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ABSTRACT 7 

BACKGROUND: Using renewable feedstock sources for biodiesel production seem to 8 

be a promising strategy and even more when enzymatic catalysis with lipases is used. 9 

However, it is well known that these enzymes could be inactivated due to reaction 10 

conditions such as temperature or alcohol concentration. In this work, the effect of 11 

temperature and initial water activity (aw) value on immobilised recombinant Rhizopus 12 

oryzae lipase (rROL) were studied. Methanolysis and ethanolysis reactions using 13 

alperujo oil with three different stepwise addition strategies were employed. 14 

RESULTS: recombinant 1,3-positional selective rROL covalently immobilised on 15 

polymethacrylate amino-epoxy activated support showed maximum initial reaction 16 

rate at low aw value (0,093). It was found that 30°C was the optimal temperature in 17 

terms of biocatalyst’s stability during transesterification reactions. Adding alcohol at 18 

once, ethanol was clearly better acyl-acceptor in terms of stability than methanol.  19 

Productivity was found to be 2-fold higher when five pulses of ethanol were used 20 

instead of methanol.  21 
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CONCLUSIONS: alperujo oil has a great potential as a low cost feedstock for biodiesel 1 

production through enzymatic catalysis using a nearly semi-continuous alcohol 2 

addition strategy. 3 

 4 
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 8 

INTRODUCTION 9 

 10 

Since the world fossil fuel reserves are nearly running out – the total depletion is forecasted 11 

for 2050-2060 1,2 – production of biodiesel has been widely implanted in order to supply this 12 

deficiency, with a worldly production of 27,06 million tonnes in 2013 and an increase of a 68% 13 

since 2008 3. The use of biodiesel (mono-alkyl esters of long chain fatty acids) has its own 14 

benefits, such as its ability to be directly used in automobile engines without important 15 

treatments 4, it is considered safer than fuel oil because of its higher flash point and its ignition 16 

delay due to higher cetane number 5. Environmentally, the key-point of using biodiesel is its 17 

potential for greenhouse gases emission reduction, concretely it was observed that on 18 

combustions of biodiesel-fossil fuel blends, the closed-carbon cycle, levels of both carbon 19 

monoxide and dioxide and smoke were reduced 6,7. 20 

Biodiesel is produced worldly using alkali-catalysed transesterification, using feedstock oils 21 

such as corn, palm, soybean and rapeseed 4,8. However, since the beginning of the 90s, several 22 

studies have been focused on biodiesel production using second generation oils because of the 23 

principal drawback of using edible oils: its high cost, which may represent around 75% of the 24 
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overall cost. Another problem associated with edible oils is its competition for food resources, 1 

available harvest land and deforestation 1,9. 2 

In that way, second generation biodiesel, produced from such as non-edible oils, animal fats, 3 

waste cooking oil, etc., has been seen as an alternative to reduce environmental problems and 4 

utilisation of edible oils. 5 

However, the main drawback of using the second generation substrates are its high 6 

concentration of free fatty acids (FFAs), making the standard alkali-catalysed 7 

transesterification impossible due to the saponification. In that way, FFA values lower than 1-8 

3% are needed in order to carry it out correctly 4,10. To overcome this problems, the first 9 

solution is the pre-treatment of the substrates to reduce FFA content and also to remove some 10 

impurities and other components 11, increasing the process steps that may lead to an increase 11 

of the process cost. Acid and heterogeneous solid base catalyst transesterification have been 12 

seen also as a solution, but these strategies exhibit slower  reaction rates and they require high 13 

alcohol to oil molar ratios than the alkali 1,12–14. 14 

One of the most attractive options due to its benefits compared with chemical 15 

transesterification is by far the enzymatic catalysis using lipases (triacylglycerol acyl-hydrolase 16 

