTXO data [100, 109].

Such an obfuscation key is used to obtain a different file signature of the UTXO

set file for every different wallet in order to avoid false-positives with antivirus

software.

The format of the chainstate database changed in version v0.15 of the Bitcoin

Core, and it is the one used at the time of writing. We will refer to the previous

format as 0.14, although it has been used in versions from 0.8 to 0.14.

4.1.1 The UTXO Bitcoin Core 0.14 format

The chainstate database of Bitcoin Core v0.14 uses a per-transaction model:

there exists a record in the database (i.e., a key-value pair) for each transaction

that has at least one unspent output. Multiple UTXOs belonging to the same

transaction are thus stored under the same key. The key of the record is the

32-byte transaction hash, preceded by the prefix c. This prefix is needed to

distinguish transactions from other data that are also stored in the database,

and is also used to discriminate v0.14 format from v0.15’s.

The value of the record stores metadata about the transaction (version, height

and whether it is coinbase or not) and a compressed representation of the UTXOs

of the transaction [101].

Regarding the UTXOs, the encoding first identifies the indexes of the trans-

action outputs that are unspent and then includes information about them1.

UTXOs are then encoded depending on their type. They store a script and a

compact representation of the amount of bitcoins hold. There are six types of

1The encoding is optimized to favour the first two outputs.

49

CHAPTER 4. ANALYSIS OF THE BITCOIN UTXO SET

outputs where a simplified script is stored, since they have a fixed structure with

some variable data (refer to Chapter 2.2.1 for details), while any other output

type needs to store the whole script. Such 6 types are P2PKH, P2SH and four

different cases of P2PK scripts. For instance, P2PKH outputs only store the

hash160 of the address.

4.1.2 The UTXO Bitcoin Core 0.15 format

One of the main changes from Bitcoin Core’s v0.15 release was a change in the

internal representation of the chainstate in favor of a better performance, both

in reading time and memory usage [74, 102].

Such new format uses a per-output model in contrast to the previously defined

per-transaction model, that is, every entry in the chainstate now represents a

single UTXO instead of a collection of all the UTXOs available for a given

transaction. To achieve this, the key-value structure (known as outpoint-coin in

the source code) has been modified. Keys encode both the 32-byte transaction

hash and the index of the unspent output, preceded by the prefix C. Regarding

coins, each one encodes a code that contains metadata about the block height and

whether the transaction is coinbase or not (notice that the transaction version

has been dropped), a compressed amount of bitcoins, and the output type and

script encoded in the same way as in version 0.14.

Storing unspent outputs one by one instead of aggregated by transaction

greatly simplifies the structure of the coin and reduces the UTXOs accessing

time. By using the previous structure, when a transaction with more than one

unspent output was accessed, all data needed to be decoded and all the unused

outputs encoded and written back into the database. However, this new format

has the downside of increasing the total size of the database [74].

4.1.3 STATUS: The UTXO analytic tool

We have created STATUS (STatistical Analysis Tool for Utxo Set), an open source

code tool that provides an easy way to access, decode, and analyse data from the

50

4.2. UTXO SET ANALYSIS

Bitcoin’s UTXO set2. STATUS is coded in Python 2 and works for both the existing

versions of Bitcoin Core’s UTXO set, that is, the first defined format (versions 0.8

- 0.14) and the recently defined one (version 0.15). STATUS reads from a given

chainstate folder and parses all the UTXO entries into a file. From the parsed

file, STATUS allows you to perform two types of analysis: a UTXO based one and

a transaction based one, both by decoding all the parsed information from the

chainstate.

In the UTXO based analysis, apart from the data mentioned in Sections 4.1.1

and 4.1.2 that STATUS directly decodes, it also creates additional meta-data

about each parsed entry, such as dust and unprofitable fee rate limit that will be

deeply analysed in Section 4.2. Regarding transaction based analysis, STATUS

aggregates all the parsed UTXOs that belong to the same transaction, providing

additional meta-data such as total number of UTXOs from a given transaction,

total unspent value of the transaction, etc. Finally, STATUS uses numpy and

matplotlib Python’s libraries to provide several statistical data analyses.

4.2 UTXO set analysis

In this section we analyse the UTXO set of the Bitcoin blockchain state at block

491,868, corresponding to the 26th of October 2017 at 13:13:38 using the STATUS

tool. First, we provide a general view of the data included, regarding the total

number of outputs and their size depending on the Bitcoin Core UTXO set format.

We also analyse different output subsets within the UTXO set that could be

interesting to measure in order to provide some hints whether a more efficient

UTXO set codification could be used.

4.2.1 General view

Using STATUS, we can retrieve details related to the general numbers behind

the UTXO set. Table 4.1 presents a summary of such basic facts of the analysed

2It can be found under a bigger Bitcoin Tools library at https://github.com/sr-gi/
bitcoin_tools/tree/v0.1/bitcoin_tools/analysis/status.

51

https://github.com/sr-gi/bitcoin_tools/tree/v0.1/bitcoin_tools/analysis/status
https://github.com/sr-gi/bitcoin_tools/tree/v0.1/bitcoin_tools/analysis/status

CHAPTER 4. ANALYSIS OF THE BITCOIN UTXO SET

data. There are 52 and a half million UTXOs in the set, belonging to more than

23 million different transactions. Although this gives an average of 2.26 UTXOs

per transaction, the distribution is very skewed, with most of the transactions

having just one unspent output.

v0.14 v0.15
Num. of tx 23,241,914
Num. of UTXOS 52,543,649
Avg. num. of UTXOS per tx 2.26
Std. dev. num. of UTXOS per tx 18.27
Median num. of UTXOS per tx 1
Size of the (serialized) UTXO set 2.02 GB 3.00 GB
Avg. size per record 93.45 B 61.46 B
Std. dev. size per record 443.20 7.65 B
Median size per record 62 61

Table 4.1: UTXO set summary.

Figure 4.1 shows a cumulative distribution function (cdf) of the number of

UTXOs per transaction3. Note that 87.9% of the transactions have only 1 UTXO4

and 94.97% have less than 3. The maximum number of UTXOs per transaction

is 3,452 5 which originally had 5,419 outputs.

Differences between both data formats (v0.14 and v0.15) are clear regarding

the serialized UTXO set size (see Table 4.1). While the v0.14 format uses 2.02GB

with an average size per record of 93.45 bytes (a total of 23,241,914 records), the

0.15 format expands the information to 3.00GB which represents an average size

per record of 61.46 bytes (with 52,543,649 records). Such a difference is due to

the way outputs are stored in both formats, as detailed in Section 4.1. However,

3All the analysis plots included in this section show cumulative distribution functions. Therefore,
a point (x, y) in the plot shows the probability y that a given variable (depicted in the x axis label)
will take a value less than or equal to x.

4Notice that such measure indicates that, although the average number of outputs in regular
Bitcoin transactions is higher, the number of outputs that remain unspent is, mostly, only one.

5https://blockchain.info/tx/d8505b78a4cddbd058372443bbce9ea74a313c27c586b7bbe8bc3825b7c7cbd7

52

https://blockchain.info/tx/d8505b78a4cddbd058372443bbce9ea74a313c27c586b7bbe8bc3825b7c7cbd7

4.2. UTXO SET ANALYSIS

Figure 4.1: Number of UTXOs per transaction.

the median size per record of both versions is very similar, with most records

being 59-64 bytes long. Such measurement is sound since both versions store

the 32-byte transaction id and some identifier of the output, thus being the size

difference for every record only significant when the transaction has more than a

single UTXO. Whereas the number of records with less than 59 bytes is negligible

(just 30 of them for v0.14 and 222 for v0.15), 83.25% of them in v0.14 and 99.0%

in v0.15 are ≤ 63-byte long.

As a matter of fact, the smallest stored record in v0.14 is just 41-byte long 6

and contains a single non-standard UTXO with a 1-byte length script containing

an invalid opcode. This UTXO is also one of the smallest records in v0.15, with

40 bytes (12 additional records have also the same size in v0.15). Section 4.2.4

provides an exploration of non-standard transactions in the UTXO set.

Another interesting information of the UTXO set that can be retrieved with

6https://blockchain.info/tx/8a68c461a2473653fe0add786f0ca6ebb99b257286166dfb00707be24716af3a

53

https://blockchain.info/tx/8a68c461a2473653fe0add786f0ca6ebb99b257286166dfb00707be24716af3a

CHAPTER 4. ANALYSIS OF THE BITCOIN UTXO SET

STATUS is the amount of UTXOs of each type, as detailed in Table 4.2. Notice

that UTXOs are classified between the different standard types also providing a

distinction between compressed and uncompressed keys for the P2PK type. As

data show, more than 99% of the UTXOs are P2PKH and P2SH, being P2PKH the

vast majority of them. In Section 4.2.4 we provide detailed information regarding

the 0.8% of UTXOs classified as others.

Num. of utxos 52,543,649 100%
Pay-to-PubkeyHash (P2PKH) 43,079,604 81.99%
Pay-to-ScriptHash (P2SH) 8,987,799 17.11%
Pay-to-Pubkey (P2PK) 66,759 0.12%

Compressed 29,977 0.06% (44.90%)
Uncompressed 36,782 0.07% (55.10%)

Others 409,487 0.8%

Table 4.2: UTXO types.

Figure 4.2 provides information about the amount of satoshi hold by each

UTXO, showing that 98.46% of the UTXOs hold less than one Bitcoin, with an

average of 0.32B per UTXO.

4.2.2 Dust and unprofitable UTXOs

An interesting type of outputs included in the UTXO set are those whose eco-

nomical value is small enough to represent a problem when they have to be

spent. Dust is a well known definition of such type of outputs. According to the

Bitcoin Core reference implementation [98], a dust output is the output of a

transaction where the fee to redeem it is greater than 1/3 of its value. Besides this

well known definition, we also define an unprofitable output as the output of

a transaction that holds less value than the fee necessary to be spent, resulting

in financial loses when used in a transaction.

In order to identify both types of outputs, it is important to recall that the

amount of fees a transaction has to pay to be included in a new block depends

54

4.2. UTXO SET ANALYSIS

101 103 105 107 109 1011 1013

Amount

0.0

0.2

0.4

0.6

0.8

1.0

Nu
m

be
r o

f U
TX

Os

Figure 4.2: Amount of bitcoins per UTXO (in satoshis).

on two factors: the fee-per-byte rate that the network is expecting at the time of

creating the transaction and the size of the transaction. The fee-per-byte rate,

measured in satoshi, is a highly variable factor that depends on the transaction

backlog (i.e. how many transactions are pending to be included in new blocks).

Since fees depend on the transaction size, in order to label the outputs in

the UTXO set as a dust or unprofitable, we need an estimation of the size of

data needed to spend such output. In order to identify the minimum information

needed, we can consider an already standard transaction with its inputs and its

outputs and enough fees to be relayed. Then, we define the minimum-input
of a UTXO as the smallest size input that spends such UTXO. The size of

such minimum-input, along with the value held in the output and the fee rate,

will determine whether a UTXO may be included in the dust or unprofitable

categories.

In order to measure the size of such minimum-input, we need to have in mind

55

CHAPTER 4. ANALYSIS OF THE BITCOIN UTXO SET

the structure of a Bitcoin transaction (refer to Chapter 2.2). All transactions follow

a standard structure containing some fixed length parameters, that determine a

minimum transaction size, and some variable length parameters, depending on

the transaction type. When a transaction is created, inputs are defined referring

to some UTXOs. The sizes of such inputs depend on the type of the outputs

they are claiming. Moreover, new outputs will be also generated in every new

transaction, adding some additional size determined by the their type.

Depending on the UTXO type, its minimum-input size will be different. Such

measure can be split in two parts: fixed size and variable size. Regarding the

fixed size, three fields of a transaction have always the same size: prev_tx_id,

pev_out_index and nSequence. Therefore, for every UTXO, its minimum-input

will be at least 40-byte long independently of its type. On the other hand, the

content and length of the fields scriptSig and scriptSig length depend on

the UTXO type, specified in the field scriptPubKey of the UTXO.

The different types of outputs, with their corresponding size, can be classified

as follows:

Pay-to-PubKey (P2PK) outputs: The minimum-input of this type of UTXO

specifies just a digital signature to redeem the output and the scriptSig includes

the following data:

PUSH sig (1 byte) + sig (71 bytes)

Bitcoin uses DER encoded ECDSA signatures in the scripts of its transactions,

which can be between 71 and 73 bytes long depending on their r and s compo-

nents. Such variability comes from the randomness of the r parameter. Since we

are defining the minimum possible input to be created, 71-byte signatures are

considered. Hence, the scriptSig for a P2PK UTXO will be 72-bytes long and

scriptSig len field will be 1-byte long, resulting in a minimum-input size of 73

bytes.

56

4.2. UTXO SET ANALYSIS

Pay-to-PubkeyHash (P2PKH) outputs: For this UTXO to be redeemed, both

a signature (sig) and a public key (pk) are required in the scriptSig, as shown

below:

PUSH sig (1 byte) + sig (71 bytes) + PUSH pk (1 byte) +

pk (33-65 bytes)

Regarding the signatures, the same assumptions as for P2PK outputs applies,

that is, 71-byte length can be considered. Regarding public keys used by Bitcoin,

they can be either compressed or uncompressed, which will significantly vary

their size:

• Uncompressed keys: such keys were used, by default, in the first versions

of the Bitcoin Core client, and they are 65-byte long.

• Compressed keys: by 30th March 2012 (around block height 173480) Bitcoin

core started using this more efficient type of keys, which are almost half

size of the previous ones (33 bytes), and therefore make smaller scripts.

So, the size for the scriptSig varies from 106 to 138, and consequently, the

scriptSig length field will be 1-byte long, resulting in a total minimum-input

size between 107 and 139 bytes.

Pay-to-multisig (P2MS) outputs: the size of the minimum-input to redeem

such a script highly varies depending on the number of signatures required,

which ranges up to 20 (20-of-20 multisig)7, so the scriptSig for redeeming such

output is as follows:

OP_0 (1 byte) + (PUSH sig (1 byte) + sig (71 bytes)) *

required_signatures (1-20)

7Although the standard considers a maximum number of 3 signatures in a P2MS output, up to
20 are valid regarding the consensus rule [113] so they could potentially be found in the UTXO set.

57

CHAPTER 4. ANALYSIS OF THE BITCOIN UTXO SET

Thus, the size of the scriptSig field will range between 73 and 1441 bytes,

making the scriptSig len field range between 1 and 2 bytes, so the total

minimum-input size will be between 74 and 1443.

Pay-to-ScriptHash (P2SH) outputs: unlike any previous output type, input

size created from P2SH outputs can not be straightforwardly defined in advance.

P2SH outputs hide the actual input script behind a hash in order to make

smarter outputs, by making them smaller and thus allowing the payer to pay

lower fees. However, the scripts held by those UTXOs give us no clue about how

the minimum-input should be built.

