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Abstract 

    We tested the effect of increasing drought conditions in the Mediterranean Basin on isoprenoid emissions 

for the coming decades by analyzing their effect experimentally on the dominant Mediterranean species 

Erica multiflora in a Garraf shrubland and Quercus ilex in a Prades forest in Catalonia (Spain). Drought 

was simulated in Garraf using automatically sliding curtains to decrease the amount of soil moisture by 5% 

and in Prades by partial rainfall exclusion and runoff exclusion for a 25% decrease. We measured 

photosynthetic rates (A), stomatal conductance (gs) and rates of isoprenoid emission in the morning and at 

midday for four seasons and determined the relationship of emission rates with environmental conditions. 

Terpenes were emitted by both species, but only E. multiflora emitted isoprene. α-Pinene and limonene 

were the most abundant terpenes. Isoprenoid emissions increased with air temperature and generally 

decreased as the amount of soil moisture increased. The results of this study suggest that higher isoprenoid 

emissions can be expected in the warmer and drier conditions predicted for the coming decades in the 

Mediterranean region. 
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1. Introduction  

Mediterranean-type ecosystems provide important ecological services, such as the conservation of 

biodiversity and nutrient cycling (Peñuelas et al., 2013; Seddon et al., 2016). Precipitation is low for these 

ecosystems, especially in hot periods, and climate change has contributed to the increasing drought in recent 

decades (Llusià et al., 2011). Models of global circulation, climate and ecophysiology predict a further 

reduction in the availability of water in Mediterranean regions around the world (Piñol et al., 1998; IPCC, 

2007; Sabaté, et al., 2002; Peñuelas and Boada, 2003), which are naturally water-limited (Sardans and 

Peñuelas, 2007) due to the high temperatures and the consequent high rates of evapotranspiration (Peñuelas 

and Llusià, 2001). Drought stress can affect numerous physiological and biochemical processes governing 

plant growth, leading to a reduction in stem elongation, leaf expansion and stomatal conductance (Daie and 

Patrick, 1988; Alexieva et al., 2001; Liu et al., 2016). Plants, however, can survive these hydropenic stress 

conditions after long periods of acclimation (Chaves et al., 2002; Bai et al., 2008; Rubio-Casal et al., 2010) 

by adjusting their metabolism (Hsiao, 1973) and reorganizing their energy resources (Dobrota, 2006), 

including changes in photosynthetic rate (A) and stomatal conductance (gs). Biogenic volatile organic 



compounds (BVOCs) are also an important tool for resisting drought (Peñuelas and Llusià, 2003; Filella et 

al., 2007; Porcar-Castell et al., 2009). 

    Approximately half of all plant species growing in Mediterranean-type ecosystems, especially shrubland 

and forest ecosystems, produce and emit a large variety of BVOCs (Peñuelas and Llusià, 1999). These 

compounds are formed in various plant organs such as flowers, fruits, leaves, bark and roots (Niederbacher 

et al., 2015) during diverse physiological processes (Laothawornkitkul et al., 2009), which are then emitted 

directly or stored in specialized structures (Loreto and Schnitzler, 2010). BVOCs provide protection against 

high temperatures, high irradiation, oxidative stress and drought stress (Velikova et al., 2005; Holopainen 

and Gershenzon, 2010; Loreto and Schnitzler, 2010). They can also act as herbivore deterrents, attractants 

of pollinators and enemies of herbivores (Peñuelas and Munné-Bosch, 2005; Llusià and Peñuelas, 2000) 

and plant–plant communication signals (Peñuelas and Llusià, 2003). BVOCs are thus a vital and central 

component of plants due to their significance to the survival of individual plants but in addition they exert 

a strong influence on atmospheric chemistry (Dicke and Loreto, 2010; Seco et al., 2013; Niederbacher et 

al., 2015). BVOCs play a key role in atmospheric processes that influence the atmospheric burden of 

pollutants (Kroll and Seinfeld, 2008), which can also interact with climate change in several ways (Peñuelas 

and Llusià, 2003; Yuan et al., 2009; Riipinen et al., 2012). BVOCs are the main biogenic precursors of 

ozone and by consuming hydroxyl radical prolong the persistence of other compounds such as the 

greenhouse gas methane (Di Carlo et al., 2004). Furthermore, the photo-oxidation of BVOCs generates 

secondary organic aerosols, which have the potential for complex climatic feedbacks (Claeys et al., 2004; 

Carslaw et al., 2009). 

