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Abstract: This paper is focused on enlarging the performance inside a portfolio 
that provides the Treynor ratio by relating portfolio weights with performance 
indicators. Intuition suggests that the higher the weight of an asset, the higher 
should be its expected performance. These weights, and the information that we 
can obtain from their analysis, are not only relevant for investors but also for cor-
porate managers. Nevertheless, the available performance indicators are not linked 
to portfolio weights. In order to fulfil this gap we answer three questions: which 
is the minimum risk premium that justifies holding an asset in long position? How 
can we analyse if the performance of an asset justifies the budget’s weight in-
vested in it? And, how can we apply ex-post optimisation to performance analysis? 
Methodologically, we centre the analysis on the definition of crossed beta and the 
net risk premium ratio that stems from it. The latter fulfils the axioms of risk/re-
ward performance measures. The three answers to the questions are related to the 
net risk premium. The analysis in developed for the Mean-Variance and Mean-Gini 
models. The empirical illustration, based on DJIA assets, that completes the paper 
shows how the analysis of portfolio weights provides relevant information about 
the performance of assets.
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1. Introduction
The aim of this paper is centred on studying the performance of an asset inside a portfolio. Among 
the classical performance measures, the Treynor ratio (Treynor, 1966) is the appropriate one to 
evaluate the return/risk relationship of an asset that is part of a portfolio (Amenc & Le Sourd, 2003, 
p. 109; Bodie, Kane, & Marcus, 2009, p. 830). In these cases, Jensen alpha (Jensen, 1969) also pro-
vides a valuable piece of information, but in order to make comparable the alphas of the assets that 
belong to a portfolio it is necessary to submit them to the beta equalising procedure depicted by 
Bodie et al. (2009, pp. 829–830). The theoretical framework of these performance measures is the 
CAPM. Although its explanatory capacity and applicability have been widely discussed in literature, 
the CAPM and their associated performance measures, continue being a useful tool for theoretical 
and practical analysis, if the analyst is aware of its limitations. For instance, Bilinski and Lyssimachou 
(2014) find that beta turns out to be a strong predictor of large positive and negative returns show-
ing that the relation between beta and returns is U-shaped instead of linear. Loviscek (2015) shows 
that Mean-Variance portfolios outperformed the market during the period 2000–2009 when the S&P 
500 rate of return became negative. Levy (2012, pp. 372–401) presents an updated analysis of the 
CAPM. The main reason why we focus our analysis on the CAPM, together with the Mean-Gini model, 
is because for our purpose of linking performance with optimal weights we need a theoretical frame-
work that includes an optimisation model. Moreover, since, for our knowledge, the relationship be-
tween weights and performance has been scarcely studied, it is essential to deal with the basic 
models to explore this topic.

Later developments in performance measurement have been centrally focused on investment 
funds and often on the incorporation of new risk measures to performance indicators. These are, 
among others, the cases of Sortino ratio (Sortino & van der Meer, 1991), Omega ratio (Shadwick & 
Keating, 2002), Rachev ratio (Stoyanov, Rachev, & Fabozzi, 2007), Farinelli and Tibiletti (2008) and 
Homm-Pigorsch ratios (Homm & Pigorsch, 2012). Farnsworth, Ferson, Jackson, and Todd (2002) and 
Gusset and Zimmermann (2014), among others, explore the properties of the Stochastic Discount 
Factor as a substitute for beta. Gomez-Bezares and Gomez-Bezares (2015) warn about the limitations 
of the use of quotients in performance measurement, especially when the risk indicator takes a very 
small value or even negative, as it can be in the case of beta. These authors propose an alternative 
measure, the penalised internal rate of return, based on linear penalisation of volatility. Bacon (2013) 
presents a detailed applicability analysis of performance measures. Ferson (2010) provides a theo-
retical panorama of the state of the art in financial performance analysis. The study of the perfor-
mance of common stocks inside a portfolio can be applied to the analysis of passive strategies when 
managers consider portfolio revision, especially when these managers, as pointed out by Sharpe 
(1991), do not replicate literarily the market index. In fact, although passive strategies are the most 
logical option in efficient markets, the composition of their market portfolios needs periodical revi-
sion to avoid over-priced securities in them, since no market is completely inefficiencies-free. Passive 
strategies have been praised by many authors (Malkiel, 2015; Sharpe, 1991); but, on the other hand, 
they have been the object of criticisms for not fulfilling the optimisation criteria (Amenc, Goltz, Lodh, 
& Martellini, 2012; Markowitz, 2005). Furthermore, the interest of analysing the performance of com-
mon stocks is not only for investors, but also for corporate managers. For a corporation, the compari-
son of the performance of its shares in the stock market with other shares of its same industry and 
the stock market as a whole constitutes a highly valuable piece of information that enlightens how 
the market judges its long run strategic decisions and its short run management.

The approach we adopt is centred on the optimal weights of the assets inside a portfolio. Intuition 
suggests that the higher the weight of an asset, the higher must be its expected performance. 
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Nevertheless, the available performance indicators are not linked to portfolio weights. This article 
aims to fulfil this gap. In order to connect optimal weights to performance analysis, especially to the 
Treynor ratio, we split beta into the parts due to the asset itself and the rest of assets in the market 
portfolio which we call, respectively, self-generating beta and crossed beta. Relying on this division, 
we obtain the net risk premium that leads to a ratio, which we call net risk premium ratio, that fulfils 
the axioms of performance measures, and enables us to answer the following questions:

Q1. Which is the minimum risk premium to be in long position?

 Q2. How can we analyse whether the performance of an asset justifies the budget’s weight in-
vested in it?

Q3. How can we apply ex-post optimisation to performance analysis?

The relevance of these questions lies in the importance of assets’ weights for corporate managers, 
portfolio managers and investors. A substantial amount of short sales positions clearly constitutes a 
motive of concern for the managers of these corporations. The knowledge of the financial causes of 
optimal portfolio weights enlightens investment decisions, and the comparison between expected 
and actual values benefits from the more detailed analysis that this approach provides. Furthermore, 
a relationship between weights and market efficiency can be considered as well. Weights can be re-
garded as a summary of expectations together with prices. To advance in the knowledge of the infor-
mation embedded in weights and on how the corresponding variables are combined may contribute 
to study market efficiency from the point of view of optimal weights, although a detailed analysis of 
this issue goes beyond the scope of this paper. In an efficient market, the price of each security equates 
its value, i.e. prices are fair. By the same token, each portfolio weight should approach the optimal one.

Methodologically we first centre on the Mean-Variance paradigm, specifically the CAPM, and next 
we extend our analysis to the Mean-Gini approach to portfolio selection. As pointed out by Yitzhaki 
(1982) and Shalit and Yitzhaki (1984, 2005, 2010), the Mean-Gini approach has the advantage, with 
respect to the Mean-Variance approach, of being compatible with the second-order conditions of 
stochastic dominance. Furthermore, the Gini approach also admits incorporating investors’ risk pref-
erences (Yitzhaki & Schechtman, 2013, pp. 99–132). Gerstenberger and Vogel (2015) show that, for 
heavy-tailed distributions, Gini’s mean-difference is more efficient than the standard deviation.