Table 4.3 summarizes the sizes of the minimum-input for each UTXO type.

scriptSig
UTXO type Fixed size scriptSig length sig pk push data Total size
P2PK 40 1 71 - 1 113
P2PKH 40 1 71 33-65 2 147-179
P2MS 40 1-2 71-1420 - 2-21 114-1483
P2SH 40 ? ? ? ? 40-?

Table 4.3: Minimum-input size summary.

Notice that the previous analysis does not take into account the new SegWit

transaction format [70]. The minimum-input size for such type of outputs needs

an extended analysis. However, at the time of performing the analysis, the total

outputs in the UTXO set that correspond to a SegWit output is upper bounded by

a 2.26% (see Section 4.2.1 and Section 4.2.4). Giving such small amount of data,

the results presented here will not significantly change, therefore, we leave such

analysis for further research.

Once we determined the amount of data of the minimum-input for each type

of UTXO, based on a defined fee-per-byte rate, we can identify those outputs from

the UTXO set that fall into both the dust and the unprofitable categories. To

obtain such data, the following considerations have been taken. The minimum-

input size for P2PK and P2MS outputs have been precisely computed since the

information to determine the exact size of the minimum-input can be derived

58

4.2. UTXO SET ANALYSIS

Figure 4.3: Evolution of fees (Source: Blockchain (https://www.blockchain.
info).

from the output data itself. However, it is not possible to exactly determine such

value for the P2PKH neither for the P2SH. In the first case, we have taken the

following approach. For those outputs up to block 173480, we have considered

uncompressed addressed, whereas for the newer ones, we have taken the most

conservative approach assuming that all public keys from that point onwards are

in compressed form (33 bytes), so reducing the number of UTXO that fall into

both categories. For the P2SH, being not able to set a proper lower bound for the

variable part, we have performed the analysis assuming only the fixed 40 bytes.

Finally, the last parameter to set is the fee-per-byte rate. As depicted in

Figure 4.3, such rate is far from fixed and has high variability. Thus, in order

to measure different possible scenarios, we have considered a wide fee-per-byte

spectrum, ranging from 0 to for 350 satoshi/byte. The volume of both dust outputs

and unprofitable outputs (blue and dotted orange lines respectively) in the UTXO

59

https://www.blockchain.info
https://www.blockchain.info

CHAPTER 4. ANALYSIS OF THE BITCOIN UTXO SET

set are depicted in Figures 4.4, 4.5 and 4.6.

Figure 4.4: Percentage of dust/unprofitable UTXOs w.r.t. fee-per-byte.

Figure 4.4 shows the relative size of dust and unprofitable output sets within

the total UTXO set. Notice that for a fee-per-byte as small as 80 satoshi/byte

onwards, more than the 50% of UTXOs (26.29 million outputs) from the set can

be considered dust, whereas the same 50% size for the unprofitable set is reached

for 240 satoshi/byte onwards. Regarding the size of such data, Figure 4.5 shows

how those UTXOs represent a relevant part of the total size from the set (more

than the 50% for around 70 satoshi/byte onwards), while the same can be seen

for unprofitable UTXOs for a rate of 200 satoshi/byte onwards. Finally, from

an economic point of view, Figure 4.6 shows, as expected, how those dust and

unprofitable UTXOs represent a negligible amount from the total value of the

UTXO set, which is the total number of bitcoins in circulation.

60

4.2. UTXO SET ANALYSIS

Figure 4.5: Percentage of occupied space w.r.t. fee-per-byte rate.

4.2.3 Height

Another interesting type of UTXOs are those that were created a long time ago.

Although it is difficult to determine the average time in which a UTXO will be

spent, some old UTXOs may belong to keys that are lost, meaning that they may

never be spent.

Figure 4.7 depicts the height of the block where the transaction is included

in a per-transaction (v0.14, blue line) and per UTXO (v0.15 orange line) fashion.

Half of the stored UTXOs are older than January 2017 (block 449,896 corresponds

to the median), whereas the other half are younger. This means that almost half

of the current UTXO set is filled with UTXOs created in the last year (2017). On

the other hand, there are still very old UTXOs: 2% of them are older than August

2012 (block height 194,635).

In Figure 4.8 we can see the evolution in time of the different types of outputs

in the UTXO set. Notice that P2PKH and P2SH show a stable distribution in time.

61

CHAPTER 4. ANALYSIS OF THE BITCOIN UTXO SET

Figure 4.6: Percentage of economic value w.r.t. fee-per-byte rate.

Apart from that, outputs labelled as others are mainly from old transactions

since 95% of them are older than March 2016 (block height 403,052). Finally, the

chart also shows that P2PK outputs have an irregular behaviour. 50% of them

were created before block 91,542, which is an expected result since P2PKH were

developed afterwards as an improvement of P2PK. However, it is interesting to

see that, after a long time with very few outputs of this type, around March 2017

and during 324 blocks, 15% of the P2PK outputs included in the UTXO set were

created.

Figure 4.9 shows an already known fact that indicates that most of the bitcoins

created at the beginning of the cryptocurrency are still pending to redeem. More

precisely, 75% of the coinbase outputs in the UTXO set were created before block

274,946 (December 2013). In contrast, just 6% of the current UTXOs were created

before that block (see Figure 4.7).

62

4.2. UTXO SET ANALYSIS

Figure 4.7: Height per transaction/UTXO.

4.2.4 Non-standard

As shown in Table 4.2, we have labelled as others 409,487 UTXOs from the

set, since they do not fall into the main categories: P2PK, P2PKH and P2SH.

A detailed analysis of such UTXOs, provided in Table 4.4, shows that almost

all UTXOs correspond to a Pay-to-Multisig (P2MS) outputs being 1-2 and 1-3

set-ups the most popular ones. Notice that the UTXOs included are those with

configuration up to three public keys, which is sound according to the fact that

this is the upper bound for a multisignature output to be considered standard by

the Bitcoin network transaction relaying policies. Finally, it is worth mentioning

that there are 828 UTXOs with 1-1 configuration, a fact that does not make much

sense since it is an output with a functionality equivalent to P2PK but with a

larger script size and therefore higher fees may be needed to spent it.

Regarding the 1,169 outputs labelled as others in Table 4.4, 34.05% of them

63

CHAPTER 4. ANALYSIS OF THE BITCOIN UTXO SET

Figure 4.8: UTXO type evolution by height.

1-1 828 0.20%
1-2 199,904 48.81%
2-2 1,353 0.33%
1-3 206,096 50.33%
2-3 117 0.02%
3-3 20 0.005%
Others 1,169 0.28%

Table 4.4: Multisig analysis.

(398) are new native SegWit type outputs. More precisely, Pay-to-Witness-Public-

Key-Hash (P2WPKH) account for 40 outputs and Pay-to-Witness-Script-Hash

(P2WSH) accounts for a total of 358.

64

4.3. CONCLUSIONS

0 100000 200000 300000 400000 500000
Height

0.0

0.2

0.4

0.6

0.8

1.0

Nu
m

be
r o

f t
xs

Figure 4.9: Coinbase evolution by height.

4.3 Conclusions

In this chapter we have introduced STATUS, a tool to analyse the UTXO set of

Bitcoin (based on the Bitcoin Core implementation), and we have provided an

analysis of such set, paying special attention to dust and unprofitable outputs.

We have also provided a detailed description of the UTXO set format, including

the new format introduced in Bitcoin Core v0.15. The use of this format compared

to the previous one does not have an impact on the analysis we have presented

in this chapter. The new version provides a more efficient access to the UTXO

information at the expense of slightly higher storage requirements. Additionally,

we have provided interesting data that shows the high percentage of static

information (in the sense that is not going to be spent -dust and unprofitable-)

included in the UTXO set that reduces the efficiency of the database in terms of

space. Finally, it is worth mentioning that currently there is a very low percentage

of SegWit UTXO, upper bounded by a 2.26% of the total outputs stored in the

65

CHAPTER 4. ANALYSIS OF THE BITCOIN UTXO SET

UTXO set. As this will possibly increase in the future, the analysis of dust and

unprofitable transactions will need to be revisited in further research in order to

update the results with these new types of outputs.

66

C
H

A
P

T
E

R

5
BITCOIN PRIVATE KEY LOCKED TRANSACTIONS

In this chapter we introduce and propose private key locked transactions

(PKLT), a new type of Bitcoin transaction were the disclosure of a private

key from an asymmetric key pair must be performed to spend a UTXO [36].

Note that standard scripts requiring a signature are already useful to prove

the possession of a private key (because the private key is needed to create the

signature). However, the disclosure of such private key will be useful as a building

block of several applications, as we will see in later chapters.

5.1 Private key locked transactions

Two alternative but equivalent ways for implementing private key locked trans-

actions will be introduced in this chapter. First, through the definition of a new

opcode. Secondly, by using a well known ECDSA vulnerability. In our case, such

vulnerability becomes a property of ECDSA, since it allows us to nicely implement

the key disclosure through a Bitcoin transaction.

67

CHAPTER 5. BITCOIN PRIVATE KEY LOCKED TRANSACTIONS

5.1.1 Designing a new Bitcoin opcode

Our first proposed design for PKLT is the implementation of a new crypto opcode

that checks whether a public key and a private key belong to the same key pair:

OP_CHECKKEYPAIRVERIFY.

With the use of this new opcode, a transaction output could be constructed so

that, in order to be redeemed, the private key matching the specified public key

has to be revealed. An example1 of the scriptPubKey of such an output along

with the scriptSig needed to spend it would be:

ScriptPubKey: <pubKeyA1> OP_CHECKKEYPAIRVERIFY OP_2DROP

<pubKeyA2> OP_CHECKSIG

ScriptSig: <sigA2> <privKeyA1>

The script will first check that the public and private keys belong to the

same key pair. Note that, if the validation is successful, the stack values will

remain untouched. Therefore, before checking the validity of the signature with

OP_CHECKSIG, privKeyA1 and pubKeyA1 have to be removed from the stack

(since they are not needed for signature validation). The execution of OP_2DROP

removes them from the stack. Finally, OP_CHECKSIG validates the signature with

the public key. If the signature is correct, the script terminates successfully.

Note that the execution of OP_CHECKKEYPAIRVERIFY would fail if the valida-

tion is unsuccessful and would leave the stack as it was before if the validation is

successful. This ensures that the new opcode can be implemented as a soft fork

modification of the Bitcoin Core protocol by reusing one of the currently unused

OP_NOPx opcodes, in a similar way that it has been done in the past with the

opcodes OP_CHECKLOCKTIMEVERIFY (OP_NOP2) and OP_CHECKSEQUENCEVERIFY

(OP_NOP3).

1The provided script includes a digital signature condition, following the structure of the ones
previously introduced in Chapter 2.2.2.

68

5.1. PRIVATE KEY LOCKED TRANSACTIONS

5.1.2 ECDSA vulnerability

An alternative approach to build transaction outputs, which locking conditions

require to disclose a specific private key, can be taken by using a vulnerability in

the ECDSA signature scheme.

ECDSA (Elliptic Curve Digital Signature Algorithm) is the crytographic

algorithm used by Bitcoin to create and validate digital signatures. ECDSA has

a set of system parameters: an elliptic curve field and equation C, a generator G
of the elliptic curve C, and a prime q which corresponds to the order of G. The

values for these parameters are defined to be secp256k1 [91] for Bitcoin.

Let denote by ∗ the operation of multiplying an elliptic curve point by a scalar.

Given a specific configuration of the parameters and a private key d, the ECDSA

signature algorithm over the message m is defined as follows:

1. Randomly choose an integer k in [1, q−1]

2. (x, y)= k∗G

3. r = x mod q

4. s = k−1(m+ rd) mod q

5. Output2: sig(m)= (r, s)

The ECDSA signature scheme is therefore probabilistic, that is, there ex-

ist many different valid signatures made with the same private key for the

same message. The selection of a specific signature from the set of valid ones is

determined by the election of the integer k.

There exists a well known ECDSA signature vulnerability (also present in the

non-elliptic curve signature scheme of ElGamal and its popular variant, DSA [75])

by which an attacker that observes two signatures of different messages made

with the same private key is able to extract the private key if the signer reuses

the same k. Therefore, the selection of k is critical to the security of the system.

2A new integer k is chosen and the procedure is repeated if either s or r are 0.

69

CHAPTER 5. BITCOIN PRIVATE KEY LOCKED TRANSACTIONS

Indeed, given two signatures that have been created using the same k and

the same private key, sig1(m1)= (r, s1) and sig2(m2)= (r, s2) with m1 6= m2, an

attacker that obtains m1, sig1, m2, sig2 may derive the private key d:

1. Recall that, by the definition of the signature scheme:

s1 = k−1(m1 + rd) mod q ⇒ ks1 = m1 + rd mod q
s2 = k−1(m2 + rd) mod q ⇒ ks2 = m2 + rd mod q

Note that, since r is deterministically generated from k and the fixed

parameters of the scheme, the r of both signatures will be the same.

2. The attacker learns k by computing k = m2−m1
s2−s1

3. The attacker learns the private key d by computing d = s1k−m1
r or d =

s2k−m2
r

Moreover, the leakage of a private key can also be produced in situations

where similar k values are generated [11, 83].

Some Bitcoin wallets adopted deterministic ECDSA after this vulnerability

was found to affect some Bitcoin transactions [18, 94, 108].

It is woth mentioning that taking advantage of such vulnerability to disclose

a private key in Bitcoin has been previously used for timestamping in data

commitment schemes [29].

5.1.3 Private key disclose mechanism

Our proposed scheme makes use of the aforementioned ECDSA vulnerability to

perform targeted private key disclosure within Bitcoin. The private key disclosure

mechanism we propose allows the construction of transaction outputs that need

to reveal a private key in order to be redeemed, in such a way that we ensure the

revealed private key is the counterpart of a certain public key.

Let {PK ,SK} be an ECDSA key pair belonging to Bob (being Addr(PK) the

Bitcoin address associated to it) and sigprev an existing signature made with

70

5.1. PRIVATE KEY LOCKED TRANSACTIONS

SK . Alice (that is interested in acquiring Bob’s private key) needs to know the

value of the previous signature sigprev to be able to request, afterwards, a second

signature made with the same k. The previous signature may appear in the

blockchain as the input script of an existing transaction. For instance, if Bob

has performed a transaction using any UTXO bound to Addr(PK), therefore

providing a signature performed with SK , sigprev will be publicly available in

the Bitcoin blockchain. Hence, any observer will know this value, and the signed

message m will correspond to a transaction hash.

Once an existing previous signature sigprev is known by Alice, she creates

a transaction with an output that requires a second signature sig to be spent.

However, instead of using the classical P2PKH script, she uses a special script

that forces Bob (the redeemer) not only to prove he has the private key SK
associated to the given address Addr(PK) by creating a valid signature, but also

to deliver a signature that has exactly the same k value that was used to create

sigprev. The output may also have a time lock that allows Alice to get back her

bitcoins if Bob chooses not to reveal the private key.

Doing so accomplishes two purposes: first, Bob proves he knows the private

key associated to the public key by generating a signature that correctly validates

with that public key; secondly, Bob is implicitly revealing the private key. Note

that Bob does not directly provide the private key, but provides information from

which the private key can be derived.

