
1 INTRODUCTION

Factories, warehouses, ports, and many other industrial

facilities automate their control and management systems

(e.g. production planning, logistics, etc.) to become more

efficient [1]. Robots play a key role in these large systems

automation. Particularly, they move material, objects, and

people, too, within facilities. Nevertheless, this massive

use of robots poses several challenges to management

and control systems ([2] – [7]).

Internal transportation [8] is one of the critical aspects

demanding specialized applications for control and

supervision. Complexity of these tasks can be high,

particularly when facilities are required to be adaptable

and flexible (to produce or handle a range of similar

products with different characteristics), evolvable (to

update their machinery) and robust, understood as fault

tolerance (to provide easy replacing/taking out of

components from the plant when some of them fail). It is

no surprise, thus, that those applications use agents and

agent technology [9] to benefit from scalability,

evolvability and robustness emerging from them. For

example, some proposals and actual systems use agents to

manage traffic in urban areas ([9] – [13]), in warehouses

([1], [14], [15]), and to control automated-guided vehicle

(AGV) systems ([16] – [20]).

The development processes of agent-based controllers

for transportation systems begin by system specification,

i.e. by creating multi-agent system (MAS) models. In this

paper, we shall refer to these models as agent-based

models (ABMs), not to be confused with the acronym for

agent-based modeling, used to study the collective

behavior of a set of agents [21] – [23].

Like in many design processes ([24] – [26]), initial

ABM instances can be verified by simulation, among

other alternatives. In fact, simulation software is used to

model systems and validate test scenarios ([27] – [29]).

 Early system specifications are gradually refined

down to a degree of detail enough to be executed by the

platforms that would run it (computers and robots).

There is a bunch of available multi-robot system

(MRS) simulators [30 – 34] that can be used to both

model a system and then, verify it. Also, all of them

enable designers to seamlessly control real robots from

the simulations. However, they are more focused on the

individuals than on the system.

Using an ABM simulator makes it easy for designers

to check system behavior but transition to actual robots is

harder. In fact, ABM simulation is mainly used to support

decision taking [35], [36] or help to manage elements

represented by agents in supply chains [37], [38], in

traffic [39] or in carpooling applications [40].

Our proposal is to keep as much of the ABM as

possible in its original form, in order to lighten the whole

development process [41] while enabling a full top-down

approach from system level. This approach requires

including synchronization between the model simulation

and the reality, with some overhead in time and modeling

Adaptable, flexible and evolvable manufacturing systems and warehouses are so complex to manage that control systems have to

be divided into several aspects. One of these is internal transportation, which has to do with all tasks involved in fulfilling a set of

so-called transportation orders, i.e. commands to collect and deliver material from origin to destination spots. A common approach

to design the controllers for these applications begins by modeling them as multi-agent systems and continues to final deployment

through a cascade of transformations. To minimize development costs of internal transportation controllers, we have proposed a

model of construction that includes components that synchronize the events from reality simulation and the ones from actual

reality. By using these synchronizers, further development is required only for those parts of the initial multi-agent controller

models with real counterparts. In this paper, we review the model and the architecture of the proposed internal transportation

system controllers and we illustrate the whole design process through the development of a controller for an automated laboratory.

Indirectly, we prove the validity of the architecture and of its key component, the synchronizers.

Keywords: Agent-Based Modeling, Multi-Agent Systems, Agent-Based Control Systems, Transportation Control, Real-Time

Systems, Multi-Robot Synchronization.

Running Agent-Based-Models Simulations Synchronized

with Reality to Control Transport Systems

Ismael Fabricio Chaile-Alfaro, Lluís Ribas-Xirgo
Research Group on Distributed Electronic Systems

Microelectronics and Electronic Systems Dept. School of Engineering,

Carrer de les Sitges, Campus UAB. 08193 Bellaterra, Barcelona, Spain

email: chaileif@gmail.com, lluis.ribas@uab.cat

constraints. However, the advantages may overcome

these limitations: development time is shortened, as well

as further system deployment and maintenance.

The model of computation and architecture must be

defined before designing an internal transportation

system controller. In our case, we propose an ABM

organization (Section 2) that separates agents into two

main classes, the one to control individual mobile robots

and the one to account for other elements in the system,

including a supplier of transportation orders.

The model of computation assumes that every

automated-guided vehicle (AGV) in the system has a

representative which is in charge of its commanding and

of communicating with other agents.

The general idea is a traffic system that can be self-

regulated from individual choices, requiring a minimum

level of assistance from agents at a higher level of

hierarchy. In other words, the transport orders from

applications are handled by transportation agents in an

autonomous manner, with minimal information from

other agents, including those who may act as planners

and routers. Partly, this can be achieved by enforcing

transportation agents to obey some traffic rules (e.g.

setting priorities at crossings) and by appropriately

designing the layout of the traffic network (e.g. by

minimizing conflicts using traffic circles).

Following the conventional design process, ABM

instances are verified and, when functionally correct,

built through progressive transformations of original

specification into implementable descriptions. Typically,

architectures do include as many resources as agents so to

make the binding easy or, in other word as close as

possible to one-to-one correspondence, and a set of

communication resources. In our case, though, the

architecture (Section 3) contains a computing resource to

run the entire system simulation, including the ABM and

resources to communicate it with the AGVs, which

correspond to parts of the ABM [42]. This fact enables to

reduce the size of the system specification that has to go

through the implementation process but requires an extra

type of resources: the synchronizers.

Therefore, the whole framework that we propose

resembles those of [43] or [44] and [45] (simulation only)

on development environments for agent-based systems

and uses an ABM of the transport system that accepts

inputs from the rest of the system and outputs control

data for the physical transportation units as well as other

data to the system. However, our framework significantly

differs from them for the use of an ABM simulator with

built-in synchronizers to simplify the development

process (Section 4) and to minimize development costs.

The main contribution of this paper is to provide

complete experimental evidence for the validity of the

approach through complete deployment of a realistic

prototype of an automated laboratory. The example has

been chosen as we already had experience with modeling

these cases [46], [47] and because this type of plants are

relatively small, can be operated with AGVs that would

be very similar to inexpensive, tiny hobby robots, with

simple traffic networks, allowing to focus our efforts on

synchronized simulation with reality.

2 AGENT-BASED MODEL OF TRANSPORTATION SYSTEM

CONTROLLER

Transportation systems are composed of carriers or

AGVs and their application part, which tell the former

ones what to do but not how it has be done, just as in

agent systems. Therefore, agent-based controllers for

transportation systems like the ones used in

manufacturing plants and warehouses take orders from

application-specific components (e.g. production planners

and management systems) and transform them into

requests for vehicles in accordance system states,

including individual vehicle information. (Note that

transport order tasks are allocated in a distributed fashion

[9].)

