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The ability of some materials to generate photovoltages greater than their bandgap has been 

stimulating scientists for many decades. [1-4] In piezoelectrics and ferroelectrics, above-bandgap 

photovoltages are enabled by the intrinsic asymmetry of the lattice. [5]  Antiferroelectrics, by contrast, 

are generally centrosymmetric, but application of a suitably large external field can cause a transition 

from their antipolar ground state to a polar phase. Though removing the external field should in 

principle result in a return to the antipolar state and thus the loss of any above-bandgap photovoltage, 

switching under illumination results in the pinning of the polar state. Here we show that this allows 

antiferroelectric thin films to generate above-bandgap photovoltages in excess of one hundred volts 

and photovoltaic fields of several megavolts per centimetre, the largest ever measured for any material.   
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A general rule in conventional (i.e., semiconductor junction-based) photovoltaics is that the 

solar cell photovoltage must be lower than the bandgap of the semiconductor.[6] However, an 

anomalous photovoltaic effect, whereby photovoltaic devices exhibit larger photovoltages than 

the bandgap, has been observed in many semiconductor systems since 1946,[1] which 

coincidentally is the same year which Ohl patented the modern conventional solar cell.[7] These 

photovoltages are normally due to the cumulative effect of connecting in tandem several 

individual internal junctions, such as grain boundaries,[8] and the tandem principle has also been 

invoked as an explanation for above-bandgap photovoltages in multiferroic BiFeO3 with 

parallel-stacked domain walls.[4] In a different fashion, materials with a non-centrosymmetric 

structure can also develop above-bandgap photovoltages even in the absence of tandem effects. 

This is called the bulk photovoltaic effect (BPE) [2] and is believed to be a property of the lattice 

non-centrosymmetry, [2],[5],[9] although it is not easy to separate out the intrinsic role of crystal 

symmetry (shift current theory[2],[10]) from extrinsic contributions from chemical potential 

gradients, [8] grain boundaries,[3] or domain walls.[4] The largest above-bandgap photovoltages 

have been reported for the sub-set of piezoelectrics formed by ferroelectrics (i.e. polar materials 

where the polarization is reversible) such as LiNbO3,[2] BaTiO3 [11] and BiFeO3.[6],[12]  

 

A close relative of ferroelectricity is antiferroelectricity. Antiferroelectricity was postulated by 

Kittel in 1951 [13] and demonstrated in PbZrO3 (PZO) the same year by Shirane and 

coworkers.[14] In an antiferroelectric material, adjacent ferroelectric dipoles are aligned in 

opposite orientation, so that the net polarization is zero. The archetypal material, PbZrO3, for 

example, is centrosymmetric in its ground state (space group Pbam), [15]-[18] but when a 

sufficiently large external voltage is applied the antiparallel dipoles can be realigned into a polar, 

ferroelectric-like state. Antiferroelectrics are promising for applications such as high-energy 

capacitors,[19] high-strain actuators, cooling devices or pulsed voltage/current suppliers.[20]  
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As compared with their ferroelectric counterparts, however, little is known about the 

photoelectric properties of antiferroelectrics[21],[22], and in particular their photovoltages and 

photocurrents have not yet been measured. And yet, antiferroelectrics can potentially provide 

an optimum material family to explore bulk photovoltaic effect, because even though their 

ground state is non-polar, a polar state can be “switched on” without changing the composition, 

grain structure, electrodes, thickness, or light absorption.  The present investigation does 

precisely that. We have characterized the closed circuit photocurrent and open circuit 

photovoltage of antiferroelectric thin films both in their ground (antipolar) state and in their 

polarized state. A sharp transition happens from near zero to large (<100V) photovoltages as 

the polarization is switched on, consistent with the activation of the bulk photovoltaic effect. 

The photoelectric field (photovoltage divided by thickness) of the antiferroelectric films is 

>5MV/cm, about an order of magnitude bigger than the previous benchmark. Additionally, and 

importantly from a practical point of view, we observe that, once the bulk photovoltaic effect 

has been switched on, it remains even in the absence of external bias (i.e., antiferroelectric films 

that are polarized under illumination do not return to their antipolar ground state), meaning that 

antiferroelectrics can replace ferroelectrics without loss of photovoltaic functionality. 

