
1 INTRODUCTION 

Factories, warehouses, ports, and many other industrial 

facilities automate their control and management systems 

(e.g. production planning, logistics, etc.) to become more 

efficient [1]. Robots play a key role in these large systems 

automation. Particularly, they move material, objects, and 

people, too, within facilities. Nevertheless, this massive 

use of robots poses several challenges to management 

and control systems ([2] – [7]).  

Internal transportation [8] is one of the critical aspects 

demanding specialized applications for control and 

supervision. Complexity of these tasks can be high, 

particularly when facilities are required to be adaptable 

and flexible (to produce or handle a range of similar 

products with different characteristics), evolvable (to 

update their machinery) and robust, understood as fault 

tolerance (to provide easy replacing/taking out of 

components from the plant when some of them fail). It is 

no surprise, thus, that those applications use agents and 

agent technology [9] to benefit from scalability, 

evolvability and robustness emerging from them. For 

example, some proposals and actual systems use agents to 

manage traffic in urban areas ([9] – [13]), in warehouses 

([1], [14], [15]), and to control automated-guided vehicle 

(AGV) systems ([16] – [20]). 

The development processes of agent-based controllers 

for transportation systems begin by system specification, 

i.e. by creating multi-agent system (MAS) models. In this 

paper, we shall refer to these models as agent-based 

models (ABMs), not to be confused with the acronym for 

agent-based modeling, used to study the collective 

behavior of a set of agents [21] – [23].   

Like in many design processes ([24] – [26]), initial 

ABM instances can be verified by simulation, among 

other alternatives. In fact, simulation software is used to 

model systems and validate test scenarios ([27] – [29]). 

 Early system specifications are gradually refined 

down to a degree of detail enough to be executed by the 

platforms that would run it (computers and robots). 

There is a bunch of available multi-robot system 

(MRS) simulators [30 – 34] that can be used to both 

model a system and then, verify it. Also, all of them 

enable designers to seamlessly control real robots from 

the simulations. However, they are more focused on the 

individuals than on the system. 

Using an ABM simulator makes it easy for designers 

to check system behavior but transition to actual robots is 

harder. In fact, ABM simulation is mainly used to support 

decision taking [35], [36] or help to manage elements 

represented by agents in supply chains [37], [38], in 

traffic [39] or in carpooling applications [40]. 

Our proposal is to keep as much of the ABM as 

possible in its original form, in order to lighten the whole 

development process [41] while enabling a full top-down 

approach from system level. This approach requires 

including synchronization between the model simulation 

and the reality, with some overhead in time and modeling 
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constraints. However, the advantages may overcome 

these limitations: development time is shortened, as well 

as further system deployment and maintenance. 

The model of computation and architecture must be 

defined before designing an internal transportation 

system controller. In our case, we propose an ABM 

organization (Section 2) that separates agents into two 

main classes, the one to control individual mobile robots 

and the one to account for other elements in the system, 

including a supplier of transportation orders. 

The model of computation assumes that every 

automated-guided vehicle (AGV) in the system has a 

representative which is in charge of its commanding and 

of communicating with other agents. 

The general idea is a traffic system that can be self-

regulated from individual choices, requiring a minimum 

level of assistance from agents at a higher level of 

hierarchy. In other words, the transport orders from 

applications are handled by transportation agents in an 

autonomous manner, with minimal information from 

other agents, including those who may act as planners 

and routers. Partly, this can be achieved by enforcing 

transportation agents to obey some traffic rules (e.g. 

setting priorities at crossings) and by appropriately 

designing the layout of the traffic network (e.g. by 

minimizing conflicts using traffic circles). 

Following the conventional design process, ABM 

instances are verified and, when functionally correct, 

built through progressive transformations of original 

specification into implementable descriptions. Typically, 

architectures do include as many resources as agents so to 

make the binding easy or, in other word as close as 

possible to one-to-one correspondence, and a set of 

communication resources. In our case, though, the 

architecture (Section 3) contains a computing resource to 

run the entire system simulation, including the ABM and 

resources to communicate it with the AGVs, which 

correspond to parts of the ABM [42]. This fact enables to 

reduce the size of the system specification that has to go 

through the implementation process but requires an extra 

type of resources: the synchronizers. 

Therefore, the whole framework that we propose 

resembles those of [43] or [44] and [45] (simulation only) 

on development environments for agent-based systems 

and uses an ABM of the transport system that accepts 

inputs from the rest of the system and outputs control 

data for the physical transportation units as well as other 

data to the system. However, our framework significantly 

differs from them for the use of an ABM simulator with 

built-in synchronizers to simplify the development 

process (Section 4) and to minimize development costs. 

The main contribution of this paper is to provide 

complete experimental evidence for the validity of the 

approach through complete deployment of a realistic 

prototype of an automated laboratory. The example has 

been chosen as we already had experience with modeling 

these cases [46], [47] and because this type of plants are 

relatively small, can be operated with AGVs that would 

be very similar to inexpensive, tiny hobby robots, with 

simple traffic networks, allowing to focus our efforts on 

synchronized simulation with reality. 

