This is the accepted version of the following article: Wang, Chun et al. "Effect of simulated acid rain on CO2, CH4 and N2O fluxes and rice productivity in a subtropical Chinese paddy field". *Environmental Pollution*, Vol. 243, Part B (December 2018), p. 1196-1205, which has been published in final form at https://doi.org/10.1016/j.envpol.2018.08.103 (December 2018), p. 1196-1205, which has been published in final form at https://doi.org/10.1016/j.envpol.2018.08.103 (December 2018), p. 1196-1205, which has been published in final form at https://creativecommons.org/licenses/by-nc-nd/4.0/ (December 2018), p. 1196-1205, which has been published in final form at https://creativecommons.org/licenses/by-nc-nd/4.0/

1 Effect of simulated acid rain on CO₂, CH₄ and N₂O fluxes and rice

2 productivity in a subtropical Chinese paddy field

- 3
- 4 Chun Wang^{a,b}, Weiqi Wang^{a,b}*, Jordi Sardans^{c,d}*, Wanli An^{a,b}, Congsheng Zeng^{a,b},
- 5 Abbas Ali Abid^e, Josep Peñuelas^{c,d}
- ⁶ ^a Institute of Geography, Fujian Normal University, Fuzhou 350007, China
- 7 ^b Key Laboratory of Humid Subtropical Eco-geographical Process, Ministry of
- 8 Education, Fujian Normal University, Fuzhou 350007, China
- 9 ° CSIC, Global Ecology Unit CREAF-CSIC-UAB, 08913 Bellaterra, Catalonia, Spain
- 10 ^d CREAF. 08913 Cerdanyola del Vallès, Catalonia, Spain
- ^e Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang
- 12 University, Hangzhou, 310058, China
- 13 *Corresponding author at: Institute of Geography, Fujian Normal University, Fuzhou 350007,
- 14 China. Tel.: +86 591 83465214.
- 15 E-mail addresses: wangweiqi15@163.com j.sardans@creaf.uab.cat
- 16

17 ABSTRACT

The need of more food production, an increase in acidic deposition and the large 18 capacity of paddy to emit greenhouse gases all coincide in several areas of China. 19 Studying the effects of acid rain on the emission of greenhouse gases and the 20 productivity of rice paddies are thus important, because these effects are currently 21 unknown. We conducted a field experiment for two rice croppings (early and late 22 23 paddies independent experiment) to determine the effects of simulated acid rain (control, normal rain, and treatments with rain at pH of 4.5, 3.5 and 2.5) on the fluxes of CO₂, 24 CH₄ and N₂O and on rice productivity in subtropical China. Total CO₂ fluxes at pHs of 25 26 4.5, 3.5 and 2.5 were 10.3, 9.7 and 3.2% lower in the early paddy and 28.3, 14.8 and 6.8% lower in the late paddy, respectively, than the control. These differences from the 27 control were significant for pH 3.5 and 4.5. Total CH₄ fluxes at pHs of 4.5, 3.5 and 2.5 28 29 were 50.4, 32.9 and 25.2% lower in the early paddy, respectively, than the control. pH had no significant effect on CH_4 flux in the late paddy or for total (early + late) 30 emissions. N₂O flux was significantly higher at pH 2.5 than 3.5 and 4.5 but did not 31 differ significantly from the flux in the control. Global-warming potentials (GWPs) 32 were lower than the control at pH 3.5 and 4.5 but not 2.5, whereas rice yield was not 33 appreciably affected by pH. Acid rain (between 3.5 and 4.5) may thus significantly 34 affect greenhouse gases emissions by altering soil properties such as pH and nutrient 35 pools, whereas highly acidic rain (pH 2.5) could increase GWPs (but not significantly), 36 probably partially due to an increase in the production of plant litter. 37

38

39 Keywords: Paddy, greenhouse gases, acid rain, rice productivity

40 **1.Introduction**

Acid rain is one of the most important environmental problems, due to pollutants such 41 as SO₂, and NO_X that become very acidic compounds such as sulfuric and nitric acids 42 when mixed with atmospheric water, (Driscoll et al., 2001).. Acid rain has important 43 44 influences on the storage and release of nutrients in ecosystems (Rosi-Marshall et al., 2016) and on plant growth (Medeiros et al., 2016). Acid rain can also have feedback 45 effects on climate change by altering ecosystem function. The effect of simulated acid 46 rain on soil respiration and CO₂ emissions has been studied in a subtropical mixed 47 48 coniferous and broadleaf forest, and the result showed acid rain marginally reduced soil respiration in the first year, but significantly reduced soil respiration in the second year. 49 50 (Liang et al., 2016), and other studies have focused on the effect of water acidified with sulfuric acid on CH₄ and CO₂ emissions, observing that it specially decreased the CH₄ 51 fluxes (Estop-Aragonés et al., 2016), N₂O emission from a subtropical forest was 52 decreased in the sulfate (S) deposition treatment (Fan et al., 2017). Most studies have 53 54 been in natural ecosystems, such as peatland where CH_4 , CO_2 and N_2O emissions have been concurrently studied (Lozanovska et al., 2016), but such studies of concurrent CH₄, 55 CO₂ and N₂O emissions are rare. Certainly exist some previous similar studies applying 56 57 acid rain to rice mainly focused on the growth and physiological variables (Wang et al., 2014a; Liang et al., 2015). Fewer studies have shown that acid rain can decrease CH₄ 58 emission, because the acid rain included sulfate (Gauci et al., 2015). More studies 59

60	measuring concurrent CH ₄ , CO ₂ and N ₂ O emissions are thus necessary for the realistic
61	scientific evaluation of the effect of acid rain on the emission of greenhouse gases
62	(GHGs) and on overall global-warming potentials (GWPs) of all the greenhouse gases
63	capacity to trap heat (Elrod, 1999).
64	Soil is an ecosystem component most affected by acidic deposition (Reininge et al.,
65	2011). Soil receives a higher H ⁺ load as the input of acid rain increases, leading to
66	acidification, inhibition of litter decomposition, nutrient loss and decreased microbial
67	activity (Wang et al., 2012; Liu et al., 2014; Qiu et al., 2015).
68	Rice currently feeds more than 50% of the global population (Haque et al., 2015),
69	and its production will need to increase by 40% by the end of 2030 to meet the demand
70	for food from the growing population worldwide (FAO, 2009). China has the second
71	largest area of rice cultivation in the world, and the emission of GHGs from rice
72	cultivation accounts for 40% of the total agricultural source of GHGs (Singla and
73	Inubushi, 2014). At the same time, rapid economic growth and increased energy
74	demand have led to severe air pollution in China, such as acid rain. Southern China now
75	ranks third after northeastern North America and central Europe as a region of the world
76	most seriously affected by acid rain (Singh and Agrawal, 2007). Acidic precipitation
77	has fallen in about 40% of the entire country and particularly in fast developing regions
78	(Wang et al., 2007). Ninety percent (in area basis) of the paddies in China are in the
79	subtropics, such as in Fujian, Jiangxi and Hunan Provinces, and over 40% of these areas
80	are affected by acid rain, especially in Fujian, where acid rain can have pHs as low as

about 3.5 (An, 2016). The effects of acid rain on paddy-field GHG emissions and yields,
however, are poorly known.

We conducted an experiment in a rice paddy to determine the effects of acid rain on GHG emissions, the soil ecosystem and rice yield. Our objectives were to: a) determine the effect of acid rain on CO₂, CH₄ and N₂O fluxes in early and late paddies and b) assess the impacts of acid rain on rice productivity and on CO₂, CH₄ and N₂O emissions per unit yield in early and late paddies. We thus also aimed to provide a scientific basis for the selection and adaptation of countermeasures for mitigating GHG emissions and rice production from rice cultivation in an area affected by acid rain.

90

91 **2. Materials and methods**

92 2.1.Study site and experimental design

We conducted a field experiment in 2015 during the early paddy season (16 April to 16 July) and the late paddy season (25 July to 6 November) at the Fujian Academy of Agricultural Sciences, Fujian, southeastern China (26.1°N, 119.3°E) (Fig. 1). The soil texture in the top 15 cm of the soil were 12, 60 and 28%, of clay, silt and sand respectively. Soil bulk density was 1.1 g cm⁻³, soil pH was 6.5; soil organic carbon (C) concentration was 18.1 mg g⁻¹, total soil nitrogen concentration was 1.2 mg g⁻¹ and total soil phosphorus concentration was 1.1 g kg⁻¹ (Wang et al. 2014b, 2015).