     BVOCs are very diverse and consist of various organic classes such as isoprenoids, fatty acid derivatives, 

alcohols, alkanes, alkenes, esters and acids (Kreuzwieser et al., 1999; Peñuelas and Llusià, 2001). 

Isoprenoids such as isoprene and monoterpenes, the most common and abundant BVOCs, confer protection 

against the high temperatures and drought stress under the current trend of climatic warming (Peñuelas and 

Llusià, 2001; Copolovici et al., 2005).  

    Several studies have demonstrated the importance of abiotic and biotic factors for the emissions of 

BVOCs (Peñuelas and Llusià, 2001 and 2003; Paris et al., 2010). Among abiotic factors, water availability 

has a strong effect on BVOC emission, especially under Mediterranean conditions characterized by long 

dry summers with high solar irradiation and temperatures (Tsakiris et al., 2007; Llusià et al., 2011 and 

2013). Plant behavior is complex under these integrated environmental influences and may differ among 

biological species. Rates of isoprenoid emission increase and help plants to resist stress under moderate 

drought conditions but decrease under severe drought conditions (Gershenzon et al., 1978; Llusià et al., 

2011 and 2013; Hansen and Seufert, 1999). 

   The dominant tree species in the Mediterranean Basin have two patterns of terpene emission depending 

on if they have the ability to store terpenes (Lerdau et al., 1997; Llusià and Peñuelas, 2000). Pool size in 

resin ducts and internal or external glands in terpene-storing species (Lerdau et al., 1997; Peñuelas and 

Llusià, 2001; Llusià et al., 2014) affect emission rates, and the short-term response of terpene-emission 

rates to photosynthetic rates may be stronger and faster in non-storing than storing species (Gershenzon et 

al., 1978; Staudt and Seufert, 1995). Terpene-emission rates in terpene-storing plants, though, are not 

necessarily determined by terpene concentration; their response to drought can be involved in the short-



term control of emissions, either increasing (Rennenberg et al., 2006) or decreasing (Bertin and Staudt, 

1996; Llusià et al., 2006) the emission rates depending on the intensity of the water stress (Llusià and 

Peñuelas, 2000; Llusià et al., 2011).    

    Climatic experiments have been widely used on various time scales to predict the potential physiological 

and phenological changes in plants under simulated future climatic scenarios (Beier et al., 2012; Leuzinger 

et al., 2011; De Boeck et al., 2015; Ogaya et al., 2014). Numerous field experiments in various ecosystems 

have demonstrated the effectiveness of identifying the physiological adjustments of plants in response to 

climate change, despite the variety and complexity of the environmental conditions (Prieto et al., 2009; 

Limousin et al., 2010; Liu et al., 2016). The short-term diurnal (Peñuelas and Llusià, 1999) and long-term 

seasonal (Guenther, 1997; Llusià and Peñuelas, 2000) cycles under experimental drought also determine 

the status of isoprenoid emission (Llusià and Peñuelas, 2000; Llusià et al., 2006). Variations in emissions 

have been linked to corresponding changes in temperature, radiation, air humidity and water availability 

(Llusià et al., 2006) but also to leaf development and physiological activity (Llusià and Peñuelas, 2000). 

These factors are also involved in the variations among isoprenoids due to their diverse physicochemical 

traits (Llusià and Peñuelas, 2000). 

    We studied the net photosynthetic rates (A), the stomatal conductance (gs) and the rates of isoprenoid 

emissions in the shrub Erica multiflora L. and the tree Quercus ilex L., which are widely distributed in the 

western and central Mediterranean Basin and are among the dominant species at our two study sites, Garraf 

(shrubland) and Prades (forest), respectively (Llusià et al., 2006 and 2013; Ogaya et al., 2014). Our aims 

were to determine the relationship between plant physiology and abiotic factors under Mediterranean field 

conditions, especially gas exchange and isoprenoid emissions, for predicting the effects of increasing 

drought stress expected in the coming decades and to improve the algorithms for isoprenoid emission used 

in models. 

 

2. Material and methods 

2.1. Study sites and species descriptions 

The study was carried out in the Garraf and Prades Mountains in Catalonia, northeastern Spain. The 

climate and vegetation at the two sites are typically Mediterranean. Annual rainfalls were 510.2 mm in 

Garraf and 661.4 mm in Prades during the measurement year. 