The proposed ABM follows the previous organization

(Fig. 1) by classifying agents into application-specific

and transportation. Agents use a common agent

communication language (ACL) so that they can

interoperate and that addition and removal of components

does not affect the system functionality.

Application-specific agents ({Ai}) link the

transportation agents ({Bi}) with the rest of the elements

in the application. From the transportation viewpoint, the

role of {Ai} is to facilitate the operation of {Bi} by

providing them with information other than the one they

can gather individually and to communicate their state to

other system components. To name a few, {Ai} include

the human-machine interface (HMI) and interfaces with

remote terminal units (RTUs) in manufacturing plants

and with the enterprise resource planner (ERP).

Transportation agents {Bi} correspond to AGVs and, in

fact, are their controllers. They communicate to each

other to solve traffic conflicts (i.e. avoiding collisions in

e.g. junctions) up to a certain degree. For instance, only

the highest priority Bi (priority is defined when Bi

receives the transportation order) can enter a junction

spot while the rest must wait. (In case of a draw, the Bi

with the highest ID gets the clearance.)

When those conflicts cannot be locally solved, they

raise the issue to a traffic coordination agent.

Thus, designers should be aware of which traffic

situations can occur and whether they can be solved

locally or with the participation of other agents.

Figure 1. Multi-agent model of a controller for

transportation systems

Provided that ABMs can be simulated and that these

simulations can be run concurrently with physical agents,

the difference between expected and sensed behaviors

can be minimized via additional controlling levels [48] or

locally within each agent.

However, the main problem of using ABM simulators

as controllers is that ABMs must run in real time with the

physical requirements of systems and their applications.

2.1 ABM application to automated laboratories

Laboratories of clinical analyses have progressively

been transformed into a kind of complex manufacturing

facilities, able to produce thousands of analyses per hour

from blood and other biological samples. In these

facilities, samples are dropped into tubes that are placed

in racks which are delivered to different analyzing

machines by using a conveyor system [49].

Unfortunately, further variability is added because

some tests must be repeated, not all racks stop at the same

analyzers and several analyzers can provide the same

information, though with different workload capacities.

As a result, the complexity of managing this kind of

laboratories is quite high, even though they use relatively

simple transport infrastructures. In these systems, small

AGVs can successfully replace conveyors [46], [50]

adding more degrees of freedom to the system and

relieving plant managers from operating with lots of data

to gain flexibility and robustness [51].

To include most of the characteristics of actual plants

of automated laboratories, our study case includes four

different analyzers: one ion-counting unit, one for

coagulometry and two biochemical units, as most of the

samples require evaluation of biochemical parameters.

The plant layout is based on the one of the conveyor-

belt system in [52] (Fig. 2) with conveyors replaced by

autonomous AGVs (Fig. 8), thus not requiring much

infrastructure. In this case, to simplify vehicle operations,

robots move around following a line with marks, which

are used by AGVs to self-locate within map. In details,

marks are used to indicate specific decisions points like

ports or stop points before accessing to junctions (cross

points like 3 in Fig. 8). Mark types are determined by

AGVs in accordance with their location in the plant.

Figure 2. Automated laboratory [52] with internal

transportation system based on conveyor belts

2.1.1 Transportation agents (Bi)

Each AGV is aware of its own position and able to

recognize the environment and to communicate with

other agents to coordinate movements. AGVs use

information about the plant to determine to which

analyzer they should go, to satisfy their loads

requirements as fast as possible. Currently, in our model,

AGVs randomly choose among compatible goals (i.e.

they can go to one or the other of the biochemical

analyzers on a random basis), as the focus of this work is

to validate the proposed ABM-based controller.

When an AGV arrives at its destination, it docks at the

port of the corresponding analyzer so to begin with its

work. In case it is busy, AGV puts itself on hold in a

parking area (short wait) or goes on to a compatible

destination or to the re-circulation lane (long wait).

2.1.2 Application-specific agents (Ak)

{Ak} are used like interface agents between Bi and

whatever element in the real plant or its model. Their

main task is to help with specific issues of transportation.

As for example, A1 could be the agent representation of

the Laboratory Information Management System (LIMS)

in charge of the overall planning of transportation orders,

as well agents A2 to A5 represent the interface with real

analyzers in the laboratory.

As Ak are application-specific, they change according

to the application and what it is represented.

For the case study experiments, the LIMS agent

randomly generates work orders and representatives of

the analyzers randomly decide whether sample tests are

successful or not, i.e. must be repeated.

3 TRANSPORTATION SYSTEM CONTROLLER’S

ARCHITECTURE

Components to build such type of controllers are

mobile robots and computing resources, either embedded

or not, and a communications network. Mobile robots are

AGVs with some on-board computer that runs an

embedded controller, and the other computing resources

include, at least, a computer running the multi-agent

based model simulation of the system.

3.1 Transport agent architecture

Transportation system controller is organized as a set

of Bi agent controllers, which control vehicle sensors and

actuators. Each Bi controller is divided into several

layers: the lowest one is in charge of controlling the

vehicle in accordance with the requests from the topmost

one. The top layer is the one capable of communicating

with other agents and, therefore, of considering system

state when taking decisions on accepting and completing

transport orders.

Resulting architecture for a Bi (Fig. 3) includes an

intermediate, interface layer, which offers all services to

communicate the top layer with the bottom one in a safe

and secure way. Basically, services enable the high level

layer (Ti) sending requests to the low level layer and to

get answers from it.

With this organization, {Ti} are detached from the

corresponding low level layers (Vi and Ri). Consequently,

implementation of both levels are independent if they

share the communication language. Note that, even

though both levels can use the same language and

services as if they were different agents, they are not.

In short, any transport agent Bi is divided into two

levels, the highest one Ti, and the lowest one, which is

either virtual (Vi) and/or real (Ri). In our approach,

though, both Vi and Ri can co-exist because of the

interface layer synchronizing Ti with the lower level (Vi

and Ri).

As mentioned previously, the main advantage of this

approach is that simulation and control can run

concurrently, with simulation helping to maintain a

symbolic view of the system for all agents and to foresee

results of individual choices.

The virtual system’s representation includes the state

of the plant as well as the state of the lower level of Bi. In

fact, all {Vi} interact with a plant environment simulator

E and, as a result, all {Ti} have access to system-wide

information without communicating with other agents.

For instance, they know the symbolic position of any

other AGV to determine collision-free routes or to solve

conflicts at crossings. The symbolic position is the

position in the traffic network as represented in the

simulated plant environment, which has to be accurate

enough for the application, even though it does not

correspond to a realistic representation on a screen.

Each Ri interact with elements at the plant (P) and is

“controlled” by commands from Ti, which stands for the

topmost controller level of Bi. Commands depend on

replies from Ri, but also on differences between Vi and Ri

replies, which are monitored and controlled by the

synchronizing interface, on messages from other Tj≠i and

Ak, and on global information stored in E.