2 AGENT-BASED MODEL OF TRANSPORTATION SYSTEM 

CONTROLLER 

Transportation systems are composed of carriers or 

AGVs and their application part, which tell the former 

ones what to do but not how it has be done, just as in 

agent systems. Therefore, agent-based controllers for 

transportation systems like the ones used in 

manufacturing plants and warehouses take orders from 

application-specific components (e.g. production planners 

and management systems) and transform them into 

requests for vehicles in accordance system states, 

including individual vehicle information. (Note that 

transport order tasks are allocated in a distributed fashion 

[9].) 

The proposed ABM follows the previous organization 

(Fig. 1) by classifying agents into application-specific 

and transportation. Agents use a common agent 

communication language (ACL) so that they can 

interoperate and that addition and removal of components 

does not affect the system functionality. 

Application-specific agents ({Ai}) link the 

transportation agents ({Bi}) with the rest of the elements 

in the application. From the transportation viewpoint, the 

role of {Ai} is to facilitate the operation of {Bi} by 

providing them with information other than the one they 

can gather individually and to communicate their state to 

other system components. To name a few, {Ai} include 

the human-machine interface (HMI) and interfaces with 

remote terminal units (RTUs) in manufacturing plants 

and with the enterprise resource planner (ERP). 

Transportation agents {Bi} correspond to AGVs and, in 

fact, are their controllers. They communicate to each 

other to solve traffic conflicts (i.e. avoiding collisions in 

e.g. junctions) up to a certain degree. For instance, only 

the highest priority Bi (priority is defined when Bi 

receives the transportation order) can enter a junction 

spot while the rest must wait. (In case of a draw, the Bi 

with the highest ID gets the clearance.) 

When those conflicts cannot be locally solved, they 

raise the issue to a traffic coordination agent. 

Thus, designers should be aware of which traffic 

situations can occur and whether they can be solved 

locally or with the participation of other agents. 



 

Figure 1. Multi-agent model of a controller for 

transportation systems 

Provided that ABMs can be simulated and that these 

simulations can be run concurrently with physical agents, 

the difference between expected and sensed behaviors 

can be minimized via additional controlling levels [48] or 

locally within each agent.  

However, the main problem of using ABM simulators 

as controllers is that ABMs must run in real time with the 

physical requirements of systems and their applications.  

2.1 ABM application to automated laboratories 

Laboratories of clinical analyses have progressively 

been transformed into a kind of complex manufacturing 

facilities, able to produce thousands of analyses per hour 

from blood and other biological samples. In these 

facilities, samples are dropped into tubes that are placed 

in racks which are delivered to different analyzing 

machines by using a conveyor system [49]. 

Unfortunately, further variability is added because 

some tests must be repeated, not all racks stop at the same 

analyzers and several analyzers can provide the same 

information, though with different workload capacities. 

As a result, the complexity of managing this kind of 

laboratories is quite high, even though they use relatively 

simple transport infrastructures. In these systems, small 

AGVs can successfully replace conveyors [46], [50] 

adding more degrees of freedom to the system and 

relieving plant managers from operating with lots of data 

to gain flexibility and robustness [51]. 

To include most of the characteristics of actual plants 

of automated laboratories, our study case includes four 

different analyzers: one ion-counting unit, one for 

coagulometry and two biochemical units, as most of the 

samples require evaluation of biochemical parameters. 

The plant layout is based on the one of the conveyor-

belt system in [52] (Fig. 2) with conveyors replaced by 

autonomous AGVs (Fig. 8), thus not requiring much 

infrastructure. In this case, to simplify vehicle operations, 

robots move around following a line with marks, which 

are used by AGVs to self-locate within map. In details, 

marks are used to indicate specific decisions points like 

ports or stop points before accessing to junctions (cross 

points like 3 in Fig. 8). Mark types are determined by 

AGVs in accordance with their location in the plant. 

 

 

Figure 2. Automated laboratory [52] with internal 

transportation system based on conveyor belts 

2.1.1 Transportation agents (Bi) 

Each AGV is aware of its own position and able to 

recognize the environment and to communicate with 

other agents to coordinate movements. AGVs use 

information about the plant to determine to which 

analyzer they should go, to satisfy their loads 

requirements as fast as possible. Currently, in our model, 

AGVs randomly choose among compatible goals (i.e. 

they can go to one or the other of the biochemical 

analyzers on a random basis), as the focus of this work is 

to validate the proposed ABM-based controller. 

When an AGV arrives at its destination, it docks at the 

port of the corresponding analyzer so to begin with its 

work. In case it is busy, AGV puts itself on hold in a 

parking area (short wait) or goes on to a compatible 

destination or to the re-circulation lane (long wait). 