The article is organised as follows. In Section 2 we develop the concepts of crossed beta and net risk 
premium. Section 3 is centred on building up the net risk premium ratio and analysing its validity as a 
performance measure. In Section 4 we relate the net risk premium ratio to the optimal weights. Next, 
in Section 5, we deal with the connections between the Treynor ratio and the net risk premium ratio. 
Section 6 extends the previous analysis to the Mean-Gini portfolio model. Section 7 centres on the 
ex-post optimisation. In this we present an empirical illustration, and Section 8 closes the paper.

2. From crossed beta to the net risk premium
A basic concept for the analysis developed in this paper is the net risk premium. We define the net 
risk premium of an asset as the part of its total risk premium generated by the asset itself, namely, 
the one that is independent from the interaction between the asset and the rest of assets in the 
portfolio. To obtain the net risk premium of an asset, we split its covariance with the market portfolio 
into two parts: the one explained by the weight of the asset in the portfolio, and the one explained 
by its interaction with the rest of assets. Substituting in the covariance between the asset and the 
market portfolio, Cov(Ri , RM), the rate of return of the market portfolio by the weighted average of 

its assets (
n
∑

j=1

xjRj), we have:
 

(1)Cov(Ri , RM) = Cov

(

Ri ,

n
∑

j=1

xjRj

)
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Hence, with the additive property of covariances in mind, we can write:

 

Rubinstein (2006, p. 174) writes the covariance decomposition of Equation (2) in his proof of the 
property, introduced by Lintner (1965), about the negligible effects on value of the own variance in 
large markets.

The first addend of (2) can be called self-covariance, while we may call crossed covariance the 
second one. We denote it by σCi:

 

On this basis, we define crossed beta (�Ci) as the part of beta generated by the crossed covariance:

 

Thus, the net risk premium (�) can be obtained by subtracting from the total risk premium the part 
of it due to crossed beta:

 

where the term (RM − r)�Ci can be called crossed risk premium because it is the part of the risk pre-
mium due to crossed beta.

Any net risk premium has its required counterpart, which consists of the difference between the 
required risk premium according to the Security Market Line (SML) and the crossed risk premium:

 

Hence, the net risk premium can be written as the addition of Jensen alpha and the required net risk 
premium (�∗

i ):

 

Both, alpha and the required net risk premium, have different consequences for the analysis we 
develop below.

3. The net risk premium ratio as a performance measure
By turning the net risk premium into a ratio that expresses the points of total risk premium per point 
of crossed risk premium, that we denote by �:
 

we obtain a coherent performance measure that fulfils the axiomatic conditions presented by 
Schuhmacher and Eling (2012). Let us call it net risk premium ratio.

In Equation (8), the numerator fulfils the properties of positive homogeneity and functional trans-
lation invariance for reward measures, as Equations (9) and (10) show:

(2)Cov(Ri , RM) = xi�
2

i +

n
∑

j=1∀j≠i

xjCov(Ri ,Rj)

(3)�Ci =

n
∑

j=1∀j≠i

xjCov
(

Ri , Rj

)

(4)
�Ci =

n
∑

j=1∀j≠i

xjCov
�

Ri , Rj

�

�
2

M

(5)𝜋i =
(

R̄i − r
)

−
(

R̄M − r
)

𝛽Ci

(6)𝜋
∗

i =
(

R̄M − r
)(

𝛽i − 𝛽Ci

)

(7)�i = �i + �
∗

i

(8)𝜂i =

(

R̄i − r
)

(

R̄M − r
)

𝛽Ci
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where E(⋅) denotes expected value1; k and c are positive constants.

The denominator, in turn, fulfils the equivalent conditions for risk measures. Substituting in it �Ci 
according to (4) and recalling the properties of covariance, we can write:

 

for the positive homogeneity property, and:

 

for the functional translation invariance.2

Interpreting these axioms for the present case, we can say that positive homogeneity means that, 
for an individual who invests the k% of his budget in the asset under analysis (asset i) and the rest 
of it in the risk-free asset, his expected return and the corresponding required risk premium experi-
ence a proportional change, as shown by (9) and (11). Therefore, the net risk premium ratio is neu-
tral with respect to changes of scale. As for the functional translation invariance, if asset i captures 
an abnormal return, the increase in its return does not change its required risk premium, as shown 
by (10) and (12).

From (6) we can write the required net risk premium ratio (�∗) as:

 

Subtracting (13) from (8), the difference between the actual and the required net risk premia ratio, 
that we will call excess net risk premium ratio (�), turns out to be:

 

i.e. the units of alpha per unit of crossed risk premium.

The excess net risk premium ratio can be applied as well to the performance analysis for short 
positions. In this case, we invert the difference between the required and the expected net risk pre-
mium ratio, and write the excess net risk premium ratio for short positions as:

 

4. Relating the net risk premium to the optimal weights: The short sales barrier
The net risk premium embeds the condition that an asset must fulfil in order to be held in long posi-
tion in the optimal portfolio. As we show next, this condition can be obtained from the SML. Sharpe 
(1970, Chap. 5, p. 89) in his deduction of the SML connects the parameters of a single security with 
the market portfolio, arriving at:

(9)E
[

k
(

Ri − r
)]

= k E
(

Ri − r
)

(10)E
[(

Ri − r
)

+ c
]

> E
(

Ri − r
)

(11)�

R̄M − r
�

n
∑

j=1∀j≠i

xjCov
�

kRi ,Rj

�

𝜎
2

M

=
�

R̄M − r
�

k𝛽Ci

(12)�

R̄M − r
�

n
∑

j=1∀j≠i

xjCov
�

Ri + c,Rj

�

𝜎
2

M

=
�

R̄M − r
�

𝛽Ci

(13)𝜂
∗

i =

(

R̄M − r
)

𝛽i
(

R̄M − r
)

𝛽Ci

(14)𝜛i = 𝜂i − 𝜂
∗

i =
𝛼i

(R̄
⋅ M

− r)𝛽Ci

(15)𝜔
S
i = 𝜂

∗

i − 𝜂i =
−𝛼i

(

R̄M − r
)

𝛽Ci
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where σiM is the abridged notation for Cov(Ri , RM).

Substituting �iM in (16) according to (2), the optimal weight of the asset under analysis can be writ-
ten as:

 

In this expression, the weight of the asset under analysis is also part of the market parameters 
(R̄M, 𝜎M). Therefore, strictly, it is an implicit equality. Nevertheless, as pointed out by Lintner (1965) 
and Rubinstein (2006, p. 174), among others, if the capital market is large, and, thus, the weight of 
each asset in it is small, the effect of any asset in the market parameters is negligible. According to 
this argument, the presence of the asset in the market parameters does not hinder the CAPM as a 
theoretical model. Nevertheless, the fact that the weight of an asset in the market can be very small 
does not make it irrelevant. What finally matters for a corporation is the total value of its assets, 
which is the product of the weight by the total value of the market. As the market grows, the weight 
of each one of its assets diminishes, but the product of a specific weight by the market value may 
remain constant or even increase. Even if the weight approaches zero when the market value ap-
proaches infinity, the product between both obviously does not approach zero.