The soil crop surface was plowed at 15 cm of depth with a moldboard plow and
was leveled immediately before transplantation. Rice seedlings were transplanted to a

This is the accepted version of the following article: Wang, Chun et al. "Effect of simulated acid rain on CO2, CH4 and N2O fluxes and rice productivity in a subtropical Chinese paddy field". *Environmental Pollution*, Vol. 243, Part B (December 2018), p. 1196-1205, which has been published in final form at https://doi.org/10.1016/j.envpol.2018.08.103 (December 2018), p. 1196-1205, which has been published in final form at https://doi.org/10.1016/j.envpol.2018.08.103 (December 2018), p. 1196-1205, which has been published in final form at https://creativecommons.org/licenses/by-two nc-nd/4.0/

102	depth of 5 cm with plant and row space of 14 and 28 cm, respectively, using a rice
103	transplanter. The rice genotype varieties were Hesheng 10 in early crop period and
104	Qinxiangyou 212 in late crop cultivar. We used the fertilizers commonly used in the
105	region (NH ₄ -P ₂ O ₅ -K ₂ O: 16-16-16%; Keda Fertilizer Co., Ltd., Jingzhou, China) and
106	urea (46% N). They were applied in three applications: one day before transplantation
107	(N, P and K at 42, 40 and 40 kg ha ⁻¹ , respectively), during the tiller-initiation stage
108	seven days after transplantation (DAT; N, P and K at 35, 20 and 20 kg ha ⁻¹ , respectively)
109	and during the panicle-initiation stage (56 DAT; N, P and K at 18, 10 and 10 kg ha ⁻¹ ,
110	respectively). Both paddies were flooded from 0 to 37 DAT, and an automatic water-
111	level controller was used to maintain water level at 5-7 cm above the soil surface during
112	this flooded period. Drainage period was between 37 and 44 DAT in both seasons. We
113	maintained the soil moist between 44 and 77 DAT for the early paddy and between 44
114	and 91 DAT for the late paddy. The paddy was drained two weeks before harvest (77
115	DAT for the early crop, 91 DAT for the late crop). We harvested 92 DAT and 106 DAT
116	for the early and late crop season respectively. Rice productivity was directly measured
117	by collection and determination of the grains weight at the harvesting stage.
118	Acid rain was simulated based on the <i>in situ</i> properties of acid rain (Table S1) by
119	adjusting the pH to 4.5, 3.5 and 2.5. We used mixed solutions of HNO_3 and H_2SO_4 . The
120	experimental plots consisted in a randomized block design, with triplicate plots for each
121	of the three treatments and controls, each plot was 10 m^2 . To prevent the exchange of

of the three treatments and controls, each plot was 10 m^2 . To prevent the exchange of 121 water and nutrients between individual plots we separated them using a 0.5 cm thick, 122

123	30 cm high PVC plate. The following treatments were tested in a block design: 1)
124	control, mineral fertilizer+urea, 2) simulated pH 4.5 acid rain, mineral
125	fertilizer+urea+acidic solution (pH 4.5), 3) simulated pH 3.5 acid rain, mineral
126	fertilizer+urea+acidic solution (pH 3.5) and 4) simulated pH 2.5 acid rain, mineral
127	fertilizer+urea+acidic solution (pH 2.5) (Fig. 2). Mineral fertilizers was a standard N-
128	P-K industrial fertilizer that did not contain urea but ammonium nitrate. The control
129	plots received the same doses of non acidified water. The paddy was managed using
130	practices typical of subtropical paddies in China (Zhang et al., 2013; Wang et al., 2015)
131	in both the amended and control treatments. Control and treatments plots were same
132	management. Air temperature and humidity during the study period are shown in
133	Fig.S1. The amount of simulated acid rain, equivalent to the local rainfall, was added
134	every 7 d. Wooden bridges were constructed in the study area to minimize soil
135	disturbance during flux measurement (Fig. 2).

136

137 2.2. Measurement of CO₂, CH₄ and N₂O fluxes

Static closed chambers were used to measure CO_2 , CH_4 and N_2O fluxes. Gas samples from each container were collected at 6–10 days intervals using the closed chamber method (Ali et al., 2008; Singla et al., 2014; Wang et al., 2015). Gas samples were collected once a week during the early and late paddies. Three samples were collected at intervals of 0, 15 and 30 min and injected into 100-ml air-evacuated aluminum foil bags (Delin Gas Packaging Co., Ltd., Dalian, China) (Wang et al., 2015). This is the accepted version of the following article: Wang, Chun et al. "Effect of simulated acid rain on CO2, CH4 and N2O fluxes and rice productivity in a subtropical Chinese paddy field". *Environmental Pollution*, Vol. 243, Part B (December 2018), p. 1196-1205, which has been published in final form at https://doi.org/10.1016/j.envpol.2018.08.103 (December 2018), p. 1196-1205, which has been published in final form at https://doi.org/10.1016/j.envpol.2018.08.103 (December 2018), p. 1196-1205, which has been published in final form at <a href="https://creativecommons.org/licenses/by-li nc-nd/4.0/

144	The CO ₂ , CH ₄ and N ₂ O concentrations in the headspace air samples were
145	determined by gas chromatography (Shimadzu GC-2010 and Shimadzu GC-2014,
146	Shimadzu Technologies Inc., Kyoto, Japan) using a stainless-steel Porapak Q column
147	(2 m in length, 4 mm OD, 80/100 mesh). More detail analysis seen the reference of
148	Wang et al., 2015. The cumulative CO ₂ , CH_4 and N_2O fluxes were calculated by
149	multiplying the daily fluxes of each gas at each measurement for the time interval and
150	then summing these values (Wang et al., 2014b, 2015).
151	
152	2.3.GWP
153	CO ₂ is typically used as the reference gas for estimating GWPs. The constants to
154	calculate GWP for CH_4 and N_2O are 34 and 298, respectively (based on a 100-year time
155	horizon, Myhre et al., 2013). The GWP was thus calculated as:
156	$GWP = cumulative CO_2 flux + cumulative CH_4 flux \times 34 + cumulative N_2O flux$
157	× 298.
158	2.4.Measurement of soil properties
159	Three replicate soil samples were transported to the laboratory and stored at 4 °C until
160	the analysis each time. Soil temperature, pH, salinity and water content in the top 15
161	cm were measured <i>in situ</i> in each plot on each sampling day by a pH/temperature meter
162	(IQ Scientific Instruments, Carlsbad, USA), 2265FS EC meter (Spectrum Technologies
163	Inc., Paxinos, USA) and TDR 300 meter (Spectrum Field Scout Inc., Aurora, USA).
164	We measured plant height at maturity using a meter scale. We also collected the
165	top 15 cm of soil in the four treatments and air-dried and finely ground the samples in

166	a ball mill after removing all roots and visible plant remains. Total organic C and total
167	N contents were determined by an Elementar Vario MAX CN Analyzer (Elementar
168	Scientific Instruments, Hanau, Germany). Labile organic C content was determined by
169	digestion with 333 mmol L^{-1} KMnO ₄ . Available N was extracted with 2 mol L^{-1} KCl (
170	Lu, 1999), and the content was determined using a San ⁺⁺ sequence flow analyzer (Skalar
171	Scientific Instruments, Breda, Netherlands).

172

173 2.5. Statistical analysis

174 We used general mixed models to analyze the differences of soil properties and CO₂, 175 CH₄ and N₂O emissions among the treatments. We used plot as a random factor and plot and time as nested factors within plot as random independent factors when time 176 was included in the analysis. We used the "lme" function of the "nlme" (Pinheiro et al., 177 178 2016) R package. Non-normally distributed variables were log-transformed. We chose the best model for each dependent variable using the Akaike information criterion. We 179 used the MuMIn (Barton, 2012) R package in the mixed models to estimate the 180 percentage of the variance explained by the model. We conducted Tukey's post hoc tests 181 to detect significant differences in the analyses for more than two treatments using the 182 "glht" function of the "multcomp" (Hothorn et al., 2013) R package. 183

We also performed general discriminant analysis (GDA) to determine the overall differences of soil salinity, pH, water content, soil temperature and CO₂, CH₄ and N₂O emissions among the control and amended treatments and sampling dates.. GDA is an This is the accepted version of the following article: Wang, Chun et al. "Effect of simulated acid rain on CO2, CH4 and N2O fluxes and rice productivity in a subtropical Chinese paddy field". *Environmental Pollution*, Vol. 243, Part B (December 2018), p. 1196-1205, which has been published in final form at https://doi.org/10.1016/j.envpol.2018.08.103 (December 2018), p. 1196-1205, which has been published in final form at https://treativecommons.org/licenses/by-nc-nd/4.0 (December 2018), p. 1196-1205, which has been published in final form at https://treativecommons.org/licenses/by-nc-nd/4.0 (December 2018), p. 1196-1205, which has been published in final form at https://treativecommons.org/licenses/by-nc-nd/4.0 (December 2018), p. 1196-1205, which has been published in final form at https://treativecommons.org/licenses/by-nc-nd/4.0 (December 2018), p. 1196-1205, which has been published in final form at https://treativecommons.org/licenses/by-nc-nd/4.0/ (December 2018), p. 1196-1205, which has been published in final form at https://treativecommons.org/licenses/by-nc-nd/4.0/ (December 2018), p. 1196-1205, which has been published in final form at https://treativecommons.org/licenses/by-nc-nd/4.0/ (December 2018), p. 1196-1205, p. 1106-1205, p.