Moreover, the operation is atomic, in the sense that Bob gets Alice’s bitcoins

(the amount deposited into the output) only when Alice gets Bob’s private key

(derived from the two signatures by exploiting the reuse of k).

Furthermore, unlike when revealing symmetric keys with hash locks, the

private key disclosure mechanism allows to validate that the leaked secret key is

correct, that is, it matches the specified public key.

Figure 5.1 shows an scheme of the Bitcoin transactions involved in the con-

struction of a private key locked output. In this example, the input of transaction

tx2 contains the signature sigprev made by Bob in the past.

Once the previous signature is known, Alice can construct the transaction tx4,

71

CHAPTER 5. BITCOIN PRIVATE KEY LOCKED TRANSACTIONS

that transfers some bitcoins of her property to Bob, only if Bob provides a valid

signature that has the same r as the previous signature sigprev that appeared on

tx2. Moreover, the output has an additional condition with a time lock allowing

Alice to get a refund of her bitcoins if Bob decides not to collaborate and does not

redeem tx4’s output.

From: Someone

Someone

1 BTC

Signed:

To: Bob
Required to unlock:

Bob Signature

1 BTC

From: Bob

Bob

1 BTC

Signed:

To: Someone
Required to unlock:

Someone Signature

1 BTC

From: Someone

Someone

1 BTC

Signed:

To: Alice
Required to unlock:

1 BTC

From: Alice

Signed:

To: Bob | Alice
Required to unlock:

Or:

Alice

1 BTC

Bob Signature

1 BTC

Alice Signature

tx1 tx2

tx3

tx4

Alice Signature

Figure 5.1: Transactions involved in the scheme.

In the next section, we describe how to construct the output of tx4 taking into

account Bitcoin’s signature format and Bitcoin’s scripting language.

5.1.4 Implementation

Although ECDSA signatures are made of two values, r and s, Bitcoin signatures

are just a single hexadecimal value, which corresponds to the DER encoding of

the two-element sequence of the two integers. Figure 5.2 describes the format of

a Bitcoin signature, where z denotes the bytes representing r and s (that is, for

each value, the 0x02 integer flag, the size, and the value itself) and ht denotes

the hash type, a flag that indicates the parts of the transaction that are hashed

72

5.1. PRIVATE KEY LOCKED TRANSACTIONS

and signed.

02len(z) htlen(r) r 02 len(s) s30

1 1 1 1 32-33 1 1 132-33 byte length
hex value

Figure 5.2: Bitcoin signature format.

Both r and s are 32-byte integers. However, when the first bit of any of the

values is set (that is, the fist byte is > 0x7f), an additional byte (0x00) is added in

front of the value, thus making it 33 byte long. DER rules interpret this first bit

as a sign, and therefore not adding 0x00 would cause the value to be interpreted

as negative.

Recall that Alice was in possession of a previous signature sigprev that Bob

had made in the past, and that Alice wanted to construct a transaction output

that can be redeemed by Bob only if he presents a new signature sig that uses

the same k (i.e. has the same r component).

For the sake of simplicity, let us assume that we are dealing with 71-byte

signatures, i.e., signatures where both r and s are 32 byte long (Figure 6.4a).

Taking into account the format of signatures in Bitcoin, Alice can construct a

signature mask sigmask: a byte array that has ones on the positions where r is

specified and zeros in the rest of positions. Figure 5.3b shows the construction

of sigmask. Alice can also construct a byte array rprev (Figure 5.3c) that results

from the bitwise AND operation between the previous signature sigprev and the

signature mask sigmask.

02 ht20 r 02 s30

1 1 1 1 32 1 1 1 byte length

hex value

ff00

1 1 1 1 1 1 1

00

32 32

32

ff 00ff 0· · ·0f · · ·f

a) sig

b) sigmask

c) rprev
00

1 1 1 1 1 1 1

00

32 32

00 0· · ·002 r 02

20

20

00

00

44

byte length

hex value

byte length

hex value

Figure 5.3: Values used in the proposed script.

73

CHAPTER 5. BITCOIN PRIVATE KEY LOCKED TRANSACTIONS

Finally, Alice can create an output that requires a second signature sig with

the same r as the previous signature sigprev by using the values sigmask and

rprev she has computed. The ScriptPubKey of the output (and its corresponding

ScriptSig) would then be:

ScriptPubKey: OP_DUP <pubKey> OP_CHECKSIGVERIFY
OP_SIZE <0x47> OP_EQUALVERIFY
<sigmask> OP_AND <rprev> OP_EQUAL

ScriptSig: <sig>

First, the script validates the signature against the specified public key. Then,

the length of the signature is checked. Finally, a bitwise AND between the new

signature and sigmask is computed, and the result is compared with rprev. If

both values are equal (that is, both signatures have the same r and thus were

made using the same k), the script terminates successfully; otherwise, the script

terminates with a false value on the stack, making it fail.

Note that the only way to ensure that the script succeeds is by providing a

valid signature that has exactly the same r as the previous signature. Therefore,

although the redeem ScriptSig that spends the output does not include the

private key directly, it is implicitly leaking its value. Also note that the ScriptSig

needed to spend the output only requires one value: the new signature.

We have created a set of transactions in the Bitcoin testnet that exemplify

the proposed protocol. Following the transaction naming used in Figure 5.1,

the input3 of tx2 contains a signature made by Bob with his private key SK ,

together with the public key PK needed to validate it. This signature is public,

and thus can be used as the previous signature sigprev needed by our scheme.

The private key SK is, therefore, the private key that is going to be disclosed

by Bob by providing a second signature with the same k. With this previous

signature, Alice can construct tx4, whose output4 contains the special script that

requires a second signature from Bob with the same private key and the same

3https://www.blocktrail.com/tBTC/tx/7767a9eb2c8adda3ffce86c06689007a903b6f7e78dbc049ef0dbaf9eeebe075
4https://www.blocktrail.com/tBTC/tx/cb0174d950761ab1b28cff7bb6d0da63414305540e5f52cd71dbca213a5a910d

74

https://www.blocktrail.com/tBTC/tx/7767a9eb2c8adda3ffce86c06689007a903b6f7e78dbc049ef0dbaf9eeebe075
https://www.blocktrail.com/tBTC/tx/cb0174d950761ab1b28cff7bb6d0da63414305540e5f52cd71dbca213a5a910d

5.1. PRIVATE KEY LOCKED TRANSACTIONS

k. Unfortunately, the output of tx4 is currently unspendable because it uses an

OP_AND opcode that is disabled in current Bitcoin standard implementations.

Moreover, note that the transaction tx5 that spends tx4 may be vulnerable

to double-spending. Indeed, once tx5 is made public, any observer will be able to

derive the private key from the information it contains. As a consequence, an

attacker would be able to construct another transaction, tx′5, that also spends tx4

(and also reuses k) but that moves the amount of bitcoins to an address controlled

by the attacker. In order for the attack to succeed, the attacker not only has to

create and broadcast tx′5, but also has to be able to make the network accept his

transaction tx′5 instead of the original tx5.

This attack can be prevented by modifying the proposed script, so that tx4

output contains a 2-out-of-2 multisignature script. Then, two signatures are

needed from Bob to spend tx4. One of the signatures will be required to have the

same k than sigprev (as in the original formulation of our protocol), whereas the

second signature will not have any special conditions. This second signature will

be validated against a second public key from Bob, whose corresponding private

key will not be leaked by the protocol. In this way, an attacker capturing tx5 will

not be able to create tx′5 double spending tx4, since he will lack one of the private

keys.

ScriptPubKey: OP_DUP OP_TOALTSTACK
OP_2 <pubKey2> <pubKey> OP_2 OP_CHECKMULTISIGVERIFY
OP_FROMALTSTACK
OP_SIZE <0x47> OP_EQUALVERIFY
<sigmask> OP_AND <rprev> OP_EQUAL

ScriptSig: OP_0 <sig2> <sig>

An output containing such an script can be also found in the testnet5.

5https://www.blocktrail.com/tBTC/tx/e27b236bb124f5eefd66aa7bcd97aabb1e4fe5c1dee509a1fbe50339400f6260

75

https://www.blocktrail.com/tBTC/tx/e27b236bb124f5eefd66aa7bcd97aabb1e4fe5c1dee509a1fbe50339400f6260

CHAPTER 5. BITCOIN PRIVATE KEY LOCKED TRANSACTIONS

5.2 Conclusions

We have presented private key locked transaction for Bitcoin, a new transaction

type where the redeemer is required to disclose a given private key corresponding

to a ECDSA asymmetric key pair. This has been achieved by using an existing

vulnerability of the ECDSA signature scheme. The private key can be obtained

from two different signatures of the same key re-using a given parameter.

The exchange of a key for a payment in an atomic way provides a nice tool

for interesting digital exchanges, where sold information is protected by a key

until the payment is received. However, in such scenarios, the correction of

the key should be verifiable before the payment. Our construction allows such

verification since a private key is related to a publicly known public key, and then

a correctness verification can be performed.

76

C
H

A
P

T
E

R

6
DOUBLE-SPENDING PREVENTION FOR BITCOIN

ZERO-CONFIRMATION TRANSACTIONS

In this chapter we describe a proposal to mitigate the double spending

problem for Bitcoin zero-confirmation transactions [87], building on top of

private key locked transaction introduced in the previous chapter. In our

proposal, any single observer who identifies a double spending attempt may take

part and punish the attacker. Moreover, our solution discourages the attacker to

even attempt the double-spending, because doing so makes him risk losing an

amount of bitcoins bigger than the double-spent amount. Our solution benefits

fast-payment scenarios, like in-shop purchases or trading platforms, where the

transfer bitcoin-product/service cannot wait until the transaction is confirmed in

the blockchain.

77

CHAPTER 6. DOUBLE-SPENDING PREVENTION FOR BITCOIN

6.1 Bitcoin transactions propagation

As was introduced in Chapters 2 and 3, Bitcoin transactions are propagated

through a peer to peer network. Every node of the network broadcasts the trans-

actions he generates and propagates transactions received from other network

peers. In order to defeat denial of service attacks, every peer performs different

validations on every received transaction before its propagation1, like data format

validation, digital signature verification, or correctness of the values involved

in the transaction. Besides such verification, the node also validates that the

received transaction does not spend output previously spent, neither by a trans-

action already in the blockchain nor by a transaction included in the mempool of

the node. In case that some validation fails, the node drops the transaction and,

therefore, the transaction is not propagated any further.

However, since Bitcoin Core 0.12, Bitcoin includes a replace-by-fee mechanism

(RBF) that allows transactions to signal replaceability. Such mechanism was

introduced to allow to increase the fee of an already broadcast transaction in

order to boost its odds of inclusion in the blockchain. Therefore, if a transaction

is flagged as replaceable with RBF, it can be replaced from the node’s mempool

by a newer transaction that spends the same outputs but includes a higher fee2.

Moreover, such new transaction will also be further propagated throughout the

network, since it is considered a valid transaction that replaces the previous

one. Such feature ensures that when a transaction is tagged as a RBF, a double

spending transaction of the same UTXO will be propagated further than a double

spending of a regular (non-RBF) transaction.

6.2 Double-spending prevention mechanism

Our proposed scheme discourages users from performing double spending attacks

in zero-confirmation transactions used in fast payment scenarios. Fast payment

1See [3] for all the validation details.
2Notice that this only affects transactions in the mempool, since transactions included in the

blockchain are final and thus not replaceable.

78

6.2. DOUBLE-SPENDING PREVENTION MECHANISM

scenarios are those where the merchant delivers the goods or services when

seeing the payment transaction in the Bitcoin network, without waiting for the

transaction to be confirmed. Examples of such scenarios are on-site shopping

where the buyer cannot wait 10 minutes to leave the shop after purchase or in

trading platforms where a timely transaction can save/earn you money.

In our scenario, we assume that the adversary is the buyer that pays for some

goods to a merchant, and that may have incentives to try to double-spend the

payment in order to finish the interaction with both the goods and the money.

We assume that the adversary can perform a double-spending attack by

generating multiple transactions that spend from the same output and broadcast

them selectively in the Bitcoin P2P network. Additionally, we also assume all

peers of the network have the same capabilities, that is, they are able to generate

and broadcast double spend transactions (if they know the private key needed to

generate a signature).

In order to discourage double-spending attacks, we propose a mechanism to

construct special transaction outputs. Such outputs can be spent with a single

signature but have the property that if two different signatures for the same

output are disclosed (for instance, in two different transactions spending the same

output as a double-spending attack), the private key used to sign the transaction

is revealed. This allows any observer to generate a third transaction spending

the same output and sending the amount to an address controlled by himself.

To allow such construction, we propose a new Bitcoin script that we call

fixed-r pay-to-pubkey script (FR-P2PK) which builds on top of the private

key locked transactions introduced in Chapter 5. Indeed, if the sender generates

another transaction that spends the same output and propagates it through

the P2P network, the sender risks losing all the funds deposited in the address

because any peer that captures both transactions will be able to derive the private

key.

79

CHAPTER 6. DOUBLE-SPENDING PREVENTION FOR BITCOIN

6.2.1 Basic prevention mechanism

Let Alice be a user that wants to take advantage of the proposed double-spending

prevention mechanism and let {PKa,SKa} be an ECDSA key pair belonging to

Alice.

The double spending prevention mechanism is made of two phases: initializa-
tion, that is performed before the payment is made, and fast-payment, where the

payment is executed.

6.2.1.1 Initialization

The initialization phase is performed beforehand. During this phase, Alice gen-

erates a funding transaction that transfers some funds from an output in her

control to a FR-P2PK output also under her control. In order to do so, Alice

chooses a random integer k and a public key PKa (for which she knows the

associated secret key SKa), constructs the FR-P2PK output, and sends some

funds to an output in her control (see Figure 6.1).

Alice broadcasts the funding transaction and waits for the transaction to be

confirmed, upon which the initialization phase is considered terminated.

A single funding transaction may include multiple FR-P2PK outputs (with

different public keys) in order to allow Alice to use the proposed prevention mech-

anism multiple times. Moreover, Alice may repeat the initialization phase if she

runs out of unspent FR-P2PK outputs. Note that this phase is independent of any

specific payments and that Alice alone participates in the procedure. Additionally,

notice that Alice remains in control of all the funds deposited by the funding

transaction and she is able to transfer them back to an standard output whenever

she wants.

At some point in the future, Alice wants to send some amount of bitcoins

to another user Bob. Alice does not want to wait for the confirmation of the

transaction and Bob is not willing to accept the transaction without confirmation.

80

6.2. DOUBLE-SPENDING PREVENTION MECHANISM

Alice’s signature

 (fixed)

σ BTC

σ BTC

Signed:

To: Alice

From: Alice

Alice

Required to unlock:

funding tx

σ BTC
Signed:

From: Someone

σ BTC
Required to unlock:

To: Alice

Someone

Alice’s signature

Figure 6.1: Creation of the funding transaction.

So they decide to use the proposed double spending prevention mechanism,

executing the fast-payment phase.