 

The AFE layers in this study have been grown by a solution processing method (sol-gel 

synthesis followed by spin coating deposition) onto fluorine-doped tin oxide (FTO), a 

transparent conducting oxide with low sheet resistance and a higher resilience to high-

temperature processing than indium tin oxide and a standard for solar cells such as organometal 

trihalide perovskites.[23] The growth details are found in the methods section; here, we just point 

out that solution-processing fabrication is relatively simple and readily up-scalable for 

photovoltaic cell manufacturing.[24] Short exposure time to high temperature during the solution 

process helps preserve the integrity of the transparent bottom electrode, thus allowing the thin 

film device depicted in Figure 1 to be fabricated in a vertical configuration, instead of the more 
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usual lateral architecture.[4],[12],[25],[26] This allows the entire area of the device to be illuminated 

from below without any shadow effects. The parallel-plate configuration also has the 

fundamental advantage that the small distance between electrodes translates the devices’ 

photovoltage into very large photoelectric fields (photovoltage divided by thickness).  

 

Light absorption (see Methods and supplementary information) confirmed that the PZO films 

are, as expected, wide-band gap semiconductors with a gap of 3.7-3.8 eV (the same as for bulk 

PZO)[27] and thus highly absorbing in the near-ultraviolet range. The antipolar phase becomes 

polar (Ps ~ 40 C/cm2) above a critical forward coercive field ( FE ~ 250 kV/cm) (see hysteresis 

loop Figure 1-e). Conversely, as the electric-field is decreased from maximum values to zero, 

the system returns to the antipolar phase at a backward switching field ( BE  ~ 75 kVcm-1). The 

same hysteresis takes place for negative voltages. The result is the characteristic double 

hysteresis loop of antiferroelectrics. To minimize leakage contributions the frequency of the 

measurement was 1kHz although much slower loops can be measured without any noticeable 

change down to frequencies as slow as 40 Hz (see supplementary information). Importantly 

also, although some films show some residual polarization at 0V in the hysteresis loops (i.e., a 

slight “triple hysteresis effect”), films with no residual polarization could also be obtained, 

showing identical photoresponse (see supplementary material).  

 

The interplay between polar state and photovoltaic response is shown in Figure 2-a and 2-b. 

On a virgin sample, there is no short-circuit photocurrent, consistent with the antipolar nature 

of the ground state. As an external bias voltage is applied, the current remains negligible until 

suddenly, at the coercive voltage, a spike is observed, corresponding to the transient 

displacement current caused by the onset of polarization. Further spikes can be observed as the 

voltage is ramped up, caused by the switching of residual domains (Barkhausen jumps). 
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Suprisingly, as the voltage is then ramped back down, the illuminated antiferroelectric does not 

switch back to its antipolar state. Instead, it stays poled, and as a consequence it displays both 

a short-circuit photocurrent and an above-bandgap open-circuit photovoltage.  

 

The remanence of the photo-assisted polar state has been observed in photorefractive storage 

devices [21] , and is useful for photovoltaic cells such as ours, as it means that no external bias 

needs to be supplied to maintain the above-bandgap response. It is attributed to the drift and 

accumulation near the interface of photogeneraged charge, which generates a strong space-

charge field that pins the polarization and locks the AFE in its polar state. In highly resistive 

samples, the charge drift and interfacial build-up is slow, on the scale of several minutes. The 

time evolution of the photovoltage and the photoconductivity is shown in Figure 2-c. The 

photovoltaic development time is in the order of the dielectric relaxation time,  ߬ = ߝ ⁄ߪ  [2], where 

is the low voltage conductivity, and ߝ =  ௥~70-100 asߝ ଴ is the dielectric constant, withߝ௥ߝ

calculated from the slope of the saturated hysteresis loops.  

 

Though the shift current density is in principle an intrinsic property of the induced polar state,[2] 

the photovoltage is the result of dividing this intrinsic photocurrent by the conductivity, which 

is an extrinsic property that depends on the free carrier concentration and the quality of the 

sample.[28] The consequence is that, when conductivity is low, the photovoltage can reach very 

high values indeed: Figure 3-a shows the photovoltaic response of a representative 

antiferroelectric device reaching open circuit photovoltages Voc = 120±10 V, about 30 times 

larger than the bandgap and consistent with the bulk photovoltaic origin of the effect (more 

such responses coming from various devices from different batches are shown in the 

supplementary materials in order to illustrate the reproducibility of the results). At such high 

voltages, the slope of the current vs voltage can be seen to change abruptly. The reason is that 

the photoelectric field (photovoltage divided by thickness) of these devices is so large that it 
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approaches values close to the breakdown strength of the film and/or the intrinsic photovoltaic 

limit posed by the Micheron criterion,[29] ܧ௉௏ ≤ ܲ ൗߝ = 5 − 7  MVcm-1, where P is the 

polarization of the films (P  40µCcm-2). When this limit is reached, the conductivity must 

increase so as to ensure that the current goes to zero at a sustainable open-circuit voltage, 

resulting in the observed sudden change in slope.   