187	appropriate tool for identifying the variables most responsible for the differences among
188	groups while controlling the component of the variance due to other categorical
189	variables, in this case time. The GDAs were performed using Statistica 8.0 (StatSoft,
190	Inc., Tulsa, USA).
191	We identified the possible interactive effects between time and emissions using
192	repeated-measures analyses of variance (RM-ANOVAs). The relationships between the
193	GHG fluxes and the soil properties were determined by Pearson correlation analysis.
194	The significance of differences between treatments was determined by Bonferroni's
195	post hoc tests (at $P < 0.05$). These statistical analyses were performed using SPSS

196 Statistics 18.0 (SPSS Inc., Chicago, USA).

197

198 **3.Results**

- 199 *3.1.CO*² *flux in the amended treatments*
- 200 The CO₂ flux for the early paddy varied significantly across sampling dates (Table S2),
- 201 but the interactions between treatment and sampling date or between the treatments did
- 202 not (Fig. 3). The CO₂ flux in each treatment increased with rice growth and was highest
- ²⁰³ 64 DAT at 3448, 3461, 3497 and 4292 mg m⁻² h⁻¹ in the control and pH 4.5, 3.5 and 2.5
- treatments, respectively. The CO₂ fluxes were lowest 15 DAT in controls and all
- treatments. In this day we measured 118, 120, 108 and 93.5 CO_2 mg m⁻² h⁻¹ in the
- 206 control and pH 4.5, 3.5 and 2.5 treatments, respectively.
- 207 The CO_2 fluxes and the interactions between treatment and sampling date for the

This is the accepted version of the following article: Wang, Chun et al. "Effect of simulated acid rain on CO2, CH4 and N2O fluxes and rice productivity in a subtropical Chinese paddy field". *Environmental Pollution*, Vol. 243, Part B (December 2018), p. 1196-1205, which has been published in final form at https://doi.org/10.1016/j.envpol.2018.08.103 (December 2018), p. 1196-1205, which has been published in final form at https://treativecommons.org/licenses/by-nc-nd/4.0 (December 2018), p. 1196-1205, which has been published in final form at https://treativecommons.org/licenses/by-nc-nd/4.0 (December 2018), p. 1196-1205, which has been published in final form at https://treativecommons.org/licenses/by-nc-nd/4.0 (December 2018), p. 1196-1205, which has been published in final form at https://treativecommons.org/licenses/by-nc-nd/4.0 (December 2018), p. 1196-1205, which has been published in final form at https://treativecommons.org/licenses/by-nc-nd/4.0/ (December 2018), p. 1196-1205, which has been published in final form at https://treativecommons.org/licenses/by-nc-nd/4.0/ (December 2018), p. 1196-1205, which has been published in final form at https://treativecommons.org/licenses/by-nc-nd/4.0/ (December 2018), p. 1196-1205, p. 1106-1205, p.

208	late paddy differed significantly across treatments and sampling dates (Table S2). The
209	fluxes were generally significantly lower in the amended treatments than the control
210	(Fig. 3). The CO ₂ flux in each treatment increased with rice growth and was highest 36
211	DAT (2216 mg m ⁻² h ⁻¹), 50 DAT (1767 mg m ⁻² h ⁻¹), 50 DAT (2071 mg m ⁻² h ⁻¹) and 50
212	DAT (2414 mg m ⁻² h ⁻¹) in the control and pH 4.5, 3.5 and 2.5 treatments, respectively.
213	The fluxes were lowest 1 DAT at 38.9, 189, 158 and 205 mg m ⁻² h ⁻¹ in the control and
214	pH 4.5, 3.5 and 2.5 treatments, respectively.
215	The total CO_2 fluxes in the pH 4.5, 3.5 and 2.5 treatments were 10.3, 9.7 and 3.2%
216	lower in the early crop and 28.3, 14.8 and 6.8% lower in the late paddy, respectively,
217	than the control. These differences were significant for the pH 3.5 and 4.5 treatments

218 (Tables 1, S2 and S3).

219

220 *3.2.CH*⁴ *flux in the amended treatments*

221 The CH₄ fluxes and the interaction between treatment and sampling date differed significantly in the early paddy (Tables S2 and S3, Fig. 3). The fluxes were generally 222 significantly lower in the amended treatments than the control (Fig. 3). The fluxes were 223 low (<1.5 mg m⁻² h⁻¹) during the initial period of growth of the early crop (before 8 224 DAT) but increased until 36 DAT to peaks of 12.94, 10.17 and 8.81 mg m⁻² h⁻¹ in the 225 control and pH 3.5 and 2.5 treatments, respectively, and by 50 DAT to a peak of 5.48 226 mg $m^{-2} h^{-1}$ in the pH 4.5 treatment. The flux then decreased steadily until the rice was 227 228 harvested.

This is the accepted version of the following article: Wang, Chun et al. "Effect of simulated acid rain on CO2, CH4 and N2O fluxes and rice productivity in a subtropical Chinese paddy field". *Environmental Pollution*, Vol. 243, Part B (December 2018), p. 1196-1205, which has been published in final form at https://doi.org/10.1016/j.envpol.2018.08.103 (December 2018), p. 1196-1205, which has been published in final form at https://treativecommons.org/licenses/by-nc-nd/4.0 (December 2018), p. 1196-1205, which has been published in final form at https://treativecommons.org/licenses/by-nc-nd/4.0 (December 2018), p. 1196-1205, which has been published in final form at https://treativecommons.org/licenses/by-nc-nd/4.0 (December 2018), p. 1196-1205, which has been published in final form at https://treativecommons.org/licenses/by-nc-nd/4.0 (December 2018), p. 1196-1205, which has been published in final form at https://treativecommons.org/licenses/by-nc-nd/4.0/ (December 2018), p. 1196-1205, which has been published in final form at https://treativecommons.org/licenses/by-nc-nd/4.0/ (December 2018), p. 1196-1205, which has been published in final form at https://treativecommons.org/licenses/by-nc-nd/4.0/ (December 2018), p. 1196-1205, p. 1106-1205, p.

229	The CH ₄ flux in the late paddy differed significantly across sampling dates and
230	for the interaction between treatment and sampling date (Tables S2 and S3) but not
231	among the treatments. Fluxes were high (>9.9 mg m ⁻² h ⁻¹) during the initial period of
232	growth of the late paddy (before 22 DAT) and then decreased steadily until the rice was
233	harvested. The total CH_4 fluxes in the early crop were 50.4, 32.9 and 25.2% lower in
234	the pH 4.5, 3.5 and 2.5 treatments, respectively, than the control (Tables 1, S2 and S3).
235	The late and total (early + late) emissions did not differ significantly among the
236	treatments.

237

238 3.3.N₂O flux in the amended treatments

The N₂O flux for the early paddy varied significantly across sampling dates and the 239 interaction between treatment and sampling date but not among the treatments (Tables 240 S2 and S3, Fig. 3). The flux was highest 64 DAT (347 μ g m⁻² h⁻¹), 15 DAT (105 μ g m⁻ 241 2 h⁻¹), 15 DAT (125 µg m⁻² h⁻¹) and 71 DAT (155 µg m⁻² h⁻¹) and was lowest 36 DAT 242 (5.96 µg m⁻² h⁻¹), 85 DAT (-26.0 µg m⁻² h⁻¹), 71 DAT (-61.3 µg m⁻² h⁻¹) and 29 DAT (-243 11.5 μ g m⁻² h⁻¹) in the control and pH 4.5, 3.5 and 2.5 treatments, respectively. 244 The flux for the late paddy differed significantly across sampling dates and the 245 interaction between treatment and sampling date but not among the treatments (Tables 246 S2 and S3, Fig. 3). The flux was highest 85 DAT (137 μ g m⁻² h⁻¹), 106 DAT (356 μ g 247 $m^{-2} h^{-1}$), 22 DAT (52.8 µg $m^{-2} h^{-1}$) and 106 DAT (392 µg $m^{-2} h^{-1}$) and was lowest 92 248 DAT (18.1 µg m⁻² h⁻¹), 57 DAT (-35.3 µg m⁻² h⁻¹), 64 DAT (-102 µg m⁻² h⁻¹) and 1 DAT 249

250	(-23.1 $\mu g~m^{\text{-2}}~h^{\text{-1}})$ in the control and pH 4.5, 3.5 and 2.5 treatments, respectively.
251	Cumulative N_2O fluxes were significantly higher at pH 2.5 than pH 3.5 and 4.5
252	but not the control (Tables 1, S2 and S2). Total warming potential thus generally tended
253	to decrease from pH 3.5 to 4.5 (Table 1).