Figure 3. Architecture of transportation agents

3.2 System architecture of transportation

controller

Our approach [53] controls transport systems by model

simulation. To that end, the proposed ABM’s architecture

organizes agents into two classes. One for the external

elements ({Ak}) and another for the transportation agents

{Bi}. In Fig. 4, besides {Ak} and {Bi} components {(T, V,

R)i}, ABM relies on other architectural platform

resources to be run, namely agent communication

language (ACL) services, intra-agent communication

services, and symbolic environment simulator (E).

In cases where decisions taken individually, in a

distributed fashion, might be inefficient, there can be an

agent helping to control the traffic. Note that, most of the

time, {Bi} can move around with only local information

and, eventually, they have to solve conflicts with others,

thus creating temporary hierarchies among them. In some

scenarios, particularly in high-density traffic networks,

traffic coordinator agents would minimize inter-agent

communication to solve conflicts and the number of

conflicts (see [54] and [55] for recent examples on

algorithms these agents should include).

Figure 4 illustrates resulting control loop with this

ABM. Topology of the plant and number of AGVs are

among the variables that configure the model that is used

for controlling the real plant.

The model is run under inputs that come from external

agents and physical elements and generates outputs for

the latter ones. This control loop might be too slow for

many applications unless physical elements have

embedded some controllers and relation with the ABM is

done at a higher level of abstraction. However, even with

this solution, ABM simulation has to execute fast enough

to interact at real time with physical elements. This

requires agents to have simple communication protocols

that enable negotiations to occur within a few messages

and to be efficient in taking decisions, which usually goes

against reflexive, elaborated behaviors.

The higher level modules of transportation agents,

{Ti}, get orders from agents representing other modules

of the application ({Ak}) and try to fulfill them. To do so,

Ti of each Bi must negotiate with application agents {Ak}

and other workmates which jobs they take and, when in

transit, how they can be completed efficiently.

In taking decisions, {Bi} have knowledge of their own

state and the state of their lower-level counterparts ({Vi}).

Results of deliberations are transformed into requests

to the {Vi} and also to the real robots {Ri}. The last set of

requests is, in fact, the output of the ABM controller. The

inputs include the replies to the before mentioned
requests from robots, hence closing the loop between

controller and controlled system.

Apart from controlling AGV operations, ABMs can be

used for functional validation and for plant

characterization, which includes AGV characterization.

Functional validation refers to use the ABM without real

counterparts of agents and, particularly, without {Ri}. On

the other hand, characterization refers to the process of

measuring actual parameters from the reality, including

travelling times and energy consumption at each segment

and node of the traffic network.

The framework also includes mechanisms to measure

worst-case execution times (WCETs) of models, and to

monitor whether the control loop is closed fast enough

when compared with events coming from reality.

Figure 4. ABM control loop for multi-AGV transport

systems

A typical partition of the system would bind all agents

into a central computer (e.g. SIM/PC on Fig. 4) and {Ri}

into real AGVs. Complementary resources to implement

the system are the ones to support {Ti} and {Ri}

communication, as well as the ABM simulation with the

rest of the application, i.e. with the part extraneous to

transportation. Finally, there are the synchronizers, which

will be described next.

3.3 Synchronizing simulation and reality

The synchronizer is the key resource of our

architecture because it is in charge of providing the basic

means to have a concurrent and online simulation and

representation of reality.

The synchronizer is an interface module within each

agent. It works like a middleware between the high-level

Ti and low-level (V, R)i of each agent to synchronize

incoming messages from lower levels to outgoing

channel to the higher level. As synchronization deals with

time-tagged messages, we shall refer to them as events.

There are two classes of events: the ones caused by

requests from Ti and the ones that are not. The former has

to be synchronized as hard-real time events while the

latter allow some mismatch between reality and

simulation thus requiring a soft real-time synchronization

of its events.

Hard real-time synchronization events (HSEs) include

requests emitted by {Ti} and the corresponding replies

from {(V, R)i}, that are expected to occur simultaneously.

Soft real-time synchronization events (SSEs) include

informative messages from {(V, R)i}, which refer to the

occurrence of conditions that are autonomously managed

by the low-level. For instance, detecting an obstacle or

running low in battery are situations that each component

of low-level ((V, R)i) handle locally without requiring

immediate attention by corresponding high-level.

However, it is important that Vi and Ri run synchronized

to keep virtual representation more accurate to reality

and, in case of mixed-reality operation, to have reality

(Ri) working together with simulated-only (Vi), which

means that they have not a real counterpart.

3.3.1 Synchronization mechanism example

Synchronizing simulation with reality for the i-th

transportation agent (Bi) means, on one side, keeping

simulation messages waiting for their message

counterparts from reality and, on the other, advancing

simulation to trigger events which have occurred in

reality but not yet in simulation.

Synchronizer modules deal with the former cases as

well as with event mismatching errors, i.e. with cases

where events cannot find their counterpart in pre-defined

time gaps.

Events are denoted h or s, depending on them being

HSE or SSE. We shall use subscripts to indicate the

source and a star in superscript when they correspond to

synchronizing error events. Subscripts can be T, S, R or V

depending on events coming from high-level,

synchronizer, real AGV or simulated (virtual) AGVs,

respectively. For example, hT corresponds to a HSE from

Ti, hS
*, to a HSE from the synchronizer reporting some

error, and sR and sV, to SSE from real and simulated

AGVs, respectively. (Fig. 5 shows all possible event

types in a block diagram of the synchronizer.)

Furthermore, for every pair of events from low-level

synchronizer must produce an equivalent, outgoing event,

i.e. for any pair of hV and hR in response to an hS caused

by some hT, there should be an hS to high-level. If

something fails, then appropriate sync. error events, hS
*,

are sent to high-level and, eventually, to low-level.

A typical, error-free communication protocol (Fig. 5,

top left) starts by an hT request, which is sent to

synchronizer, which, at its turn, sends the request (hS) to

low-level. After each hT, synchronizer waits for

corresponding hV and hR. If both occur at the same control

cycle and corresponding messages are equal, sync sends

the acknowledgement (hS) to high-level, with message

contents from low-level. If messages are not the same,

synchronizer emits an hS* error event to both levels. If

events from simulation (Vi) and reality (Ri) do not occur

simultaneously (i.e. at the same instant), synchronizer

either waits for hR or causes the simulation to catch up to

reality, i.e. causes to hV happen.

Figure 5. Synchronizer’s (Si) event interface protocol

for hard (left) and soft (right) real time events

Obstacle detections and other SSEs happen at low-

level and help synchronizing virtual representation and

reality, though they admit some mismatch. In this case,

synchronizer tries to pair each sR with corresponding sV

using a similar strategy than with hV and hR, however, it

allows a tolerance in the time sR and sV occur. Again,

when messages are equal sS is sent to high-level and in

error case, sS* is sent to both levels. The sending of sS* to

Vi if no sV has occurred allows Vi to perceive unexpected

reality events and the other way round, i.e. sending sS* to

Ri if no sR has occurred enables Ri perceiving simulation-

only stimuli.