6.2.1.2 Fast payment

Alice creates a fast-payment transaction that pays to Bob spending from the

FR-P2PK output of the funding transaction. The input script in the fast-payment

transaction forces Alice (the redeemer) not only to prove that she has the private

key SKa associated to the given public key PKa by creating a valid signature,

but also to deliver a signature that has been made using the specific k value that

Alice chose during the initialization phase (see Figure 6.2). Alice broadcasts the

fast-payment transaction to the Bitcoin P2P network.

Then, when Bob sees the fast-payment transaction in his mempool, he can

validate that the output script of the funding transaction spent by the fast pay-

ment transaction is indeed a FR-P2PK script. If the validation is correct, Bob

knows that if Alice tries to double spend the transaction she takes the risk of

losing the Bitcoins of that output.

If Alice decides to try to double spend the fast-payment transaction (see

81

CHAPTER 6. DOUBLE-SPENDING PREVENTION FOR BITCOIN

Alice’s signature

 (fixed)

σ BTC

σ BTC

Signed:

To: Alice

From: Alice

Alice

Required to unlock:

funding tx fast payment tx

To: Bob
Required to unlock:

σ BTC

Bob’s signature

 Alice
(fixed)

From: Alice σ BTC
Signed:

Figure 6.2: Fast payment transaction.

Figure 6.3, double-spending attempt), she needs to create a double spending
transaction that also spends the FR-P2PK output of the funding transaction.

This double spending transaction has to be valid, so it needs to include a (second)

signature made with SKa and the k value chosen on the initialization phase.

Hence the moment the double spend transaction is created, there exist two

different signatures made with the same private key SKa using the same r. The

signatures will be indeed different, since the signed content (i.e. the transactions)

will also be different.

As a consequence, if Alice broadcasts the double-spending transaction, she

risks losing her funds. This happens because any observer that receives both

transactions (the fast-payment transaction and the double-spending transaction)

will be able to derive Alice’s secret key SKa and, as a consequence, create a third

transaction (the penalty transaction) that also spends the FR-P2PK output of the

funding transaction but that sends the bitcoins to the observer. Note that this

strategy may be performed simultaneously by any observer, ending with multiple

penalty transactions, as it is depicted in Figure 6.3.

82

6.2. DOUBLE-SPENDING PREVENTION MECHANISM

Alice’s signature

 (fixed)

σ BTC

σ BTC

Signed:

To: Alice

From: Alice

Alice

Required to unlock:

funding tx

To: Alice'
Required to unlock:

double-spending tx

Alice' ‘s signature

penalty txj

fast payment tx

σ BTC

 Alice
(fixed)

From: Alice σ BTC
Signed:

To: Bob
Required to unlock:

σ BTC

Bob’s signature

 Alice
(fixed)

From: Alice σ BTC
Signed:

 Alice
(fixed)

From: Alice
Signed:

(σ * γ) BTC

To: Observer1
Required to unlock:

Observer1’s signature

(σ * γ) BTC

 Alice
(fixed)

From: Alice
Signed:

σ BTC

To: Observer1
Required to unlock:

Observer1’s signature

(σ * γ) BTC

 Alice
(fixed)

From: Alice
Signed:

σ BTC

To: Observer1
Required to unlock:

Observer1’s signature

(σ * γ) BTC

 Alice
(fixed)

From: Alice
Signed:

σ BTC

To: Observer1
Required to unlock:

Observer1’s signature

σ BTC

Double-spending
 attempt

Figure 6.3: Transactions involved in the scheme.

6.2.2 Disincentive-based prevention mechanism

The basic prevention method described in the previous section has a clear draw-

back. Suppose that Alice buys something from Bob’s shop and Bob accepts a fast

transaction from Alice as a payment. When such transaction is received, Bob

delivers the goods to Alice. However, once Alice has the goods, she may try to

perform a double-spending attack. In case an observer sees both the fast-payment

transaction and the double-spending transaction, he constructs the penalty trans-

action, and manages to get it accepted in the blockchain, Alice will therefore

lose her funds but Bob will not receive the payment. In that case, Bob may have

complied with his part of the agreement (e.g. delivered the goods) but will not

83

CHAPTER 6. DOUBLE-SPENDING PREVENTION FOR BITCOIN

receive the agreed amount of bitcoins in exchange. Alice would have paid the

agreed amount of bitcoins to a third party (the observer) instead of paying them

to Bob, but she would remain in possession of the goods. The observer would

obtain the total amount of the transaction. As a consequence, Alice will not lose

anything by trying the double-spend (just the amount she was already willing

to pay for it), and thus the proposed method may not be discouraging enough to

prevent double spending attempts.

However, a minor modification to the method is enough to discourage Alice

from attempting any double-spend: enforcing that the amount deposited to the

FR-P2PK output of the funding transaction is higher than the paid amount by

a certain factor λ. Recall that a Bitcoin UTXO must be spent in its totality (i.e.

it is not possible to spend a part of a UTXO). Therefore, if the FR-P2PK output

has an amount bigger than what Alice must pay to Bob, Alice proceeds to create

the fast-payment transaction including two different outputs: one that pays to

Bob the agreed amount, and the other that pays back to her the change. This

has no consequences on the normal operation of the protocol, that is, if Alice is

honest, Bob ends up with his payment and Alice gets her change back. However,

because the entire FR-P2PK output is spent, if Alice tries to double-spend the

fast payment she risks losing not only the amount paid to Bob, but the entire

amount of the FR-P2PK output. It is worth mentioning that if Alice has more

UTXOs associated with the Bitcoin address used in the double spend attempt,

she risks losing them all since her private key will be compromised. Therefore,

the penalty could be even higher. However, the technique aims to ensure that at

least the agreed amount is hold by Alice.

As we will discuss in Section 6.4, by adjusting the λ factor Alice’s penalty

for double-spending can also be adjusted (and thus Bob’s confidence on the fast

payment).

Finally, note that the fast-payment transaction may also have multiple inputs

spending different FR-P2PK outputs. This allows Alice to perform payments of

different amounts and with different penalty levels without having to freeze a

high amount of bitcoins into FR-P2PK outputs.

84

6.3. IMPLEMENTATION DETAILS

6.2.2.1 The role of the observers

The funding transaction is confirmed before starting the fast-payment phase, so

any full node of the network is aware of its existence. Moreover, because it has

an output with an easily identifiable script, the FR-P2PK script, any observer

aware of the specification of our proposed mechanism is able to identify the

transaction as a funding transaction belonging to our protocol. Therefore, such

an observer will be able to monitor his mempool, looking for transactions that

spend the FR-P2PK output. Once a transaction spending from the FR-P2PK

output is seen, the observer is able to actively listen the network, searching for

any other transaction spending the same output. If the observer is able to catch a

double spending transaction, he should be able to construct a penalty transaction,

moving the funds to an address controlled by himself. If the observer does not

capture a double spending transaction, he may stop this active listening period

and return to its normal behaviour when a transaction spending the FR-P2PK

output is included in the blockchain.

In order to achieve the maximum level of propagation, and thus to spread

awareness of the double-spending attempt, fast-payment transactions are flagged

with replace-by-fee (RFB). By forcing a customer to flag a transaction in such a

way a merchant enables the forwarding of future double-spending transactions,

that could be detected by a higher number of nodes, increasing the odds of an

observer receiving two instances of the transaction and, therefore, publishing a

punishment transaction.

6.3 Implementation details

In this section, we describe how to construct the FR-P2PK output of the funding

transaction as well as the inputs of the transactions that spend it, taking into

account Bitcoin’s signature format and scripting language.

First of all, notice that it would be possible to encapsulate the proposed FR-

P2PK script into a standard P2SH output. However, doing so makes the funding

transaction no longer recognizable as belonging to our protocol by external

85

CHAPTER 6. DOUBLE-SPENDING PREVENTION FOR BITCOIN

observers. Therefore, an observer that is aware of the existence of our protocol

would be able to detect that the mechanism is being used only after one of the

transactions spending the encapsulated FR-P2PK is seen in the network. This

transaction will include the FR-P2PK script in the scriptSig (input script).

The moment the observer processes this script, he can start the active listening

period in which he looks for other transactions spending from the same funding

transaction output. Because timing is critical in our scenario, we argue that using

directly a FR-P2PK output in the funding transaction is the best alternative.

Figures 6.4b-c show the construction of <sigmask> and <r>, respectively.

Regarding the construction of the byte array <r>, on the one hand the integer r is

derived uniquely from the randomly chosen k value (recall Step 3 of the ECDSA

signature generation algorithm in Chapter 5.1.2). Note that any value of k may

be used by the protocol, what matters is that it is fixed beforehand (that is, before

the signature is made). In contrast to what we have already seen in previous

chapters, the hash flag tag ht is set to 0x01, which corresponds to SIGHASH_ALL.

This flag signals that the signed content corresponds to the entire transaction

(except the signature scripts themselves). By enforcing that signatures cover

the entire transaction, we ensure that a double spending attempt will include a

signature different from the one found in the fast-payment transaction, and thus

that observing both transactions indeed allows to derive the private key.

02 ht20 r 02 s30

1 1 1 1 32 1 1 1 byte length

hex value

ff00

1 1 1 1 1 1 1

00

32 32

32

ff 00 0· · ·0f · · ·f

a) <sig>

b) <sigmask>

c) <r>
00

1 1 1 1 1 1 1

00

32 32

00 0· · ·002 r

20

20 01

44

byte length

hex value

byte length

hex value

ff00

00

Figure 6.4: Values used in the proposed script.

86

6.4. PROPOSAL ANALYSIS

6.4 Proposal analysis

In this section we provide an analysis of the possible outcomes of performing a

payment with the proposed mechanism. The analysis measures the benefits of

each party taking part in the system to show how it discourages double-spending

attacks. Table 6.1 summarizes the notation used in this section.

Symbol Meaning
τ f Fast-payment transaction
τd Double-spending transaction
τp j Penalty transaction j
Pr[τx ∈B] Probability that transaction τx is

included in the blockchain
σ Payment amount
λ ·σ Funding transaction output amount
γ Value of goods

Table 6.1: Notation summary.

Our analysis makes the following assumptions. First of all, we assume that

Alice always generates the fast payment transaction since it is the triggering

action for the payment. Once the fast payment has been generated, we assume

that Bob sees the payment and, at that time and acting honestly, he delivers the

goods to Alice. Furthermore, to focus the analysis on the proposed mechanism,

we assume that at least one of the transactions of the system τ f , τd , or τp j

will be confirmed. Although transactions do include fees, these are intentionally

excluded from the computation of the payoffs since they do not directly affect the

result of our evaluation. The use of the replace-by-fee mechanism, that will allow

the propagation of multiple instances of the transaction, forces double-spending

transactions to include a higher fee than the original transaction. However, it

could be argued that a higher fee will incentive miners to mine a double-spending

transaction instead of a fast-payment transaction, affecting not only the payoff

but also the odds of either succeed or fail in the attack. Nonetheless, if a miner

87

CHAPTER 6. DOUBLE-SPENDING PREVENTION FOR BITCOIN

sees two instances of the transaction (fast-payment and double-spending) he

would maximize his payoff as observer by generating a third transaction (penalty)

that pays all the amount to himself (instead of choosing to include any of the

previous ones depending on the fees). Moreover, notice that our analysis can

be seen as an upper-bound on the attacker’s gains since including fees in the

computation only lowers the attacker’s payoff, but never increases it.

Figure 6.5: Flow chart showing the protocol’s final states and the paths leading
to them.

Of course, due to the double-spending protection of Bitcoin for on-chain

transactions, at most one of these transactions gets into the blockchain, that is,

the events τ f ∈ B, τd ∈ B, and τp j ∈ B are mutually exclusive. Finally, notice

that Pr[τ f ∈B]+Pr[τd ∈B]+∑
j Pr[τp j ∈B]= 1, since such probabilities depend

on the distribution hash rate devoted to the interests of every set of users (Alice,

Bob and the rest of the network, acting as observers) and we can assume that

88

6.4. PROPOSAL ANALYSIS

such sets will be disjunct.

Taking into account these assumptions, the protocol we propose may end in

three different states, as described by Figure 6.5. If the fast payment transaction

τ f gets confirmed, then Bob receives the payment for the goods, Alice receives the

change (the amount deposited to the funding transaction minus the payment) and

the goods, and the observer does not intervene. If the double spending transaction

τd is confirmed, then Alice gets everything (the whole amount deposited in the

funding transaction and the goods) and therefore, both Bob and the observers do

not obtain anything. Finally, if one of the penalty transactions τp j is confirmed,

then Alice obtains the goods but loses the whole deposited amount that goes to

the observer. Figure 6.5 also describes the possible paths that end up in each of

the states.

We define the payoff P of any party participating in the protocol as the gains

(or losses) obtained by deviating from the correct operation of the protocol. That

is, the payoff of all parties (Alice, Bob, and the observers) will be 0 when no

double spending is attempted (leftmost box in Figure 6.5)3. In that case, there

will be an equilibrium, since Alice pays the specified price for some goods and

obtains the goods in exchange; Bob delivers the goods and gets paid for them;

and the observers do not intervene. On the contrary, if Alice tries to double spend

the payment, the equilibrium may be altered and the payoff will reflect the gains

or losses each party assumes.

Then, Bob’s payoff function PB is given by the following expression:

PB = Pr[τ f ∈B] · (σ−γ)−
−Pr[τd ∈B] ·γ−
−Pr[τp j ∈B] ·γ=

= Pr[τ f ∈B] ·σ−γ

Note that, for fixed σ and γ, Bob’s payoff only depends on Pr[τ f ∈B]. Recall

that our mechanism tries to disincentivize Alice from double-spending the pay-
3Here we assume that the price of the goods is equal to the value of the goods. If the price paid is

higher than the cost, B’s payoff is positive and reflects the benefit obtained from the sale.

89

CHAPTER 6. DOUBLE-SPENDING PREVENTION FOR BITCOIN

ment transaction, but does not directly benefit the merchant (regardless of the λ

value used by the protocol)4.

In a similar way, Alice’s payoff P A is given by:

P A = Pr[τ f ∈B] · (γ−σ)+
+Pr[τd ∈B] · (γ)+
+Pr[τp j ∈B] · (γ−σλ)

Figure 6.6: Parties payoffs for σ= γ.

Alice’s maximum payoff is, therefore, γ, and is obtained when Alice’s success-

fully double spends the transaction, thus keeping the goods γ without paying

anything. However, Alice’s minimum payoff (that is, maximum losses) depends

4Note, however, that Bob may also act as an observer himself, being able to create a penalty
transaction and trying to gain the observer’s payoff.

90

6.4. PROPOSAL ANALYSIS

on λ, a parameter that can be adjusted in our protocol. Therefore, by adjusting λ,

the protocol allows to tune Alice’s losses, and so the risks she assumes by trying

to perform a double spending attack. The bigger λ, the higher the risks Alice’s

faces on a double-spending attempt.