 Garraf Natural Park is a dry shrubland (Rosmarino-Ericion) south of Barcelona (41°18′08″N, 1°49′05″E; 

210 m a.s.l.). This site suffered large fires in the summers of 1982 and 1994, the regenerated vegetation has 

a coverage of 50–60% and a maximum height of 70 cm. The dominant species at the study site are Erica 

multiflora L., Globularia alypum L., Pinus halepensis L. and Rosmarinus officinalis L. (Llusià et al., 2006 

and 2013). All are common evergreens of the coastal shrubland in the western Mediterranean Basin. We 

chose one dominant species Erica multiflora L. as research object in this site. 

The Prades Mountains are in southwestern Catalonia (41°20′42″N, 1°02′04″E; 970 m a.s.l.) and about 

30 km from the Mediterranean coast. The Prades sampling site is a holm oak forest with tree heights 

between 1.5 and 10 m, dominated by Quercus ilex (Bolòs and Vigo, 1990; Llusià et al., 2013; Ogaya et al., 

2014). The site contains other important evergreen tree and shrub species (Phillyrea latifolia L., Arbutus 

unedo L., Pinus sylvestris L., Erica arborea L. and Juniperus oxycedrus L.) and deciduous species such as 



Sorbus torminalis L. and Acer monspessulanum L. (Llusià et al., 2013). We chose the dominant species 

Quercus ilex as research object in this site.  

 

2.2. Experimental design 

    The drought experiments were carried out from 1999 to 2014 (16 years) for both sites. In Garraf, six 

plots (5 × 4 m) were randomly organized in three blocks for replication, with each block having one drought 

and one control plot. Transparent and waterproof plastic curtains were activated in the drought treatments 

by rain sensors to cover the plants and soil during rain for four seasons. Control plots had the same 

scaffolding but without the curtains. All measurements were conducted in the central 12 m2 to reduce 

margin effects. The outer 0.5 m of each plot served as an open buffer zone.  

    In Prades, four plots (15 × 10 m) were delimited at the same altitude along the slope, two as drought and 

two as control plots. The drought treatment consisted of partial rain exclusion using PVC strips suspended 

0.5–0.8 m above the soil covering approximately 30% of the total plot surface. A ditch 0.8 m deep was 

excavated along the entire top edge of the drought plots to intercept runoff water.  

Emissions were measured in winter 2014 (12, 13 and 14 February in Garraf and 23, 24 and 25 January 

in Prades), spring 2014 (1, 2 and 3 May in Garraf and 14, 15 and 16 May in Prades), summer 2014 (5, 7 

and 9 August in Garraf and 29, 30 and 31 July in Prades) and autumn 2014 (29 and 30 October and 1 

November in Garraf and 21, 22 and 23 October in Prades) in the morning (9:00–13:00 solar time) and at 

midday (13:00–17:00 solar time). Emissions from sunlit and healthy E. multiflora needle clusters and Q. 

ilex leaves were measured from three random plants in each plot. Air temperature was measured by an 

automatic meteorological station, and soil moisture was measured by time domain reflectometry (Tektronix 

1502C, Beaverton, United States), both about every 30 min on the day of sampling. 

 

 2.3. Gas-exchange measurements and sampling of isoprenoid emissions 

 A and gs were measured and isoprenoid emissions were collected simultaneously using a Licor-6400XT 

(4647 Superior Street P.O. Box 4425 Lincoln, Nebraska USA) gas-exchange system. A and gs were 

measured at a quantum flux density of 1080 ± 19 μmol m-2 s-1 under a controlled CO2 concentration of 400 

± 2 ppm. One E. multiflora needle cluster or one Q. ilex leaf was enclosed in a clamp-on gas-exchange 

cuvette with a surface area of 2 cm2. The isoprenoids were collected by pumping air which was generated 

using a Qmax air-sampling pump (Supelco, Bellefonte, USA) from the cuvette through a glass cartridge (8 

cm long and 0.3 cm internal diameter). Sampling time was 10 min, and the flow was about 400 mL min-1. 