 

The parallel-plate architecture of our photovoltaic cells also serves to translate the already large 

photovoltage into an enormous photoelectric field Epv. The PZO layer in our devices is 200 nm 

thick (see methods section), so 120V are equivalent to a photoelectric field Epv = 6.0  0.3 

MVcm-1, which is not only of the order of the intrinsic Micheron limit but is also the largest 

photoelectric field reported for any material,[1],[30] overcoming by more than an order of 

magnitude the landmark value of LiNbO3 single crystals (~0.1 MVcm-1) [1] (Figure 3-b). 

Antiferroelectrics thus emerge as a family of switchable photovoltaic materials that are not only 

a useful testing ground for the physics of the bulk photovoltaic effect, but a competitive new 

entry to the state of the art in above-bandgaph photovoltaic devices. 
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Methods  

Sol-Gel oxide synthesis 

The synthesis of the PZO was done as follows: 7.49 g of Zr-isopropoxide (Zr[OCH(CH3)2]4, 70 

wt. % in 1-propanol,  Sigma), 5 ml acetic acid and 10 ml of n-propanol were mixed together 

with constant stirring in a glass beaker. 6.68 gr of Pb acetate (10% excess) [lead(II) acetate 

trihydrate, Pb(CH3CO2)2•3H2O (99.999%)] were added to the above solution. The reaction 

mixture was heated at constant temperature of 85 ºC using a silicon oil bath until the complete 

dissolution of the Pb precursor. After cooling down, acetic acid and distilled water were added 

until a 40 ml 0.4 M solution was obtained. The as-prepared solution was used without further 

modification for spin coating deposition. 

Antiferroelectric photovoltaic device fabrication 

The FTO-coated glass substrates of 1.1 mm thickness were bought from Solems, model ASAHI 

100 by CVD (70-100 ohm resistance, thickness of FTO layer 800 Å.). Before use, the substrates 

cleaned with soap water, mili-Q water and ethanol (99.5%) for 20 min, and finally ozone/UV 

treated for 20 minutes.  80 l of the as-prepared PZO solution was spin-coated on top of the 

FTO at 4000 rpm with an acceleration of 2000 rpm/s for 40s. The solution was dried in a hot 

plate for 5 min at 150 oC and annealed at 600-650 oC for 5-10 min in air. The anode metal is 

evaporated silver (100 nm). The thermal evaporator is an Univex 350G model from Oerlikon 

Leybold Vaccum inside a GS Globebox Systemtechnik GmbH globe box. Parallel plate devices 

were defined by means of shadow masks with diameters of 100 m, 2000 m and 400 m. 
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Characterization 

X-ray powder diffraction (XRD) analyses between 5 and 120 degrees in a RIGAKU Rotaflex 

RU200 B instrument, using CuKα1 radiation.   

The UV-visible analysis of solutions and thin films were made in a Shimadzu 1800 

spectrophotometer. The optical band gap was derived by the Tauc’s relation;  n

gh A hv E    . 

Where,  is the absorbance, A is a constant, hv  is photon energy, gE  is the allowed energy gap 

and n =½ for allowed direct transitions.The optical bandgap value perfectly agrees with 

previous literature. First principles band-structure calculations for bulk PZO show that, in 

practice, PZO has a direct band gap at the X point of around ~3.8 eV [27]. The valence-band 

maximum has the X4_vsymmetry and would be mostly a mixture of O p and Pbs states while the 

conduction-band minimum is an X1c state. 

The UV-LED measurements were carried out in a home-made set-up attached to a probe station. 

The UV-LED source is a commercial UV LED from Roithner part APG2C1-365-E 1W 365 nm. 

The AFE photovoltaic properties have been investigated by means of a high power UVA-light 

emitting diode. The LED is biased with 1W DC power with a drive current of 350 mA and a 

voltage drop of around 3.5 V. The nominal 365 nm UVA-LED irradiance has been precisely 

determined to be cI =159.1 W/m2 with a spectrophotometer at the exact distance with the 

irradiation peak centered at 369.2 nm and a FWHM of p=9.6 nm. 

The I-V curves were measured with a Keithley model 6430 Sub-Femtoamp Remote 

SourceMeter. 

The ferroelectric characterization was performed with a precision LC tester LCII Ferroelectric 

Test System unit of Radiant technologies attached to a probe station.  

Spectral irradiance measurements were performed with a spectrophotometer SPECTRO 320 

(D) release 5, 30932004, with gadget EOP-146 to measure the spectral irradiance. Spectral 
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irradiance has been measured out-of-plane (90o) with a scan step of 1nm and a speed of 100 

ms/nm. 