Multiplying and dividing the second addend of (17) by �2M, and substituting 
n
∑

j=1∀j≠i

xjCov
�

Ri ,Rj

�

∕�2M 
by βCi we have:

 

and multiplying and dividing βCi by, we arrive (R̄M − r) at:

 

which, taking (6) into account, is equivalent to:

 

Let us define the total risk ratio for asset i as:

 

and the required net risk premium/market ratio for the same asset 
(

�
∗

Mi

)

 as:

 

Then, we can say that the optimal weight is expressed through the quotient between the requite 
net risk premium/market ratio and the total risk ratio 

(

�
∗

Mi∕TRRi
)

.

(16)R̄i − r =
R̄M − r

𝜎
2

M

𝜎iM

(17)xi =
(R̄i − r)

(R̄M − r)

𝜎
2

M

𝜎
2

i

−
1

𝜎
2

i

n
∑

j=1∀j≠i

xjCov(Ri , Rj)

(18)
xi =

�

R̄i − r
�

�

R̄M − r
�

𝜎
2

M

𝜎
2

i

−
𝜎
2

M

𝜎
2

i

n
∑

j=1∀j≠i

xjCov
�

Ri ,Rj

�

𝜎
2

M

=
𝜎
2

M

𝜎
2

i

�
�

R̄i − r
�

�

R̄M − r
�
− 𝛽Ci

�

(19)xi =
𝜎
2

M

𝜎
2

i

[
(

R̄i − r
)

−
(

R̄M − r
)

𝛽Ci

R̄M − r

]

(20)xi =
𝜎
2

M

𝜎
2

i

[

𝜋
∗

i

R̄M − r

]

(21)TRRi =
�
2

i

�
2

M

(22)𝜋
∗

Mi =
𝜋
∗

i

R̄M − r
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It stems from (19) that a positive value of the optimal weight requires a total asset risk premium, 
(R̄i − r), greater than the crossed risk premium defined in (5):

 

Thus, the crossed risk premium is the minimum value of the expected risk premium that justifies a 
long position of the asset. For this reason, it can be regarded as the short sales barrier. In other 
words, if the asset risk premium is greater than the crossed risk premium, the asset qualifies for a 
long position in the optimal portfolio, while, if the sign of this difference is inverted, the asset’s posi-
tion turns into a negative one. On this basis, with (8) in mind, we can interpret the net risk premium 
ratio as the number of risk premium units per unit of the short sales barrier. Furthermore, the differ-
ence between the risk premium and the crossed risk premium that stems from inequality (23) meas-
ures the asset’s distance to the short position.

The condition for a long position can also be written as a function of the net risk premium ratio. In 
effect, multiplying and dividing (20) by crossed beta, and recalling that, as it stems from (2) and (3), 
crossed beta consists of the ratio �Ci∕�

2

M, we can write:

 

Substituting �∗

i  according to (6), we obtain:

 

which, taking into account the expression of the required net risk premium ratio stated in (13), can 
be written as:

 

In this equation, the ratio between the crossed covariance and variance (�Ci∕�
2

i ) expresses the pro-
portion of crossed risk on total risk, while, as stated, the term (�∗i − 1) can be interpreted as the short 
sales distance.

Equation (26) is central for answering Q1 and Q2. Strictly, the point of view of this equation is the 
ex-ante analysis because it explains how the parameters of the model justify the weight of an asset 
in the optimal portfolio. Nevertheless, it can also be applied to study the performance of the assets 
from the ex-post point of view. In this case, the weights of the assets are given and we examine 
whether the ex-post performance has fulfilled the expectation. To proceed to the ex-post perfor-
mance analysis through (26), first of all we calculate the actual and the required values of the net 
risk premium ratio. Substituting the required net risk premium ratio (�∗i ) in (26), we simply confirm 
the weight of the asset in the portfolio known as an ex-ante information (data) in the present con-
text of ex-post (performance) analysis. Next, we examine the value of the actual net risk premium 
ratio from the perspective of Equation (26), and we realise that this ratio has two barriers to over-
come, given by the following values:

(1)  A value greater than 1 to justify a long position in the asset, i.e. xi > 0.

(2)  A value equal or greater than its required equivalent (�i ≥ �
∗

i ) to justify the weight of the budget 
invested in the asset.

Thus, therefore we can hold that (a) answers Q1, and (b) answers Q2. In case of negative crossed 
beta, the sign of (a) is inverted.

(23)(R̄i − r) > (R̄M − r)𝛽Ci

(24)xi =
𝜎
2

M

𝜎
2

i

𝜎Ci

𝜎
2

M

[

𝜋
∗

i

(R̄M − r)𝛽Ci

]

=
𝜎Ci

𝜎
2

i

[

𝜋
∗

i

(R̄M − r)𝛽Ci

]

(25)xi = CRRi

[

(RM − r)(𝛽i − 𝛽Ci)

(R̄M − r)𝛽Ci

]

= CRRi

[

(RM − r)𝛽i

(R̄M − r)𝛽Ci
− 1

]

(26)xi =
�Ci

�
2

i

(�∗i − 1)
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Comparing (20) and (26), we observe that the optimal weights can be explained from two different 
points of view: the net risk premium, adopted in (20), and the net risk premium ratio, adopted in (26). 
Both show that the optimal weight is directly proportional to the distance to the short sales barrier 
embedded in the net risk premium. In (20) the distance is expressed by the net risk premium itself. 
In (26), we find the distance to the short sales barrier, which consists of the difference between the 
net risk premium ratio and 1. Both equalities also show, from different perspectives, the impact of 
total risk on the optimal weights. The optimal weight, as we can see in (20), is inversely proportional 
to the total risk ratio while, as (26) shows, it is directly proportional to the crossed risk ratio. Both 
perspectives shed light on the impact of total risk on the optimal weights: the higher the asset vola-
tility with respect to market volatility, the lower the weight; but, the higher the crossed covariance 
with respect to the asset volatility, the higher the weight. Therefore, we can say that the optimal 
weight of each asset depends on its total risk, and, thus, on its specific risk. This property shows that, 
although the specific risk is neutral with respect to the required rate of return, it is not neutral with 
respect to the optimal weight. If the specific risk of a corporation increases, and this corporation 
aims to maintain the optimal weight of its shares in a Mean-Variance portfolio, the corporation is 
compelled to obtain a higher net risk premium that compensates the increase of specific risk.

On basis of (26) we can express the optimal weight of any asset as the addition of the effects of 
the net risk premium ratio (first addend of (27)) and the correction that the crossed risk ratio intro-
duces in it (second addend of (27)).