Finally, an observer’s j payoff is given by the expression:

PO j = Pr[τp j ∈B] · (σλ)

Figure 6.6 shows the evolution of the parties payoffs as a function of Pr[τ f ∈
B] and Pr[τd ∈B]5 for the case where σ= γ (the value of goods is equal to the

price it is paid for them), for different values of the parameter λ. The payoff

dimension is measured based on the value σ. That means that a payoff of 3

implies a benefit of 3 times the value of σ while a payoff of −3 implies a lost of 3

times the value of σ. The payoff results are thus proportional to σ.

The graphics show that, as expected, when there is no double spending

attempt (Pr[τ f ∈ B] = 1) there is an equilibrium in the parties’ payoffs, and

in all graphics we obtain PB = P A = PO j = 0 (green zone). Note that, as λ

increases, Bob’s payoff (first three graphics) remains exactly the same since

his payoff is independent of the parameter λ. On the contrary, Alice’s payoff

(next three graphics) depends on λ. With λ= 1, Alice’s payoff is always positive

or zero: Alice does not lose anything by trying to double spend and may even

gain something if the attack is successful. That situation is the basic prevention

mechanism described in Section 6.2.1. However, by increasing λ the scenario

changes radically for Alice: the probabilities range at which Alice gains something

from the attack decrease fast and, at the same time, for some probability values

she even starts to get a negative payoff (that is, she has to assume losses). Finally,

notice that the observer’s payoff (last three graphics) is never negative, and his

gains increase with λ.

Bear in mind that our analysis does not assume any specific values on the

probabilities Pr[τ f ∈ B], Pr[τd ∈ B], and Pr[τp j ∈ B]. However, as we have

5Since Pr[τ f ∈B]+Pr[τd ∈B]+∑
j Pr[τp j ∈B]= 1, fixing the first two probabilities uniquely

determines the third operand.

91

CHAPTER 6. DOUBLE-SPENDING PREVENTION FOR BITCOIN

already indicated, such probabilities depend on the hash distribution of the

Bitcoin network among mining the transactions, τ f , τd , and τp j . For that reason,

in case the hash rate devoted to τd with respect the rest is low, the graphics show

that Alice’s payoff, for values λ> 1, is moving in the red zone thus being negative

(Alice is losing money). The greater the λ value, the bigger the red zone.

6.5 Conclusions

The speed at which payments in blockchain based cryptocurrencies can be per-

formed is lower bounded by the block generation interval, which in Bitcoin is

fixed to 10 minutes. In order to provide fast payments, one of the alternatives

used in these scenarios is to rely on zero-confirmation transactions. Experimen-

tal analysis have shown that, in Bitcoin, most of the transactions propagated

through the network reach 75% of the nodes in less than 8 seconds [34], which

is two orders of magnitude faster than the block production interval. However,

zero-confirmation transactions are not secured by the standard Bitcoin double-

spending protection mechanism, since this mechanism is applied to transactions

included in the blockchain and zero-confirmation transactions are not yet in

blocks by definition.

In this chapter, we have presented a mechanism to secure fast payments

within Bitcoin by reducing the risk of double-spending attacks in transactions

with zero confirmations. The proposed mechanism discourages double spending

attempts by creating a special type of outputs that enforce private key disclosure

in case of double-spending attempt. Any Bitcoin network user may act as an

observer and obtain a reward by detecting double-spending attempts. The reward

the observer receives is equal to the price the attacker pays as punishment for

having tried to double spend a transaction.

92

C
H

A
P

T
E

R

7
A FAIR PROTOCOL FOR DATA TRADING BASED ON BITCOIN

TRANSACTIONS

One of the major differences between Bitcoin and traditional payment

systems, such as Visa or PayPal, is irreversibility. Bitcoin, in contrast to

traditional payments systems, does not have any central authority who

can reverse a payment once it has been issued. Therefore, once a transaction has

been performed, no one but the person receiving the funds can reverse it. If a

transaction is performed in exchange of goods or services and such are not finally

provided, there is little the payer can do but undermine the reputation of the

merchant/service provider. In that sense, some approaches have been presented

to exchange digital goods for bitcoins, like hash locked transactions introduced in

Chapter 2. In this Chapter, we will show how to build a fair exchange protocol

for data trading, based on private key locked transactions, as a solution for the

aforementioned problem [38]. Our protocol is fair since none of the participants

have an advantageous position in the execution of the protocol. The protocol is

also atomic, in the sense that it is either fully executed, ending the buyer with

93

CHAPTER 7. A FAIR PROTOCOL FOR DATA TRADING BASED ON BITCOIN

the data and the seller with the payment, or no party incurs in any loss.

7.1 Fair exchange protocols

Fair exchange protocols can be used as a way to sign a contract between two

parties, stating the conditions under which the exchange has to be carried. The

signature is produced so that no party can gain advantage over the other.

Fair exchange protocols are usually divided into two party protocols and

protocols requiring a trusted third party (TTP). Two party protocols provide

a gradual exchange of messages or information between the two parties, to

gradually decrease uncertainty and increase fairness in the transaction without

the need for a TTP. First proposed in [21], the idea is for the two parties to

exchange secrets bit by bit allowing them to verify the correctness of the received

bits. This idea was also proposed in other approaches [44], more specifically

for the signature of contracts. Probabilistic protocols for fair exchange were

introduced in [13], where the goal is for the parties to end up with a given

probability on the fairness (commitment to the contract by the two parties) at a

given time (or step).

Regarding the use of a TTP, we usually distinguish between online and offline

TTP. The online TTP acts as an intermediary between the two parties ensuring

the fairness of the exchange [48, 116]. On the other hand, an offline TTP only

acts in case of dispute and does not participate in the protocol if all parts act

honestly, also called an optimistic fair exchange [5, 8, 117].

Authors refer to the notion of perfect fairness (also called strong fair-exchange)

when a party cannot leave the protocol with a small advantage over the oppo-

nent [90]. Perfect fair exchange usually requires the use of TTP-based protocols,

although there are several alternatives to implement it. Some of them relay in

some penalty mechanism to be applied to the misbehaving parties [107]. However,

it is important to note that from a practical perspective, this advantage could be

small enough in order to be tolerated by both parties.

In [61] Bitcoin is used for the payment in an optimistic fair exchange (with a

94

7.2. PRIVATE KEY LOCKED TRANSACTIONS

TTP) with anonymity. Most notably, Bitcoin has been proposed for fair exchange

as a mean of implementing a penalty mechanism [14]. The idea is that if a party

leaves the protocol with more knowledge than the rest, those honest parties are

compensated. The same idea is applied to multiparty computation in [2].

Penalty schemes to deal with misbehaving parties within Bitcoin have been

also proposed in [93] as a generic penalty for parties issuing contradictory state-

ments.

Zero knowledge proofs are used in [17, 73] as a way of excahnging data for

a given secret. In this case the secret is a symmetric key used to encrypt some

given data. A zero knowledge proof is used (externally to Bitcoin) to prove the

validity of the encrypted data and the secret key, thus providing some sort of

strong fair exchange. This is only feasible if a zero knowledge proof can be built

to check the correctness of the data. A more generic solution is outlined in [104],

where a symmetric key is used to encrypt chunks of data so that a subset can be

revealed as a proof. As different keys are used for each chunk, revealing a subset

does not ensure that the key of the other chunks is correct.

7.2 Private key locked transactions

Private key locked transactions (PKLT), introduced in Chapter 5, are a special

case of Bitcoin transactions in which the transaction output can be redeemed by

anyone who provides a private key corresponding to a public predefined key. In

this chapter, we will use PKLT as a building block to perform atomic exchange

between digital goods and a private key. From the two approached presented in

Chapter 5, we will use the ECDSA vulnerability one with a slight modification.

7.2.1 ECDSA vulnerability

In contrast with the approach followed in the previous chapter, where the previous

signature appeared in the blockchain as the input script of an existing transaction,

in this chapter the signature sigprev will be sent to Alice by an off-chain exchange

of values. sigprev may be transmitted confidentially (and thus only Alice and Bob

95

CHAPTER 7. A FAIR PROTOCOL FOR DATA TRADING BASED ON BITCOIN

know its value). Following this approach, the signed message m does not need to

correspond to a Bitcoin transaction hash (check Figure 7.1).

Bob

From: Someone

Someone

1 BTC

Signed:

To: Alice
Required to unlock:

1 BTC

Alice Signature

From: Alice

Signed:

To: Bob | Alice
Required to unlock:

Or:

Alice

1 BTC

Bob Signature (SK)

1 BTC

Alice Signature

tx1

tx2

B A

Sig
Prev

Figure 7.1: Transactions involved in the scheme.

7.3 The data trading protocol

The main property of our data trading protocol is its atomicity which provides

its fairness for the participants of the protocol. The proposed protocol is run by

two parties, the buyer, B, and the seller, S, and no additional party, like a TTP,

is needed. Notice that, contrary to other fair exchange protocols [5, 8, 117], our

proposal does not define a dispute mechanism, in which some proposals also need

a TTP, thanks to the atomicity of the protocol. Furthermore, since our protocol is

based on bitcoins, both parties need to be connected with the Bitcoin network to

send/receive transactions from/to the blockchain.

96

7.3. THE DATA TRADING PROTOCOL

In our scenario, the buyer, B, wants to buy some data D to the seller, S, and

he is willing to pay x bitcoins for such data. In order to minimize any possible

advantage of one of the parties, we consider that the data being sold can be

divided in n different parts and each of those parts may have a meaning by itself.

Notice that this scenario is not as restrictive as it would appear, since multiple

data falls into this category. On the one hand, many multimedia data has the

desired properties. For instance, movies or songs can be sliced and each slice may

be recognized as part of the whole performance. The buyer may be interested

in acquiring the full movie or song, and would be able to verify that it is indeed

correct by just watching or listening to a few segments. Datasets consisting on

multiple images may also be partitioned so that each individual image is one

of the parts. The images can be individually verified and then the full dataset

can be sold. Just to name a specific example, one may be interested in buying

a dataset of images of historic monuments and may also be able to check the

correctness of the dataset by verifying that a sample of the images are indeed

pictures of monuments. On the other hand, when dealing with sensor data, some

sensing values may provide evidence that the sensing is correct but the whole

sensing data could be needed for specific purposes. For instance, a temperature

sensor may record samples every hour. A buyer may be interested in acquiring

the sensor data for a full month, for sensors in a given country. By checking a few

samples, the buyer may verify they match the expected values and decide to buy

the whole dataset in order to perform the desired analysis.

7.3.1 Protocol description

The full protocol, depicted in Figure 7.2, can be divided in three main parts: the

Data correctness proof, in which a cut & choose protocol between B and S is

performed in order to convince B that the acquired data is correct; the Signature
commitment, used by B to obtain a previous signature performed by S with the

private key used to encrypt the data; and the Private Key Exchange, used to

exchange, atomically, the private key that allows to decrypt the sold information

97

CHAPTER 7. A FAIR PROTOCOL FOR DATA TRADING BASED ON BITCOIN

for the agreed amount of bitcoins.

In the following paragraphs, we describe in detail each subprotocol. We denote

by {PK ,SK} a public key pair and EPK (·) the encryption function using the public

key.

In the Data correctness proof subprotocol, the buyer B starts the protocol

by requesting data to the seller S. In such first step, B will indicate to S the

data he is willing to buy. Such request will include the conditions, cond, that

the data being sold have to hold. Such conditions need to hold not only for the

complete data being sold but also for each of the data chunks1. Upon reception,

S generates a new key pair {PK ,SK} and sends B the following information (see

Step 2 in Figure 7.2): the public key PK , the requested data D encrypted using

PK , and the data price x. In order to allow B to prove the data correctness, S
does not send the D as a whole bunch of encrypted data but split in n chunks

which are encrypted individually (as shown in Figure 7.3), that is: EPK (D) =
{EPK (D0),EPK (D1), ...,EPK (Dn−1)}.

When B receives all the encrypted data, he requests a correctness proof to

S consisting in a random subset of non-encrypted data from D. To that end, B
selects the subset by randomly choosing a set of m pieces from the encrypted

dataset, that is i j ∀ j ∈ [0,m−1], i j ∈ [0,n−1]. B sends this information and S
can build the correctness proof by choosing the unencrypted pieces of data that

matches the received indexes, that is, proof = {D i j ∀ j ∈ [0,m−1], i j ∈ [0,n−1]}.

S sends such correctness proof to B.

Once B has received the proof , he verifies the correctness of D by checking

that the proof satisfies the conditions. Furthermore, B validates that the received

data also matches with the subset of received encrypted data by recreating the

data encryption using PK . Therefore, since the subset has been randomly chosen

by B, the correctness of the full dataset can be proved with a given probability.

Section 7.3.3 analyses in depth the impact of the parameters of the scheme on

1Notice that such conditions will be verified by a validation mechanism. Whether such mechanism
is performed automatically or the validation needs a supervised environment is out of the scope of
our protocol.

98

7.3. THE DATA TRADING PROTOCOL

Pr
iv

at
e

ke
y

ex
ch

an
g

e

B S

Si
g

n
at

ur
e

co
m

m
it

m
en

t
D

at
a

co
rr

ec
tn

es
s

pr
oo

f

proof=Di
j
∀i

j

- Verify(D
ij
,cond) ∀i

j

- CheckEqual(Encrypt(D
ij
,PK),E

PK
(D

ij
)) ∀i

j

getSigPrev(nonce,PK)

sig
prev

From: B
Signed:

To: S | B
Required to unlock:

Or:

Buyer

x BTC

x BTC

B Signature

S Signature (SK)

From: S x BTC
Signed:

Seller (SK)

Required to unlock:

Someone signature

x BTCTo: Someone

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Step 9
 (tx1)

getData(cond)

PK,E
PK
(D),x

E
PK

(D)={E
PK

(D
0
),E

PK
(D

1
),...,E

PK
(D

n−1
)}

getProof(i
j
∀j ∈ [0,...,m−1] and i

j
 ∈ [0,...,n−1])

Validate(message, sig
prev

)Step 8

ExtractSK(tx2)

Step 10
 (tx2)

Step 11

Decrypt(D,SK)Step 12

Figure 7.2: Fair data trading protocol.

99

CHAPTER 7. A FAIR PROTOCOL FOR DATA TRADING BASED ON BITCOIN

D
0

D


... D
n−

E
PK

E
PK

E
PK

E
PK

E
PK

(D
0
) E

PK
(D


) ... E

PK
(D

n−
)

Data

E
PK
(Data)

Figure 7.3: Split and encrypt procedure.

such probability.

Once the data correctness has been proven, the Signature commitment
subprotocol is performed. B requests a signature sigprev over a nonce message

performed with the private key SK generated by S. S sends sigprev and B
validates that the signature is correct, using the public key PK that has received

in Step 2 of the Data Correctness Proof subprotocol.

Finally, the Private Key Exchange subprotocol is performed. In such sub-

protocol, B builds a private key locked transaction, tx1, to perform the atomic

exchange between the private key, SK , and the bitcoin price x. Such private key

locked transaction is built using the technique described in Chapter 5.1 and also

adding another time constraint condition following the details of Chapter 2.2.2.