2.1.2 Application-specific agents (Ak) 

{Ak} are used like interface agents between Bi and 

whatever element in the real plant or its model. Their 

main task is to help with specific issues of transportation.  

As for example, A1 could be the agent representation of 

the Laboratory Information Management System (LIMS) 

in charge of the overall planning of transportation orders, 

as well agents A2 to A5 represent the interface with real 

analyzers in the laboratory.  

As Ak are application-specific, they change according 

to the application and what it is represented. 

For the case study experiments, the LIMS agent 

randomly generates work orders and representatives of 

the analyzers randomly decide whether sample tests are 

successful or not, i.e. must be repeated. 



3 TRANSPORTATION SYSTEM CONTROLLER’S 

ARCHITECTURE 

Components to build such type of controllers are 

mobile robots and computing resources, either embedded 

or not, and a communications network. Mobile robots are 

AGVs with some on-board computer that runs an 

embedded controller, and the other computing resources 

include, at least, a computer running the multi-agent 

based model simulation of the system. 

3.1 Transport agent architecture 

Transportation system controller is organized as a set 

of Bi agent controllers, which control vehicle sensors and 

actuators. Each Bi controller is divided into several 

layers: the lowest one is in charge of controlling the 

vehicle in accordance with the requests from the topmost 

one. The top layer is the one capable of communicating 

with other agents and, therefore, of considering system 

state when taking decisions on accepting and completing 

transport orders. 

Resulting architecture for a Bi (Fig. 3) includes an 

intermediate, interface layer, which offers all services to 

communicate the top layer with the bottom one in a safe 

and secure way. Basically, services enable the high level 

layer (Ti) sending requests to the low level layer and to 

get answers from it. 

With this organization, {Ti} are detached from the 

corresponding low level layers (Vi and Ri). Consequently, 

implementation of both levels are independent if they 

share the communication language. Note that, even 

though both levels can use the same language and 

services as if they were different agents, they are not. 

In short, any transport agent Bi is divided into two 

levels, the highest one Ti, and the lowest one, which is 

either virtual (Vi) and/or real (Ri). In our approach, 

though, both Vi and Ri can co-exist because of the 

interface layer synchronizing Ti with the lower level (Vi 

and Ri). 

As mentioned previously, the main advantage of this 

approach is that simulation and control can run 

concurrently, with simulation helping to maintain a 

symbolic view of the system for all agents and to foresee 

results of individual choices. 

The virtual system’s representation includes the state 

of the plant as well as the state of the lower level of Bi. In 

fact, all {Vi} interact with a plant environment simulator 

E and, as a result, all {Ti} have access to system-wide 

information without communicating with other agents. 

For instance, they know the symbolic position of any 

other AGV to determine collision-free routes or to solve 

conflicts at crossings. The symbolic position is the 

position in the traffic network as represented in the 

simulated plant environment, which has to be accurate 

enough for the application, even though it does not 

correspond to a realistic representation on a screen. 

Each Ri interact with elements at the plant (P) and is 

“controlled” by commands from Ti, which stands for the 

topmost controller level of Bi. Commands depend on 

replies from Ri, but also on differences between Vi and Ri 

replies, which are monitored and controlled by the 

synchronizing interface, on messages from other Tj≠i and 

Ak, and on global information stored in E. 

 

 

Figure 3. Architecture of transportation agents 

3.2 System architecture of transportation 

controller 

Our approach [53] controls transport systems by model 

simulation. To that end, the proposed ABM’s architecture 

organizes agents into two classes. One for the external 

elements ({Ak}) and another for the transportation agents 

{Bi}. In Fig. 4, besides {Ak} and {Bi} components {(T, V, 

R)i}, ABM relies on other architectural platform 

resources to be run, namely agent communication 

language (ACL) services, intra-agent communication 

services, and symbolic environment simulator (E).  

In cases where decisions taken individually, in a 

distributed fashion, might be inefficient, there can be an 

agent helping to control the traffic. Note that, most of the 

time, {Bi} can move around with only local information 

and, eventually, they have to solve conflicts with others, 

thus creating temporary hierarchies among them. In some 

scenarios, particularly in high-density traffic networks, 

traffic coordinator agents would minimize inter-agent 

communication to solve conflicts and the number of 

conflicts (see [54] and [55] for recent examples on 

algorithms these agents should include). 

Figure 4 illustrates resulting control loop with this 

ABM. Topology of the plant and number of AGVs are 

among the variables that configure the model that is used 

for controlling the real plant. 

The model is run under inputs that come from external 

agents and physical elements and generates outputs for 



the latter ones. This control loop might be too slow for 

many applications unless physical elements have 

embedded some controllers and relation with the ABM is 

done at a higher level of abstraction. However, even with 

this solution, ABM simulation has to execute fast enough 

to interact at real time with physical elements. This 

requires agents to have simple communication protocols 

that enable negotiations to occur within a few messages 

and to be efficient in taking decisions, which usually goes 

against reflexive, elaborated behaviors. 