 

This result can be regarded as the answer to Q2 because it explains the relationship of the asset’s 
weight and its performance, measured through the net risk premium ratio. As a matter of fact, 
Equation (27) shows that in order to justify the budget’s weight invested in an asset, this asset must 
reach the expected values of the net risk premium ratio, and the crossed total risk ratio (�Ci∕�

2

i ).

5. Net risk premium ratio vs. Treynor ratio
The net risk premium ratio is closely related to the Treynor (1966) ratio. Not only they have a parallel 
meaning, but also they are functionally related. Bodie et al. (2009, p. 764) point out that two assets 
that belong to a well-diversified portfolio cannot be compared solely on basis of alphas because this 
would mean to put aside their systematic risks. As these authors show, in this case the appropriate 
measure to compare them is the Treynor ratio (T) that, in addition to its classical presentation as the 
quotient between the risk premium and beta, can be written also as a function of alpha:
 

where TM denotes the Treynor ratio of the market portfolio, namely the market risk premium since its 
beta equates 1. A similar argument can be used for preferring the net risk premium ratio to the net 
risk premium when we focus on these measures. In fact, the former can be written as a following 
function of the latter:

 

The functional relationship between the net risk premium ratio and the Treynor ratio is obtained by 
multiplying and dividing the right-hand side term of (8) by βi, and rearranging the resulting equality. 
Then, we realise that the net risk premium ratio equates the product of the proportion between the 
Treynor ratios of the asset and the market multiplied by the ratio between beta and crossed beta:

 

(27)xi = (�∗i − 1) + (�∗i − 1)

(

�Ci

�
2

i

− 1

)

(28)Ti =
�i

�i
+ TM

(29)�i =
�i

(RM − r)�Ci
+ 1

(30)�i =
Ti
TM

�i

�Ci
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This result shows that the net risk premium ratio of an asset is an increasing function of the quotient 
between its Treynor ratio and the market Treynor ratio, and, at the same time, of the ratio between 
its beta and its crossed beta.

6. The Mean-Gini approach
The Mean-Gini portfolio model successfully overcomes some of the limitations of the CAPM. Mainly, 
it fulfils the requirements of the second-order conditions of stochastic dominance, as pointed out in 
the introduction. Furthermore, its formal presentation shows a productive parallelism with the CAPM 
that preserves the conceptual clarity of the latter. To obtain the crossed covariance for the Mean-
Gini portfolio model (CC) a previous development, displayed in Appendix A, is necessary. The result 
at which we arrive in (A5) is:
 

where F denotes the cumulative distribution function.3 In this section the superscript G denotes that 
the variable is referred to the Mean-Gini model. In this context, the total risk consists of the covari-
ance between the asset or the portfolio with its cumulative distribution. Therefore, the total risk ratio 
turns out to be 

[

Cov(RGM, F
G
M)∕Cov(Ri , Fi)

]

. In the Mean-Gini model the beta coefficient is expressed 
as:

 

From (31) we can express crossed beta as:

 

The required net risk premium, that, by definition, excludes crossed beta, can, in turn, be written as:

 

The actual net risk premium can be obtained by adding the value of Jensen alpha, adapted to the 
Mean-Gini model, to the required net risk premium:

 

Therefore, the net risk premium ratio and its required value turn out to be:

 

 

Substituting in (34) �Gi  according to (32) and �GCi according to (33), we have:

 

and substituting CCi according to (31) and simplifying:

 

(31)CCi = Cov(Ri , F
G
M) − x

G
i Cov(Ri , Fi)

(32)�
G
i =

Cov(Ri , F
G
M)

Cov(RGM, F
G
M)

(33)�
G
Ci =

CCi

Cov(RGM, F
G
M)

(34)𝜋
∗G = (R̄GM − r)(𝛽Gi − 𝛽

G
Ci)

(35)�
G
i = �

G
i + �

∗G
i

(36)𝜂
G
i =

(R̄i − r)

(R̄GM − r)𝛽GCi

(37)𝜂
∗G
i =

(R̄GM − r)𝛽Gi

(RGM − r)𝛽GCi

(38)𝜋
∗G = (R̄GM − r)

(

Cov(Ri , F
G
M) − CCi

Cov(RGM, F
G
M)

)

(39)𝜋
∗G
i = (R̄GM − r)

xGi Cov(Ri , Fi)

Cov(R̄GM, F
G
M)
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Clearing xGi  in this equation, we obtain:

 

This result, similar to (20), expresses the optimal risk premium as the product between the inverse of 
the total risk ratio and the required net risk premium/market ratio for the Gini case. In the Gini 
framework, the total risk ratio consists of the quotient Cov(RGM, F

G
M)∕Cov(Ri , Fi), while the net risk 

premium/market ratio becomes �∗G
i ∕(RGM − r).

Substituting (34) in (40):

 

Multiplying and dividing this expression by βCi, we have:

 

Substituting (37) in the right-hand side of (42), we obtain:

 

And, substituting �GCi according to (33), we arrive:

 

which can be written as:

 

where 
[

CCi∕Cov(Ri , Fi)
]

 expresses the crossed total risk ratio for the Gini case.

From (36), (40) and (45) we have obtained the answers to Q1 and Q2 from the point of view of the 
Mean-Gini model. In effect, (44) shows that the condition for a long position is again a net risk pre-
mium ratio greater than 1. Relating (44) to (36), we realise that this condition is equivalent to a risk 
premium greater than the required one according to crossed beta. As for the optimal weights, the 
parallelism between the Mean-Variance and Mean-Gini models can be seen by comparing (40) with 
(20), and (45) with (27).

7. Ex-post optimisation
Often, the performance of common stocks is analysed individually. Nevertheless, by applying portfo-
lio optimisation techniques to the ex-post portfolio data, we may find which would have been the 
optimal portfolio if the expectations had equated the ex-post data. In other words, this calculation 
answers the question: which would be the optimal composition of a portfolio to be built up now if the 
future expectations were equal to the current ex-post data? To obtain sound results, short positions 
are to be discarded. Sharpe (1970, p. 85) points out that the market portfolio, i.e. the optimal portfo-
lio, becomes inefficient from the ex-post perspective because, if investors had been able to forecast 
exactly the market evolution, they would have invested their whole budget in the asset with the 

(40)xGi =

[

Cov(RGM, F
G
M)

Cov(Ri , Fi)

][

𝜋
∗G
i

(R̄GM − r)

]

(41)xGi =

[

Cov(RGM, F
G
M)

Cov(Ri , Fi)

][

(R̄GM − r)(𝛽Gi − 𝛽
G
Ci)

(R̄GM − r)

]

(42)xGi =

[

Cov(RGM, F
G
M)

Cov(Ri , Fi)
𝛽
G
Ci

][

(R̄GM − r)(𝛽Gi − 𝛽
G
Ci)