The cartridges were manually filled with adsorbents Carbotrap B, Carboxen 1003 and Carbopack Y 

(Supelco, Bellefonte, Pennsylvania) separated by plugs of quartz wool. The hydrophobic properties of the 

activated adsorbents minimized any sample displacement by water, without chemical transformation in the 

tube. Isoprenoid concentrations were determined by reference to trapped standards (α-pinene, β-pinene, 3-

carene, camphene, myrcene, limonene, sabinene, camphor and dodecane). The tubes were conditioned 

before terpene sampling with a stream of purified helium for 35 min at 350 °C. The trapping and desorption 

efficiencies of liquid and volatilized standards such as -pinene, 3-carene or limonene (the main terpenes 

accounting for about 65–85% of total emission) were practically 100%. Blank samples of air without leaves 

in the cuvette were collected for 10 min immediately before each measurement. Sampled leaves were cut 



and stored in a portable cooler box at 4 °C and taken to the laboratory where they were oven-dried at 60 °C 

to constant weights. The metallic tubes (with trapped BVOCs) were stored at -22 °C until analysis.  

 

2.4. Isoprenoid analyses 

    The isoprenoids were analyzed using a GC-MS system (HP59822B, Hewlett Packard, Palo Alto, USA) 

with an automatic sample processor (Combi PAL, FOCUS-ATAS GL International BV 5500 AA 

Veldhoven, The Netherlands). The desorber was an OPTIC3 injector (ATAS GL International BV 5500 

AA Veldhoven, The Netherlands), and the temperature was increased at 16 °C s-1 from 60 °C to 300 °C. 

The desorbed isoprenoids were cryofocused at -20 °C for 2 min after which the cryotrap was heated rapidly 

to 250 °C, and conducted into a 30 m × 0.25 mm × 0.25 µm film capillary column (HP-5, Crosslinked 5% 

pH Me Silicone; Supelco, Bellefonte, USA). The flow of helium was 1 mL min-1, and the total run time 

was 29 min including the solvent delay for about 4 min. The initial oven temperature was increased at 30 °C 

min-1 from 40 to 60 °C and then at 10 °C min-1 to 150 °C, maintained for 3 min, increased at 70 °C min-1 

to 250 °C and maintained for another 5 min.  

The monoterpenes were identified by comparing their retention times with those of standards from Fluka 

(Buchs, Switzerland), published spectra, GCD ChemStation G1074A HP and the Wiley7n mass-spectra 

library. Terpene concentrations were determined from calibration curves for common terpenes such as α-

pinene, 3-carene, β-pinene, myrcene, limonene, sabinene and α-humulene, every five analyses using three 

terpene concentrations (always r2 > 0.99 for the relationships between the signal and terpene 

concentrations). The most abundant terpenes had very similar sensitivities, with differences <5% among 

the calibration factors.  

 

2.5. Statistical analyses 

The ANOVAs were conducted using STATISTICA v.8.0 for Windows (StatSoft, Inc. Tulsa, USA). 

Statistical differences between treatments were analyzed with a Student’s t-test. Differences were 

considered significant at P < 0.05. The analysis of the effects of season, treatment and sampling time were 

conducted by repeated measurements ANOVA. Regression analyses were conducted using Sigma Plot v. 11.0 for 

Windows (Systat Software, Chicago, USA). 

 

3. Results 

3.1. Seasonal and diurnal variation of air temperature and soil moisture  

     Mean air temperature on the sampling dates in Garraf ranged between 14.7 ± 1.17 °C in winter mornings 

and 35.3 ± 0.51 °C at summer middays. Soil moisture ranged between 7.2 ± 0.33% (v/v) at summer middays 

and 24.7 ± 1.40% (v/v) in winter mornings (Fig. 1). Compared to control treatment, the drought treatment 

decreased soil moisture an average of 3.7% in mornings and 4.7% at midday throughout the year, with 

decreases ranging between 1.3% in winter mornings and 14.7% in spring afternoons. 

Mean air temperature on the sampling dates in Prades ranged between 9.4 ± 0.84 °C in winter mornings 

and 31.8 ± 0.97 °C at summer middays. Soil moisture ranged between 2.4 ± 0.28% (v/v) at summer middays 

and 38.2 ± 2.69% (v/v) in winter mornings (Fig. 1). Compared to control treatment, the drought treatment 



significantly decreased soil moisture an average of 26.2% in mornings and 25.7% at midday throughout the 

year, with decreases ranging between 21.0% in winter mornings and 48.8% at summer middays. 

