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DIFFERENTIAL GALOIS THEORY AND NON-INTEGRABILITY OF
PLANAR POLYNOMIAL VECTOR FIELDS

PRIMITIVO B. ACOSTA-HUMÁNEZ, J. TOMÁS LÁZARO, JUAN J. MORALES-RUIZ,
AND CHARA PANTAZI

Abstract. We study a necessary condition for the integrability of the polynomials vector
fields in the plane by means of the differential Galois Theory. More concretely, by means of
the variational equations around a particular solution it is obtained a necessary condition
for the existence of a rational first integral. The method is systematic starting with the first
order variational equation. We illustrate this result with several families of examples. A
key point is to check whether a suitable primitive is elementary or not. Using a theorem
by Liouville, the problem is equivalent to the existence of a rational solution of a certain
first order linear equation, the Risch equation. This is a classical problem studied by Risch
in 1969, and the solution is given by the “Risch algorithm”. In this way we point out the
connection of the non integrablity with some higher transcendent functions, like the error
function.

1. Introduction

The problem of the integrability of planar vector fields has attracted the attention of many
mathematicians during decades. Among different approaches, Galois Theory of linear dif-
ferential equations has played an important rôle in its understanding, even in the a priori
(so far) simpler case of polynomial vector fields (see [4, 24, 1] and references therein). For
instance, the application of differential Galois Theory to variational equations along a given
integral curve constitutes a powerful criterium of non-integrability for Hamiltonian systems
(see [16]). Extensions of this method for some non Hamiltonian vector fields have been carried
out by Ayoul and Zung [2]. They strongly rely on the main result of [18].

Many authors have tackled the problem of integrability from other different points of view.
For instance, we refer the reader to the papers [19, 23, 27, 28] and references therein, where
necessary conditions on Liouvillian and Elementary integrability are provided.

The aim of this paper is to apply Galois Theory to prove the non-existence of rational first
integrals for a kind of planar polynomial vector fields. Indeed, let us consider planar vector
fields of the form

X = P
∂

∂x
+Q

∂

∂y
, (1)

with P,Q analytic functions in some domain of C2 and assume Γ : y − ϕ(x) = 0 to be an
integral curve1 of X. This is equivalent to say that Γ is a solution (a leaf ) of the first order
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differential equation

y′ =
Q

P
= f(x, y), (2)

which defines its associated foliation (orbits of the vector field X). From now on ′ will
denote derivative with respect to the spatial variable x. The behaviour around the solution
Γ is usually approached by studying its variational equations. In our case, with respect to
equation (2). Precisely, let φ(x, y) denote the flow of (2). Consider (x0, y0) a point in Γ, that
is, y0 = ϕ(x0). Note that (x0, y0) is the initial condition defining Γ: ϕ(x) = φ(x, y0). We are
interested in the variation of the flow φ respect to the initial condition y, around y = y0 and
keeping x = x0 fixed. In other words, in the flow defined by the initial condition φ(x0, y) = y.
This means that we want to compute the Taylor expansion coefficients

ϕk(x) =
∂kφ

∂yk
(x, y0)

for which

φ(x, y) = ϕ(x) +
∂φ

∂y
(x, y0)(y − y0) +

1

2

∂2φ

∂y2
(x, y0)(y − y0)2 + · · · ,

becomes a solution of the variational equations. Namely, the first two variational equations
VE1 and VE2 are explicitly given by

ϕ′1 = fy(x, ϕ(x))ϕ1 ,
ϕ′2 = fy(x, ϕ(x))ϕ2 + fyy(x, ϕ(x))ϕ2

1,
(3)

where we introduce the standard notation fy, fyy, . . . for the corresponding partial derivatives
∂f/∂y, ∂2f/∂y2, . . ., respectively. In a similar way higher order variational equations VEk,
for k > 2, can be obtained.

It is well-known (due to their triangular-shape scheme), that variational equations VEk

can be solved recurrently. However, in order to apply the Differential Galois Theory, it is
convenient to linearize them. This can be easily done by introducing suitable new variables:
for example, if one defines χ1 = ϕ2

1 and χ2 = ϕ2, the second variational VE2 becomes

χ′1 = 2fy(x, ϕ(x))χ1 ,
χ′2 = fy(x, ϕ(x))χ2 + fyy(x, ϕ(x))χ1.

(4)

Linearised variational equation of order k will be denoted by LVEk (see Appendix C for more
details). Now, since LVEk is a linear system, standard differential Galois Theory can be
applied. Let Gk stand for the Galois group of LVEk and G0

k for its identity component.

Definition 1.1. A complex analytic vector field X defined over an analytic complex manifold
M of dimension m is meromorphically integrable if there exist X = X1, X2, ..., Xk function-
ally independent pairwise commuting meromorphic vector fields and f1, f2, ..., fl functionally
independent meromorphic first integrals of these vector fields, and satisfying that k + l = m.

In the particular planar case, meromorphically integrability can come from two possibilities:

(a) either X2 is a symmetry vector field of X1, that is [X1, X2] = 0, or
(b) there exists a first integral H = f1 of X1.
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It is clear that the fibration defined by the level sets of a first integral H of the vector field (1),
H(x, y) = C, gives the solution of equation (2).
Then we have the following result:

Theorem A. Consider a planar analytic vector field X as in (1) and Γ an integral curve.
Then, if X is meromorphically integrable in a neighbourhood of Γ it follows that, for any
k ≥ 1, the identity component G0

k of the Galois group of the linear variational equation LVEk

is abelian.