254

255 3.4.Differences in the soil properties among the treatments

256 Soil pH, temperature and salinity for the early paddy and pH for the late paddy differed significantly among sampling dates, treatments and interactions between treatment and 257 sampling date (Tables S3 and S4, Fig. 4). Soil-water content for the early paddy differed 258 259 significantly among sampling dates but not treatments or the interaction between treatment and sampling date (Tables S3 and S4). Soil salinity and water content for the 260 late paddy differed significantly among sampling dates and treatments but not the 261 262 interaction between treatment and sampling date. Soil temperature for the late paddy differed significantly among sampling dates but not the interactions between treatment 263 and sampling date or between treatments. 264

Soil pH was 6.2, 8.3 and 5.1% lower in the early crop and 3.6, 3.9 and 5.9% lower in the late paddy in the pH 4.5, 3.5 and 2.5 treatments, respectively, than the control. Soil temperature varied little among the treatments, <0.5% for both the early and late paddies. Soil salinity was 9.1, 22.4 and 22.6% higher in the early paddy and 2.1, 12.1 and 15.6% higher in the late paddy in the pH 4.5, 3.5 and 2.5 treatments, respectively, than the control. Soil-water content was 2.1, 7.1 and 7.8% higher in the early paddy and

- 4.5, 8.0 and 10.3% higher in the late paddy in the pH 4.5, 3.5 and 2.5 treatments,
 respectively, than the control.
- 273
- 274 *3.5.Relationships between gaseous flux and soil properties*

The seasonal variations of the GHG emissions were correlated with some of the soil 275 properties for each type of gas (Table S5). The seasonal CO₂ flux in the early paddy 276 277 was generally correlated in all treatments positively with soil temperature and negatively with soil-water content and salinity. The CO₂ flux in the late paddy was 278 negatively correlated with CH₄ flux. At the same time, there was a negative effect of 279 280acid rain on both the CO₂ and CH₄ fluxes. More CO₂ emissions are linked to higher rice growth, more O₂ input into soil, and lower CH₄ production, thereby CO₂ and CH₄ 281 emission should logically show a negative correlation. Moreover, the seasonal CH₄ flux 282 283 in all treatments were positively correlated with soil salinity and water content for the early crop and with soil salinity, water content and temperature for the late paddy (Table 284 S5). The seasonal N₂O flux was generally not clearly correlated with any of the soil 285 properties for either paddy in any of the treatments. 286

287

288 3.6.Rice productivity and GWP

Rice yield did not differ significantly between the amended treatments and the control (Table 1). GWP was significantly higher for CO_2 than CH_4 and N_2O , by 78.3-95.0% in the early and late paddies. The total GWP (kg CO_2 -eq ha⁻¹) for all three gases was significantly lower in the pH 4.5 and 3.5 treatments than the control for the late paddy

and the sum of the early and late paddy (P < 0.05). The total GWPs were 13.6, 11.4 and 293 4.3% lower in the early paddy, 23.7, 15.4 and 6.6% lower in the late paddy and 19.3, 294 13.7 and 5.6% lower for both paddy combined in the pH 4.5, 3.5 and 2.5 treatments, 295 respectively, than the control. 296 The total GWPs based on rice yield were 3.4, 10.1 and 4.4% lower in the early 297 paddy and 15.4, 23.1 and 2.8% lower in the late paddy in the pH 4.5, 3.5 and 2.5 298 treatments, respectively, than the control. The total GWPs based on rice yield for both 299 paddy combined were 9.0, 16.2 and 3.7% lower in the pH 4.5, 3.5 and 2.5 treatments, 300 respectively, than the control. None of these differences in total GWP based on rice 301

- 302 yield were significant.
- 303 *3.7.GDA results*

304 The GDA for the early paddy clearly and significantly separated all treatments (Table

305 S6, Fig. 5A). The variables that determined these separations were soil salinity, water

306 content, pH and CH₄ and N₂O emissions (Table S7). The GDA for the late paddy also

307 significantly separated all treatments (Table S8, Fig. 5B). The variables that determined

308 these separations were soil pH and water content and CO₂ and CH₄ emissions (Table

309 S9).

310

311 *3.8.Plant height and soil C and N contents*

Plant height and soil total organic C, N, labile organic C and available N contents were
slightly higher in the pH 2.5 than the other amended treatments, especially the pH 3.5
treatment (Table 2).

This is the accepted version of the following article: Wang, Chun et al. "Effect of simulated acid rain on CO2, CH4 and N2O fluxes and rice productivity in a subtropical Chinese paddy field". *Environmental Pollution*, Vol. 243, Part B (December 2018), p. 1196-1205, which has been published in final form at https://doi.org/10.1016/j.envpol.2018.08.103 (December 2018), p. 1196-1205, which has been published in final form at https://treativecommons.org/licenses/by-nc-nd/4.0/ (December 2018), p. 1196-1205, which has been published in final form at https://treativecommons.org/licenses/by-nc-nd/4.0/ (December 2018), p. 1196-1205, which has been published in final form at https://treativecommons.org/licenses/by-nc-nd/4.0/ (December 2018), p. 1196-1205, which has been published in final form at https://treativecommons.org/licenses/by-nc-nd/4.0/ (December 2018), p. 1196-1205, which has been published in final form at https://treativecommons.org/licenses/by-nc-nd/4.0/

315

316 **4.Discussion**

317	Acid rain may have both direct and indirect effects on soil microbial communities
318	(Wang et al., 2014c; Xu et al., 2015). Ample evidence suggests that acid rain alters
319	soil properties by decreasing pH or by directly altering the quality and amount of
320	organic C sources, such as by litter decomposition and fine-root turnover, and that
321	these influences affect soil nutrient pools and associated micro-environmental factors
322	(Hines et al., 2006; El-Tarabily et al., 2008). Less evidence supports the
323	consequences of acid rain on gas emissions.
324	4.1. Effects of the amended treatments on CO_2 flux
325	CO ₂ emission varied seasonally, increasing with rice growth and temperature (Fig.3).
326	CO ₂ production and emission can increase soil microbial activity and alter plant
327	respiration (Asensio et al., 2012; Slot et al., 2013). The increase in CO ₂ emission in

the early crop may have been due to the high amount of N added, which could act as a

329 fertilizer and increase decomposer activity (Liu et al., 2017).

The CO₂ fluxes were generally lower in the amended treatments than the control (Fig.3). The acid rain in the study area (and simulated in our experiment) contain large quantities of Na⁺, K⁺, Mg²⁺, Ca²⁺, Cl⁻, NO₃⁻ and SO₄²⁻ (Table S1), so the soil concentrations of these ions and soil salinity will increase. Higher salinity will decrease microbial activity and population sizes, which would then inhibit soil respiration, ultimately decreasing CO₂ production and emission. Similarly, acid rain can alter soil This is the accepted version of the following article: Wang, Chun et al. "Effect of simulated acid rain on CO2, CH4 and N2O fluxes and rice productivity in a subtropical Chinese paddy field". *Environmental Pollution*, Vol. 243, Part B (December 2018), p. 1196-1205, which has been published in final form at <u>https://doi.org/10.1016/j.envpol.2018.08.103</u> © 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license <u>http://creativecommons.org/licenses/by-nc-nd/4.0/</u>

336	properties by decreasing pH and affecting nutrient pools. Our simulated acid rain was
337	rich in Ca^{2+} (73.0 µmol l ⁻¹), and Ca^{2+} can combine with CO ₂ to form CaCO ₃ , which is
338	deposited in the soil, buffering CO ₂ emission (Phillips et al., 2013). Our simulated acid
339	rain was also rich in SO ₄ ²⁻ (76.4 μ mol l ⁻¹), and an increase in SO ₄ ²⁻ can increase the
340	rate of SO_4^{2-} reduction and the accumulation of sulfide in the soil. High soil sulfide
341	concentrations can inhibit microbial activity and consequently CO ₂ emissions (Chen
342	et al., 2013). Acid rain can also inhibit plant growth, decreasing above- and
343	belowground biomasses and ultimately plant respiration and CO ₂ emission.