(R̄GM − r)𝛽GCi

]

(43)xGi =

[

Cov(R̄GM, F
G
M)

Cov(Ri , Fi)
𝛽
G
Ci

]

(𝜂∗Gi − 1)

(44)xGi =

(

CCi
Cov(Ri , Fi)

)

(�∗Gi − 1)

(45)xGi = (�∗Gi − 1) + (�∗Gi − 1)

(

CCi
Cov(Ri , Fi)

− 1

)
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greatest return. Our use of the ex-post data is, nevertheless, different because we estimate which 
would be the optimal portfolio for the next period if the expectations for this period equated the cur-
rent ex-post data. The relevance of this optimisation lies on ranking the assets according to the 
weights they will reach in the optimal portfolio by extrapolating the current data. The weights we 
obtain after this optimisation can be analysed through the net risk premium ratio and the weights’ 
decomposition we have presented before. The results of this analysis show the performance proper-
ties of the asset in the extrapolated portfolio. Furthermore, we may compare the different weights 
obtained from Gini and Mean-Variance. In order to compare these weights, we subtract (20) from 
(33). Nevertheless, a preliminary step will clarify this difference. Let us define the differential crossed 
risk ratio (dc) as:
 

And the Gini’s differential crossed risk ratio (g) as:

 

Introducing these notations in the difference between (33) and (20), we obtain:

 

which shows that the difference between the optimal weights of both models consists of the differ-
ence between their required net risk premia ratio, (�∗Gi − �

∗

i ), minus the difference between the risk 
corrections. As we can see, each risk correction consists of the product between each differential risk 
ratio (g and c, respectively) by the corresponding short sales distance.

8. Empirical illustration: The net risk premium ratio and the optimal weights in 
performance analysis
An empirical illustration complements the theoretical part of this paper. Its goal is to show how it 
enables us to answer, in practice, the three questions asked in the introduction. This illustration is 
based on the thirty stocks that constituted the DJIA at the beginning of 2014. We study, from the 
Mean-Variance and Mean-Gini points of view, their performance during 2014, the most recent year, 
before 2016, in which the DJIA has captured a positive risk premium. To this end, we have built up a 
portfolio constituted by these stocks weighting them according to their capitalisation. In other 
words, this illustration is based on the DJIA, but changing its price-weighting method by the most 
usual capitalisation method. Table 4 shows the detail of this calculation. The interest rate is set out 
to zero due to the low interest rates of this period.4 In case of positive interest rates, the interest rate 
would be subtracted from the rates of return in order to obtain the stocks’ and market risk premia. 
The data-set of this illustration consists of the weekly rates of return obtained from the adjusted 
prices, i.e. dividend and splits corrected, downloaded from Yahoo!Finance. The period of this data 
goes from 31th December 2013 to 31th December of 2014. Each rate of return has been calculated 
from the logarithm of the ratio between the corresponding price at the beginning and at the end of 
each week. Table 1 contains the answers to Q1 and Q2, while Table 2 complements it by showing the 
relationship between the performance measures and the weights of the assets. Table 3, answers Q3. 
Table 4, in Appendix B, shows the basic calculations that support the previous tables.

Table 1 shows the values of the Treynor ratio, the actual risk premium ratio, the required net risk 
premium ratio, and their difference, the excess net risk premium ratio. The calculations have been 
made for the Mean-Variance and the Mean-Gini models. As seen in Equation (26), the condition that 
justifies a long position in the portfolio is a net risk premium ratio greater than 1, which answers Q1. 
This condition is fulfilled by sixteen stocks, for both the Mean-Variance and the Mean-Gini criteria. 
For instance, NKE risk premium is 5.05 times the short sales barrier according to Mean-Variance, and 

(46)dci =

(

�Ci

�
2

i

− 1

)

(47)gi =

(

CCi
Cov(Ri , Fi)

− 1

)

(48)xGi − xi =
(

�
∗G
i − �i

)

+
[

gi

(

�
∗G
i − 1

)

− ci
(

�
∗

i − 1
)
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5.88 times for Mean-Gini. The same ratios for AXP are 0.45 and 0.429, showing that its risk premium 
has fallen down to the short sales barrier. The required net risk premium ratio is the one that justifies 
the weight that the asset has in the portfolio, while the actual value of this ratio expresses the per-
formance of the asset with respect to the required value that, in fact, is its benchmark. For this rea-
son, and since it is a portfolio without short sales, all required net risk premium ratios are higher than 
1. The highest η* corresponds to XOM, although its actual net risk premium ratio turns out to be 
negative. The difference between the actual and required ratios constitutes, as seen, the excess net 
risk premium ratio (�) that measures how many excess points, i.e. which alpha, the asset has cap-
tured per each point required to justify its position in the portfolio, which answers Q2. Observing the 
values of η and �, we can classify the assets in three groups that, respectively, include sixteen, nine 
and five assets:

(1)  Assets with positive η and � (CSCO, DD, DIS, HD, INTC, JNJ, KO, MMM, MRK, MSFT, NKE, PG, TRV, 
UNH, V, WTT).

(2)  Assets with negative � but positive η (AXP, CAT, GS, JPM, MCD, PFE, T, UTX, VZ).

(3)  Assets with negative � and negative η (BA, CVX, GE, IBM, XOM).

All assets of group b) have captured a positive risk premium, but lower than the required one, i.e. 
their alphas are negative. Furthermore, although the combination η > 1 with � < 0 is theoretically 
possible, it does not appear in this sample. This case would show the combination of a risk premium 
higher than the short sales barrier with a negative alpha. Since assets in group (a) present a positive 
excess net risk premium, we can say, following (14), that their actual risk premium ratios are greater 
than their required ones. Therefore, they justify the weights invested in them, as shown in (26). The 
performances of the assets in groups (b) and (c) have not reached the necessary level to justify the 
corresponding weights. To sum up, Table 1 contains the answers to Q1 and Q2 for the analysed 
portfolio.

The rankings for the Treynor ratio and the excess net risk premium ratio turn out to be very similar, 
because the maximum difference in these rankings consists of two positions. Switching to the Mean-
Gini parameters, we also observe a remarkable similarity in the rankings with no differences greater 
than two positions again. We can interpret this fact as a sign of the robustness of the Treynor ratio 
and the Mean-Variance model. Nevertheless, it does not change neither the potential interest of the 
information added by the net risk premium ratio nor the stronger statistical analysis provided by the 
Gini methodology. Being more specific, we can observe that CSCO, with respect to its Treynor ratio 
rank, goes down one position from the point of view of the Mean-Variance net risk premium, and 
goes up one position from the Mean-Gini approach, being 5-6-4 its evolution in these ranks. In con-
trast, the HD evolution is 6-7-8. NKE clearly dominates all rankings in the first position. In this sam-
ple, the introduction of the benchmark for the net risk premium does not change any ranking, in 
other words, the rankings that stem from the net risk premium ratio (�) and their corresponding net 
risk premia ratio equivalents (�) coincide.