The higher level modules of transportation agents, 

{Ti}, get orders from agents representing other modules 

of the application ({Ak}) and try to fulfill them. To do so, 

Ti of each Bi must negotiate with application agents {Ak} 

and other workmates which jobs they take and, when in 

transit, how they can be completed efficiently. 

In taking decisions, {Bi} have knowledge of their own 

state and the state of their lower-level counterparts ({Vi}). 

Results of deliberations are transformed into requests 

to the {Vi} and also to the real robots {Ri}. The last set of 

requests is, in fact, the output of the ABM controller. The 

inputs include the replies to the before mentioned 
requests from robots, hence closing the loop between 

controller and controlled system. 

Apart from controlling AGV operations, ABMs can be 

used for functional validation and for plant 

characterization, which includes AGV characterization. 

Functional validation refers to use the ABM without real 

counterparts of agents and, particularly, without {Ri}. On 

the other hand, characterization refers to the process of 

measuring actual parameters from the reality, including 

travelling times and energy consumption at each segment 

and node of the traffic network. 

The framework also includes mechanisms to measure 

worst-case execution times (WCETs) of models, and to 

monitor whether the control loop is closed fast enough 

when compared with events coming from reality. 

 

 

Figure 4. ABM control loop for multi-AGV transport 

systems 

A typical partition of the system would bind all agents 

into a central computer (e.g. SIM/PC on Fig. 4) and {Ri} 

into real AGVs. Complementary resources to implement 

the system are the ones to support {Ti} and {Ri} 

communication, as well as the ABM simulation with the 

rest of the application, i.e. with the part extraneous to 

transportation. Finally, there are the synchronizers, which 

will be described next. 

3.3 Synchronizing simulation and reality 

The synchronizer is the key resource of our 

architecture because it is in charge of providing the basic 

means to have a concurrent and online simulation and 

representation of reality. 

The synchronizer is an interface module within each 

agent. It works like a middleware between the high-level 

Ti and low-level (V, R)i of each agent to synchronize 

incoming messages from lower levels to outgoing 

channel to the higher level. As synchronization deals with 

time-tagged messages, we shall refer to them as events. 

There are two classes of events: the ones caused by 

requests from Ti and the ones that are not. The former has 

to be synchronized as hard-real time events while the 

latter allow some mismatch between reality and 

simulation thus requiring a soft real-time synchronization 

of its events. 

Hard real-time synchronization events (HSEs) include 

requests emitted by {Ti} and the corresponding replies 

from {(V, R)i}, that are expected to occur simultaneously. 

Soft real-time synchronization events (SSEs) include 

informative messages from {(V, R)i}, which refer to the 

occurrence of conditions that are autonomously managed 

by the low-level. For instance, detecting an obstacle or 

running low in battery are situations that each component 

of low-level ((V, R)i) handle locally without requiring 

immediate attention by corresponding high-level. 

However, it is important that Vi and Ri run synchronized 

to keep virtual representation more accurate to reality 

and, in case of mixed-reality operation, to have reality 

(Ri) working together with simulated-only (Vi), which 

means that they have not a real counterpart. 

3.3.1 Synchronization mechanism example 

Synchronizing simulation with reality for the i-th 

transportation agent (Bi) means, on one side, keeping 

simulation messages waiting for their message 

counterparts from reality and, on the other, advancing 

simulation to trigger events which have occurred in 

reality but not yet in simulation. 

Synchronizer modules deal with the former cases as 

well as with event mismatching errors, i.e. with cases 

where events cannot find their counterpart in pre-defined 

time gaps. 



Events are denoted h or s, depending on them being 

HSE or SSE. We shall use subscripts to indicate the 

source and a star in superscript when they correspond to 

synchronizing error events. Subscripts can be T, S, R or V 

depending on events coming from high-level, 

synchronizer, real AGV or simulated (virtual) AGVs, 

respectively. For example, hT corresponds to a HSE from 

Ti, hS
*, to a HSE from the synchronizer reporting some 

error, and sR and sV, to SSE from real and simulated 

AGVs, respectively. (Fig. 5 shows all possible event 

types in a block diagram of the synchronizer.) 

Furthermore, for every pair of events from low-level 

synchronizer must produce an equivalent, outgoing event, 

i.e. for any pair of hV and hR in response to an hS caused 

by some hT, there should be an hS to high-level. If 

something fails, then appropriate sync. error events, hS
*, 

are sent to high-level and, eventually, to low-level. 

A typical, error-free communication protocol (Fig. 5, 

top left) starts by an hT request, which is sent to 

synchronizer, which, at its turn, sends the request (hS) to 

low-level. After each hT, synchronizer waits for 

corresponding hV and hR. If both occur at the same control 

cycle and corresponding messages are equal, sync sends 

the acknowledgement (hS) to high-level, with message 

contents from low-level. If messages are not the same, 

synchronizer emits an hS* error event to both levels. If 

events from simulation (Vi) and reality (Ri) do not occur 

simultaneously (i.e. at the same instant), synchronizer 

either waits for hR or causes the simulation to catch up to 

reality, i.e. causes to hV happen. 