E.C.3.1.1.3). This process requires less energy consumption, is more environmental-friendly 17 

because it does not generate as much as waste than the chemical one, and the immobilization 18 

of catalyst turns its recovery much easier 1,15. Other advantage of using lipases is its perfect 19 

compatibility with FFAs. It has been widely reported not only the possibility of synthesise 20 

biodiesel by the direct esterification of FFAs 16–18, but also the reaction benefits when using 21 

substrates with high FFA content 19,20. In this study it is assumed that the total amount of 22 

biodiesel produced (long chain alcohol esters) come from both reactions: transesterification of 23 

triacylgrlycerols and esterification of FFAs, as it is raised by other works 19,21,22. The major 24 

problems present in enzymatic-catalysed transesterification, aside the high cost of the 25 

enzyme, is the inhibition of the lipase by the acyl acceptor, mainly methanol or ethanol, which 26 
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may cause the reduction of the enzyme lifetime. Methanol has been reported to be the 1 

principal cause of enzymatic deactivation during the transesterification reaction 15,23,24. 2 

Although this major drawback, methanol is still the most used alcohol due to its availability 3 

and economic feasibility. Nevertheless, the problem of inactivation can be partially overcome 4 

by stepwise addition of the alcohol 4,20,25,26.  5 

By the other side, ethanol – not as harmful for the lipase as methanol – has been also used 6 

widely for biodiesel production 27–30, because of some advantages such as major solubility in 7 

triacylglycerols (TAGs) 31 and its low toxicity in front methanol. 8 

Other key parameter in enzymatic reactions is the water activity (aw). Some studies have 9 

stated that this parameter is important in order to achieve higher yields because it is directly 10 

linked to the reaction’s thermodynamics 32,33 and the hydrolytic activity of some lipases 34,35.  11 

In this work, lipase dependence on initial water activity and temperature has been studied, as 12 

well as the utilisation of methanol and ethanol as an acyl acceptor via different stepwise-13 

addition strategies. Covalently-immobilised recombinant 1,3-positional selective Rhizopus 14 

oryzae lipase (rROL) in a free solvent media was used in order to avoid the presence of 15 

glycerol, since acyl migration occurs in a long time reaction and favoured for the presence of 16 

solvent. Several studies have stated that glycerol may cause inactivation of lipases by 17 

adsorbing on the carrier forming a hydrophilic environment 15,36. 18 

A part form biodiesel, 2-monoacylglycerol, which a product with an added-value mainly used 19 

as a emulsifier, lubricant and food surfactant 37,38, is produced. While non-specific lipases are 20 

the most used for biodiesel production, the use of positional-specific such as Rhizomucor 21 

miehei lipase (RML) have shown a great results and efficiency 39,40. 22 

In the following study, raw alperujo oil was used as a substrate for biodiesel production. 23 

Alperujo is a high-FFA non-edible oil coming from the olive extraction processes. It is a low-cost 24 

material and is a by-product easily available 41. As a waste oil, the content of FFA represents an 25 

important part of it, with a value of 24%wt; but also a high content of organic matter 20. 26 
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 1 

MATERIAL AND METHODS 2 

 3 

Materials 4 

 5 

Olive waste oil (alperujo) was kindly given from Sierra Mágina olive oil extraction mill (Mancha 6 

Real, Jaén, Spain). Heptane, ethanol and methanol were purchased from Panreac (Barcelona, 7 

Spain). Oleic acid and standards of methyl/ethyl palmitate, methyl/ethyl stearate, 8 

methyl/ethyl oleate, methyl/ethyl linoleate and methyl linolenate were obtained from Sigma–9 

Aldrich (St Louis, USA). HFA403 ReliZyme carrier was purchased from Resindion (Binasco, 10 

Milano, Italy). Colorimetric kit for enzymatic assay (11821729) was obtained from Roche 11 

(Mannheim, Deuschland). Salts (LiBr, KOH, NaI, NaBr, NaCl and K2SO4) were purchased from 12 

Sigma Aldrich. 13 

 14 

Lipase production and immobilisation on HFA-Relizyme 15 

Recombinant Rhizopus oryzae lipase was produced by the Bioprocess Engineering and Applied 16 

Biocatalysis group from Universitat Autònoma de Barcelona (UAB). Production methods are 17 

the same referenced in previous works 42,43. Purification of the protein was carried out with an 18 

ultrafiltration and diafiltration in Tris-HCl buffer 10mM ph=7 with a Centrasette Pall Filtron set 19 