 

3.2. Seasonal and diurnal variation of A and gs  

   A and gs for E. multiflora seasonally varied similarly (Fig. 2A). A and gs were highest in autumn mornings, 

at 6.7–7.3 µmol m-2 s-1 and 0.079–0.090 mol m-2 s-1, and were lowest at winter middays, at 1.2–2.3 µmol 

m-2 s-1 and 0.020–0.027 mol m-2 s-1, respectively. A and gs tended to be lower in the drought than the control 

treatments in most seasons but were significantly lower only at autumn midday for A (P < 0.05) and summer 

midday for gs (P < 0.05).  

   A and gs for Q. ilex were highest in spring and winter mornings (Fig. 2B), at 9.2–10.8 µmol m-2 s-1 and 

0.208–0.215 mol m-2 s-1, and lowest at autumn middays at 2.8–4.7 µmol m-2 s-1 and 0.028–0.064 mol m-2 s-

1, respectively. A in the drought treatments was significantly highest in winter mornings (P < 0.05), and A 

and gs were significantly lowest in spring mornings (P < 0.05) and at autumn middays (P < 0.05), 

respectively.  

 

3.3. Seasonal and diurnal variation of isoprenoid emissions  

Isoprene was the main compound emitted by E. multiflora. The emission rates ranged between 0.40 ± 

0.15 µg g-1 dw h-1 at winter middays and 4.77 ± 1.51 µg g-1 dw h-1 at summer middays (Fig. 3). The drought 

treatments did not affect isoprene-emission rates except for decreasing them when they were already low 

at winter midday (P < 0.05). Isoprene emission was not detected for Q. ilex. Both species, however, emitted 

volatile terpenes. α-Pinene and limonene were the two most abundant terpenes for both species and were 

detected in all periods both sampling times, with trends similar to those for total terpene emission. Total 

terpene emissions for E. multiflora were very low, ranging between 0.10 ± 0.05 µg g-1 dw h-1 in winter 

mornings and 1.05 ± 0.32 µg g-1 dw h-1 at summer middays (Fig. 4A). Emissions did not globally differ 

significantly between the treatments but were lower in the drought plots at summer midday. α-Pinene and 

limonene were emitted mostly at summer midday, at about 0.7 and 0.3 µg g-1 dw h-1, respectively. Q. ilex 

emitted terpenes at much higher rates than E. multiflora, ranging between 1.8 ± 0.3 µg g-1 dw h-1 at winter 

middays and 44.1 ± 3.2 µg g-1 dw h-1 at summer middays (Fig. 4B). Overall terpene emissions from Q. ilex 

were 19.3% higher in the morning and 35.5% higher at midday in the drought than the control treatments. 

Total terpene emissions from Q. ilex were significantly higher in the drought treatments in summer 

mornings (P < 0.05) and at summer middays (P < 0.01) by 39.7% and 68.0%, coinciding with significantly 

higher α-pinene (P < 0.05) and limonene (P < 0.05) emissions, respectively. α-Pinene and limonene were 

emitted mostly at summer middays, at rates of about 13 µg g-1 dw h-1 for both.  

 

4. Discussion 

Plants in Mediterranean-type climates have similar physiological trends, with A and gs highest in spring 

or autumn when environmental conditions are favorable (Llusià et al., 2013; Liu et al., 2016). A and gs for 

Q. ilex in our study were highest in winter, probably due to the extremely uneven distribution of water 

availability in 2013–2014 (Fig. 1). A and gs tended to decrease from winter to summer with increasing heat 

and drought (Fig. 2B). Plants generally accumulate carbon under moderate drought stress due to growth 



restriction by water deficiency but may temporarily decrease photosynthetic activity when water stress is 

severe because of the increased resistance to CO2 in both the stomata and mesophyll (Centritto et al., 2003; 

Ogaya and Peñuelas, 2003; Llusià et al., 2006). These low rates of photosynthesis and stomatal conductance 

indicate that plants can successfully adapt to severe stress caused by extreme climatic environments by 

slowing growth and reproduction (Llusià et al., 2013; Matesanz and Valladares 2014; Bussotti et al., 2015). 