Such time constraint is used for B to recover the amount of x bitcoins in case S
decides not to reveal the private key by not spending the received transaction. B
broadcasts the transaction tx1 to the Bitcoin P2P network. Once tx1 is included

in a block, S can spend the output of such transaction with an input of a new

transaction tx2, in which S will provide the second signature with the same k
of sigprev. Once tx2 appears on the blockchain, B will be able to recover the

private key SK and decrypt the data EPK (D) he received in Step 2 to retrieve

the purchased data.

100

7.3. THE DATA TRADING PROTOCOL

7.3.2 Implementation details

In the protocol description provided in the previous section some implementation

details have been deliberately omitted to allow a better understanding of the

general protocol. In this section, we provide some comments regarding such

specific details.

7.3.2.1 Privacy protection

First of all, sensitive information exchanged in the protocol should be protected

from third parties. For instance, if an attacker could retrieve the information

transmitted in Step 2 and in Step 7, later on, with the knowledge of tx2 (which is

publicly available in the blockchain), he would be able to decrypt the information

and retrieve the original data D. To avoid such situation, information transmitted

on Steps 2 and 7 could be encrypted using the public key of B, that could be

sent to S in Step 1. Furthermore, in Step 4, some part of the data is transmitted

in clear for validation purposes. In this case, an external attacker could also

obtain such information. Again, such situation can be avoided by encrypting the

information of Step 4 in the same way we just described for Steps 2 and 7.

7.3.2.2 Data encryption mechanism

As it is well known, public key cryptography is not suitable for encrypting large

files due to its poor performance. Then, since the size of the data chunks that are

encrypted and transmitted in Step 2 can vary depending of the traded data, we

suggest to use digital envelopes to encrypt D. Digital envelopes [75] protect the

message by using a two layer encryption in which the data itself is encrypted

using symmetric encryption, and then the symmetric key is encrypted using

public-key cryptography. Following such an approach, for each chunk i of data

created from D, D i, a symmetric key ki is also generated. D i will be encrypted

using ki, that is Ci = Eki (D i) and ki will then be encrypted using PK , that

is, ci = EPK (ki). Thus, each encrypted chunk of data D i sent by S to B during

Step 2 should be replaced by {Ci, ci}, that is, EPK (D i)→ {Ci, ci}. Furthermore,

101

CHAPTER 7. A FAIR PROTOCOL FOR DATA TRADING BASED ON BITCOIN

when sending the correctness proof, S will include the corresponding symmetric

encryption keys ki ∀i ∈ 0, ...,m−1. Finally, B will need to undo the digital envelope

process in Step 5 in order to perform all the required verifications, and also in

Step 12, when finally decrypts D.

7.3.2.3 Script building

The private key locked transaction used in the secret key exchange subprotocol,

tx1 also includes a time lock condition to allow B to refund his x bitcoins in

case S decides not to follow the last step of the protocol. The details on how the

ScriptPubKey of such transaction can be build are next provided2 :

ScriptPubKey: IF

OP_DUP <S pubKey> OP_CHECKSIGVERIFY

OP_SIZE <0x47> OP_EQUALVERIFY

<sigmask> OP_AND <rprev> OP_EQUAL

ELSE

<expiring time> OP_CHECKLOCKTIMEVERIFY

OP_DROP <B pubKey> OP_CHECKSIG

ENDIF

7.3.3 Protocol fairness discussion

The main objective of the proposed protocol is to achieve fairness in the sense that

neither B nor S would have any advantage in the protocol. By advantage we mean

that B cannot obtain the data without paying x bitcoins and S cannot obtain

the bitcoins without revealing the data. The Data Correctness Proof subprotocol

ensures that S cannot sell fake data. Without B verifying parts of the encrypted

data, S could encrypt fake data and send it to B. B would not be aware of it until

2An example of such a transaction can be found in https://www.blocktrail.com/tBTC/tx/

19f8799e074bf253ac1ed39aa25d97b7fd5d82d962d268723971dd84a7cd08f3

102

https://www.blocktrail.com/tBTC/tx/19f8799e074bf253ac1ed39aa25d97b7fd5d82d962d268723971dd84a7cd08f3
https://www.blocktrail.com/tBTC/tx/19f8799e074bf253ac1ed39aa25d97b7fd5d82d962d268723971dd84a7cd08f3

7.3. THE DATA TRADING PROTOCOL

he decrypts the data, and it would be too late since S will already have received

the payment.

In the following paragraphs, we will show how the buyer B is probabilistically

protected against deception by using a cut-and-choose mechanism. Furthermore,

the level of protection may be adjusted by fixing the ratio of chunks revealed on

Step 2.

In the main steps of the Data Correctness Proof subprotocol:

1. S encrypts each of the n chunks of data with a public key PK and commits

to the ciphered chunks by sending them to B.

2. B chooses a subset of m chunks and asks S to reveal the original data

corresponding to them.

3. B validates the received chunks by checking both that the original data

meets the specified conditions and that the encryption of the original data

is equal to the committed values.

We say that a seller S successfully deceives a buyer B if the seller is able to

include b corrupted chunks of data within the n traded chunks without the buyer

noticing it after having validated the m revealed chunks (that is, after finishing

the Data Correctness Proof subprotocol). The probability Ω of S successfully

deceiving B is given by the following equation:

Ω(m,n,b)= 1−
min{b,m}∑

i=1

(b
i
)(n−b

m−i
)(n

m
)

Indeed,
(n
m

)
counts the number of ways of choosing m elements from a set of n

elements. We are interested in knowing how many of those ways include at least

one corrupted chunk. We compute this value by counting the number of ways of

selecting m elements with exactly i of them being corrupt and summing them up

for all possible i values.
(b

i
)(n−b

m−i
)

computes the number of ways of selecting exactly

i corrupted chunks, that is, the number of ways of selecting i bad chunks from

the set of b corrupted chunks,
(b

i
)
, multiplied by the number of ways of selecting

103

CHAPTER 7. A FAIR PROTOCOL FOR DATA TRADING BASED ON BITCOIN

the rest m− i elements from the non-corrupted set n−b,
(n−b
m−i

)
. The summation

gives the probability of selecting at least one corrupted chunk within the m
revealed, that is, the probability of detecting a fraud. Therefore, the probability

of deception is the complement.

Figure 7.4 shows the probability of deception Ω for different ratios of chunks

revealed, m
n , and different number of corrupted chunks included by the seller, b,

for n = 1000. Note that, even when the checked chunks ratio is low, the probability

of successfully deceiving a buyer is low whenever b is over a certain threshold.

For instance, when 20% of the chunks are checked, the probability of deception is

0.8 if the seller includes just 0.1% of corrupted chunks (b = 1, red dot on Fig. 7.4).

However, if the seller includes 1% of corrupted chunks (b = 10), the probability of

successfully deceiving the buyer decreases to 0.106 (green dot on Fig. 7.4).

Figure 7.4: Probability of deception Ω. Grey lines highlight the values mentioned
as numerical examples.

When using the proposed data selling protocol, the two parties (buyer and

104

7.3. THE DATA TRADING PROTOCOL

seller) agree on the value of the parameter m. Therefore, the buyer can decide

beforehand whether or not to buy a given dataset depending on the deception risk

he is willing to assume. Buyers will be interested in using high m values, since

these offer higher levels of protection. Of course, even honest sellers will prefer

low m values, since if the client does not finally buy the data, m data chunks end

up being revealed for free.

It is worth mention that a malicious buyer could try to get advantage of the

protocol by executing it with different identities (trying to perform a sybil attack)

buying the same product or even colluding with other buyers. Multiple executions

of the Data correctness proof could potentially provide attackers with all the

chucks of decrypted data. To avoid such situation, the ordering of the encrypted

chunks {EPK (D0),EPK (D1), ...,EPK (Dn−1)} used in the data correctness proof

protocol is randomly chosen for each buyer, so the probability that the buyer (or

a coalition) obtains all the chunks decrypted can be minimized by increasing the

value n. Note that given two different encrypted sets of data, an attacker would

not be able to know the correspondence between each data chunk in both sets.

As an example, let us consider a certain seller S that sells a dataset divided

in n = 1000 chunks. The buyer may allow to accept, at most, 5% of corrupted

chunks in his purchased data, and the seller does not want to reveal in the Step

2 more than the 5% of the chunks. With this configuration, if we analyse the

probability Ω for b = 50 (the 5% of the 1000 chunks),

Ω(50,1000,50)≈ 0.072

the buyer can be certain that the seller cannot cheat with a probability greater

1−0.072= 0.928. Of course, if the buyer does not have any trust in the seller, he

could force the seller to reveal 10% of chunks instead of only 5% in Step 2. With

this settings, the buyer knows that the probability the seller cheats is almost

negligible, less than a 0.004.

105

CHAPTER 7. A FAIR PROTOCOL FOR DATA TRADING BASED ON BITCOIN

7.4 Conclusions

In this chapter we have introduced a fair data trading protocol based on Bitcoin

transactions. The protocol uses a new type of transactions, the private key

locked transaction, which provides an atomic way of exchanging a private key for

Bitcoins. Such key is used to encrypt all the sold data and will be traded, as a

part of a Bitcoin smart contract, only when the two parties agree. The correctness

of the data sold using the protocol is verifiable by the buyer before performing

the transaction by checking a small random subset of data. By using such a

cut-and-choose technique, deception is avoided with a high probability while only

a small part of the information is learned by the buyer.

The protocol can be implemented by using private key locked transaction

introduced in Chapter 5, and exchanging a few messages between the parties

involved in the process, making it easy to deploy. Moreover, it lays on the security

measures Bitcoin provides without introducing more complexity, and it is bound

to the computational capabilities of the Bitcoin Scripting language.

106

C
H

A
P

T
E

R

8
CONCLUSIONS

This final chapter summarizes the results of the thesis and concludes with

some guidelines for future work.

8.1 Conclusions

In the first part of the thesis we have analysed some of the foundations of Bitcoin

in order to identify potential flaws, as well as to gain further knowledge about

the system to design several solution. Some of those solutions are presented in

the last part of the thesis.

In Chapter 3 we have given a network characterization of Bitcoin focusing

especially in its security. We reviewed the most harmful attacks to P2P networks

and we have seen how Bitcoin has built-in countermeasures to deal with them.

Some clear examples are liveness of the system via massive data replication,

protection against DoS attacks both at high level (through digital signatures

in case of transactions and trough mining and PoW in case of blocks), and low

107

CHAPTER 8. CONCLUSIONS

level (through peer banning when malformed network messages are detected)

and, most notably, protection against network partitioning and node eclipsing

by using pseudo-random peer selection algorithms and obfuscating the network

topology. The massive data replication and the protection of the network topology

properties stand out when compared to traditional P2P networks, since they will

not even be considered useful.

In Chapter 4 we have analysed one of the core components of Bitcoin, the

UTXO set. A proper use of the UTXO set is fundamental for the health of the

system, since not doing so will harm every single Bitcoin full node. Our analysis

has first shown the structure of the set, and later on we have analysed its content.

The analysis has focused especially in dust and unprofitability, two metrics that

define how usable a coin is. Our results show how a huge part of the UTXO set is

filled with dust and unprofitable outputs for low fee rates, pointing out that the

use of Bitcoin has been far from optimal so far. Such findings point out the need

of a better management of UTXOs, as well as a consolidation of dust.

The rest of the thesis has been focused on developing solutions for different

issues within Bitcoin.

First, Chapter 5 introduced private key locked transactions, a proposal for a

new type of transactions within Bitcoin. Private key locked transactions create a

new type of lock in which a private key needs to be discoloured in order to redeem

an output. Such new type of locks are used as a building block in the last two

chapters of the thesis.

In Chapter 6 we proposed a prevention mechanism for double-spending on

zero-confirmation transactions based on private key locked transactions. The

proposal aims to discourage potential attackers to perform double-spending in

zero-confirmation transactions, allowing any user who detects such a behaviour

to punish the attacker by claiming the output to himself. The main goal of the

proposal is to provide a way to use zero-confirmation transaction in scenarios in

which time is crucial, and where waiting for a confirmation is not possible. In

such a way, a merchant can be sure that if the customer cheats, he risks losing

way more than what he was willing to pay for the product.

108

8.2. FUTURE WORK

Finally, Chapter 7 presents a fair protocol for data trading based on private

key locked transactions and Bitcoin scripting. Our proposal aims to remove the

trust a customer has to have in a merchant when buying some goods online using

Bitcoin. While one of the main properties of Bitcoin is that it is a trustless system,

in the sense that everything can be verified, when using Bitcoin to buy anything

online a customer has to perform a non-refundable transaction to a merchant,

who upon receiving the payment will deliver some goods. However, such last

statement cannot be enforced. Therefore, customers are in a disadvantageous

position with respect to merchants. With our fair data trading protocol we help

to even up such a relationship by forcing the exchange to be atomic. Hence,

customers cannot received any (useful) data without performing a payment and

merchants will not receive any payment until providing the data as agreed.

8.2 Future work

The work done in the thesis open several future lines of research. In this section

we will present some of our ideas.

Regarding the Bitcoin network study, it is clear that a better understanding

of the requirements that a cryptocurrency network has are necessary in order to

build stronger and more secure systems in the future, as well as to avoid attacks

that may pose severe threats to the existing ones. Furthermore, the knowledge of

the topology of the network will be desirable. Even though we have stated that

the obfuscation of the topology is important in terms of avoiding network based

attacks, the absence of such knowledge does not let us see if some undesirable

behaviour is going on in the network, such as network centralization, censoring,

etc.

With respect to the UTXO set, the analysis should be extended filling the

current gaps in Bitcoin, like a more accurate estimation for the unprofitable

output metric (one that could estimate more precisely the minimum input of

some types of transactions, such as P2SH). Moreover, the analysis could also be

extended to other cryptocurrencies using the UTXO approach, such as Bitcoin

109

CHAPTER 8. CONCLUSIONS

Cash or Litecoin.

As private key locked transactions are concerned, a deeper study should be

performed to see how it could be applicable in layer two protocols, such as the

Lightning Network, or even ported to other currencies, like Ethereum. Moreover,

there are other applications of private key locked transactions that we have

not fully analysed, like using in open access systems, or even use them as an

incentive to move funds bound to old non-compressed keys in order to reduce the

size of the UTXO set.

Finally, other research lines will be also interesting to follow, such as layer

two routing protocol design.

110

BIBLIOGRAPHY

[1] E. ANDROULAKI, G. KARAME, M. ROESCHLIN, T. SCHERER, AND S. CAP-

KUN, Evaluating user privacy in bitcoin, in Financial Cryptography

and Data Security, A.-R. Sadeghi, ed., vol. 7859 of Lecture Notes in

Computer Science, Springer Berlin Heidelberg, 2013, pp. 34–51.

[2] M. ANDRYCHOWICZ, S. DZIEMBOWSKI, D. MALINOWSKI, AND

L. MAZUREK, Secure multiparty computations on bitcoin, Commun.

ACM, 59 (2016), pp. 76–84.