Each synchronizer uses three different states to classify

incoming events, whether they are HSEs or SSEs:

 In-time when events from reality and simulation arrive

at the same time or within a tolerance margin.

 Ahead when events from reality arrive first than from

simulation. This is the worst case in terms of

synchronization and should be avoided as much as

possible, because reality cannot wait simulation.

 Behind when events from simulation arrive first than

from reality and simulation has to wait reality and update

its parameters to the new behavior of reality.

Synchronizers are built upon two parallel finite state

machines (FSM), namely one to deal with HSEs and

another for SSEs. There is an extra state, so called wait,

in the HSE FSM to act as the entry point for hT to start

hard real-time synchronization. To start a SSE, there is no

need of any hT, it just starts when receives a sR and or sV.

As synchronizer is independent from the application,

we need to include in the events’ data frames (Fig. 6)

some parameters to help solving problems caused by

mismatch of events in terms of time or message contents.

Tout is a timeout for hR with respect to an hS caused by

hT. If hR does not occur within this period of time, an error

event hS* is sent to both levels. In this case, hS* has a

message that contains the timeout message from the

initial hT. Previous mechanism outlines the behavior of

the event discovery method (EDM) of the synchronizer.

Imax is the maximum number of allowed ABM runs to

cause the simulation to fire a hV corresponding to a

previous hR. In case this immediate synchronization

method (ISM) fails (i.e. the synchronizer does not receive

the hV before Imax), a hS* with a predefined message is

sent to both levels.

SSEs are allowed to occur at different time points

within a period shorter than Ttol, thus Ttol is a tolerance

time threshold before starting an EDM for sR.

Touts is a timeout for SSEs from reality, just as Tout for

hR. In a similar way than with HSEs, synchronizer starts

an ISM to generate a sV for any unmatched sR, and that

these mismatches cause sS* that can be used to

appropriately update the virtual representation of the

system.

Figure 6. High-level events’ frame format

Note that, while inter-agent communications happen

inside simulation by using a FIPA compliant ACL, intra-

agent communications between layers are managed by

hT hS

Ti Si

hS

hS
hV

hR

sVhV

sS
sV sR

sR

hS
*

hS
*

sS
* sS

*hS
*

hS
* sS

* sS
*

Vi Ri
Ti Si Vi Ri

ti
m

e

Count Message Imax

TIME DATA FRAME

HSE SSE

Timeout message Tout ToutsTtol

synchronizers, which include functions to send and

receive messages within the simulation and to/from

outside. In our study case, intra-agent communications

between simulated and real parts are, obviously, wireless,

by Bluetooth technology with 8N1 format at 38400 bps.

4 DEVELOPMENT METHODOLOGY AND PLATFORM

The proposed development methodology assumes that

the system’s specification follows the given

computational model and that its implementation is done

following the proposed architecture. As illustrated on Fig.

7, process begins with specifying the agents of the system

and, once validated (possibly with estimated data about

the application), proceeds with the refinement and

synthesis stages. Depending on whether the synchronizers

are used or not, these processes should be applied to the

whole controller description or only to the low-level

parts. Next subsections will detail each stage.

Figure 7. Transportation system controllers’

development methodology with and without

synchronizers

4.1 ABM description

Instances of systems’ ABMs are built by describing the

functionality of each agent. In order to simulate resulting

ABM-based controllers, designers have to:

(1) Develop an environment module E which will be in

charge of updating the symbolic representation of

the system in accordance to agent actuators and

provide information of the system state through

agent sensors. Note that data from E can be used by

an agent to create a HMI of the system and seen by

other agents as a kind of blackboard.

(2) Create the application-specific agents. Initially they

can be stubs to provide/collect data to/from the rest

of the system, but they will have to interface will

true application components at the end.

(3) Configure and adapt AGVs, particularly, their low-

level. For that, they can use previous examples as a

reference and perform a customization of the code.

These customizations imply a rough estimation of

AGVs’ parameters with respect to the plant (delays,

energy consumption, battery charging/discharging

profiles, et cetera), at least from nominal data. Note

that each Bi is composed of Ti and Vi at simulation

level and that Vi interacts both with Ti and E while

Ti interacts with other agents (Bj≠i and Ak).

(4) Deploy final system.

Take into account that, even though agents

communicate within a single model, they should use an

ACL compliant with the FIPA-ACL specification [56] to

make it possible to distribute the ABM model execution.

4.2 Functional validation

It consists of checking whether the system works

properly and of foreseeing the characteristics of the

transportation system (e.g. number of AGVs and average

speed) according to the application requirements.

4.2.1 Requirements analysis

Application requirements’ analysis must be performed

to determine the characteristics of the ABM. For clinical

analysis laboratories, the workload is in the range of

4,000 to 12,000 samples/day. The lowest value is drawn

from the fact that a typical workload for an automated

laboratory at a hospital is 1 million samples/10 millions

of tests/determinations per year [49], which gives a

throughput of 4167 samples/day if we consider working

days only. Maximum value is taken from one of the

leading-edge automated laboratories, the Cobas 8000

[57], which can reach an order processing time of as little

as 36 s (by using 5-sample racks on conveyors).

The time to fulfill an order depends on the vehicle

characteristics (velocity, number of tubes it carries, et

cetera), the analyzers’ throughputs, the plant layout and

the route they follow (e.g. analyzers they go to, or need to

use the re-circulation lane).

Realistic computation of the values for the

characteristics parameters must take into account

differences between prototype and final plants.

Our experimentation plant (Fig. 8) is twice smaller

than the real one, and average response time of an order

is 236.3 s, approximately.

Worst cases require each AGV travelling a distance of

22 (11x2) m (i.e. visiting each different analyzer and the

re-circulation lane to repeat some test), consuming an

average time of 240.8 (120.4x2) s, plus 36 s taken by the

analyzers. Therefore, each AGV takes 276.8 s to

complete an order.

The best case occurs when each AGV travels a

distance of 14.6 (7.3x2) m long (it goes just to one

analyzer and does not use the re-circulation lane), so the

total time (AGV travel + analyzer time) is around 195.8 s.

System throughput not only depends on the time to

complete an order but also on the number of analyzers, on

the analyzers’ characteristics (particularly, their

throughput and quality of tests), on the number of

transportation agents, on their coordination efficiency,

and, last but not least, on the LIMS’s ability to pass work

orders to AGVs in an effective sequence.

Estimation of throughput uses simple scenarios

because of the high complexity of its computation for real

cases. For instance, we have used two scenarios to

determine whether the proposed plant can manage typical

automated laboratory workloads and how has to be

configured, i.e. its ABM characteristics.