344

345 4.2. Effects of the amended treatments on CH₄ flux

CH₄ emission varied seasonally. Emissions of CH₄ were lower soon after rice (Fig.3) 346 transplantation when the soil was not strictly anaerobic. The emissions were also 347 lower during the final ripening and drainage periods. These results agreed with those 348 by Minamikawa et al. (2014), in which a lowering of soil-water content was linked with 349 a decrease in the abundance of methanogenic archaea and hence CH₄ production and 350 with an increase in the abundance of methanotrophs, thereby increasing CH₄ oxidation. 351 The CH₄ fluxes were generally lower in the amended treatments than the control. Our 352 simulated acid rain was rich in SO_4^{2-} (76.4 µmol l^{-1}) and NO_3^{-} (119 µmol l^{-1}) (Table 353 S1), both of which are alternative electron acceptors to C substrates for methanogens 354 (Jiang et al., 2013) and which would decrease the amount of CH₄ produced (Ali et al., 355 2008). The simulated acid rain also increased soil salinity in our study, and high salinity 356

This is the accepted version of the following article: Wang, Chun et al. "Effect of simulated acid rain on CO2, CH4 and N2O fluxes and rice productivity in a subtropical Chinese paddy field". *Environmental Pollution*, Vol. 243, Part B (December 2018), p. 1196-1205, which has been published in final form at <u>https://doi.org/10.1016/j.envpol.2018.08.103</u> © 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license <u>http://creativecommons.org/licenses/by-nc-nd/4.0/</u>

357 will inhibit microbial methane production and thus emission (Wang et al., 2017).

358	Similarly, acid rain can also restrain the activities of some microorganisms by its
359	effects on enzymatic activity (Ling et al., 2010), which decreases the soil cation and
360	available phosphorus contents, the release of heavy metals, and the soil pH. All these
361	decreases are consistent with the observed lower total CH ₄ production in both paddies.
362	

363 4.3. Effects of the amended treatments on N₂O flux

N₂O emission had no obvious pattern of seasonal variation. Emissions were low 364 throughout the growing season. The paddies in our study region are strongly N limited 365 366 (Wang et al., 2015), but N fertilization from acid rain can increase the availability of N to plants, soil fertility and plant production. Some studies have observed that rain 367 containing nitric acid increased soil microbial biomass (Enowashu et al., 2009; Ham et 368 al., 2010). Under the flooding period or after strong storms the increases in soil 369 reduction power contribute to reduce N₂O to N₂ leading to lower emissions and even to 370 a net N₂O uptake. 371

The N₂O fluxes were generally lower in the amended treatments than the control, likely because the positive effect of soil S and N fertilization was lower than the negative effect of acidity on N₂O formation. Our simulated acid rain was rich in SO_4^{2-} (76.4 µmol l⁻¹) (Table S1), so it likely decreased N₂O emission by stimulating sulfate reduction (Yavitt et al., 1987) and thus the production of sulfide, high concentrations of which can inhibit microbial activity and subsequently lead to lower N₂O emissions. This is the accepted version of the following article: Wang, Chun et al. "Effect of simulated acid rain on CO2, CH4 and N2O fluxes and rice productivity in a subtropical Chinese paddy field". *Environmental Pollution*, Vol. 243, Part B (December 2018), p. 1196-1205, which has been published in final form at https://doi.org/10.1016/j.envpol.2018.08.103 © 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/bync-nd/4.0/

378	N_2O emission from a subtropical forest was also found to decrease in response to a
379	sulfate deposition treatment (Fan et al., 2017), which was similar to our study.
380	The emission of N_2O is mainly due to biological processes, such as nitrification
381	followed by denitrification (Robertson and Tiedje, 1987). Simek et al. (2002) suggested
382	that denitrification was the major cause of N_2O production. The emission of N_2O from
383	acidic soils starts mainly with the nitrification of NH_4^+ -N (Martikainen and Boer, 1993;
384	Martikainen et al., 1993), because decreases in soil pH inhibited the growth of nitrifying
385	bacteria (Keeney, 1980) restricting nitrification (Robertson and Groffman, 2015).
386	Nitrification can occur in soil with a low pH (Martikainen and Boer, 1993), but the rate
387	is generally very low at pHs <6.0 (Alexander, 1977). Acid rain decreases soil pH, which
388	is an important variable controlling microbial activity in many soils. Soil acidity plays
389	a major role in the cycling of soil C and N by influencing microbial activity (Rousk et
390	al., 2010), for instance, restricting nitrification (Robertson and Groffman, 2015).

391

4.4.Effects of the amended treatments on nutrient balance and rice yield 392

Low soil pH had positive effects on C accumulation in soil (Wang et al., 2010) by 393 suppressing microbial activities (Lv et al., 2014) and/or by decreasing microbial 394 biomass and soil respiration (Chen et al., 2012b, 2015; Liang et al., 2013). All these 395 changes could contribute to the accumulation of C in soil under prolonged exposure to 396 acid rain, providing a mechanistic explanation for why the rice paddies can still 397 accumulate C under conditions of acid rain. Some field and laboratory studies have 398

399	found that acidic deposition decreased soil pH, increased nutrient loss (Makarov and
400	Kiseleva, 1995) and altered microbial-community structure (Pennanen et al., 1998;
401	Pennanen, 2001). Chronic N deposition, though, can reduce soil respiration (Burton et
402	al., 2004) and the mineralization of native C (Hagedorn et al., 2001), decreasing the
403	mineralization of soil organic C and N.

The available N content was notably higher in the late than the early paddy at the 404 405 same pH level (Table 2), perhaps due to the ability of the microbial communities to adapt to their new environmental conditions, such as more acidic conditions, or 406 microbial biomass may have been re-established with time (Blagodatskaya and 407 Anderson, 1999; Pennanen et al., 1998). Rice yield in the early paddy was lower in the 408 amended treatments than the control, consistent with a decrease in the net 409 photosynthetic rate under conditions of acid rain (Hu et al., 2014). Rice yield was higher 410 411 in the late than the early paddy (Table 1), perhaps because the soil microbial community adapted to the low pH conditions. The soil C and N contents nevertheless recovered in 412 the pH 2.5 relative to the pH 3.5 treatment, indicating that soil processes responsible 413 for mineralization decreased and/or litter production increased when soil acidity 414 reached a tipping point. Moreover, rice yield also tended to be lower, but not 415 significantly, which is also related with the soil nutrient balance. 416

417

418 **5.Conclusions**

419 The GWPs were significantly lower but rice yield did not significantly change under

420	the simulated acid rain. The pH 3.5 and 4.5 treatments negatively affected GWP, but
421	the pH 2.5 treatment did not. Litter input was higher in the pH 2.5 than the other
422	treatments (personal observation). More substrate was available for microbial GHG
423	production and thus emission in the pH 2.5 was higher than in the pH 3.5 and 4.5
424	treatments. The results thus showed that the effects of acid rain on greenhouse gas
425	emissions from rice croplands will depend on the level of acidity. Until 3.5 pH the
426	effects are not important in yield and gas emissions or there is even some level of
427	decreases in greenhouse gas emissions, but if pH reaches values near or below 2.5, the
428	greenhouse gas emissions do not decrease and at mid-term can decrease the yield
429	production as a result of the direct negative impact on plant health status.

430 Acknowledgments

The authors would like to thank Dengzhou Gao, Miaoying Wang and Qiuli Zhu for 431 their assistance during field sampling. Funding was provided by the National Science 432 Foundation of China (41571287), Research Project of Public Institute of Fujian 433 Province (2018R1034-1), Outstanding Young Research Talents in Higher Education of 434 Fujian Province (2017), the European Research Council Synergy grant ERC-SyG-435 2013-610028 IMBALANCE-P, the Spanish Government grant CGL2016-79835-P and 436 the Catalan Government grant SGR 2017-1005. 437 **Conflicts of Interest** 438

439 The authors declare no conflicts of interest.

440

441 **Reference**

This is the accepted version of the following article: Wang, Chun et al. "Effect of simulated acid rain on CO2, CH4 and N2O fluxes and rice productivity in a subtropical Chinese paddy field". *Environmental Pollution*, Vol. 243, Part B (December 2018), p. 1196-1205, which has been published in final form at https://doi.org/10.1016/j.envpol.2018.08.103 (December 2018), p. 1196-1205, which has been published in final form at https://creativecommons.org/licenses/by-nc-nd/4.0/ (December 2018), p. 1196-1205, which has been published in final form at https://creativecommons.org/licenses/by-nc-nd/4.0/ (December 2018), p. 1196-1205, which has been published in final form at https://creativecommons.org/licenses/by-nc-nd/4.0/ (December 2018), p. 1196-1205, which has been published in final form at https://creativecommons.org/licenses/by-nc-nd/4.0/ (December 2018), p. 1196-1205, which has been published in final form at https://creativecommons.org/licenses/by-nc-nd/4.0/