[3] A. M. ANTONOPOULOS, Transaction scripts and script language, in Mas-

tering Bitcoin: unlocking digital cryptocurrencies, O’Reilly Media, Inc.,

2014, ch. 5.

[4] M. APOSTOLAKI, A. ZOHAR, AND L. VANBEVER, Hijacking bitcoin: Rout-
ing attacks on cryptocurrencies, in 2017 IEEE Symposium on Security

and Privacy (SP), May 2017, pp. 375–392.

[5] N. ASOKAN, V. SHOUP, AND M. WAIDNER, Optimistic fair exchange of
digital signatures, IEEE Journal on Selected Areas in Communications,

18 (2000), pp. 593–610.

[6] A. BACK ET AL., Hashcash-a denial of service counter-measure, (2002).

[7] T. BAMERT, C. DECKER, L. ELSEN, R. WATTENHOFER, AND S. WELTEN,

Have a snack, pay with bitcoins, in Proceedings of the IEEE Internation

Conference on Peer-to-Peer Computing (P2P), Trento, Italy, 2013., 2013.

111

BIBLIOGRAPHY

[8] F. BAO, R. H. DENG, AND W. MAO, Efficient and practical fair exchange
protocols with off-line ttp, in Proceedings. 1998 IEEE Symposium on

Security and Privacy, 1998, pp. 77–85.

[9] S. BASU, I. EYAL, AND E. G. SIRER, Falcon.

https://www.falcon-net.org/, 2016.

[10] D. BAYER, S. HABER, AND W. S. STORNETTA, Improving the efficiency and
reliability of digital time-stamping, in Sequences II, Springer, 1993,

pp. 329–334.

[11] M. BELLARE, S. GOLDWASSERY, AND D. MICCIANCIOZ, Pseudo-random
number generation within cryptographic algorithms: the DSS case,

1997.

[12] S. BELLOVIN, Security aspects of napster and gnutella, in 2001 Usenix

Annual Technical Conference, 2001.

[13] M. BEN-OR, O. GOLDREICH, S. MICALI, AND R. L. RIVEST, A fair protocol
for signing contracts, IEEE Transactions on Information Theory, 36

(1990), pp. 40–46.

[14] I. BENTOV AND R. KUMARESAN, How to use bitcoin to design fair protocols,

in Advances in Cryptology – CRYPTO 2014: 34th Annual Cryptology

Conference, Santa Barbara, CA, USA, August 17-21, 2014, Proceedings,

Part II, J. A. Garay and R. Gennaro, eds., Springer Berlin Heidelberg,

2014, pp. 421–439.

[15] A. BIRYUKOV, D. KHOVRATOVICH, AND I. PUSTOGAROV, Deanonymisa-
tion of clients in bitcoin p2p network, in Proceedings of the 2014 ACM

SIGSAC Conference on Computer and Communications Security, ACM,

2014, pp. 15–29.

[16] A. BIRYUKOV AND I. PUSTOGAROV, Bitcoin over tor isn’t a good idea, in

Security and Privacy (SP), 2015 IEEE Symposium on, IEEE, 2015,

pp. 122–134.

112

https://www.falcon-net.org/

BIBLIOGRAPHY

[17] BITCOIN WIKI, Zero knowledge contingent payment.
https://en.bitcoin.it/wiki/Zero_Knowledge_Contingent_

Payment, feb 2016.

[18] BITCOIN.ORG, Android security vulnerability, 2013.

[19] BITICOIN WIKI, Hashlock.

https://en.bitcoin.it/wiki/Hashlock, 2016.

[20] BLOCKCHAIN.INFO, Blockchain.

https://blockchain.info/, 2018.

[21] M. BLUM, How to exchange (secret) keys, ACM Trans. Comput. Syst., 1

(1983), pp. 175–193.

[22] N. BORISOV AND J. WADDLE, Anonymity in structured peer-to-peer net-
works, Tech. Rep. UCB/CSD-05-1390, Computer Science Division

(EECS) University of California, may 2005.

[23] M. BRINKMEIER, G. SCHÄFER, AND T. STRUFE, Optimally DoS resistant
P2P topologies for live multimedia streaming, IEEE Transactions on

Parallel and Distributed Systems, 20 (2009), pp. 831–844.

[24] M. CARLSTEN, H. KALODNER, S. M. WEINBERG, AND A. NARAYANAN,

On the instability of bitcoin without the block reward, in Proceedings of

the 2016 ACM SIGSAC Conference on Computer and Communications

Security, CCS ’16, ACM, 2016, pp. 154–167.

[25] M. CASTRO, P. DRUSCHEL, A. GANESH, A. ROWSTRON, AND D. S. WAL-

LACH, Secure routing for structured peer-to-peer overlay networks,

SIGOPS Oper. Syst. Rev., 36 (2002), pp. 299–314.

[26] D. CERRI, A. GHIONI, S. PARABOSCHI, AND S. TIRABOSCHI, Id mapping
attacks in p2p networks, in GLOBECOM ’05. IEEE Global Telecommu-

nications Conference, 2005., vol. 3, nov 2005, pp. 1785–1790.

113

https://en.bitcoin.it/wiki/Zero_Knowledge_Contingent_Payment
https://en.bitcoin.it/wiki/Zero_Knowledge_Contingent_Payment
https://en.bitcoin.it/wiki/Hashlock
https://blockchain.info/

BIBLIOGRAPHY

[27] D. CHAUM, Security without identification: Transaction systems to make
big brother obsolete, Communications of the ACM, 28 (1985), pp. 1030–

1044.

[28] D. CHAUM, A. FIAT, AND M. NAOR, Untraceable electronic cash, in Con-

ference on the Theory and Application of Cryptography, Springer, 1988,

pp. 319–327.

[29] J. CLARK AND A. ESSEX, Commitcoin: Carbon dating commitments with
bitcoin, in Financial Cryptography and Data Security, vol. 7397 of

LNCS, Springer, 2012, pp. 390–398.

[30] COPAY, Copay.

https://copay.io/, 2018.

[31] C. CRAMER, K. KUTZNER, AND T. FUHRMANN, Bootstrapping locality-
aware p2p networks, in Networks, 2004. (ICON 2004). Proceedings.

12th IEEE International Conference on, vol. 1, nov 2004, pp. 357–361.

[32] L. DASHJR, getblocktemplate - Fundamentals.

https://github.com/bitcoin/bips/blob/master/bip-0022.

mediawiki, 2012.

[33] , getblocktemplate - Pooled Mining.

https://github.com/bitcoin/bips/blob/master/bip-0023.

mediawiki, 2012.

[34] C. DECKER, Data propagation: How fast does information move in the
network?

http://bitcoinstats.com/network/propagation/, 2017.

[35] C. DECKER AND R. WATTENHOFER, A fast and scalable payment network
with Bitcoin duplex micropayment channels, in Symposium on Self-

Stabilizing Systems, Springer, 2015, pp. 3–18.

114

https://copay.io/
https://github.com/bitcoin/bips/blob/master/bip-0022.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0022.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0023.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0023.mediawiki
http://bitcoinstats.com/network/propagation/

BIBLIOGRAPHY

[36] S. DELGADO-SEGURA, C. PÉREZ-SOLÀ, J. HERRERA-JOANCOMARTÍ, AND

G. NAVARRO-ARRIBAS, Bitcoin private key locked transactions., IACR

Cryptology ePrint Archive, 2016 (2016), p. 1184.

[37] S. DELGADO-SEGURA, C. PÉREZ-SOLÀ, J. HERRERA-JOANCOMARTÍ,

G. NAVARRO-ARRIBAS, AND J. BORRELL, Cryptocurrency networks: A
new p2p paradigm, Mobile Information Systems, 2018 (2018).

[38] S. DELGADO-SEGURA, C. PÉREZ-SOLA, G. NAVARRO-ARRIBAS, AND

J. HERRERA-JOANCOMARTÍ, A fair protocol for data trading based
on bitcoin transactions, Future Generation Computer Systems, (2017).

[39] S. DELGADO-SEGURA, C. PÉREZ-SOLA, G. NAVARRO-ARRIBAS, AND

J. HERRERA-JOANCOMARTI, Analysis of the bitcoin utxo set, in Proceed-

ings of the 5th Workshop on Bitcoin and Blockchain Research Research

(in Assocation with Financial Crypto 18), Lecture Notes in Computer

Science, 2018.

[40] J. DINGER AND O. P. WALDHORST, Decentralized bootstrapping of p2p
systems: A practical view, in NETWORKING 2009: 8th International

IFIP-TC 6 Networking Conference, Aachen, Germany, May 11-15, 2009.

Proceedings, Springer Berlin Heidelberg, 2009, pp. 703–715.

[41] J. A. D. DONET AND J. HERRERA-JOANCOMARTÍ, Cryptocurrency P2P
networks: a comparison analysis, in Actas de la XIV Reunión Española

de Criptología y Seguridad de la Información (RECSI 2016), J. L. Ferrer

and M. Payeras, eds., Menorca, Illes Balears, October 2016, pp. 423–

428.

[42] J. J. DOUCEUR, The sybil attack, in Proceedings of 1st International Work-

shop on Peer-to-Peer Systems (IPTPS), 2002.

[43] C. DWORK AND M. NAOR, Pricing via processing or combatting junk
mail, in Annual International Cryptology Conference, Springer, 1992,

pp. 139–147.

115

BIBLIOGRAPHY

[44] S. EVEN, O. GOLDREICH, AND A. LEMPEL, A randomized protocol for
signing contracts, Commun. ACM, 28 (1985), pp. 637–647.

[45] I. EYAL AND E. G. SIRER, Majority is not enough: Bitcoin mining is
vulnerable, in Financial Cryptography and Data Security, N. Christin

and R. Safavi-Naini, eds., Berlin, Heidelberg, 2014, Springer Berlin

Heidelberg, pp. 436–454.

[46] M. FELDMAN AND J. CHUANG, Overcoming free-riding behavior in peer-to-
peer systems, SIGecom Exch., 5 (2005), pp. 41–50.

[47] FIBRE, Fibre.

http://bitcoinfibre.org/, 2018.

[48] M. K. FRANKLIN AND M. K. REITER, Fair exchange with a semi-trusted
third party (extended abstract), in Proceedings of the 4th ACM Con-

ference on Computer and Communications Security, CCS ’97, 1997,

pp. 1–5.

[49] A. GERVAIS, S. CAPKUN, G. O. KARAME, AND D. GRUBER, On the privacy
provisions of bloom filters in lightweight bitcoin clients, in Proceedings

of the 30th Annual Computer Security Applications Conference, ACM,

2014, pp. 326–335.

[50] S. GHEMAWAT AND J. DEAN, Leveldb.

https://github.com/google/leveldb, 2014.

[51] A. GHODSI, L. O. ALIMA, AND S. HARIDI, Symmetric replication for
structured peer-to-peer systems, in Databases, Information Systems,

and Peer-to-Peer Computing: International Workshops, DBISP2P

2005/2006, Trondheim, Norway, August 28-29, 2005, Seoul, Korea,

September 11, 2006, Revised Selected Papers, Springer Berlin Heidel-

berg, 2007, pp. 74–85.

116

http://bitcoinfibre.org/
https://github.com/google/leveldb

BIBLIOGRAPHY

[52] D. GOLDSCHLAG, M. REED, AND P. SYVERSON, Onion routing for anony-
mous and private internet connections, Communications of the ACM,

42 (1999), pp. 39–41.

[53] M. GRUNDMANN, T. NEUDECKER, AND H. HARTENSTEIN, Exploiting
transaction accumulation and double spends for topology inference in
bitcoin, (2018).

[54] S. HABER AND W. S. STORNETTA, How to time-stamp a digital document,
in Conference on the Theory and Application of Cryptography, Springer,

1990, pp. 437–455.

[55] , Secure names for bit-strings, in Proceedings of the 4th ACM Confer-

ence on Computer and Communications Security, ACM, 1997, pp. 28–

35.

[56] D. A. HARDING AND P. TODD, Opt-in Full Replace-by-Fee Signaling.

https://github.com/bitcoin/bips/blob/master/bip-0125.

mediawiki, 2015.

[57] E. HEILMAN, A. KENDLER, A. ZOHAR, AND S. GOLDBERG, Eclipse attacks
on bitcoin’s peer-to-peer network, in Proceedings of the 24th USENIX

Conference on Security Symposium, SEC’15, Berkeley, CA, USA, 2015,

USENIX Association, pp. 129–144.

[58] J. HERRERA-JOANCOMARTÍ AND C. PÉREZ-SOLÀ, Privacy in bitcoin trans-
actions: New challenges from blockchain scalability solutions, in Model-

ing Decisions for Artificial Intelligence, Springer, 2016, pp. 26–44.

[59] D. HUGHES, G. COULSON, AND J. WALKERDINE, Free riding on gnutella
revisited: the bell tolls?, IEEE Distributed Systems Online, 6 (2005).

[60] M. JAKOBSSON AND A. JUELS, Proofs of work and bread pudding protocols,

in Secure Information Networks, Springer, 1999, pp. 258–272.

117

https://github.com/bitcoin/bips/blob/master/bip-0125.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0125.mediawiki

BIBLIOGRAPHY

[61] D. JAYASINGHE, K. MARKANTONAKIS, AND K. MAYES, Optimistic fair-
exchange with anonymity for bitcoin users, in 2014 IEEE 11th Interna-

tional Conference on e-Business Engineering, 2014, pp. 44–51.

[62] C. JENNINGS, B. LOWEKAMP, E. RESCORLA, S. BASET, AND

H. SCHULZRINNE, REsource LOcation And Discovery (reload) Base
Protocol.

IETF, RFC 6940, jan 2014.

[63] D. JOHNSON, A. MENEZES, AND S. VANSTONE, The elliptic curve digi-
tal signature algorithm (ecdsa), International Journal of Information

Security, 1 (2001), pp. 36–63.

[64] G. O. KARAME, E. ANDROULAKI, AND S. CAPKUN, Double-spending fast
payments in bitcoin, in Proceedings of the 2012 ACM conference on

Computer and communications security, ACM, 2012, pp. 906–917.

[65] G. O. KARAME, E. ANDROULAKI, M. ROESCHLIN, A. GERVAIS, AND

S. ČAPKUN, Misbehavior in bitcoin: A study of double-spending and
accountability, ACM Trans. Inf. Syst. Secur., 18 (2015), pp. 2:1–2:32.

[66] P. KIRK, Gnutella protocol development, Retrieved June, 27 (2003), p. 2011.

[67] P. KOSHY, D. KOSHY, AND P. MCDANIEL, An analysis of anonymity in
bitcoin using p2p network traffic, in Financial Cryptography and Data

Security, N. Christin and R. Safavi-Naini, eds., vol. 8437 of Lecture

Notes in Computer Science, Springer Berlin Heidelberg, 2014, pp. 469–

485.

[68] J. A. KROLL, I. C. DAVEY, AND E. W. FELTEN, The economics of bit-
coin mining, or bitcoin in the presenceof adversaries, in The Twelfth

Workshop on the Economics of Information Security (WEIS 2013), jun

2013.