    The emission of isoprenoids differed between the species (Llusià and Peñuelas, 2000; Peñuelas and 

Llusià, 2001) but followed a similar seasonal pattern (Figs. 3, 4A and B). The seasonal pattern agreed with 

previous results of isoprenoid emissions in most Mediterranean species, with a maximum in summer and a 

minimum in cold seasons (Llusià and Peñuelas, 2000; Llusià et al., 2011). The seasonality is due to the 

dependence of metabolic regulation on many abiotic factors, but temperature is likely the dominant driver 

of emission (Llusià and Peñuelas, 2000). 

    Isoprenoid-emission rates for E. multiflora were inside the range of 0.5–20 µg g-1 dw h-1 reported by 

Owen et al. (1997) and also inside the ranges for isoprene emissions of 0.15–4.4 µg g-1 dw h-1 and 

monoterpene emissions of 0.08–0.4 µg g-1 dw h-1 reported by Llusià et al. (2009). 2014 was a relatively wet 

and warm year for Garraf (Fig. 1). The drought treatment decreased soil moisture by only about 5%, and 

emissions were similar in all seasons except summer (Figs. 3 and 4A). The differences of emission rates 

between treatments may have been due to a combination of factors dominated by temperature variation. 

The small differences in soil moisture caused little change in plant physiology and did not substantially 

influence emission rates on a yearly scale.  

    Q. ilex is a non-stored species with strong emission capacity of terpenes, especially in hot seasons, and 

is highly sensitive to drought (Llusià and Peñuelas, 2000; Loreto et al., 2001; Llusià et al., 2011; Llusià et 

al., 2013). Heat and water distribution were extremely unbalanced in Prades (Fig. 1). Terpene-emission 

rates for Q. ilex were higher than previously reported (Llusià et al., 2011), especially for the temperate 

seasons due to the warmer and drier environmental conditions, but the drought treatment had no significant 

effects, probably because the treatment was not severe enough for Q. ilex to adjust emissions for adapting 

to drought. The plants were able to maintain a stable status after a long acclimation to a moderate drought 

in these seasons (Fig. 4B). Terpene emissions from Q. ilex, however, were significantly higher only in 

summer in the drought treatment. An increase in emission in response to moderate drought has also been 

reported in other studies (Llusià et al., 2006; Llusià et al., 2011) and supports the existence of an interaction 

between drought and high temperature (Blanch et al., 2009). The increase in terpene emissions under 

drought conditions may be also attributed to a combination of other factors such as high radiation and 

temperature (Osmond et al., 1997; Llusià et al., 2006) for avoiding damage to cellular membranes caused 

by oxygenated products generated under summer stressful environmental conditions (Gershenzon et al., 

1978; Peñuelas and Llusià, 2001; Loreto et al., 2001). 

    The monoterpenes α-pinene and limonene were the main terpenes emitted by the two species. Their 

emission trends were similar to those for total terpenes, with a maximum in summer and a minimum in 

winter (Fig. 4A and B). α-Pinene and limonene emissions from E. multiflora were low and  lower in the 

drought treatments than in control treatments at summer midday (Fig. 4A). α-Pinene emission from Q. ilex 

was highly sensitive to temperature, increasing sharply from winter to spring (Fig. 4B), and the emission 

rates even increased (P < 0.05) with air temperature in the control treatment in spring mornings (Figs. 1 



and 4B), indicating that temperature was a more powerful driving force than moderate drought on α-pinene 

emissions. Limonene emission responded strongly to water deficiency, most obviously at the driest summer 

midday (P < 0.001), coinciding with a significantly higher emission (P < 0.01) (Fig. 4B). The increased 

emissions of the two main terpenes in response to temperature and moderate drought has also been found 

in other studies (Bertin and Staudt, 1996; Llusià et al., 2011). Not all terpene emissions, however, were 

higher in the drought treatment in summer. The various responses may have been due to the activities of 

synthases and to the potential protective roles of the various terpenes under drought conditions (Blanch et 

al., 2009).  

    Photosynthetic rates and stomatal conductance were higher in both species in the morning than at midday 

for most seasons, but isoprenoid emissions had the opposite trends (Fig. 2A and B). A and gs (P < 0.01) 

and isoprene emissions (P < 0.05) for E. multiflora differed significantly between the two diurnal periods, 

and drought treatments in spring to autumn days decreased photosynthetic rates and stomatal conductance 

(P < 0.05) more at midday (Fig. 2A). These two opposite trends identified an important aspect of 

photosynthetic carbon fixation at midday that is still used for having a larger terpene production than in the 

morning (Peñuelas and Llusià 1999; Vallat et al., 2005; Blanch et al., 2009), and emissions in the drought 

treatment were much higher at summer midday (Figs. 3, 4A and B). However, isoprenoid emissions from 

plants generally do not only depend on the current environmental drivers, but also the preceding 

environmental and physiological status (Llusià et al., 2013; Tiiva et al., 2017) which may also suggest a 

high emission potential at more severe midday conditions if there is high A in morning (Fig. 2, 3 and 4). 