- 442 Ali, M.A., Oh, J.H. and Kim, P.J., 2008. Evaluation of silicate iron slag amendment
- 443 on reducing methane emission from flood water rice farming. Agr. Ecosyst.
- 444 Environ. 128, 21–26.
- An, W.L., 2016. Effects of simulated acid rain on nutrient dynamics of paddy field
- 446 and greenhouse gases emission in Fuzhou plain. Fujian Normal University.
- 447 Asensio, D., Yuste, J.C., Mattana, S., Ribas, A., Llusià, J. and Peñuelas, J., 2012. Litter
- 448 VOCs induce changes in soil microbial biomass C and N and largely increase soil
 449 CO₂ efflux. Plant Soil 360, 163–174.
- Barton, K., 2012. MuM. In: Multi-model inference. R package version 1.7.2.
 <u>http://CRAN</u>. R-283 project.org/package=MuMIn. at <u>http://cran.r-project.org/</u>
 package=MuMIn>.
- Chen, B.Y., Liu, S.Q., Huang, J.Y., Shiau, T.J. and Wang, Y.M., 2013. Reduction of
 carbon dioxide emission by using microbial fuel cells during wastewater
 treatment. Aerosol Air Qual. Res. 13, 266–274.
- Driscoll C T, Lawrence G B, Bulger A J, Butler T J, Cronan C S, Eagar C, Lambert K
 F, Likens G E, Stoddard J L, Weathers K C., 2001. Acidic deposition in the
 Northeastern United States: sources and inputs, ecosystem effects, and
 management strategies. BioScience 51, 180–198.
- El-Tarabily, K.A., Nassar, A.H., Sivasithamparam, K., 2008. Promotion of growth of
 bean (*Phaseolus vulgaris* L.) in a calcareous soil by a phosphate-solubilizing,
 rhizospherecompetent isolate of Micromonospora endolithica. Appl. Soil Ecol.
 39, 161–171.
- Enowashu, E., Poll, C., Lamersdorf, N., Kandeler, E., 2009. Microbial biomass and
 enzyme activities under reduced nitrogen deposition in a spruce forest soil. Appl.
 Soil Ecol. 43, 11–21.
- Estop-Aragonés, C., Zając, K., Blodau, C., 2016. Effects of extreme experimental
 drought and rewetting on CO₂ and CH₄ exchange in mesocosms of fourteen
 European peatlands with different nitrogen and sulfur deposition. Global Change
 Biol. 22, 2285–2300.

- Fan, J., Xu, Y., Chen, Z., Xiao, J., Liu, D., Luo, J., Bolan, N., Ding, W., 2017. Sulfur
 deposition suppressed nitrogen-induced soil N₂O emission from a subtropical
 forestland in southeastern China. Agr. Forest Meteorol. 233, 163–170.
- 474 FAO. [Food and Agricultural Organization of the United Nations]., 2009. OECD-FAO
 475 Agricultural Outlook 2011–2030.
- Gao, Y., Chen, H. and Zeng, X., 2014. Effects of nitrogen and sulphur deposition on
 CH₄ and N₂O fluxes in high-altitude peatland soil under different water tables in
 the Tibetan Plateau. Soil Sci. Plant Nutr. 60, 404–410.
- Gauci, V., Dise, N. B., Howell, G., & Jenkins, M. E., 2015. Suppression of rice methane
 emission by sulfate deposition in simulated acid rain. J. Geophys. Res-Biogeo.
 113, 159-169
- Ham, Y.S., Kobori, H., Kang, J.H., Kim, J.H., 2010. Ammonium nitrogen deposition
 as a dominant source of nitrogen in a forested watershed experiencing acid rain
 in central Japan. Water Air Soil Pollut. 212, 337–344.
- Haque, M.M., Kim, S.Y., Ali, M.A., Kim, P.J., 2015. Contribution of greenhouse gas
 emissions during cropping and fallow seasons on total global warming potential
 in mono-rice paddy soils. Plant Soil, 387, 251–264.
- 488 Hines, J., Megonigal, J.P., Denno, R.F., 2006. Nutrient subsidies to belowground
 489 microbes impact aboveground food web interactions. Ecology 87, 1542–1555.
- Hothorn, T., Bretz, F., Wesrfall, P., 2013. Package "*mulcomp*" (WWW document).
 U.R.L. <u>http://cran.stat.sfu.ca/web/packages/mulcomp.pdf</u>. (accessed
 16.03.17).
- 493 Hou, H., Peng, S., Xu, J., Yang, S., Mao, Z., 2012. Seasonal variations of CH₄ and N₂O
- 494 emissions in response to water management of paddy fields located in Southeast495 China. Chemosphere 89, 884–892.
- 496 Jiang, G., Sharma, K.R., Yuan, Z., 2013. Effects of nitrate dosing on methanogenic

497 activity in a sulfide-producing sewer biofilm reactor. Water Res. 47, 1783–1792.

498 Liang, C., Ge, Y., Su, L., Bu, J., 2015. Response of plasma membrane H+-ATPase in

- rice (*Oryza sativa*) seedlings to simulated acid rain. Environ. Sci. Pollut. Res. Int.
 22, 535-545.
- Liang, G., Hui, D., Wu, X., Wu, J., Liu, J., Zhou, G., Zhang, D., 2016. Effects of
 simulated acid rain on soil respiration and its components in a subtropical mixed
 conifer and broadleaf forest in southern China. Environ Sci-Proc. Imp. 18(2),
 246–255.
- Liu, X., Zhou, J., Li,W., Xu, J., Brookes, P.C., 2014. The combined effects of urea
 application and simulated acid rain on soil acidification and microbial community
 structure. Environ. Sci. Pollut. Res. Int. 21, 6623–6631.
- Lozanovska, I., Kuzyakov, Y., Krohn, J., Parvin, S., Dorodnikov, M., 2016. Effects of
 nitrate and sulfate on greenhouse gas emission potentials from microform-derived
 peats of a boreal peatland: A ¹³C tracer study. Soil Biol. Biochem. 100, 182–191.
- 511 Martikainen, P. J., Boer, W., (1993). Nitrous oxide production and nitrification in acidic
- soil from a dutch coniferous forest. Soil Biol. Biochem. 25(3), 343-347.
- Martikainen, P.J., Lehtonen, M., Lång, K., Boer, W. D., Ferm, A. 1993. Nitrification
 and nitrous oxide production potentials in aerobic soil samples from the soil
 profile of a finnish coniferous site receiving high ammonium deposition. FEMS
 Microbiol. Ecol. 13, 113-121.
- Medeiros, J. S., Tomeo, N. J., Hewins, C. R., Rosenthal, D. M., 2016. Fast-growing *Acer rubrum* differs from slow-growing *Quercus alba* in leaf, xylem and
 hydraulic trait coordination responses to simulated acid rain. Tree physiol. 36(8),
 1032–1044.
- Minamikawa, K., Fumoto, T., Itoh, M., Hayano, M., Sudo, S., Yagi, K., 2014. Potential
 of prolonged midseason drainage for reducing methane emission from rice
 paddies in Japan: a long-term simulation using the DNDC-Rice model. Biol. Fert.
 Soils 50, 879–889.
- Myhre, G., Shindell, D., Bréon, F.M., Collins, W., Fuglestvedt, J., Huang, J., Koch, D.,
 Lamarque, J.F., Lee, D., Mendoza, B., Nakajima, T., Robock, A., Stephens, G.,

527	Takemura, T., Zhang, H., 2013. Anthropogenic and Natural Radiative Forcing. In:
528	Climate Change 2013: The Physical Science Basis. Contribution of Working
529	Group I to the Fifth Assessment Report of the Intergovernmental Panel on
530	Climate Change [Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M., Allen, S.K.,
531	Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M. (eds.)]. Cambridge
532	University Press, Cambridge, United Kingdom and New York, NY, USA. pp 714.
533	Phillips, A.J., Lauchnor, E., Eldring, J., Esposito, R., Mitchell, A.C., Gerlach, R.,
534	Cunningham, A.B., Spangler, L.H., 2013. Potential CO2 leakage reduction
535	through biofilm-induced calcium carbonate precipitation. Environ. Sci. Technol.
536	47, 142–149.
537	Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., Core, T.R., 2016. nlme: Linear and
538	Nonlinear Mixed Effects Models. R package version 3.1-126, http://CRAN.
539	Qiu, Q., Wu, J., Liang, G., Liu, J., Chu, G., Zhou, G., Zhang, D., 2015. Effects of
540	simulated acid rain on soil and soil solution chemistry in a monsoon evergreen
541	broad-leaved forest in southern China. Environ. Monit. Assess. 187, 1–13.
542	Qin, S., Yuan, H., Dong, W., Hu, C., Oenema, O., Zhang, Y., 2013. Relationship
543	between soil properties and the bias of N2O reduction by acetylene inhibition
544	technique for analyzing soil denitrification potential. Soil Biol. Biochem. 66, 182-
545	187.
546	Reininge, R.D., Fiala, P., Samek, T., 2011. Acidification of forest soils in the Hrubý
547	Jeseník region. Soil Water Res. 6, 83–90.
548	Rosi-Marshall, E. J., Bernhardt, E. S., Buso, D. C., Driscoll, C. T., Likens, G. E., 2016.
549	Acid rain mitigation experiment shifts a forested watershed from a net sink to a
550	net source of nitrogen. P. Natl. Acad. USA. 113(27), 7580-7583.
551	Singh, A., Agrawal, M., 2007. Acid rain and its ecological consequences. J. Environ.
552	Biol. 29, 15.
553	Singla, A., Inubushi, K., 2014. Effect of biochar on CH4 and N2O emission from soils
554	vegetated with paddy. Paddy and Water Environ. 12, 239–243.