 

 

Figure 5. Synchronizer’s (Si) event interface protocol 

for hard (left) and soft (right) real time events 

Obstacle detections and other SSEs happen at low-

level and help synchronizing virtual representation and 

reality, though they admit some mismatch. In this case, 

synchronizer tries to pair each sR with corresponding sV 

using a similar strategy than with hV and hR, however, it 

allows a tolerance in the time sR and sV occur. Again, 

when messages are equal sS is sent to high-level and in 

error case, sS* is sent to both levels. The sending of sS* to 

Vi if no sV has occurred allows Vi to perceive unexpected 

reality events and the other way round, i.e. sending sS* to 

Ri if no sR has occurred enables Ri perceiving simulation-

only stimuli. 

Each synchronizer uses three different states to classify 

incoming events, whether they are HSEs or SSEs: 

 In-time when events from reality and simulation arrive 

at the same time or within a tolerance margin. 

 Ahead when events from reality arrive first than from 

simulation. This is the worst case in terms of 

synchronization and should be avoided as much as 

possible, because reality cannot wait simulation. 

 Behind when events from simulation arrive first than 

from reality and simulation has to wait reality and update 

its parameters to the new behavior of reality. 

Synchronizers are built upon two parallel finite state 

machines (FSM), namely one to deal with HSEs and 

another for SSEs. There is an extra state, so called wait, 

in the HSE FSM to act as the entry point for hT to start 

hard real-time synchronization. To start a SSE, there is no 

need of any hT, it just starts when receives a sR and or sV.  

As synchronizer is independent from the application, 

we need to include in the events’ data frames (Fig. 6) 

some parameters to help solving problems caused by 

mismatch of events in terms of time or message contents. 

Tout is a timeout for hR with respect to an hS caused by 

hT. If hR does not occur within this period of time, an error 

event hS* is sent to both levels. In this case, hS* has a 

message that contains the timeout message from the 

initial hT. Previous mechanism outlines the behavior of 

the event discovery method (EDM) of the synchronizer. 

Imax is the maximum number of allowed ABM runs to 

cause the simulation to fire a hV corresponding to a 

previous hR. In case this immediate synchronization 

method (ISM) fails (i.e. the synchronizer does not receive 

the hV before Imax), a hS* with a predefined message is 

sent to both levels. 

SSEs are allowed to occur at different time points 

within a period shorter than Ttol, thus Ttol is a tolerance 

time threshold before starting an EDM for sR. 

Touts is a timeout for SSEs from reality, just as Tout for 

hR. In a similar way than with HSEs, synchronizer starts 

an ISM to generate a sV for any unmatched sR, and that 

these mismatches cause sS* that can be used to 

appropriately update the virtual representation of the 

system. 

 

 

Figure 6. High-level events’ frame format 

Note that, while inter-agent communications happen 

inside simulation by using a FIPA compliant ACL, intra-

agent communications between layers are managed by 
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synchronizers, which include functions to send and 

receive messages within the simulation and to/from 

outside. In our study case, intra-agent communications 

between simulated and real parts are, obviously, wireless, 

by Bluetooth technology with 8N1 format at 38400 bps. 

4 DEVELOPMENT METHODOLOGY AND PLATFORM 

The proposed development methodology assumes that 

the system’s specification follows the given 

computational model and that its implementation is done 

following the proposed architecture. As illustrated on Fig. 

7, process begins with specifying the agents of the system 

and, once validated (possibly with estimated data about 

the application), proceeds with the refinement and 

synthesis stages. Depending on whether the synchronizers 

are used or not, these processes should be applied to the 

whole controller description or only to the low-level 

parts. Next subsections will detail each stage. 

 

 

Figure 7. Transportation system controllers’ 

development methodology with and without 

synchronizers 

 

4.1 ABM description 

Instances of systems’ ABMs are built by describing the 

functionality of each agent. In order to simulate resulting 

ABM-based controllers, designers have to: 

(1) Develop an environment module E which will be in 

charge of updating the symbolic representation of 

the system in accordance to agent actuators and 

provide information of the system state through 

agent sensors. Note that data from E can be used by 

an agent to create a HMI of the system and seen by 

other agents as a kind of blackboard. 

(2) Create the application-specific agents. Initially they 

can be stubs to provide/collect data to/from the rest 

of the system, but they will have to interface will 

true application components at the end. 

(3) Configure and adapt AGVs, particularly, their low-

level. For that, they can use previous examples as a 

reference and perform a customization of the code. 