(New York, USA) 44 and then lyophilised. Support pre-treatment was carried out as referenced 20 

in a previous work 20. 21 

 22 

Lipase activity and protein determination 23 
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Lipase activity was determined by Roche colorimetric kit assay, using a Cary Varian 300 1 

spectrophotometer (Palo Alto, USA) at 30°C in 200 mM Tris-HCl buffer at pH=7.25 45. Protein 2 

concentration was determined by the widely used Bradford method 46. 3 

 4 

FAMEs, FAEEs and oleic acid quantification 5 

FAMEs, FAEEs and oleic acid sample concentrations were analysed in a 7890A Agilent GC 6 

(Santa Clara, USA) with a capillary column 19095N-123 and auto-sampler 25. Values of %RSD 7 

for FAMEs and oleic acid was 3% and 7%, respectively. 8 

Fatty acid methyl esters and oleic acid determination was carried out as referenced in previous 9 

works 19,20. Fatty ethyl esters determination was carried out using the same method. 10 

 11 

Transesterification reaction 12 

All reactions were carried out in duplicate in 10-mL closed vials, using an incubator (IKA KS 400, 13 

Staufen, Deutschland) under orbital stirring at 350 rpm, at different temperatures depending 14 

on the experiment (30°C, 40°C, 50°C). Free-solvent reactions with 8 g of alperujo oil and the 15 

total amount of biocatalyst corresponding with a 32,000 UA were employed. The total 16 

stoichiometric amounts (2:1 alcohol to oil ratio) of methanol and ethanol were added in three 17 

different ways: one single pulse at the beginning of the reaction, five pulses with the same 18 

volume and ten pulses with decreasing volumes along the time. Stability-testing reactions 19 

were carried out by leaving the biocatalyst deposited at the vial’s bottom and removing the 20 

medium at the end of the reaction. Then, vials containing the biocatalyst were stored at 4°C 21 

until the next reaction.  22 

 23 
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Water activity pre-equilibration 1 

Saturated salts were employed in order to achieve desired initial water activities 47. The salts 2 

used were: LiBr (aw=0.066), KOH (aw=0.093), NaI (aw=0.397), NaBr (aw=0.560), NaCl (aw=0.755), 3 

K2SO4 (aw=0.976). 4 

All reaction components were pre-equilibrated overnight - minimum 16h- with each salt-5 

hydrates in a jar with tight fitting lid 33.  6 

 7 

RESULTS AND DISCUSSION 8 

 9 

Effect of water activity and temperature 10 

 11 

Some studies have stated that one of the most important reaction parameter, especially 12 

related with the kinetics, is the water activity 47. Eventhough the reaction media contain mainly 13 

organic solvent and/or substrates, some water is needed to keep the enzyme active. Lipolytic 14 

activity of lipases is afected by a wide range of water activity values, depending on the specie 15 

and genus 33,48. Evenmore, the optimal water activity value differs significally depending on the 16 

enzyme surround and the reaction system 15,48. In this work, a recombinant Rhizopus oryzae 17 

lipase was used in free-solvent medium and it is worth noting that activity water effect in 18 

these kind of reaction media is yet understudied.  19 

Thereby, a set of methanolysis reactions were carried out with six different initial water 20 

activity values trying to cover the entire range (from 0.033 to 0.976). Initial reaction rate (in 21 

µmol·mL-1·min-1) was calculated for each reaction adding one pulse of methanol representing   22 

a 14% of total stoichiometric volume, in order to avoid inactivation effect on biocatalyst. As it 23 

is seen in Figure 1, higher rates were reached when lower water activity values were used. 24 
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Some studies have reported the same case for the same lipase 31. The maximum value was 1 

achieved when KOH salt was used in the pre-equilibrium at aw = 0.093 when nearly no initial 2 

water was added to the system while at higher water activity values – using K2SO4, 0.976 -  3 

hydrolysis took place leading to longer reactions. 4 

 5 

In the following experiments, pre-equilibrium of all reaction components at aw=0.093 were 6 

carried out because of this transesterification rate boost. 7 

As it is known, temperature is also a key parameter in enzyme-catalysed reactions. Higher 8 

temperatures induce higher reaction rates and may reduce mass transfer limitations. On the 9 

other hand, higher temperature values can inactivate enzymes. Even though recent studies 10 

had well characterised the optimal temperature for free lipase activity 44, three mild 11 