- Slot, M., Wright, S.J., Kitajima, K., 2013.. Foliar respiration and its temperature
 sensitivity in trees and lianas: in situ measurements in the upper canopy of a
 tropical forest. Tree Physiol. 33, 505–515.
- 558 Wang, C., Guo, P., Han, G., Feng, X., Zhang, P., Tian, X., 2010. Effect of simulated
- acid rain on the litter decomposition of *Quercus acutissima* and *Pinus massoniana* in forest soilmicrocosms and the relationship with soil enzyme
 activities. Sci. Total Environ. 408, 2706–2713.
- Wang, L., Chen, Z., Shang, H., Wang, J., Zhang, P.Y., 2014c. Impact of simulated acid
 rain on soil microbial community function in Masson pine seedlings. Electron. J.
 Biotechnol. 17, 199–203.
- Wang, R.L., Staehelin, C., Dayan, F.E., Song, Y.Y., Su, Y.J., Zeng, R.S., 2012.
 Simulated acid rain accelerates litter decomposition and enhances the allelopathic
 potential of the invasive plant *Wedelia trilobata* (creeping daisy). Weed Sci. 60,
 462–467.
- Wang, T., Jiang, F., Li, S., Liu, Q., 2007. Trends in air pollution during 1996–2003 and
 cross border transport in city clusters over the Yangtze River Delta region of
 China. Terr. Atmos. Ocean. Sci. 18, 995.
- Wang, W., Lai, D.Y.F., Li, S., Kim, P.J., Zeng, C., Li, P., Liang, Y. 2014b. Steel slag
 amendment reduces methane emission and increases rice productivity in
 subtropical paddy fields in China. Wetl. Ecol. Manag. 22, 683–691.
- Wang, L., Wang, W., Zhou, Q., & Huang, X. 2014a. Combined effects of lanthanum
 (III) chloride and acid rain on photosynthetic parameters in rice. Chemosphere
 112, 355-361.
- Wang, W., Neogi, S., Lai, D. Y. F., Zeng, C., Wang, C., Zeng, D., 2017. Effects of
 industrial and agricultural waste amendment on soil greenhouse gas production
 in a paddy field in southeastern china. Atmos. Environ. 164, 239–249.
- 581 Wang, W., Sardans, J., Lai, D.Y.F., Wang, C., Zeng, C., Tong, C., Liang, Y., Peñuelas,
- 582 J., 2015. Effects of steel slag application on greenhouse gas emissions and crop

This is the accepted version of the following article: Wang, Chun et al. "Effect of simulated acid rain on CO2, CH4 and N2O fluxes and rice productivity in a subtropical Chinese paddy field". *Environmental Pollution*, Vol. 243, Part B (December 2018), p. 1196-1205, which has been published in final form at https://doi.org/10.1016/j.envpol.2018.08.103 (December 2018), p. 1196-1205, which has been published in final form at https://doi.org/10.1016/j.envpol.2018.08.103 (December 2018), p. 1196-1205, which has been published in final form at https://creativecommons.org/licenses/by-nc-nd/4.0/ (December 2018), p. 1196-1205, which has been published in final form at https://creativecommons.org/licenses/by-nc-nd/4.0/

- 583 yield over multiple growing seasons in a subtropical paddy field in China. Field
 584 Crop. Res. 171, 146–156.
- 585 Xu, H.Q., Zhang, J.E., Ouyang, Y., Lin, L., Quan, G.M., Zhao, B.L., Yu, J.Y., 2015.
- 586 Effects of simulated acid rain on microbial characteristics in a lateritic red soil.
- 587 Environ. Sci. Pollut. Res. Int. 22, 18260–18266.
- 588 Yavitt, J.B., Lang, G.E. and Wieder, R.K., 1987. Control of carbon mineralization to
- 589 CH₄ and CO₂ in anaerobic, *Sphagnum* derived peat from Big Run Bog, West
- 590 Virginia. Biogeochemistry 4, 141–157.
- Zhang, A., Cui, L., Pan, G., Li, L., Hussain, Q., Zhang, X., Zheng, J. and Crowley, D.,
 2010. Effect of biochar amendment on yield and methane and nitrous oxide
 emissions from a rice paddy from Tai Lake plain, China. Agr. Ecosyst. Environ.
- 594 139, 469–475.
- Zhang, T., Li, Y., Chang, S.X., Jiang, P., Zhou, G., Zhang, J., Liu, J., 2013. Responses
 of seasonal and diurnal soil CO₂ effluxes to land-use change from paddy fields to
- 597 Lei bamboo (*Phyllostachys praecox*) stands. Atmos. Environ. **77**, 856–864.

599 Tables

600 **Table 1.**

601 Effect of acid rain on rice yield and global-warming potential.

ц	Rice yield	Global-warming potential (kg CO ₂ -eq ha ⁻¹)			Global-warming potential	Global-warming potential
pH	(Mg ha ⁻¹)	CO_2	CH ₄	N ₂ O	(kg CO ₂ -eq ha ⁻¹)	(kg CO ₂ -eq Mg ⁻¹ yield)
Early paddy						
Control	4.63±0.64	27473±1744a	2214±145a	377±152ab	30063±1686	6811±1244
4.5	4.12±0.42	24698±2254b	1099±142c	189±51b	25986±2234	6579±1211
3.5	4.37±0.11	24863±1807b	1485±253bc	276±39ab	26623±1577	6122±554
2.5	4.55±0.42	26669±1908ab	1657±91b	450±115a	28776±1754	6511±855
Late paddy						
Control	6.73±0.94	32412±895a	6053±516	434±175ab	38899±1332a	5994±784
4.5	5.89±0.25	23255±317c	6252±559	183±136ab	29690±639c	5073±326
3.5	7.15±0.10	27645±1369b	5153±756	128±134b	32925±875b	4609±158
2.5	6.25±0.21	30 192±381ab	5656±805	489±60a	36337±989a	5825±89
Both paddies	Sum	Sum	Sum	Sum	Sum	Sum
Control	11.36±0.52	59885±2463a	8267±459	810±326ab	68962±2731a	12805±1547
4.5	10.01±0.64	47953±1938b	7351±423	372±187b	55676±2211bc	11652±1231

3.5	11.52±0.23	52508±2859ab	6638±773	403±142b	59549±2426b	10731±712
2.5	10.79±0.26	56861±2269a	7313±879	939±159a	65113±2407ab	12336±782

602 Different letters within a column indicate significant differences between the amended treatments and the control (*P*<0.05) obtained by Bonferroni's post hoc test.

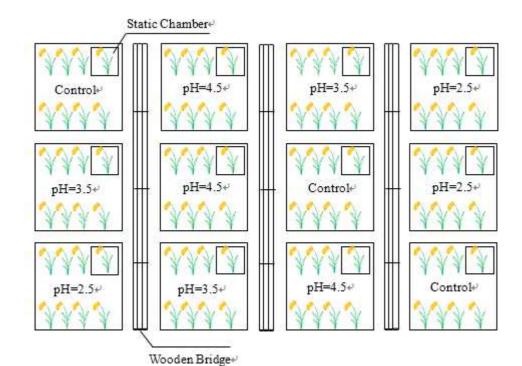
This is the accepted version of the following article: Wang, Chun et al. "Effect of simulated acid rain on CO2, CH4 and N2O fluxes and rice productivity in a subtropical Chinese paddy field". *Environmental Pollution*, Vol. 243, Part B (December 2018), p. 1196-1205, which has been published in final form at https://doi.org/10.1016/j.envpol.2018.08.103 (December 2018), p. 1196-1205, which has been published in final form at https://doi.org/10.1016/j.envpol.2018.08.103 (December 2018), p. 1196-1205, which has been published in final form at https://doi.org/10.1016/j.envpol.2018.08.103 (December 2018), p. 1196-1205, which has been published in final form at https://doi.org/10.1016/j.envpol.2018.08.103 (December 2018), p. 1196-1205, which has been published in final form at https://creativecommons.org/licenses/by-nc-nd/4.0/

Table 2.