These customizations imply a rough estimation of 

AGVs’ parameters with respect to the plant (delays, 

energy consumption, battery charging/discharging 

profiles, et cetera), at least from nominal data. Note 

that each Bi is composed of Ti and Vi at simulation 

level and that Vi interacts both with Ti and E while 

Ti interacts with other agents (Bj≠i and Ak). 

(4) Deploy final system. 

Take into account that, even though agents 

communicate within a single model, they should use an 

ACL compliant with the FIPA-ACL specification [56] to 

make it possible to distribute the ABM model execution. 

4.2 Functional validation 

It consists of checking whether the system works 

properly and of foreseeing the characteristics of the 

transportation system (e.g. number of AGVs and average 

speed) according to the application requirements. 

4.2.1 Requirements analysis 

Application requirements’ analysis must be performed 

to determine the characteristics of the ABM. For clinical 

analysis laboratories, the workload is in the range of 

4,000 to 12,000 samples/day. The lowest value is drawn 

from the fact that a typical workload for an automated 

laboratory at a hospital is 1 million samples/10 millions 

of tests/determinations per year [49], which gives a 

throughput of 4167 samples/day if we consider working 

days only. Maximum value is taken from one of the 

leading-edge automated laboratories, the Cobas 8000 

[57], which can reach an order processing time of as little 

as 36 s (by using 5-sample racks on conveyors). 

The time to fulfill an order depends on the vehicle 

characteristics (velocity, number of tubes it carries, et 

cetera), the analyzers’ throughputs, the plant layout and 

the route they follow (e.g. analyzers they go to, or need to 

use the re-circulation lane).  



Realistic computation of the values for the 

characteristics parameters must take into account 

differences between prototype and final plants. 

Our experimentation plant (Fig. 8) is twice smaller 

than the real one, and average response time of an order 

is 236.3 s, approximately. 

Worst cases require each AGV travelling a distance of 

22 (11x2) m (i.e. visiting each different analyzer and the 

re-circulation lane to repeat some test), consuming an 

average time of 240.8 (120.4x2) s, plus 36 s taken by the 

analyzers. Therefore, each AGV takes 276.8 s to 

complete an order.  

The best case occurs when each AGV travels a 

distance of 14.6 (7.3x2) m long (it goes just to one 

analyzer and does not use the re-circulation lane), so the 

total time (AGV travel + analyzer time) is around 195.8 s.  

System throughput not only depends on the time to 

complete an order but also on the number of analyzers, on 

the analyzers’ characteristics (particularly, their 

throughput and quality of tests), on the number of 

transportation agents, on their coordination efficiency, 

and, last but not least, on the LIMS’s ability to pass work 

orders to AGVs in an effective sequence.  

Estimation of throughput uses simple scenarios 

because of the high complexity of its computation for real 

cases. For instance, we have used two scenarios to 

determine whether the proposed plant can manage typical 

automated laboratory workloads and how has to be 

configured, i.e. its ABM characteristics. 

The first scenario is made of an AGV carrying orders 

constantly during 24 hours/day. It is assumed that AGVs 

have battery autonomies of 8 hours and the same re-

charging time, thus, at least two AGVs, one moving 

through the plant and the other re-charging are required to 

cover a full working day. Under this scenario, the lowest 

system throughput is about 1560 samples/day (worst case 

response time of an order), which covers around 37.4% of 

the minimum daily workload (4167 samples/day). 

The second scenario is an extension of the first one to 

three AGVs that transport orders 24 hours/day at the 

same time, where separation between each other is at 

least of 4 meters (to avoid possible delays related to 

coordination between transportations agents and 

analyzers). At any time, there are other three robots re-

charging batteries. The system throughput for this case is 

around 4680 samples/day, which exceeds the minimum 

workload in 12.3%.  

We shall see later, in Section 4.2.3, that the proposed 

controller is able to control up to 20 AGVs in real time, 

so it can also handle this scenario, with only 6 robots. 

Consequently, the proposed system can manage the 

minimum workload for an automated laboratory of a 

hospital. 

The fact that AGVs move by following lines can create 

traffic bottlenecks when the number of AGVs grows. 

To study if some bottlenecks emerge, some simulations 

have been done in two different scenarios with 20 AGVs 

each one, as this is the limit of the experimental plant. 

Initial positions in the plant have been on the topmost 

lane (15 idle AGVs) and on the leftmost lane (5 AGVs 

ready and waiting for transportation orders) of the layout. 

In the first scenario, every AGV received random 

orders to fulfill and, in the second one, each AGV 

accepted orders that forces to go to each analyzer. From 

the simulation of these scenarios, a main bottleneck 

emerges at junction 3 (bottom left part of Fig. 8) and 

sometimes there were minor bottlenecks in crossings 

to/from analyzers. Therefore, after three non real-time 

simulations for each scenario during 9050 ticks each one, 

results show that concentration of AGVs on the spot 

around junction 3 is 15% higher for the scenario with 

random orders than scenario with constant ones.  