The higher percentages of fixed carbon devoted to terpene emission at midday also indicate a successful 

adaptation of plants by adjusting metabolism under environmental stress (Litvak et al., 1996; Loreto et al., 

2001).  

 Environmental conditions such as air temperature and soil moisture are the main factors that determine 

plant physiological responses, including BVOC emissions (Llusià et al., 2006, 2009 and 2011; Peñuelas 

and Llusià, 2001; Filella, et al., 2007; Blanch et al., 2009). We analyzed the corresponding correlations and 

generalized them with linear or exponential algorithms (Table 1). The emission rates of the main 

isoprenoids were correlated positively with air temperature and negatively with soil moisture for both 

species (Fig. 5). The relationships with environmental conditions were stronger for Q. ilex than E. multiflora. 

The production of isoprenoids has been linked to an increased tolerance to water stress in some species 

(Peñuelas and Llusià, 2001; Blanch et al., 2009), and plants under severe drought conditions may even 

decrease their emissions (Llusià and Peñuelas, 2000). These results indicate that higher isoprenoid 

emissions can be expected in the warmer and drier conditions projected by climatic and ecophysiological 

models for the coming decades in the Mediterranean region (Peñuelas and Llusià, 2001; IPCC, 2014). The 

most widely used Model of Emissions of Gasses and Aerosols from Nature (MEGAN) model (Guenther et 

al., 2012) initially estimated the emissions depending on species-specific capacities of foliar emissions, 

light and temperature (Bertin and Staudt, 1996; Guenther et al., 2012; Llusià et al., 2013). In its latest 

version, MEGAN2.1 (Guenther et al., 2012) has included a simple drought algorithm for isoprene emissions 

derived from the observations of Pegoraro et al. (2004). This improvement of the model MEGAN could 

still not describe the actual emission rates in response to drought since that algorithm only predicts reduction 

in emissions (Guenther et al., 2012) and not possible increases at mild drought conditions. It cannot, 



moreover, account properly for the seasonal variation of the enzymatic activity regulating the basal 

emission factor (BEF) employed in the model (Schnitzler et al. 1996; Brilli et al., 2016). Neglecting 

seasonal drought stress could lead to large misestimates of drought influences on isoprenoid emissions. 

Failing to fully take into consideration the capacity of plants to acclimate, which varies widely among 

seasons and even within a season if the environment changes, may also lead to misestimates. Although 

previous studies have shown that terpenes, especially for monoterpenes and sesquiterpenes, are to a large 

extent emitted in a manner similar to that of isoprene depending on both temperature and light (Sindelarova 

et al. 2014), an improvement of current models is also required to better predict the dynamics of both basal 

and total isoprenoid emissions, especially under the increasing intensity of drought stress (Filella et al., 

2018; IPCC, 2014). The trends of isoprenoid emissions are very important due to their potential roles in 

plant flammability (Alessio et al., 2008; Llusià et al., 2011) and atmospheric chemical processes 

contributing to ozone formation and even affecting climate (Thompson, 1992; Peñuelas and Llusià, 2003; 

Dicke and Loreto, 2010; Seco et al., 2013). 
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Figure captions 

Fig. 1. Seasonal morning and midday time-courses of mean air temperature and soil moisture in Garraf and 

Prades. Error bars indicate standard errors of the means; n = 6 (* P < 0.05, ** P < 0.01 and *** P < 0.001 

indicate significant differences between treatments identified by Student’s t-tests). The significances of the 

effects of season, treatment and sampling time (repeated measurements ANOVA) are depicted in each panel. 

Fig. 2. Seasonal net photosynthetic rates and stomatal conductances for E. multiflora (A) and Q. ilex (B) in 

the morning and at midday. Error bars indicate standard errors of the means; n = 9 (* P < 0.05 indicates 

significant differences between treatments identified by Student’s t-tests). The significances of the effects 

of season, treatment and sampling time (repeated measurements ANOVA) are depicted in each panel. 