Table 2 complements Table 1 by showing how the weights of the assets are linked to the risk and 
return parameters that stem from the sample under analysis. The weights of this table are the out-
come of the capitalisation criterium that we have introduced in order to build up the portfolio of this 
illustration, assuming that they represent the optimality generated by the market itself. Thus, all 
short sales distance are positive, while all risk corrections are negative due to the values of the total 
risk ratios lower than 1. This approach shows how the expected performance of the net risk premium 
ratio is turned into the corresponding optimal weights through the risk correction. The decomposi-
tion to which we submit the weights shows their components in case they were optimal. Nevertheless, 
as expected, the ex-post data present deviations from optimality. In the analysis we have devel-
oped, the effects on non-optimality are concentrated in the actual net risk premium and, more pre-
cisely, in the difference between the actual net risk premium ratio and its required counterpart, i.e. 
in the excess net risk premium ratio (�) shown in Equation (14) and calculated in Table 1.
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Each weight can be alternatively explained by Equations (20), (26) and (27) for the Mean-Variance 
model, and by Equations (40), (44) and (45) for the Mean-Gini model. These equations provide three 
different approaches to the generation of the weights:

(1)  From the perspective of (20) and (40), we can see that the weights depend on the total risk, 
specifically on the total risk ratio. In this case, the risk premium effect is represented by the net 
risk premium/market ratio that, in turn, embeds the impact of crossed beta.

(2)  From the perspective of (26) and (44), the weights are explained by the short sales distance 
multiplied by the crossed total risk ratio. This ratio, as stated, is interpreted as the proportion 
of total risk that has not been absorbed by crossed risk.

(3)  The perspective of (27) and (45) shows how the weights additively depend on the short sales 
distance and on the proportion of total risk not absorbed by crossed risk.

Let us focus on how the weight of CSCO has been generated according to (a), (b) and (c). The re-
quired net risk premium/market ratio for CSCO is 5.03%. This would have been its percentage in the 
portfolio if its total risk had equated the portfolio variance, and thus, the total risk ratio equated 1. 
Nevertheless, the value of the total risk ratio turns out to be 2.26. Thus, the optimal weight becomes 
2.5207%, which is the ratio between 5.03% and 2.26. The same percentage is reached by multiplying 
the crossed risk ratio (0.3668) by the short sales distance (0.068726). Finally, the optimal weight can 
also be broken down into the addition of the short sales distance with the risk correction (−0,04352). 
The latter is obtained by multiplying the proportion of total risk not absorbed by crossed risk (risk 
crossed ration minus 1) by the sort sales distance. Again, the calculations for Mean-Gini parallel the 
Mean-Variance ones.

Table 3 presents the results of the ex-post optimisation for the empirical illustration developed in 
this paper. The optimisation we have performed follows the works by Markowitz (1952, 1959), Merton 
(1972) and Huang and Litzenberger (1988), for the Mean-Variance model, developed through Excel 
and Mathematica. For the Mean-Gini model, we apply the algorithm developed by Cheung, Kwan, 
and Miu (2007) through Excel. To obtain these portfolios we have submitted to optimisation the data 
above for 2014 in order to answer the question of which would be the optimal portfolios, for Mean-
Variance and Mean-Gini, if the expected data equated the actual ones. The table displays the weights 
of the new optimisations together with the values of the parameters involved in them. The interest 
of the ex-post optimisation lies in the study of the interaction among the assets under the caeteris 
paribus hypothesis about the future. The results can be read from the performance point of view 
because they can be interpreted as the optimal portfolio that the stocks under analysis would create 
by extrapolating to the future the actual data and their randomness.

Table 3 is divided in three sections: Mean-Variance, Mean-Gini, and the analysis of the differences 
in the weights obtained through these methods. The Mean-Variance and Mean-Gini sections explain 
the generation of the optimal weights. The explanatory relationships are the same that we have ap-
plied in Table 2, but now in an optimisation framework. For instance, the weight of CSCO is explained 
by the ratio between πM and TRR (0.5118/3.1327) and also by the algebraic addition of its short sales 
distance and the risk correction for the proportion of total risk not absorbed by crossed risk, weighted 
again with the short sales distance (0.9617–0.7983). Although this performance is excellent, let us 
ask ourselves how it could be improved because this question could be applied to any asset. 
Observing the figures of this table and also recalling Equations (20), (26) and (27), we can say that 
an increase in the weight can be generated by: an increase in the short sales distance, a reduction in 
the difference between total risk and crossed risk, and a reduction in the total risk ratio. Comparing 
the weights of PG and UNH, we observe that UNH has a higher short sales distance, and, conse-
quently, a higher net risk premium/market ratio (0.7634 > 0.3709), which causes an exchange in 
their position in the rankings: UNH precedes PG in the short sales distance, but PG reaches a higher 
optimal weight because the effect of the total risk ratio.
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As the outcome of this optimisation, the relevant assets have been reduced from 30 to 7, being 
the same for Mean-Variance and Mean-Gini. These seven stocks coincide with the ones in the first 
seventh positions in the ranking of the Mean-Variance net risk premium, while for the Mean-Gini ap-
proach the asset in the seventh position (DIS) is substituted by the one in the eighth position (HD). 
As shown in Equations (26) and (44) the weights are explained by the quotient between the required 
net premium ratio and the total risk ratio. Another enlightening way of explaining the weights is 
through the addition of the short sales distance and the risk correction as shown in Equations (27) 
and (45). In any case, the differences are expressed as the Mean-Gini weight minus the Mean-
Variance weight. The analysis of the differences between the Mean-Gini and Mean-Variance weights 
is shown in the lower part of the table. There, we calculate the risk factors according to (46) and (47). 
Next, we calculate, according to Equation (48), the risk-corrected distances for both models. The dif-
ferences between these distances explain the differences between their weights. All in all, the inter-
est of the analysis displayed in this table lies in how it captures the capacity to create performance 
embedded in the actual data or, in other words, which would be the stocks’ performance inside an 

Table 3. Ex-post optimal weights

Notes: The ex-post optimal portfolio weights for Mean-Variance and Mean-Gini models, with short sales not allowed. 
The first two sections also show the values of the parameters that explain the optimal weights, following the same path 
than Table 2, but with the new figures. The last section presents the analysis of the differences between the weights that 
stem from both models (Mean-Gini minus Mean-Variance) according to Equation (48).