The first scenario is made of an AGV carrying orders

constantly during 24 hours/day. It is assumed that AGVs

have battery autonomies of 8 hours and the same re-

charging time, thus, at least two AGVs, one moving

through the plant and the other re-charging are required to

cover a full working day. Under this scenario, the lowest

system throughput is about 1560 samples/day (worst case

response time of an order), which covers around 37.4% of

the minimum daily workload (4167 samples/day).

The second scenario is an extension of the first one to

three AGVs that transport orders 24 hours/day at the

same time, where separation between each other is at

least of 4 meters (to avoid possible delays related to

coordination between transportations agents and

analyzers). At any time, there are other three robots re-

charging batteries. The system throughput for this case is

around 4680 samples/day, which exceeds the minimum

workload in 12.3%.

We shall see later, in Section 4.2.3, that the proposed

controller is able to control up to 20 AGVs in real time,

so it can also handle this scenario, with only 6 robots.

Consequently, the proposed system can manage the

minimum workload for an automated laboratory of a

hospital.

The fact that AGVs move by following lines can create

traffic bottlenecks when the number of AGVs grows.

To study if some bottlenecks emerge, some simulations

have been done in two different scenarios with 20 AGVs

each one, as this is the limit of the experimental plant.

Initial positions in the plant have been on the topmost

lane (15 idle AGVs) and on the leftmost lane (5 AGVs

ready and waiting for transportation orders) of the layout.

In the first scenario, every AGV received random

orders to fulfill and, in the second one, each AGV

accepted orders that forces to go to each analyzer. From

the simulation of these scenarios, a main bottleneck

emerges at junction 3 (bottom left part of Fig. 8) and

sometimes there were minor bottlenecks in crossings

to/from analyzers. Therefore, after three non real-time

simulations for each scenario during 9050 ticks each one,

results show that concentration of AGVs on the spot

around junction 3 is 15% higher for the scenario with

random orders than scenario with constant ones.

Although other results can be found for different

simulation times, initial position of AGVs, et cetera,

those concentration points have to be treated to avoid

degrading overall throughput. Possible solutions include

modifying the plant layout by creating e.g. roundabouts

or by extending the one-dimensional layout to 2D in

those areas, and improving work order assignment and

sequencing.

4.2.2 Characterization of transportation agents {Bi}

Model accuracy depends on how good is the

characterization of the actual plant. Fortunately,

synchronizers allow model simulations to run

concurrently with real plants even if inaccurately

characterized. However, accurate characterization of

models improve synchronization quality, which can be

defined in terms of the quantity of unnecessary delays in

the simulation execution and the number of extra

iterations in the simulation loop to keep up with events

from reality.

Static data such as traffic network and nominal

characteristics of vehicles such as average speed and

energy consumption can be used for system validation

and as a set of initial values for the model. However, in

order to control a real plant, parameters should be as

accurate as possible and, for this reason they have to be

estimated from a series of test runs [58].

Plant characteristics are of two types: one that define

traffic network and the other for the functional and non-

functional behavior of the Bi. We assume the traffic

network be constant and defined by a topological graph

known to all Bi of the system (plant layout on Fig. 8).

In a simple version, cost data consist of the time to

travel from a node to another and the time devoted at

each node to decide which outgoing arc to take.

For every order request from a Ti to a Ri, the delay time

that takes to Ti to get a reply from Ri is recorded. This

delay is compared to the previous one in the same node or

arc of the map graph and updated accordingly so that

further decisions of Ti and the reactive behavior of Vi are

more accurate to the reality.

4.2.3 Estimation of controller characteristics

To test the maximum load of the system, a series of

simulations with different quantities of robots performing

random transport orders were done to estimate the worst-

case execution time (WCET).

The average WCET was 16ms, and the maximum

communication time was 20 ms, although this value

corresponds to the case for 20 AGVs, it was extrapolated

from real data obtained from cases with up to 4 robots.

Consequently, the control loop takes 36 ms at worst and

the maximum cycle frequency for the ABM controller is

about 28 Hz. With this controller period, real time

frequencies of events must be 14 Hz or lower.

Taking into account the geometry of the traffic

network of the experimental plant and the average speed

of robots, that frequency allows the simulation

controlling 20 real robots {Ri} in real time with a spatial

resolution under the cm, which is acceptable for the

previously-presented laboratory.

After system functionality and estimates were

validated, a prototype with three AGVs was used to

verify the characterization, WCET control, and

deployment stages.

4.3 Synthesis of low-level

In the proposed development process (Fig. 7) the only

part of the system to be implemented is the low-level one,

as the rest is kept as a simulation model. In the study

case, the prototype of the automated laboratory used

Parallax Boebots and only the Netlogo code for low-level

(Vi) had to be ported to PBASIC for the Basic Stamp

board that controls the robots.

4.4 System prototyping

Within the proposed methodology, system prototypes

are ready as soon as {Bi} have their {Vi} embedded into

physical counterparts (AGVs), and some environment has

been created for them.

The resulting prototype for the study case ([58] – [60])

is shown in Fig. 8, with AGV emulators in the foreground

and the projection of the user interface screen in the

background.

Robots determine its position in the plant by detecting

marks (short crossing lines over layout guide lines).

Marks correspond to nodes of a directed graph that tell

robots how to manage next step according to their current

state, including node location, and to the order currently

in course. This mechanism lets robots know their position

between marks but not its exact location between them.

Fortunately, exact positioning is only required for local

decisions. When robots move, they use sensors to follow

the line and detect marks and other sensors for detecting

obstacles.

Robots wait for LIMS instructions at the end of the

return lane. After receiving a transport order, they

proceed to the loading dock (bottom left corner) and

begin their journey. If nothing abnormal happens, they

contact the LIMS just at the bifurcation between the

return lane and the re-circulation lane (top right

bifurcation) to decide which line to take in terms of the

successfully done tests. The re-circulating lane (line at the

middle) can also be used by AGVs carrying samples that

still wait for acknowledgement of their tests or for their

repetition, in case of test failures.

At the beginning of the returning lane, AGVs have

their tube racks unloaded, and, at the waiting queue, they

have their batteries re-charged (if needed), and follow

their pace to the programming spot.

Figure 8. Plant prototype (bottom) and HMI (top)

4.5 Behavioral validation

It requires real time monitoring and on-line

characterization of transportation agents.

The rest of the section is devoted to explain how are

AGVs and controller characterized with respect to a

given plant, the mechanism included in the platform to

ensure that real-time control constraints are met and the

deployment of the study case.

4.5.1 Pre-runtime characterization of AGVs

Off-line robot characterization is very important to

have a good initial matching between simulation and

reality, and to improve decisions and robot actions made

by {Ti}. After that, continuous on-line updates of these

data might be necessary to adapt controller to

dynamically changing system characteristics.

The characteristics of each robot with respect to the

plant traffic network have been obtained by averaging the

travel time at each segment for 30 runs. The full circuit is

11 m long and took an average time of 112.654, 125.456

and 123.169 s per robot to be completed.