temperatures were tested in order to observe which promotes better transesterification rate 12 

of immobilised lipase. Stability studies were carried out at 30°C, 40°C and 50°C adding five 13 

pulses of methanol in order to avoid alcohol inhibition. As it can be seen in Figure 2, higher 14 

biocatalyst’s stability was obtained when reactions were carried out at 30°C, with an activity 15 

loss of 62% in the fourth cycle (total time in contact with methanol of 20h). Though higher 16 

yields and faster reactions were achieved at 40°C and 50°C (data not shown), the activity loss 17 

of the biocatalyst - 90% in 17h and 95% in 10h, respectively - was detrimental. In that way, it is 18 

preferable to maintain the enzyme activity to reuse it in further reactions.  19 

 20 

 21 

Effect of stepwise addition, comparing methanol and ethanol 22 

 23 
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Methanol and ethanol have been the most commonly used acyl acceptors in biodiesel 1 

synthesis since these compounds are easily available and not as expensive as could be alcohols 2 

with longer carbon chains such as iso-propyl alcohol 49 or butanol 50,51. However, it has been 3 

reported that methanol is one of the most harmful alcohols and may cause lipase deactivation 4 

4,24, so in order to avoid this enzymatic damage that impact on the activity of the subsequent 5 

reuses, some strategies have been proposed. Adding water to the system reduces high 6 

concentrations of methanol, but it may promote the undesired hydrolysis reaction25,52.  Here is 7 

presented a comparison of one the most frequently used methods, the stepwise addition of 8 

the acyl acceptors.  9 

As it is shown in Figure 3, adding large amounts of methanol at once were detrimental for the 10 

lipase’s activity and only a yield of 2.84% was achieved. Another data confirming this low initial 11 

rate is the oleic acid behaviour, which is maintained constant along the reaction. Moreover, 12 

adding the same stoichiometric amount of ethanol resulted in a reaction with a 49.61% yield in 13 

360 minutes (taking into account that the maximum yield is 66.67% due to the sn-1,3-positonal 14 

specificity of the lipase) with a significant decreasing of the oleic acid (demonstrating both 15 

widely known reactions: transesterification and esterification). These results confirm how 16 

harmful is methanol in free-solvent and free-water systems, resulting in a reaction 17 

environment with high methanol concentration capable to inactivate lipase. 18 

In order to evaluate the lipase stability at these conditions, a cycle-reactions were carried out, 19 

reusing the final biocatalyst with fresh substrate. Five methanolysis and ethanolysis reactions – 20 

a total of 30 hours – were performed. As it can be seen in Figure 4, a 52.4% of the initial 21 

activity was retained in the case of ethanol (values for methanol were not shown due to the 22 

low yield obtained). 23 

 24 
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Figure 5 shows both methanolysis and ethanolysis reaction with the same acyl acceptor’s 1 

stoichiometric amount added by 5 pulses of equal volumes. In the case of methanol, due to its 2 

lower initial rate, pulses were added every 60 minutes. The final yield achieved was 48.06% in 3 

300 minutes, a 17-fold improvement of the previous result just doing it stepwisely. In the case 4 

of ethanol, pulses were added every 40 minutes. Here, an improvement of 17% was achieved 5 

in terms of yield, obtaining a 58.16% in just 200 minutes.  6 

These results match with some previous studies reporting  that stepwise addition of ethanol 7 

may increase both the final yield and immobilised lipase’s performance in free-solvent 53,54 or 8 

in solvent system compared with the same strategy using methanol 55.  9 

In terms of stability (Figure 6), during 5 cycles of methanolysis reaction, ROL lipase lost nearly 10 

the whole capacity of synthesising biodiesel, reducing the initial activity up to 97.3%. It is clear 11 

that performing a fifth cycle was detrimental for the lipase’s activity, since a 40.26% of initial 12 

activity remained after the fourth cycle (20 hours). In the case of ethanol, along the same 20 13 

hours (6 cycles), more than 90% of lipase activity was retained. Thus, adding the acyl acceptor 14 

stepwisely, not only induces the obtaining of higher yield but also reduces damage on the 15 

lipase, retaining more activity at the end of the cycles. Even so, harmful effects of methanol 16 

are present. 17 

Next experiments were carried out adding ten pulses of acyl acceptor with decreasing volumes 18 

and increasing the addition frequency along the time. This strategy was chosen in order to 19 

emulate the yield evolution in the 5-pulse reactions, trying to add alcohol as the reaction 20 

needed it. Thus, methanol or ethanol accumulation in the system was reduced and yield and 21 

stability should be enhanced.  22 

For the case of methanolysis reaction, shown in Figure 7, a final yield of 57.16% was achieved 23 