118

BIBLIOGRAPHY

[69] B. N. LEVINE, C. SHIELDS, AND N. B. MARGOLIN, A survey of solutions
to the sybil attack, Tech. Rep. 2006-052, University of Massachusetts

Amherst, oct 2006.

[70] E. LOMBROZO, J. LAU, AND P. WUILLE, Segregated Witness.

https://github.com/bitcoin/bips/blob/master/bip-0141.

mediawiki, 2015.

[71] E. K. LUA, J. CROWCROFT, M. PIAS, R. SHARMA, AND S. LIM, A survey
and comparison of peer-to-peer overlay network schemes, IEEE Commu-

nications Surveys Tutorials, 7 (2005), pp. 72–93.

[72] S. MARTI, P. GANESAN, AND H. GARCIA-MOLINA, Sprout: P2p routing
with social networks, in Current Trends in Database Technology - EDBT

2004 Workshops: EDBT 2004 Workshops PhD, DataX, PIM, P2P&DB,

and ClustWeb, Heraklion, Crete, Greece, March 14-18, 2004. Revised

Selected Papers, Springer Berlin Heidelberg, 2005, pp. 425–435.

[73] G. MAXWELL, The first successful zero-knowledge contingent payment.
Bitcoin Core Blog, https://bitcoincore.org/en/2016/02/26/

zero-knowledge-contingent-payments-announcement/, feb

2016.

[74] G. MAXWELL, A deep dive into bitcoin core 0.15.

SF Bitcoin Developers Meetup, http://diyhpl.us/wiki/transcripts/

gmaxwell-2017-08-28-deep-dive-bitcoin-core-v0.15/, Sept.

2017.

[75] A. J. MENEZES, P. C. VAN OORSCHOT, AND S. A. VANSTONE, Handbook
of applied cryptography, CRC press, 1996.

[76] R. C. MERKLE, Protocols for public key cryptosystems, in Security and

Privacy, 1980 IEEE Symposium on, IEEE, 1980, pp. 122–122.

119

https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki
https://bitcoincore.org/en/2016/02/26/zero-knowledge-contingent-payments-announcement/
https://bitcoincore.org/en/2016/02/26/zero-knowledge-contingent-payments-announcement/
http://diyhpl.us/wiki/transcripts/gmaxwell-2017-08-28-deep-dive-bitcoin-core-v0.15/
http://diyhpl.us/wiki/transcripts/gmaxwell-2017-08-28-deep-dive-bitcoin-core-v0.15/

BIBLIOGRAPHY

[77] A. MILLER, J. LITTON, A. PACHULSKI, N. S. GUPTA, D. LEVIN,

N. SPRING, AND B. BHATTACHARJEE, Discovering bitcoin’s public
topology and influential nodes, 2015.

[78] MYCELIUM, Mycellium wallet.
https://wallet.mycelium.com/, 2018.

[79] S. NAKAMOTO, Bitcoin: A peer-to-peer electronic cash system.

https://bitcoin.org/bitcoin.pdf, oc 2008.

[80] A. NARAYANAN AND J. CLARK, Bitcoin’s academic pedigree, Communica-

tions of the ACM, 60 (2017), pp. 36–45.

[81] K. NAYAK, S. KUMAR, A. MILLER, AND E. SHI, Stubborn mining: Gen-
eralizing selfish mining and combining with an eclipse attack, in 2016

IEEE European Symposium on Security and Privacy (EuroS P), March

2016, pp. 305–320.

[82] J. NEWSOME, E. SHI, D. SONG, AND A. PERRIG, The sybil attack in sensor
networks: Analysis & defenses, in Proceedings of the 3rd International

Symposium on Information Processing in Sensor Networks, IPSN ’04,

2004, pp. 259–268.

[83] P. Q. NGUYEN AND I. E. SHPARLINSKI, The insecurity of the digital
signature algorithm with partially known nonces, Journal of Cryptology,

15 (2002).

[84] S. J. NIELSON, S. A. CROSBY, AND D. S. WALLACH, A taxonomy of rational
attacks, in Peer-to-Peer Systems IV: 4th International Workshop, IPTPS

2005, Ithaca, NY, USA, February 24-25, 2005. Revised Selected Papers,

Springer Berlin Heidelberg, 2005, pp. 36–46.

[85] M. OBER, S. KATZENBEISSER, AND K. HAMACHER, Structure and
anonymity of the bitcoin transaction graph, Future Internet, 5 (2013),

pp. 237–250.

120

https://wallet.mycelium.com/
https://bitcoin.org/bitcoin.pdf

BIBLIOGRAPHY

[86] O. OSUNTOKUN, A. AKSELROD, AND J. POSEN, Client Side Block Filtering.

https://github.com/bitcoin/bips/blob/master/bip-0157.

mediawiki, 2017.

[87] C. PÉREZ-SOLÀ, S. DELGADO-SEGURA, G. NAVARRO-ARRIBAS, AND

J. HERRERA-JOANCOMARTÍ, Double-spending prevention for bitcoin
zero-confirmation transactions., IACR Cryptology ePrint Archive, 2017

(2017), p. 394.

[88] J. POON AND T. DRYJA, The Bitcoin lightning network: Scalable off-chain
instant payments, tech. rep., 2015.

[89] P. PRIHODKO, S. ZHIGULIN, M. SAHNO, A. OSTROVSKIY, AND

O. OSUNTOKUN, Flare: An approach to routing in lightning
network, White Paper (bitfury. com/content/5-white-papers-

research/whitepaper_flare_an_approach_to_routing_in_lightning_n

etwork_7_7_2016. pdf), (2016).

[90] I. RAY AND I. RAY, Fair Exchange in E-commerce, SIGecom Exch., 3 (2002),

pp. 9–17.

[91] C. RESEARCH, Sec 2: Recommended elliptic curve domain parameters, tech.

rep., Certicom Corp., Jan 2010.

[92] D. RON AND A. SHAMIR, Quantitative analysis of the full bitcoin transac-
tion graph, in Financial Cryptography and Data Security, A.-R. Sadeghi,

ed., vol. 7859 of Lecture Notes in Computer Science, Springer Berlin

Heidelberg, 2013, pp. 6–24.

[93] T. RUFFING, A. KATE, AND D. SCHRÖDER, Liar, liar, coins on fire!: Penal-
izing equivocation by loss of bitcoins, in Proceedings of the 22Nd ACM

SIGSAC Conference on Computer and Communications Security, CCS

’15, ACM, 2015, pp. 219–230.

[94] N. SCHNEIDER, Recovering Bitcoin private keys using weak signatures
from the blockchain, 2013.

121

https://github.com/bitcoin/bips/blob/master/bip-0157.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0157.mediawiki

BIBLIOGRAPHY

[95] A. SINGH, M. CASTRO, P. DRUSCHEL, AND A. ROWSTRON, Defending
against eclipse attacks on overlay networks, in Proceedings of the 11th

Workshop on ACM SIGOPS European Workshop, EW 11, ACM, 2004.

[96] E. SIT AND R. MORRIS, Security considerations for peer-to-peer distributed
hash tables, in Peer-to-Peer Systems: First InternationalWorkshop,

IPTPS 2002 Cambridge, MA, USA, March 7–8, 2002 Revised Papers,

vol. 2429 of Lecture Notes in Computer Science, Springer Berlin Hei-

delberg, 2002, pp. 261–269.

[97] K. SUTO, H. NISHIYAMA, N. KATO, T. NAKACHI, T. FUJII, AND A. TAKA-

HARA, Thup: A p2p network robust to churn and dos attack based
on bimodal degree distribution, IEEE Journal on Selected Areas in

Communications, 31 (2013), pp. 247–256.

[98] THE BITCOIN CORE DEVELOPERS, Bitcoin core 0.10.0rc3 source code:
transaction.h, line 137.

Github, https://github.com/bitcoin/bitcoin/blob/v0.10.0rc3/

src/primitives/transaction.h#L137, dec 2014.

[99] , Bitcoin core 0.11.0 release notes.

https://github.com/bitcoin/bitcoin/blob/v0.11.0/doc/

release-notes.md, jul 2015.

[100] , Bitcoin core 0.12.0 release notes.

https://bitcoin.org/en/release/v0.12.0, feb 2016.

[101] , Bitcoin core 0.14 source code: coins.h.

Github, https://github.com/bitcoin/bitcoin/blob/0.14/src/

coins.h, 2017.

[102] , Bitcoin core 0.15.0 release notes.

https://bitcoin.org/en/release/v0.15.0, sep 2017.

[103] P. TODD, OP_CHECKLOCKTIMEVERIFY.

122

https://github.com/bitcoin/bitcoin/blob/v0.10.0rc3/src/primitives/transaction.h#L137
https://github.com/bitcoin/bitcoin/blob/v0.10.0rc3/src/primitives/transaction.h#L137
https://github.com/bitcoin/bitcoin/blob/v0.11.0/doc/release-notes.md
https://github.com/bitcoin/bitcoin/blob/v0.11.0/doc/release-notes.md
https://bitcoin.org/en/release/v0.12.0
https://github.com/bitcoin/bitcoin/blob/0.14/src/coins.h
https://github.com/bitcoin/bitcoin/blob/0.14/src/coins.h
https://bitcoin.org/en/release/v0.15.0

BIBLIOGRAPHY

https://github.com/bitcoin/bips/blob/master/bip-0065.

mediawiki, 2014.

[104] P. TODD AND A. TAAKI, Paypub: Trustless payments for information pub-
lishing on bitcoin.

Github Project, https://github.com/unsystem/paypub, oct 2004.

[105] D. S. TOUCEDA, J. M. SIERRA, A. IZQUIERDO, AND H. SCHULZRINNE,

Survey of attacks and defenses on p2psip communications, IEEE Com-

munications Surveys Tutorials, 14 (2012), pp. 750–783.

[106] H. TRAN, M. HITCHENS, V. VARADHARAJAN, AND P. WATTERS, A trust
based access control framework for p2p file-sharing systems, in Proceed-

ings of the 38th Annual Hawaii International Conference on System

Sciences, jan 2005, pp. 302c–302c.

[107] T.W. SANDHOLM AND V.R. LESSER, Advantages of a leveled commitment
contracting, in Proceedings of the Thirteenth National Conference on

Artificial Intelligence and Eighth Innovative Applications of Artificial

Intelligence Conference,AAAI 96„ vol. 1, 1996, pp. 126–133.

[108] F. VALSORDA, Exploiting ECDSA failures in the Bitcoin blockchain, 2014.

[109] W. J. VAN DER LAAN, Obfuscate database files.

Bitcoin Core Github Issue 6613, https://github.com/bitcoin/

bitcoin/issues/6613, jul 2015.

[110] D. S. WALLACH, A survey of peer-to-peer security issues, in Software Secu-

rity—Theories and Systems, Springer, 2003, pp. 42–57.

[111] W. WANG, Y. XIONG, Q. ZHANG, AND S. JAMIN, Ripple-stream: Safeguard-
ing P2P streaming against DoS attacks, in 2006 IEEE International

Conference on Multimedia and Expo, jul 2006, pp. 1417–1420.

123

https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki
https://github.com/unsystem/paypub
https://github.com/bitcoin/bitcoin/issues/6613
https://github.com/bitcoin/bitcoin/issues/6613

BIBLIOGRAPHY

[112] H. WEATHERSPOON AND J. D. KUBIATOWICZ, Erasure coding vs. repli-
cation: A quantitative comparison, in Peer-to-Peer Systems: First In-

ternationalWorkshop, IPTPS 2002 Cambridge, MA, USA, March 7–8,

2002 Revised Papers, Springer Berlin Heidelberg, 2002, pp. 328–337.

[113] P. WUILLE, Answer to: What are the limits of m and n in m-of-n multisig
addresses?

Bitcoin StackExchange, https://bitcoin.stackexchange.com/a/

28092/30668, 2014.

[114] A. YEOW, Bitnodes.

https://bitnodes.earn.com/, 2018.

[115] Y. ZHANG, X. LI, J. HUAI, AND Y. LIU, Access control in peer-to-peer collab-
orative systems, in 25th IEEE International Conference on Distributed

Computing Systems Workshops, jun 2005, pp. 835–840.

[116] J. ZHOU AND D. GOLLMAN, A fair non-repudiation protocol, in Proceedings

1996 IEEE Symposium on Security and Privacy, may 1996, pp. 55–61.

[117] J. ZHOU AND D. GOLLMANN, An efficient non-repudiation protocol, in

Proceedings 10th Computer Security Foundations Workshop, 1997,

pp. 126–132.

124

https://bitcoin.stackexchange.com/a/28092/30668
https://bitcoin.stackexchange.com/a/28092/30668
https://bitnodes.earn.com/

Sergi Delgado Segura
Cerdanyola del Vallès, July 2018

125

	List of Tables
	List of Figures
	Introduction
	Motivation
	Objectives
	Contributions
	Thesis outline

	Bitcoin and blockchain
	The origin of cryptocurrencies
	Bitcoin transactions
	The Bitcoin scripting language
	Time-locked transactions
	Hash-locked transactions

	Blocks and mining
	Blockchain forks
	The append-only property

	The underlying P2P network
	Unconfirmed transactions
	Double-spending transactions

	Double-spending attacks

	Characterizing cryptocurrency P2P networks
	Description of the Bitcoin P2P network
	Properties describing Bitcoin nodes
	Network overview

	Network characterization
	Decentralization
	Architecture
	Lookup protocol
	System parameters
	Routing performance
	Routing state
	Peers join and leave
	Reliability and fault resiliency
	Security

	Security concerns in P2P networks
	DoS Flooding
	Eclipse attacks
	User profiling
	Other attacks

	Conclusions

	Analysis of the Bitcoin UTXO set
	The UTXO set
	The UTXO Bitcoin Core 0.14 format
	The UTXO Bitcoin Core 0.15 format
	STATUS: The UTXO analytic tool

	UTXO set analysis
	General view
	Dust and unprofitable UTXOs
	Height
	Non-standard

	Conclusions

	Bitcoin Private Key Locked Transactions
	Private key locked transactions
	Designing a new Bitcoin opcode
	ECDSA vulnerability
	Private key disclose mechanism
	Implementation

	Conclusions

	Double-spending Prevention for Bitcoin zero-confirmation transactions
	Bitcoin transactions propagation
	Double-spending prevention mechanism
	Basic prevention mechanism
	Disincentive-based prevention mechanism

	Implementation details
	Proposal analysis
	Conclusions

	A fair protocol for data trading based on Bitcoin transactions
	Fair exchange protocols
	Private key locked transactions
	ECDSA vulnerability

	The data trading protocol
	Protocol description
	Implementation details
	Protocol fairness discussion

	Conclusions

	Conclusions
	Conclusions
	Future work

	Bibliography

	Títol de la tesi: Towards a better understanding of Bitcoin:
from system analyses to new protocol designs
	Nom autor/a: SERGI DELGADO SEGURA