Although other results can be found for different 

simulation times, initial position of AGVs, et cetera, 

those concentration points have to be treated to avoid 

degrading overall throughput. Possible solutions include 

modifying the plant layout by creating e.g. roundabouts 

or by extending the one-dimensional layout to 2D in 

those areas, and improving work order assignment and 

sequencing. 

4.2.2 Characterization of transportation agents {Bi} 

Model accuracy depends on how good is the 

characterization of the actual plant. Fortunately, 

synchronizers allow model simulations to run 

concurrently with real plants even if inaccurately 

characterized. However, accurate characterization of 

models improve synchronization quality, which can be 

defined in terms of the quantity of unnecessary delays in 

the simulation execution and the number of extra 

iterations in the simulation loop to keep up with events 

from reality. 

Static data such as traffic network and nominal 

characteristics of vehicles such as average speed and 

energy consumption can be used for system validation 

and as a set of initial values for the model. However, in 

order to control a real plant, parameters should be as 

accurate as possible and, for this reason they have to be 

estimated from a series of test runs [58]. 

Plant characteristics are of two types: one that define 

traffic network and the other for the functional and non-

functional behavior of the Bi. We assume the traffic 

network be constant and defined by a topological graph 

known to all Bi of the system (plant layout on Fig. 8). 

In a simple version, cost data consist of the time to 

travel from a node to another and the time devoted at 

each node to decide which outgoing arc to take. 



For every order request from a Ti to a Ri, the delay time 

that takes to Ti to get a reply from Ri is recorded. This 

delay is compared to the previous one in the same node or 

arc of the map graph and updated accordingly so that 

further decisions of Ti and the reactive behavior of Vi are 

more accurate to the reality. 

4.2.3 Estimation of controller characteristics 

To test the maximum load of the system, a series of 

simulations with different quantities of robots performing 

random transport orders were done to estimate the worst-

case execution time (WCET). 

The average WCET was 16ms, and the maximum 

communication time was 20 ms, although this value 

corresponds to the case for 20 AGVs, it was extrapolated 

from real data obtained from cases with up to 4 robots. 

Consequently, the control loop takes 36 ms at worst and 

the maximum cycle frequency for the ABM controller is 

about 28 Hz. With this controller period, real time 

frequencies of events must be 14 Hz or lower. 

Taking into account the geometry of the traffic 

network of the experimental plant and the average speed 

of robots, that frequency allows the simulation 

controlling 20 real robots {Ri} in real time with a spatial 

resolution under the cm, which is acceptable for the 

previously-presented laboratory.  

After system functionality and estimates were 

validated, a prototype with three AGVs was used to 

verify the characterization, WCET control, and 

deployment stages. 

4.3 Synthesis of low-level 

In the proposed development process (Fig. 7) the only 

part of the system to be implemented is the low-level one, 

as the rest is kept as a simulation model. In the study 

case, the prototype of the automated laboratory used 

Parallax Boebots and only the Netlogo code for low-level 

(Vi) had to be ported to PBASIC for the Basic Stamp 

board that controls the robots. 

4.4 System prototyping 

Within the proposed methodology, system prototypes 

are ready as soon as {Bi} have their {Vi} embedded into 

physical counterparts (AGVs), and some environment has 

been created for them. 

The resulting prototype for the study case ([58] – [60]) 

is shown in Fig. 8, with AGV emulators in the foreground 

and the projection of the user interface screen in the 

background. 

Robots determine its position in the plant by detecting 

marks (short crossing lines over layout guide lines). 

Marks correspond to nodes of a directed graph that tell 

robots how to manage next step according to their current 

state, including node location, and to the order currently 

in course. This mechanism lets robots know their position 

between marks but not its exact location between them. 

Fortunately, exact positioning is only required for local 

decisions. When robots move, they use sensors to follow 

the line and detect marks and other sensors for detecting 

obstacles.  

Robots wait for LIMS instructions at the end of the 

return lane. After receiving a transport order, they 

proceed to the loading dock (bottom left corner) and 

begin their journey. If nothing abnormal happens, they 

contact the LIMS just at the bifurcation between the 

return lane and the re-circulation lane (top right 

bifurcation) to decide which line to take in terms of the 

successfully done tests. The re-circulating lane (line at the 

middle)  can also be used by AGVs carrying samples that 

still wait for acknowledgement of their tests or for their 

repetition, in case of test failures. 

At the beginning of the returning lane, AGVs have 

their tube racks unloaded, and, at the waiting queue, they 

have their batteries re-charged (if needed), and follow 

their pace to the programming spot. 

 

 

Figure 8. Plant prototype (bottom) and HMI (top) 

4.5 Behavioral validation 

It requires real time monitoring and on-line 

characterization of transportation agents. 

The rest of the section is devoted to explain how are 

AGVs and controller characterized with respect to a 

given plant, the mechanism included in the platform to 

ensure that real-time control constraints are met and the 

deployment of the study case. 