Besides, during pre-runtime characterization, it has

been the first opportunity to detect noise influence from

different sources such as wireless communications’ delay

variability and erroneous data from sensors. In the first

case, influence of noise that cause some failure has not

been reported for this testbed, possibly because Bluetooth

transceivers (at AGVs and at the computer) are closer

enough to keep signal to noise ratio inside operational

values that avoid failures. Also, there have not been

detected interferences between AGVs’ transceivers and

other electromagnetic sources. Unfortunately, line

detection sensors were too sensitive to sun and

fluorescent light, which caused detection errors that were

solved by protecting them from that influence.

4.5.2 Computation of controllers’ WCET

With the ABM simulation running on an inexpensive

laptop (64-bit MS Windows 7 OS on a 1.65GHz AMD E-

450 CPU, 4 GB RAM machine) that communicated with

three robots via serial protocol over Bluetooth, the WCET

for the controller of a 3-robot system was 431 ms

Taking into account that robots move at speeds up to

10 cm/s and that the closest nodes in the automated

laboratory prototype are a bit larger than that, each Ti

needs to handle, at least, one HSE per second. Therefore,

the controller should be able to reply to 3 events per

second, which is not possible with that WCET and real

robots would had to wait when execution times are close

to it.

Fortunately, the average control cycle period duration

was roughly 2 ms, and execution times over 333 ms

account only for 0.0023% of the total, and those over

36 ms (20 taxis) are roughly the 1.17%, as illustrated on

Fig. 9. Note that, even in these cases, the system can

work properly because of synchronizers, though it might

run not as efficiently as it could.

However, to get rid of this problem it is possible to use

better machines with tailored OSs to improve execution

times and avoid interferences with controller processes.

4.5.3 Synchronization quality

The more accurate is the characterization of the

physical elements in a plant the better will be the control

and, subsequently, the efficiency of the system.

Synchronization quality is given in terms of

percentages of synchronizers “in-time” states with respect

to the total number of HSE states they go through. For

instance, in pre-runtime characterization, simulation tends

to be optimistic and goes ahead reality about 33% of the

time, as time delays at segments are initially set to zero.

However, most of the time (66%), simulation and reality

go together and a mere 1% of time is used to run ISM to

make simulation keep up with reality.

Figure 9. Control cycle execution time logarithmic

histogram of three robots, T1, T2 and T3

4.5.4 Real-time monitoring

To guarantee real-time monitoring and control, all

delays are compared to the WCET of the main control

loop body to be sure that no inputs from the plant will be

lost or taken into account out of time. Therefore, the

control loop has a cycle period compatible only with

robots whose embedded controllers are able to understand

quite complex instructions, with execution times larger

than the WCET of the model.

In case delays are closer to WCET, there are

alternatives to preserve coherence between simulation

and reality such as including time-stamps into the

messages or minimizing the WCET by appropriately

modifying the scheduling of agent execution [61].

5 CONCLUSIONS

Systems that run applications on the industrial domain

must solve the internal transportation aspect. In this

paper, we have proposed a framework to rapidly design

and deploy the corresponding subsystems directly from

agent models.

The proposed MAS architecture organizes agents into

two classes, the application-specific ones and the

transportation ones or taxis. The latter follow a three-tier

architecture, that includes an intermediate layer to

synchronize the lower level parts, which can also be run

on the actual robots.

Simulators of ABMs with such an architecture can be

used: 1) for functional validation; 2) for plant

characterization, which includes testing whether real time

requirements are met, parameter identification, and

controller setup, and 3) as a model for the controller of

the transportation system, including a mixed-reality

environment for monitoring and supervising in human-

assisted operation.

We have shown how synchronizer maintains coherence

between symbolic system representation and reality so

that transportations agents can take timely decisions.

Furthermore, it replaces traditional direct monitoring so

that system representation is the outcome of a system

simulation that runs synchronized with reality. As a

consequence, it is possible to make simulation-only

elements interact with real ones.
Experimental results show that the proposed strategy

minimizes the time-to-prototype as well as the time-to-

market, provided that the development platform is the

same that the deployment one.

REFERENCES

[1] R.-S. Chen, K.-Y. Lu, and C.C. Chang, “Intelligent warehousing

management systems using multi-agent”, in: Int. J. Comput. Appl.

Technol. 4 (2003), pp. 194–201.
[2] M. Al khawaldah, A. Nuechter, “Multi-Robot Cooperation for

Efficient Exploration”. Automatika, 2014, 55(3), 276–286.

[3] S. Behnke, “Dynamaid, an Anthropomorphic Robot for Research

on Domestic Service Applications”. Automatika ‒ Journal for

Control, Measurement, Electronics, Computing and

Communications, 2011, 52(3), 233–243.
[4] E. Ivanjko, E. K. Filter, “Sonar-based Pose Tracking of Indoor

Mobile Robots”. Automatika, 2004, 45(3-4), 145–154.

[5] E. Di Lello, A. Saffiotti, R. Ecology, “The PEIS Table: An
Autonomous Robotic Table for Domestic Environments”.

Automatika ‒ Journal for Control, Measurement, Electronics,

Computing and Communications, 2011, 52(3), 244–255.
[6] F. Mastrogiovanni, A. Scalmato, A. Sgorbissa, R. Zaccaria.

“Robots and Intelligent Environments: Knowledge Representation

and Distributed Context Assessment”. Automatika ‒ Journal for
Control, Measurement, Electronics, Computing and

Communications, 2011, 52(3), 256–268.

[7] D. Matko, “Mobile Robots Tracking Using Computer Vision”.
Automatika ‒ Journal for Control, Measurement, Electronics,

Computing and Communications, 2005, 46(3-4), 155–163.

[8] S. Schreiber, A. Fay, S. Member, “Requirements for the
benchmarking of decentralized manufacturing control systems”, in:

Emerging Technologies and Factory Automation, 2011.

[9] J.Z. Hernández, S. Ossowski, R. Juan, A. García-serrano, “On
Multiagent Co-ordination Architectures: A Traffic Management

Case Study”, in: Proceedings of the 34th Annual Hawaii

International Conference on System Sciences, 2001: pp. 1–9.
[10] O. Banias, R. Precup, D. Curiac, “Multiagent architecture applied

in decentralized real-time urban road traffic control”, in: Applied
Computational Intelligence and Informatics, 2009: pp. 271–276.

[11] A. Guerrero-Ibáñez, J. Contreras-Castillo, R. Buenrostro, A. Martí,

and A. Muñoz, “A Policy-Based Multi-Agent management
approach for Intelligent Traffic-Light Control”, in: Intelligent

Vehicles Symposium, 2010: pp. 694–699.