(an increasing of up to 19%) in 360 minutes. In the case of ethanolysis, a 60.25% of yield was 24 

achieved (which represents 91.28% of the theorical maximum yield) in 260 minutes.  25 
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In contrast to 5-pulse reactions, where the decrease of total amount of free oleic acid was 1 

similar for both alcohols, when ten pulses were added - in the case of methanolysis - the 2 

disappearing of free oleic acid total amount was faster than in ethanolysis. It seems than 3 

methanol may be a better substrate for FFA esterification than ethanol, but inactivation 4 

caused by its high concentration in the 5-pulse reactions, may produce damage on the enzyme 5 

leading it to reduce the esterification rate. 6 

When a mass balance of total FAMEs and FFAs was made in the cases of 5-pulse and 10-pulse 7 

addition, it could be seen that the sum of both the free FFAs still present in the reaction 8 

medium and produced FAMEs resulted in a value close to the maximum theoretical FAME 9 

yield, stating that nearly all the triglycerides present in the substrate were converted to 10 

biodiesel while the rest where in form of FFAs.  11 

In terms of stability, shown in Figure 8, the differences seen in previous experiments get 12 

narrower. After 30 hours of reaction (5 cycles), the activity of the ROL lipase in presence of 13 

methanol was decreased only in a 12.31%. It was a notable improvement compared with the 14 

5-pulse methanolysis, which lost a 60% of the initial activity just in 20 hours. On the other side, 15 

an 88.11% of activity was retained in 7 cycles when ethanol was used, which corresponds to a 16 

30.3 hours of reaction.   17 

Table 1 shows the obtained productivity for each reaction. Methanolysis reactions’ 18 

productivity were 1.83-fold lower than ethanolysis when 5-pulse reactions were employed, 19 

and 1.45-fold lower than ethanolysis when 10-pulse were carried out. Comparing both 20 

methanolysis reactions, the final productivity did not increase although methanol was added in 21 

lower volumes in order to avoid the lipase inactivation. By the other hand, a decreasing of a 22 

22.6% of the final productivity were obtained when ethanol was added using the 10-pulse 23 

stepwise addition, due to the fact that times between pulses in this case were overestimated, 24 

reducing productivity. 25 
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A fact that can be drawn from this is that, as the total amount of acyl acceptors is divided the 1 

differences of the harmful effect between them are minor, due to the capability of the lipase 2 

to handle the volume added. This automatically ensures in applying a semi-continuous or fed-3 

batch system in order to add the chosen acyl acceptor. For the case of ethanol, this statement 4 

is not as clear as in the case of methanol, due to the higher times employed in 10-pulse 5 

reactions which reduce productivity achieved since no substantial yield enhancement is 6 

observed. 7 

 8 

CONCLUSIONS 9 

Recombiant Rhizopus oryzae lipase can be used as a biocatalyst in the biodiesel synthesis 10 

reaction using alperujo oil and methanol carried out at 30°C, giving better results in terms of 11 

enzymatic stability than higher temperatures. Previous pre-equilibration steps of enzyme were 12 

performed in order to obtain a fixed initial water activity, determining that aw of 0.093 is the 13 

optimal to set the faster initial rate. 14 

Methanol and ethanol as acyl acceptors were compared. Ethanolysis initial reaction rate was 15 

higher than when methanol was used as acyl-acceptor. Adding all alcohol at once, ethanol 16 

gave better results in terms of final yield and enzymatic stability, while as long as the stepwise 17 

additions were incremented, the difference between the two acyl acceptors became closer. 18 