4.5.1 Pre-runtime characterization of AGVs 

Off-line robot characterization is very important to 

have a good initial matching between simulation and 

reality, and to improve decisions and robot actions made 

by {Ti}. After that, continuous on-line updates of these 

data might be necessary to adapt controller to 

dynamically changing system characteristics. 

The characteristics of each robot with respect to the 



plant traffic network have been obtained by averaging the 

travel time at each segment for 30 runs. The full circuit is 

11 m long and took an average time of 112.654, 125.456 

and 123.169 s per robot to be completed. 

Besides, during pre-runtime characterization, it has 

been the first opportunity to detect noise influence from 

different sources such as wireless communications’ delay 

variability and erroneous data from sensors. In the first 

case, influence of noise that cause some failure has not 

been reported for this testbed, possibly because Bluetooth 

transceivers (at AGVs and at the computer) are closer 

enough to keep signal to noise ratio inside operational 

values that avoid failures. Also, there have not been 

detected interferences between AGVs’ transceivers and 

other electromagnetic sources. Unfortunately, line 

detection sensors were too sensitive to sun and 

fluorescent light, which caused detection errors that were 

solved by protecting them from that influence. 

4.5.2 Computation of controllers’ WCET 

With the ABM simulation running on an inexpensive 

laptop (64-bit MS Windows 7 OS on a 1.65GHz AMD E-

450 CPU, 4 GB RAM machine) that communicated with 

three robots via serial protocol over Bluetooth, the WCET 

for the controller of a 3-robot system was 431 ms 

Taking into account that robots move at speeds up to 

10 cm/s and that the closest nodes in the automated 

laboratory prototype are a bit larger than that, each Ti 

needs to handle, at least, one HSE per second. Therefore, 

the controller should be able to reply to 3 events per 

second, which is not possible with that WCET and real 

robots would had to wait when execution times are close 

to it.  

Fortunately, the average control cycle period duration 

was roughly 2 ms, and execution times over 333 ms 

account only for 0.0023% of the total, and those over 

36 ms (20 taxis) are roughly the 1.17%, as illustrated on 

Fig. 9. Note that, even in these cases, the system can 

work properly because of synchronizers, though it might 

run not as efficiently as it could. 

However, to get rid of this problem it is possible to use 

better machines with tailored OSs to improve execution 

times and avoid interferences with controller processes. 

4.5.3 Synchronization quality 

The more accurate is the characterization of the 

physical elements in a plant the better will be the control 

and, subsequently, the efficiency of the system.  

Synchronization quality is given in terms of 

percentages of synchronizers “in-time” states with respect 

to the total number of HSE states they go through. For 

instance, in pre-runtime characterization, simulation tends 

to be optimistic and goes ahead reality about 33% of the 

time, as time delays at segments are initially set to zero. 

However, most of the time (66%), simulation and reality 

go together and a mere 1% of time is used to run ISM to 

make simulation keep up with reality. 

 

 

Figure 9. Control cycle execution time logarithmic 

histogram of three robots, T1, T2 and T3 

4.5.4 Real-time monitoring 

To guarantee real-time monitoring and control, all 

delays are compared to the WCET of the main control 

loop body to be sure that no inputs from the plant will be 

lost or taken into account out of time. Therefore, the 

control loop has a cycle period compatible only with 

robots whose embedded controllers are able to understand 

quite complex instructions, with execution times larger 

than the WCET of the model. 

In case delays are closer to WCET, there are 

alternatives to preserve coherence between simulation 

and reality such as including time-stamps into the 

messages or minimizing the WCET by appropriately 

modifying the scheduling of agent execution [61]. 

5 CONCLUSIONS 

Systems that run applications on the industrial domain 

must solve the internal transportation aspect. In this 

paper, we have proposed a framework to rapidly design 

and deploy the corresponding subsystems directly from 

agent models.  

The proposed MAS architecture organizes agents into 

two classes, the application-specific ones and the 

transportation ones or taxis. The latter follow a three-tier 

architecture, that includes an intermediate layer to 

synchronize the lower level parts, which can also be run 

on the actual robots. 

Simulators of ABMs with such an architecture can be 

used: 1) for functional validation; 2) for plant 

characterization, which includes testing whether real time 

requirements are met, parameter identification, and 

controller setup, and 3) as a model for the controller of 

the transportation system, including a mixed-reality 



environment for monitoring and supervising in human-

assisted operation. 

We have shown how synchronizer maintains coherence 

between symbolic system representation and reality so 

that transportations agents can take timely decisions. 

Furthermore, it replaces traditional direct monitoring so 

that system representation is the outcome of a system 

simulation that runs synchronized with reality. As a 

consequence, it is possible to make simulation-only 

elements interact with real ones. 
Experimental results show that the proposed strategy 

minimizes the time-to-prototype as well as the time-to-

market, provided that the development platform is the 

same that the deployment one. 
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