[12] M. Behrisch, L. Bieker, J. Erdmann, D. Krajzewicz, “SUMO –
Simulation of Urban Mobility”, in: Third Int’l. Conf. on Advances

in System Simulation (SIMUL 2011), 2011: pp. 63–68.

[13] F. Mastrogiovanni, A. Scalmato, A. Sgorbissa, R. Zaccaria.
“Robots and Intelligent Environments: Knowledge Representation

and Distributed Context Assessment”. Automatika ‒ Journal for

Control, Measurement, Electronics, Computing and
Communications, 2011, 52(3), 256–268.

[14] M. Cossentino, C. Lodato, S. Lopes, P. Ribino, “Multi Agent

Simulation for Decision Making in Warehouse Management”, In:
Computer Science and Information Systems, 2011: pp. 611–618.

[15] H. L. Liang, J. Verriet, R. Hamberg, and B. van Wijngaarden,

“Graphical Configuration of Agent-Based Warehouse Management
and Control Systems”. In Advances on Practical Applications of

Agents and Multi-Agent Systems, Advances in Intelligent and Soft

Computing, (2012): pp. 265–268.
[16] P. Farahvash, T.O. Boucher, “A multi-agent architecture for control

of AGV systems”, Robotics and Computer-Integrated

Manufacturing. 20 (2004) 473–483.
[17] A. Wallace, “Multi-Agent Negotiation Strategies and the Flow of

AGVs”, International Journal of Production Research. 45 (2007).

[18] S.C. Srivastava, A.K. Choudhary, S. Kumar, M.K. Tiwari,
“Development of an intelligent agent-based AGV controller for a

flexible manufacturing system”, The International Journal of

Advanced Manufacturing Technology. 36 (2007) 780–797.
[19] M. Hafidz, H. Lin, T. Murata, “Dynamic Task Assignment of

Autonomous AGV System Based on Multi Agent Architecture”, in:
International conference on Progress in Informatics and Computing

(PIC), 2010: pp. 1151–1156.

[20] R. Erol, C. Sahin, A. Baykasoglu, V. Kaplanoglu, “A multi-agent
based approach to dynamic scheduling of machines and automated

guided vehicles in manufacturing systems”, Applied Soft

Computing. 12 (2012) 1720–1732.
[21] Open Agent Based Modeling Consortium,

https://www.openabm.org/page/modeling-platforms, last access 22

Dec 2014
[22] A. Kashif, X. Hoa, B. Le, J. Dugdale, “Agent-based framework to

simulate inhabitants’ behaviour in domestic settings for energy

management”, in: International Conference on Agents and Artificial

Intelligence (ICAART), 2009.

[23] P. Fonseca i Casas, J. Casanovas, X. Ferran, “Passenger flow

simulation in a hub airport: An application to the Barcelona
International Airport”, Simulation Modelling Practice and Theory.

44 (2014) 78–94.

[24] J. Babić, S. Marijan, I. Petrović, “Introducing Model-Based
Techniques into Development of Real-Time Embedded

Applications”. Automatika, 2011, 52(4), 329–338.

[25] C. Mitsantisuk, M. Nandayapa, K. Ohishi, S. Katsura, “Design for
Sensorless Force Control of Flexible Robot by Using Resonance

Ratio Control Based on Coefficient Diagram Method”. Automatika

‒ Journal for Control, Measurement, Electronics, Computing and
Communications, 2013, 54(1), 62–73.

[26] D. Vasquez, T. Fraichard, R. Siegwart, “Towards Safe Vehicle

Navigation in Dynamic Urban Scenarios”. Automatika ‒ Journal
for Control, Measurement, Electronics, Computing and

Communications, 2009, 50(3-4), 184–194.

[27] S. Avenue, “Modelling and Simulation of Transportation Systems:
a Scenario Planning Approach”. Automatika, 2009 50, 39–50.

[28] I. Bačić, K. Malarić, M. Pejanović-Djurišić, “Simulation Model for

Evaluation of the DVB-SH-A Performance”. Automatika ‒ Journal
for Control, Measurement, Electronics, Computing and

Communications, 2014, 55(2), 170–181.

[29] T. Sandu, N. Denz, B. Page, “Model-Driven Software
Development and Descrete Event Simulation — Concepts and

Example”. Automatika, 2009, 50(1–2), 17–27.

[30] I.Y.H. Chen, B. MacDonald, B. Wunsche, “Mixed reality
simulation for mobile robots”, in: IEEE International Conference

on Robotics and Automation, 2009: pp. 232–237.

[31] Player, Cross-platform robot device interface & server,
http://playerstage.sourceforge.net/index.php?src=player, last access

21 Nov. 2015.

[32] Stage, 2D multiple-robot simulator, http://playerstage.sf.net

/index.php?src=stage, last access 21 Nov. 2015.

[33] Willow Garage, “ROS: Robot Operating System”,

https://www.willowgarage.com/pages/software/ros-platform, last
access 21 Nov. 2015.

[34] Coppelia Robotics, “V-rep: Virtual Robot Experimentation
Platform”, http://www.coppeliarobotics.com/, last access 21 Nov.

2015.

[35] P. Davidsson, L. Henesey, L. Ramstedt, J. Törnquist, F. Wernstedt,
“An analysis of agent-based approaches to transport logistics”,

Transportation Research Part C: Emerging Technologies, 13. 2005.

https://www.openabm.org/page/modeling-platforms
http://playerstage.sourceforge.net/index.php?src=player
https://www.willowgarage.com/pages/software/ros-platform

[36] A. Jaoua, D. Riopel, M. Gamache, “A simulation framework for
real-time fleet management in internal transport systems”,

Simulation Modelling Practice and Theory. 21 (2012) 78–90.

[37] L.A. Santa-Eulalia, G. Halladjian, S.D. Amours, J. Frayret,
“Integrated methodological frameworks for modeling agent- based

advanced supply chain planning systems: A systematic literature

review”, In J. Ind. Eng. &Management (JIEM). 4 (2011) 624–668.
[38] J. Holmgren, P. Davidsson, J. a. Persson, L. Ramstedt, “TAPAS: A

multi-agent-based model for simulation of transport chains”,

Simulation Modelling Practice and Theory. 23 (2012) 1–18.
[39] Y. Yu, A. El Kamel, G. Gong, F. Li, “Multi-agent based modeling

and simulation of microscopic traffic in virtual reality system”,

Simulation Modelling Practice and Theory. 45 (2014) 62–79.
[40] M. Armendáriz, C. Juan, A. Peleteiro, C.R.P.H. Tudor, A.J.F.

Kennedy, “Carpooling: A multiagent simulation in Netlogo”, in:
25th European Conf. on Modelling and Simulation (ECMS), 2011.