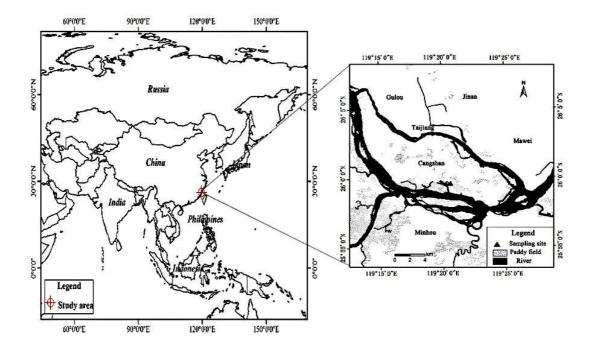
607 Effect of simulated acid rain on soil carbon and nitrogen contents and the properties of rice

608	growth at maturity.
-----	---------------------

	Plant height	Total organic carbon	Liable carbon	Total nitrogen	Available nitrogen
pH	(cm)	$(mg g^{-1})$	(mg g ⁻¹)	(mg g ⁻¹)	(mg kg ⁻¹)
Early crop					
Control	97.0±2.7	17.4±0.1	5.31±0.52	1.98±0.01	54.1±1.0
4.5	95.0±2.1	17.7±1.9	5.36±0.25	2.12±0.21	53.7±5.2
3.5	96.7±0.9	17.3±2.0	4.76±0.46	2.04±0.18	51.6±7.3
2.5	98.0±0.6	17.4±1.0	5.12±0.52	2.04±0.11	51.3±4.4
Late crop					
Control	75.3±1.0	17.8±0.9b	6.46±0.39a	2.04±0.03a	32.4±1.9b
4.5	75.0±1.2	18.9±0.2a	5.21±0.44b	2.15±0.04b	34.9±3.6b
3.5	75.0±1.0	19.3±0.5a	4.88±0.36b	2.19±0.02b	33.8±1.5b
2.5	76.8±0.7	19.5±0.3a	5.18±0.52ab	2.21±0.02b	38.9±2.3a

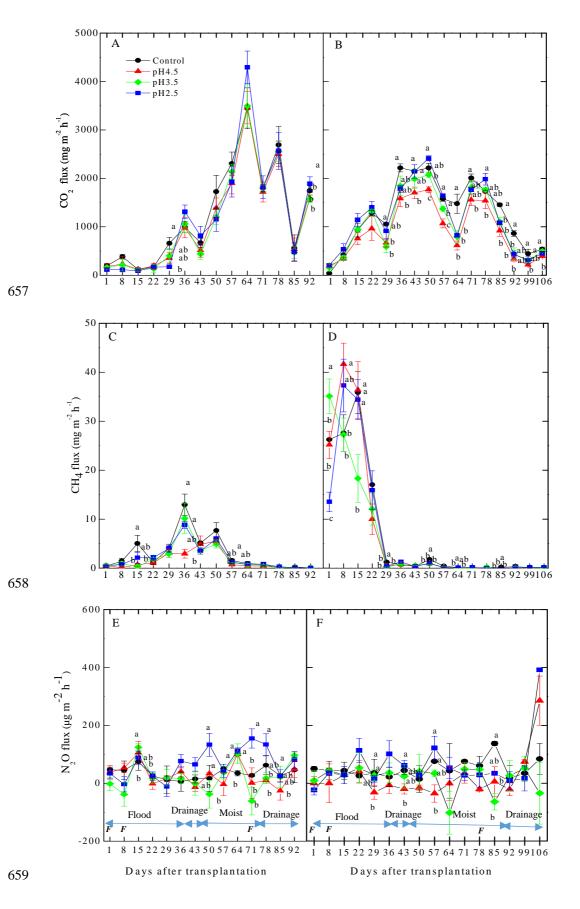

609 Different letters within a column indicate significant differences between the amended treatments and the control

610 (*P*<0.05) obtained by Bonferroni's post hoc test.

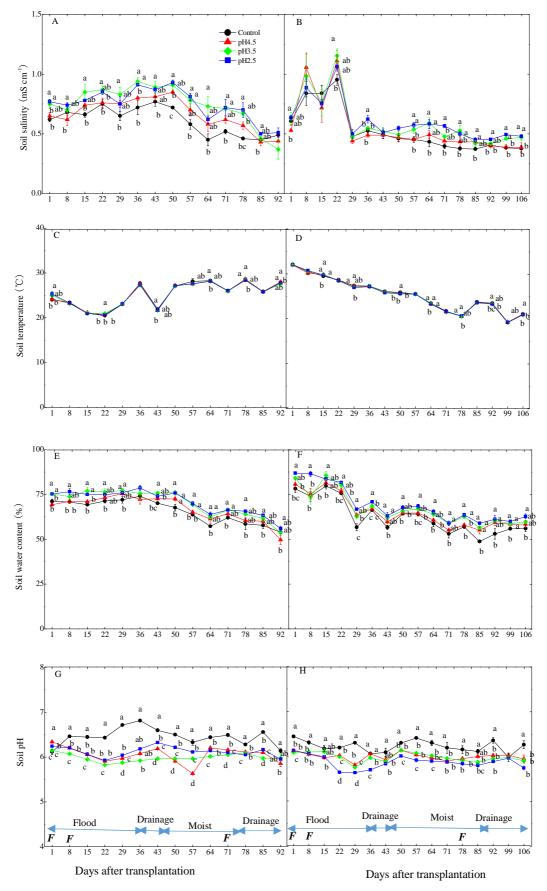

This is the accepted version of the following article: Wang, Chun et al. "Effect of simulated acid rain on CO2, CH4 and N2O fluxes and rice productivity in a subtropical Chinese paddy field". *Environmental Pollution*, Vol. 243, Part B (December 2018), p. 1196-1205, which has been published in final form at https://doi.org/10.1016/j.envpol.2018.08.103 (December 2018), p. 1196-1205, which has been published in final form at https://creativecommons.org/licenses/by-nc-nd/4.0/ (December 2018), p. 1196-1205, which has been published in final form at https://creativecommons.org/licenses/by-nc-nd/4.0/ (December 2018), p. 1196-1205, which has been published in final form at https://creativecommons.org/licenses/by-nc-nd/4.0/ (December 2018), p. 1196-1205, which has been published in final form at https://creativecommons.org/licenses/by-nc-nd/4.0/ (December 2018), p. 1196-1205, which has been published in final form at https://creativecommons.org/licenses/by-nc-nd/4.0/

622 Legends to Figures

- 623 Fig.1. Locations of the study area and sampling site (\blacktriangle) in Fujian Province,
- 624 southeastern China.
- 625 Fig.2. Experimental design.
- **Fig. 3.** Changes in CO₂ emissions for the early (A) and late (B) crops, CH₄ emissions
- for the early (C) and late (D) crops and N_2O emissions for the early (E) and late (F)
- 628 paddies in the treatments. Error bars indicate one standard error of the mean of triplicate
- 629 measurements. F indicates the fertilization, Different letters represent significant
- 630 differences among the treatments at P < 0.05.
- **Fig.4.** Changes in soil salinity (A, B), temperature (C, D), water content (E, F) and pH
- 632 (G, H) for the early and late paddies in the treatments. Error bars indicate one standard
- 633 error of the mean of triplicate measurements. F indicates the fertilization, Different
- letters represent significant differences among the treatments at P < 0.05.
- 635 Fig.5. Standardized canonical discriminant function coefficients for the two first roots
- of the general discriminant analysis representing the gas emissions and soil variables as
- 637 independent continuous variables, the day of sampling as a categorical independent
- variable and different grouping dependent factors corresponding to the treatments for
- 639 the early (A) and late (B) paddies. Bars indicate the confidence intervals (95%) of the
- scores of each grouping factor along Roots 1 and 2.



- **Fig. 1.**



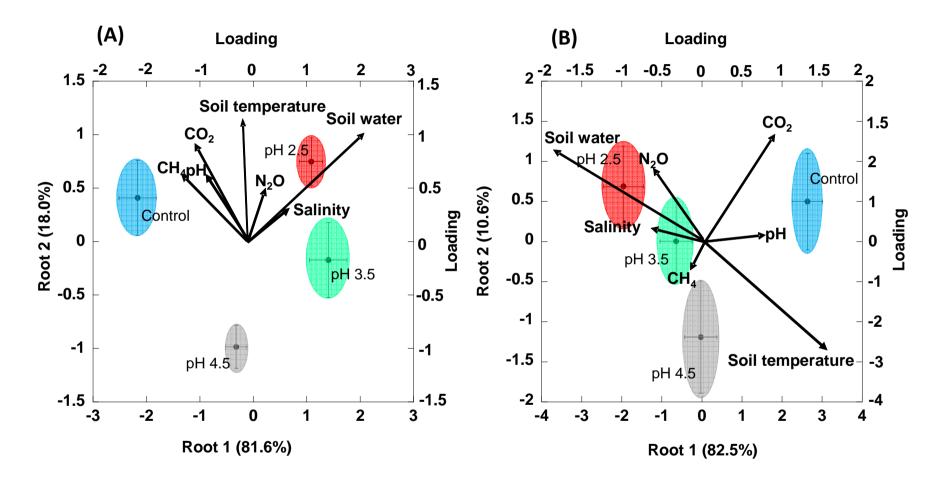

Fig. 2.

Fig.3.

Fig.4.

665 **Fig. 5.**