Fig. 3. Seasonal time courses of the rate of isoprene emission for E. multiflora. Error bars indicate standard 

errors of the means; n = 6 (* P < 0.05 indicates significant differences between treatments identified by 

Student’s t-tests). The effects of season, treatment and sampling time are depicted in the panels when 

significant. 

Fig. 4. Seasonal time courses for the rates of emission of total terpenes, α-pinene and limonene for E. 

multiflora (A) and Q. ilex (B). Error bars indicate standard errors of the means; n = 6 (* P < 0.05 and ** P 

< 0.01 indicate significant differences between treatments identified by Student’s t-tests). The effects of 

season, treatment and sampling time are depicted in the panels when significant. 

Fig. 5. Relationships for the emissions of the main isoprenoids with air temperature and soil moisture for 

E. multiflora and Q. ilex. 



Table caption 

Table 1. Relationships for the emissions of the main isoprenoids (isoprene for E. multiflora and total 

terpenes for Q. ilex) with air temperature and soil moisture (SE, standard error). 
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Fig. 1. Seasonal morning and midday time-courses of mean air temperature and soil moisture in Garraf 

and Prades. Error bars indicate standard errors of the means; n = 6 (* P < 0.05, ** P < 0.01 and *** P < 0.001 

indicate significant differences between treatments identified by Student’s t-tests). The significances of the 

effects of season, treatment and sampling time (repeated measurements ANOVA) are depicted in each panel. 
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Fig. 2. Seasonal net photosynthetic rates and stomatal conductances for E. multiflora (A) and Q. ilex (B) in the 

morning and at midday. Error bars indicate standard errors of the means; n = 9 (* P < 0.05 indicates significant 

differences between treatments identified by Student’s t-tests). The significances of the effects of season, treatment 

and sampling time (repeated measurements ANOVA) are depicted in each panel. 
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Fig. 3. Seasonal time courses of the rate of isoprene emission for E. multiflora. Error bars indicate standard errors of 

the means; n = 6 (* P < 0.05 indicates significant differences between treatments identified by Student’s t-tests). The 

effects of season, treatment and sampling time are depicted in the panels when significant. 
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 B)                                                            Quercus ilex  
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Fig. 4. Seasonal time courses for the rates of emission of total terpenes, α-pinene and limonene for E. multiflora (A) 

and Q. ilex (B). Error bars indicate standard errors of the means; n = 6 (* P < 0.05 and ** P < 0.01 indicate 

significant differences between treatments identified by Student’s t-tests). The effects of season, treatment and 

sampling time are depicted in the panels when significant. 
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Fig. 5. Relationships for the emissions of the main isoprenoids with air temperature and soil moisture for E. 

multiflora and Q. ilex. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Table 1. Relationships of main isoprenoid emissions (isoprene for E. multiflora and total terpenes for Q. ilex) with air 

temperature and soil moisture (SE, Standard Error). 

    Morning Midday 

    Linear Exponential Linear Exponential 

E. multiflora R 0.3832 0.4187 0.5680 0.6280 

Air temperature  P 0.0366 0.0213 0.0002 <0.0001 

 SE 0.9875 0.9710 1.4307 1.3528 

Correspondent equation  y = 0.246*1.074 ˄x y = 0.042*1.139 ˄x 

 R 0.3125 0.3165 0.4409 0.5182 

Soil moisture P 0.0927 0.0884 0.0056 0.0009 

 SE 1.1056 1.0142 1.5603 1.4867 

Correspondent equation   y = 2.449*0.958 ˄x y = 9.562*0.868 ˄x 

Q. ilex R 0.7266 0.6995 0.6701 0.6124 

Air temperature  P <0.0001 <0.0001 <0.0001 0.0005 

 SE 6.9235 7.2012 12.3180 13.1199 

Correspondent equation  y = -7.936 + 1.176x  y = -8.404 + 1.358x  

 R 0.6664 0.6814 0.7067 0.7587 

Soil moisture P <0.0001 <0.0001 <0.0001 <0.0001 

 SE 7.4338 7.2968 11.7636 10.8312 

Correspondent equation   y = 26.83*0.945 ˄x y = 50.66*0.913 ˄x 
 

 

 

 

 

 

 

 

 