[41] I.F. Chaile and Ll. Ribas-Xirgo, "Agent simulator-based control

architecture for rapid development of multi-robot systems," in
International Conference on Systems, Control, Signal Processing

and Informatics (SCSI 2015), INASE Joint Conferences

Barcelona, Spain, April 7-9, 2015.
[42] Ll. Ribas-Xirgo, Ismael F. Chaile, “Multi-Agent-based Controller

Architecture for AGV Systems”, IEEE 18th Conference on

Emerging Technologies & Factory Automation (ETFA), 2013
[43] A. Fernández-Caballero and J.M. Gascueña, “Developing Multi-

Agent Systems through Integrating Prometheus, INGENIAS and

ICARO-T”. In Proceedings of International Conference on Agents

and Artificial Intelligence (ICAART), 2009.

[44] B. Shirazi, I. Mahdavi, N. Mahdavi-amiri, “Simulation Modelling

Practice and Theory iCoSim-FMS: An intelligent co-simulator for
the adaptive control of complex flexible manufacturing systems”,

Simulation Modelling Practice and Theory. 19 (2011) 1668–1688.

[45] J.J. Gómez-Sanz, C.R. Fernández, J. Arroyo, “Model driven
development and simulations with the INGENIAS agent

framework”, Simulation Modelling Practice and Theory. 18 (2010)

1468–1482.
[46] Ll. Ribas-Xirgo, I. F. Chaile, “An Agent-based Model of

Autonomous Automated-Guided Vehicles for Internal

Transportation in Automated Laboratories”. In International
Conference on Agents and Artificial Intelligence (ICAART), 2013

[47] Ll. Ribas-Xirgo, A. Miró-Vicente, I. F. Chaile, and A. Josep

Velasco-González, “Multi-Agent Model of a Sample Transport
System for Modular In-Vitro Diagnostics Laboratories”, IEEE 17th

Conference on Emerging Technologies & Factory Automation

(ETFA), 2012
[48] T. De Wolf, T. Holvoet, “Towards Autonomic Computing: Agent-

Based Modelling, Dynamical Systems Analysis, and Decentralized

Control”, in: First Int’l. Workshop on Autonomic Computing
Principles and Architectures, 2003: pp. 470–479.

[49] Hospital Reina Sofía de Córdoba, “Reina Sofía Análisis Clínicos,”

https://youtu.be/_u64EUrFF4I, 2009, last access 12 Dec 2014.
[50] Ll. Ribas-Xirgo, J. M. Moreno-Villafranca, I. F. Chaile. “On using

automated guided vehicles instead of conveyors”. IEEE 18th

Conference on Emerging Technologies & Factory Automation
(ETFA), 2013 (pp. 1–4).

[51] J. Himoff, G. Rzevski, M. Hinton, P. Skobelev, “MAGENTA

Technology: Multi-Agent Logistics i-Scheduler for Road
Transportation”, in: Proc. of AAMAS, 2006.

[52] Roche Cobas 8000 analyzer, https://youtu.be/lJaTt_S7zW8, last

access 22 Dec 2014.

[53] I. F. Chaile-Alfaro and Ll. Ribas-Xirgo, “MASYM, a Framework to

Deploy Synchronized Industrial Systems Based on Any ABM

Simulator,” Lat. Am. Trans. IEEE, v. 13, n. 10, 3244–3252, 2015.
[54] T. Standley, R. Korf, “Complete Algorithms for Cooperative

Pathfinding Problems”, in: 22nd International Joint Conference on
Artificial Intelligence, 2011: pp. 668–673.

[55] J. Yu, S.M. Lavalle, “Planning Optimal Paths for Multiple Robots

on Graphs”, in: International Conference on Robotics and
Automation (ICRA), 2013: pp. 3612–3617.

[56] Foundation for Intelligent Physical Agents (FIPA),

http://www.fipa.org/repository/aclspecs.html, last access
21/10/2014.

[57] Roche Cobas 8000 modular analyzer series brochure,

http://www.cobas.com/content/dam/cobas_com/pdf/product/cobas-
8000/cobas 8000 brochure.pdf, last access 22 Dec 2014

[58] Ll. Ribas-Xirgo, I.F. Chaile, “Agent-based Automatic Guided

Vehicle (AGV) System Development Framework”,
https://youtu.be/pJmNw24aBdQ, last access 12 Dec 2014.

[59] I.F. Chaile, L. Ribas-Xirgo, “Controlling multiple AGVs with

agent-based-modelling”,
https://www.youtube.com/watch?v=2LdK5AhJhuQ, last access 12

Dec 2014.

[60] I.F. Chaile, L. Ribas-Xirgo, “Synchronizing automated guided
vehicles (AGV) with agent-based model (ABM) for control”,

https://youtu.be/A4tk7kRtjiA, last access 12 Dec 2014.
[61] P. Mathieu, Y. Secq, “Environment updating and agent scheduling

policies in agent-based simulators”, in: Int’l. Conf. on Agents and

Artificial Intelligence (ICAART), 2012: pp. 170–175.

I. F. Chaile-Alfaro received the Ph.D. in

Microelectronics and Electronic Systems, the
M. Sc. degree in Micro and Nanoelectronics

both from Universitat Autònoma de Barcelona

(UAB), the master’s degree in General
Direction and Strategic Planning from ESERP

Business School and the Electronic

Engineering degree from Universidad Nacional

de Tucumán, in 2016, 2010, 2010 and 2005,

respectively. He worked in several companies

in Argentina until 2008. In 2009 he moved to Spain and started to work
as teacher assistant in C programming, Embedded systems and Physical

Multi-agent systems at UAB; after that he worked as Linux Programmer

and Embedded Software Engineer. He has authored or co-authored 9
papers published in journals and conference proceedings. His research

interests include multi-robot and multi-agent systems, emergent

distributed technologies, autonomous robots, real-time embedded
systems, mixed reality, simulations and industrial SCADA.

Ll. Ribas-Xirgo received the M.Sc. and Ph.D.

degrees in Computer Science from the
Universitat Autònoma de Barcelona (UAB),

Bellaterra, Spain, in 1992 and 1996,

respectively. He is currently an Associate

Professor with the Department of

Microelectronics and Electronic Systems, UAB,

where he is head of the research group on
Software/Hardware Agent-based Distributed

Electronic Systems. He has authored or co-

authored more than 75 papers published in journals, books, and
conference proceedings. His research areas include physical agent

systems, embedded systems and robotics, with emphasis on design and

verification methodologies and tools. He is also very active in learning
technologies and applications.

http://www.fipa.org/repository/aclspecs.html
http://www.cobas.com/content/dam/cobas_com/pdf/product/cobas-8000/cobas%208000%20brochure.pdf
http://www.cobas.com/content/dam/cobas_com/pdf/product/cobas-8000/cobas%208000%20brochure.pdf
https://www.youtube.com/watch?v=2LdK5AhJhuQ

	Texto1: “This is an Accepted Manuscript of an article published by Taylor & Francis in AUTOMATIKA on January 2017, available online: http://www.tandfonline.com/10.7305/automatika.2016.10.1243”