Mean-Variance

Asset Weight β βC TRR πM η* CRR SD Risk 
correction

CSCO 16.34% 1.0440 0.5322 3.1327 0.5118 1.9617 0.1699 0.9617 −0.7983

HD 3.89% 1.0855 0.9516 3.4440 0.1339 1.1408 0.2763 0.1408 −0.1019

INTC 10.34% 1.5021 1.0510 4.3620 0.4511 1.4292 0.2409 0.4292 −0.3258

MSFT 2.99% 1.0342 0.9401 3.1509 0.0941 1.1001 0.2984 0.1001 −0.0702

NKE 10.82% 0.8893 0.5173 3.4385 0.3720 1.7190 0.1505 0.7190 −0.6108

PG 30.97% 0.6252 0.2544 1.1975 0.3709 2.4581 0.2124 1.4581 −1.1484

UNH 24.66% 1.2619 0.4986 3.0958 0.7634 2.5311 0.1611 1.5311 −1.2845

100.00% 1 RM 24.84% σM 9.29%

Mean-Gini

CSCO 19.04% 1.0487 0.8490 1.0487 0.1997 1.2352 0.8096 0.2352 −0.0448

HD 2.04% 1.1188 1.0960 1.1188 0.0228 1.0208 0.9796 0.0208 −0.0004

INTC 10.10% 1.5060 1.3540 1.5060 0.1521 1.1123 0.8990 0.1123 −0.0113

MSFT 7.57% 1.0327 0.9545 1.0327 0.0782 1.0820 0.9243 0.0820 −0.0062

NKE 12.40% 0.8789 0.7699 0.8789 0.1089 1.1415 0.8760 0.1415 −0.0175

PG 28.08% 0.6283 0.4519 0.6283 0.1764 1.3904 0.7192 0.3904 −0.1096

UNH 20.77% 1.2605 0.9986 1.2605 0.2618 1.2622 0.7923 0.2622 −0.0545

100% 1 RM Gini

Analysing differences

cd g g-cd Distance differences Risk correction Difference

CSCO −0.8301 −0.1904 0.6397 −0.7265 0.7536 2.70%

HD −0.7237 −0.0204 0.7033 −0.1199 0.1014 −1.85%

INTC −0.7591 −0.1010 0.6581 −0.3169 0.3145 −0.24%

MSFT −0.7016 −0.0757 0.6259 −0.0181 0.0640 4.59%

NKE −0.8495 −0.1240 0.7256 −0.5775 0.5933 1.58%

PG −0.7876 −0.2808 0.5068 −1.0677 1.0388 −2.89%

UNH −0.8389 −0.2077 0.6312 −1.2689 1.2300 −3.88%



Page 17 of 23

Bosch-Badia et al., Cogent Economics & Finance (2017), 5: 1270251
http://dx.doi.org/10.1080/23322039.2016.1270251

optimal portfolio under a caeteris paribus assumption. While the short sales distance and the net 
risk premium ratio stress the relevance of risk-adjusted returns, the risk correction stresses the rel-
evance of the ratio between crossed risk and total risk.

9. Conclusions
This paper has been focused on enlarging the performance information about the assets inside a 
portfolio provided by the Treynor ratio. Methodologically, we have based the research on the defini-
tion of crossed beta and on two concepts that stem from it: the net risk premium, and the net risk 
premium ratio that fulfils the axioms of performance measures. We have developed these concepts 
for the Mean-Variance and Mean-Gini models in order to combine the conceptual clarity of the for-
mer with the more accurate statistical precision of the latter.

As stated in the introduction, the analysis of this paper has been directed to answer three ques-
tions: which is the risk premium that an asset must reach for being in long position? (Q1); how its 
weight on the optimal portfolio can be explained (Q2); and, which conclusions can be drawn from 
ex-post optimisation? (Q3). Throughout the paper we have shown that the condition for an asset to 
be in long position is provided by the net risk premium ratio, the value of which must be greater than 
1 to justify this position (answer to Q1). As for the weight of the budget invested in an asset, it is justi-
fied if the difference between the net risk premium ratio and 1, corrected by the crossed total risk 
ratio, equates or overcomes the asset’s weight. The crossed total risk ratio captures the influence of 
total risk in the optimal weights: a crossed covariance factor lower than 1 reduces the weight, while 
if it turns to be greater than 1, increases the weight (answer to Q2). The ex-post optimisation analysis, 
in turn, provides a complete performance panorama of the portfolio under analysis by showing which 
would be the optimal weights in case of equality between the future expected values and the actual 
ones. We have shown that each weight can be broken down into the addition of its distance to short 
sales plus a risk correction (answer to Q3). The comparison between the optimal weights that stem 
from the Mean-Variance and Mean-Gini models has led us to find the impacts of short sales distance, 
risk, and crossed effect on their differences. The differences between their weights are explained 
through the differences in their distances to short sales corrected by the crossed risk factor.

These findings enable investors to deepen into the study of the performance of single assets inside 
a portfolio. In effect, they enable corporations to identify the causes of the weights of their shares in 
optimal portfolios: risk premium, crossed beta and total risk. The measures proposed in this paper do 
not substitute the Treynor ratio or other related indicators, but enlarge the performance analysis of 
single assets. We have verified in the empirical illustration that the rankings based on the net risk 
premium may differ from the Treynor’s ratio rankings, but, at the same time, we have observed that 
the differences are very small in our case. This fact shows again the robustness of the Mean-Variance 
analysis, previously mentioned in the introduction. In brief, the analysis based on crossed beta wid-
ens the information furnished by the Treynor ratio, but only in extreme cases may contradict it.

For these reasons, the performance analysis of stocks’ performance inside a portfolio has proved to 
be relevant for portfolio managers, investors and corporate managers. Passive portfolio managers, 
who accept market efficiency as the motto of their management, should nevertheless drop from their 
portfolios poorly performing assets. The identification of assets that, according to their current perfor-
mance qualify for being held in short position, challenges active managers for taking short positions 
in these assets if they estimate that the market is going to correct their overvalued prices in the short 
run. Corporate managers, obviously interested in the market performance of their corporations, may 
find in the net risk premium ratio and its complementary indicators a set of measures that contribute 
to explain the weights of the companies that they are managing in diversified portfolios. The role of 
total risk in the determination of the optimal weights shows, in turn, the relevance of this neglected 
indicator for corporations who aim to enlarge the weights of their stocks in diversified portfolios.

The main further research question this paper suggests consists of extending the weights analysis 
to other performance indicators, although a necessary condition is that they must be connected to 
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a portfolio optimisation method. The empirical analysis can also be enlarged and applied to other 
markets and portfolios. The necessary connection with portfolio optimisation also contributes to 
relate the measures developed in this paper to the state of the art of performance measurement: 
conveniently adapted, they may enlarge and complement the information obtained from any per-
formance indicator that fulfils the twofold condition of being thought for single assets and that can 
be associated with portfolio optimisation.
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Notes
1. In the rest of the paper, expected and average values 

are both denoted by the usual bar over the variable; for 
instance, R̄.

2. In Schuhmacher and Eling (2012), positive homogeneity 
is stated in Equation (3) for risk measures, and Equation 
(7) for reward measures. Functional translation invari-
ance, in turn, is stated in Equation (6) for risk measures, 
and Equation (8) for reward measures.

3. We simplify notations by writing F for F(R) as stated in 
Appendix A.

4. The average yearly return of the 1-Year Treasury Bill in 
the secondary market has been 0.11% yearly, which is 
equivalent to a 0.002171% weekly.