The TEM lamella was defined by a focused ion beam. The FIB has circuit editing capability 

and nanomachining capabilities. The FIB used in this work is a Zeiss 1560XB Cross Beam able 

to work with sample of size up to a 150 mm. The field emission focused ion beam optics have 

a liquid Gallium ion emitter with acceleration voltage of 3 kV to 30 kV and beam current of 

1pA - 20 nA with a maximum resolution of 7.0 nm. The system contains a multiple injector 

needle system for 5 different gases including gas chemistry solution for ion or electron beam 

deposition of Platinum-containing material. 

The TEM inspection has been carried out by a high-resolution FEI Tecnai F20 S/TEM 

equipped with an EDX.  
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Figure Captions 

Fig. 1 (a) Schematic view of the antiferroelectric above bandgap photovoltaic device 

comprising a single layer (~200 nm) of lead zirconate (PbZrO3 or PZO) onto a transparent 

conductive oxide (FTO). (b) PZO has a perovskite crystal structure with a high temperature 

cubic structure and a room temperature distorted orthorhombic antiferroelectric phase. (c) and 

(d) photographs of the PbZrO3 films grown on glass with transparent bottom electrode. (e) 

Nested antiferroelectric double hysteresis loops, where the PZO exhibits a reversible transition 

from antipolar to polar under adequate voltage bias. 

 

Fig. 2. (a) Antiferroelectric hysteresis loop measured in dark and (b) current vs voltage response 

under illumination of an antiferroelectric thin film capacitor. The virgin antipolar phase shows 

no photocurrent, but when the film switches from the antipolar to the polar phase, a 

displacement current peak appears, after which a steady-state photocurrent is established and 

remains even when the external bias is switched off (short-circuit photocurrent). The induced 

polar state displays above-bandgap photovoltage. (c) time evolution of the photoconductivity 

and open-circuit photovoltage. 

 

Fig. 3. (a) steady-state photovoltaic response of the capacitor, showing an open-circuit 

photovoltage in excess of 100V. (b) A timeline review (references are listed under 

Supplementary section III) of the reported photovoltaic fields for different above bangap and/or 

ferroelectric photovoltaic materials from the literature. Non-polar piezoelectrics (CdTe, ZnS, 

PbS) stay below the  ~kV/cm range, which is only achieved by ferroelectric materials such as 

BTO (BaTiO3), KNO (KNbO3), LNO (LiNbO3), BFO (BiFeO3) and BFCO (Bi2FeCrO6). PVDF 

is polyvinylidene fluoride, a ferroelectric polymer. The antiferroelectric PZO photovoltaic cells 

are the first to reach the MV/cm range. 
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Fig. 1 (a) Schematic view of the antiferroelectric above bandgap photovoltaic device 

comprising a single layer (~200 nm) of lead zirconate (PbZrO3 or PZO) onto a transparent 

conductive oxide (FTO). (b) PZO has a perovskite crystal structure with a high temperature 

cubic structure and a room temperature distorted orthorhombic antiferroelectric phase. (c) and 

(d) photographs of the PbZrO3 films grown on glass with transparent bottom electrode. (e) 

Nested antiferroelectric double hysteresis loops, where the PZO exhibits a reversible transition 

from antipolar to polar under adequate voltage bias. 
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Fig. 2. (a) Antiferroelectric hysteresis loop measured in dark and (b) current vs voltage response 

under illumination of an antiferroelectric thin film capacitor. The virgin antipolar phase shows 

no photocurrent, but when the film switches from the antipolar to the polar phase, a 

displacement current peak appears, after which a steady-state photocurrent is established and 

remains even when the external bias is switched off (short-circuit photocurrent). The induced 

polar state displays above-bandgap photovoltage. (c) time evolution of the photoconductivity 

and open-circuit photovoltage. 
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Fig. 3. (a) steady-state photovoltaic response of the capacitor, showing an open-circuit 

photovoltage in excess of 100V. (b) A timeline review (references are listed under 

Supplementary section III) of the reported photovoltaic fields for different above bangap 

and/or ferroelectric photovoltaic materials from the literature. Non-polar piezoelectrics (CdTe, 

ZnS, PbS) stay below the  ~kV/cm range, which is only achieved by ferroelectric materials 

such as BTO (BaTiO3), KNO (KNbO3), LNO (LiNbO3), BFO (BiFeO3) and BFCO 

(Bi2FeCrO6). PVDF is polyvinylidene fluoride, a ferroelectric polymer. The antiferroelectric 

PZO photovoltaic cells are the first to reach the MV/cm range. 