When ten pulses were added, the ethanolysis reaction gave faster initial rate than 19 

methanolysis one, but in contrast, the lipase activity remained nearly the same in both 20 

reactions. 21 

The time of stepwise addition should be optimized for each acyl-acceptor in a semi-continuous 22 

or fed-batch alcohol addition strategy in order to get the minimum inactivation of the 23 

biocatalyst. 24 
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FIGURE CAPTIONS 1 

 2 

Figure 1. Initial reaction rate profile of R. oryzae as a function of water activity at 30°C using 3 
alperujo as a substrate. 4 

 5 

Figure 2. Relative yield (considering first reaction yield as 100%) of 5-pulse methanolysis 6 
reactions at three different temperatures (A, 30°C; B, 40°C; C, 50°C) on the biocatalyst’s 7 
activity. 8 

 9 

Figure 3. Time evolution of FAMEs, FAEEs yield and oleic acid of 1-pulse transesterification 10 
reaction using methanol and ethanol (reaction conditions: 8g of alperujo oil, 1:2 alcohol to oil 11 
molar, 30°C and 350 rpm). 12 

 13 

Figure 4. Relative yield (considering first reaction yield as 100%) of 1-pulse ethanolysis 14 
reactions. Methanolysis reaction is not shown due to the low yield achieved. 15 

 16 

Figure 5. Time evolution of FAMEs, FAEEs yield and oleic acid of 5-pulse transesterification 17 
reaction using methanol and ethanol. First five points correspond to five pulses (reaction 18 
conditions: 8g of alperujo oil, 1:2 alcohol to oil molar, 30°C and 350 rpm). 19 

 20 

Figure 6. Relative yield (considering first reaction yield as 100%) of 5-pulse methanolysis and 21 
ethanolysis reactions. 22 

 23 

Figure 7. Time evolution of FAMEs, FAEEs yield and oleic acid of 10-pulse transesterification 24 
reaction using methanol and ethanol. The first 10 points correspond to the 10 pulses (reaction 25 
conditions: 8g of alperujo oil, 1:2 alcohol to oil molar, 30°C and 350 rpm). 26 

 27 

Figure 8. Relative yield (considering first reaction yield as 100%) of 10-pulse methanolysis and 28 
ethanolysis reactions. 29 

 30 
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Figure 2. Relative yield (considering first reaction yield as 100%) of 5-pulse methanolysis 2 
reactions at three different temperatures (A, 30°C; B, 40°C; C, 50°C) on the biocatalyst’s 3 
activity. 4 

  5 

A 

C 

B 

 



21 
 

 1 

 2 

 3 

Figure 3. Time evolution of FAMEs, FAEEs yield and oleic acid of 1-pulse transesterification 4 
reaction using methanol and ethanol (reaction conditions: 8g of alperujo oil, 1:2 alcohol to oil 5 
molar, 30°C and 350 rpm). 6 
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Figure 4. Relative yield (considering first reaction yield as 100%) of 1-pulse ethanolysis 2 
reactions. Methanolysis reaction is not shown due to the low yield achieved. 3 
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Figure 5. Time evolution of FAMEs, FAEEs yield and oleic acid of 5-pulse transesterification 6 
reaction using methanol and ethanol. First five points correspond to five pulses (reaction 7 
conditions: 8g of alperujo oil, 1:2 alcohol to oil molar, 30°C and 350 rpm). 8 
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Figure 6. Relative yield (considering first reaction yield as 100%) of 5-pulse methanolysis and 3 
ethanolysis reactions. 4 
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Figure 7. Time evolution of FAMEs, FAEEs yield and oleic acid of 10-pulse transesterification 3 
reaction using methanol and ethanol. The first 10 points correspond to the 10 pulses (reaction 4 
conditions: 8g of alperujo oil, 1:2 alcohol to oil molar, 30°C and 350 rpm). 5 

  6 

 



26 
 

 1 

 2 

Figure 8. Relative yield (considering first reaction yield as 100%) of 10-pulse methanolysis and 3 
ethanolysis reactions. 4 
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Table 1. Productivity values of biodiesel synthesis reactions by stepwise addition along the stability tests 3 

Reaction Productivity (µmol biodiesel/min) 

5-pulse methanolysis 3.91 

5-pulse ethanolysis 7.17 

10-pulse methanolysis 3.82 

10-pulse ethanolysis 5.55 
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