5. We substitute X1 and X2 in Yitzhaki and Schechtman by 
Ri and Rj.

6. Unless otherwise stated, we adopt the notations used 
in Yitzhaki and Schechtman. These authors, denote by 
Δ the Gini Mean Difference and by Δ* the outcome of 
multiplying it by 0.5 used in portfolio optimisation (2013, 
p. 388, eq. 18.1). Let us clarify that in the body of the 
paper, where the notation Δ* is not used, the superscript * 
denotes “required”.

7. Cheung et al. (2007) present the numerical algorithm 
that has become the classical optimisation tool for the 
Mean-Gini portfolio selection.

i  The underlying research data and calculations for this 
article can be accessed at https://figshare.com/articles/
CalculationsRepository_xlsx/4495124.
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Appendix A

Obtaining the Mean-Gini crossed covariance
The aim of this appendix is to obtain the crossed covariance for the Mean-Gini portfolio model. Now, 
the covariance between any asset and the rate of return of the market portfolio, that we have found 
in the CAPM, is replaced by the covariance between the asset and the cumulative distribution of the 
market portfolio. This covariance cannot be split directly into the parts due to the asset under analy-
sis itself (self-generated covariance), and its interaction with the rest of assets (crossed covariance). 
Instead, to arrive at the crossed covariance for the Mean-Gini model requires some previous 
operations.

A.1 Central features of the Mean-Gini portfolio model

Before developing the operations that lead to crossed covariance, we summarise the central fea-
tures of the Mean-Gini portfolio model. The Mean-Gini portfolio theory has a greater stochastic dom-
inance efficiency than the Mean-Variance paradigm, because it is compatible with the second 
degree conditions of stochastic dominance (Shalit & Yitzhaki, 1984; Yitzhaki & Schechtman, 2013, p. 
389). As know, Gini’s Mean Difference (Δ) consists of a dispersion measure based on the absolute 
differences between two random variables or a random variable with itself (Yitzhaki & Schechtman, 
2013, p. 13).5 Being Ri and Rj the two random variables, the basic expression of the Gini coefficient 
consists of the mathematical expectation of the absolute values of the differences between all pairs 
of both variables. Nevertheless, an equivalent approach smooths the calculation of the Gini 
coefficient.

In effect, the Gini coefficient is also equal to four times the covariance between the random vari-
able (R) and its cumulative probability distribution: Δj = 4Cov[Rj , F(Rj)] or, for the crossed Gini coeffi-
cient with the cumulative distribution function of another variable, i.e. Δij = 4Cov[Ri , F(Rj)] (Shalit & 
Yitzhaki, 1984; Yitzhaki & Schechtman, 2013, p. 18), where F(⋅) denotes the cumulative distribution 
function. In its application to portfolio optimisation, in order to facilitate the optimisation (Shalit & 
Yitzhaki, 1984; Yitzhaki & Schechtman, 2013, p. 388), the risk measure is taken as half of the Gini coef-
ficient. Thus, the risks of asset i, portfolio MG and asset i with respect to portfolio MG are, respectively, 
expressed as:6 Δ∗

i = 2Cov[Ri , F(Ri)], Δ
∗

MG
= 2Cov[RMG , F(RMG )] and Δ∗

iMG
= 2Cov[Ri , F(RMG )]. Then, the 

Gini’s efficient frontier optimisation problem consists of minimising the portfolio’s Mean-Gini differ-

ence (Δ∗

MG
) subject to a specified value of the rate of return’s mean 

�

n
∑

i=1

xi
GRi = R

G

�

, and to the budget 

restriction 
�

n
∑

i=1

xGi = 1

�

. We denote the optimal weight of asset i in the Gini optimal portfolio by xGi  in 

order to distinguish it from its counterpart in the Mean-Variance paradigm.7 Henceforth, we adopt 
the simplified notation F for F(R). The beta coefficient in the Mean-Gini model consists of the ratio 
Cov(Ri , FM)∕Cov(RM, FM), while the Security Market Line (SML) parallels the one of the CAPM substitut-
ing the corresponding parameters by the Mean-Gini ones. Yitzhaki and Schechtman (2013, pp. 33–
49) show a complete development of the Gini regression coefficient, and Shalit and Yitzhaki (1984, 
p. 1460) present the details of the Gini SML, detailing the correlation equivalent and the total risk 
measures for both, asset and market. Their interaction, leads to the beta expression that we have 
mentioned.

A.2 Obtaining the crossed covariance

The covariance between asset under analysis (i) and the cumulative distribution function (F) of the 

Gini market portfolio, taking into account that 
n
∑

j=1

xGj = 1, can be written as:

 
(A1)Cov(Ri , F

G
M) = Cov

(

Ri ,

n
∑

j=1

xGj F
G
M

)

= xGi Cov(Ri , F
G
M) +

n
∑

j=1∀j≠i

xGj Cov(Ri , F
G
M)
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Now, we need to incorporate into the analysis the covariance between the asset and its cumulative 
distribution function, that we write as Cov(Ri , Fi). Adding and subtracting xGi Cov(Ri , Fi) into the right-
hand side of (A1), we obtain:

 

The cumulative distribution function FGM is the outcome of interacting the whole assets in the market 
portfolio. If all assets had the same risk than asset i, then the cumulative probability of the portfolio 
would be the one of this asset, i.e. Fi. Thus, the part of the covariance between the asset and the 
market that can be attributed to the asset itself, namely the self-covariance, is:

 

Therefore, after (A2) and (A3), the crossed covariance of asset i can be obtained by detaching the 
self-covariance from (A2), which leads to:

 

Summing the first and third addends of the right-hand side of this equation we obtain Cov
(

Ri , F
G
M

)

. 
Thus, the crossed covariance can be written as:

 

Appendix B

Basic calculations
Table 4 displays the basic calculations of the numerical illustration. It shows the composition of the 
portfolio, the weights of its assets, and the outcome of the calculations of the weekly average rates 
of return, their corresponding standard deviations and Gini coefficients, together with beta, crossed 
beta, alpha, actual and expected net risk premia for Mean-Variance and Mean-Gini models. The 
shadowed part of the table corresponds to the calculations for Mean-Gini.

(A2)Cov
(

Ri , F
G
M

)

= xGi Cov
(

Ri , Fi
)

+
[

xGi Cov
(

Ri , F
G
M

)

− xGi Cov
(

Ri , Fi
)

]

+

n
∑

j≠i

xGj Cov
(

Ri , F
G
M

)

(A3)SCi = x
G
i Cov

(

Ri , Fi
)

(A4)CCi =
[

xGi Cov
(

Ri , F
G
M

)

− xGi Cov
(

Ri , Fi
)

]

+

n
∑

j≠i

xGj Cov
(

Ri , F
G
M

)

(A5)CCi = Cov
(

Ri , F
G
M

)

− xGi Cov
(

Ri , Fi
)
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