A very interesting particular case of Theorem A is when the vector field X is meromorphic
at infinity, that is, either is holomorphic or it has a pole at ∞. Functions of such type are
called meromorphic at the extended complex plane. It is known, by compactification of the
complex plane, that these functions are in fact the rational functions. This is exactly the case
when one considers vector fields (1) with P and Q polynomials.

Therefore, we say that either the vector field (1) or the associated foliation (2) is rationally
integrable by substituting meromorphic by rational in Definition 1.1.

Theorem B. Consider a planar polynomial vector field X as in (1) and let Γ be an invariant
curve. Assume that the first variational equation VE1 along Γ has an irregular singular point
at infinity. Then, if X is rationally integrable then, for any k ≥ 1, the Galois group Gk of
LVEk is abelian.

Since we will be concerned with rational integrability, it will be natural in general to assume
the invariant curve Γ to be algebraic.

Recall that a linear system of differential equations with a pole at the origin can always
be written in the form xhY ′(x) = B(x)Y , where B(x) is an analytic matrix at x = 0 with
B(0) = B0 6= 0 and h ∈ N. It is said that x = 0 is an irregular singular point of this
equation if the solutions of this system exhibit an exponential growth around x = 0 (see for
instance [25]).

If the first variational equation VE1 of a planar vector field has an irregular singular point
at x = 0, it can be written as

ϕ′1 =
1

h
b(x)ϕ1, (5)

being h > 1 an integer and b(x) analytic at x = 0 with b(0) 6= 0. Furthermore, if the first
variational equation VE1 has an irregular singular point then all the following variational
equations have the same irregular singular point. This is clear since its exponential behaviour
only depends on the first variational equation and the solution of this equation appears in
all of the following variational equations ([18]). Thus the Galois group Gk of any variational
equation is connected and, therefore, it coincides with its identity component, that isGk = G0

k.
A proof of this fact will be carried out in Proposition 3.4. Moreover, explicit representations
of the Galois groups G2 and G3 in the presence of irregular singular points will be provided.

Notice that Theorem B is a necessary condition for rational integrability of a planar vector
field whereas Theorem A is a necessary condition for the more general meromorphic inte-
grability of planar analytic vector fields. Besides, the result of Theorem B is true under the
additional condition that the first variational equation has an irregular point at infinity.

Theorem A (and B) is commonly applied to prove non-integrability results: if for some
k the Galois group G0

k (Gk for Theorem B) is not abelian then the polynomial vector field
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X is not meromorphically (rationally) integrable. Its application is based on the following
procedure, similar to the one used for Hamiltonian systems. In the case of Theorem A:

1) To obtain an invariant curve Γ: y − ϕ(x) = 0, of the vector field X.
2) To compute Gk and to check if the identity component G0

k is not abelian (for k ≥ 2).
3) If for some k, G0

k is not abelian, then the vector field X is not meromorphically
integrable.

4) If for all k, one has that G0
k is abelian, then the method cannot decide.

Analogously, in the case of Theorem B, the procedure reads:

1’) Same as 1) above.
2’) To compute Gk and to check if it is not abelian (again, for k ≥ 2).
3’) If for some k, we have that Gk is not abelian, then the vector field X is not rationally

integrable.
4’) If for all k, Gk is abelian, then the method cannot decide.

It is important to point out that the so–called Risch algorithm (and its homonymous equa-
tion) [20] provides a systematic way to analyse condition 2’). See Section 4 for more details
on it.

One of the scopes of this paper is also to use a suitable version of Risch-Kaltofen algorithm
(see [11]) to detect non-integrability of planar polynomial vector fields under the hypotheses
of Theorem B.

Remark 1.2. It is also possible to obtain interesting results for regular singular points from
Theorem A. They are related to the non abelianity of the holonomy of the vector field around
the curve Γ. For this kind of singular points the holonomy of the associated foliation is given,
at some order, by the monodromy of the variational equation (see, for instance, [8]); and the
monodromy group is Zariski dense in the Galois group. However, in this regular singular case
the Galois group G1 may be non connected (i.e., it can be given by the group of roots of unity,
see [4, Example 6.15]). Hence it is necessary to check this possibility and when we fall in
it we have G0

k 6= Gk. Then one should study the non commutativity of the group G0
k. This

approach is not pursued in this paper.

Remark 1.3. Like it happens for Hamiltonian systems, the Achilles’ heel of the above proce-
dure is step 1). The key point of our approach is that, for generic polynomial vector fields on
the plane, the line at infinity is always an invariant curve Γ of the system (see [10]). In the
real section of C2, this is connected with the Poincaré compactification (see, for instance, [7,
Chapter V] and references therein).

Henceforth it will be assumed some knowledge on Galois Theory of linear differential equa-
tions, the so-called Picard–Vessiot Theory (we refer the reader to [4, 24, 13], and references
therein, for classical monographs). See also [17]. To our knowledge, this is the first time that
the method of the variational equations is applied to study the non–integrability of planar
polynomial vector fields.

The rest of the paper is structured as follows: Section 2 contains the proof of Theorems A
and B above. Section 3 is devoted to the analysis of the Galois group of the variational
equations, where conditions (H1) and (Hk) will be introduced. These hypotheses will play
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an essential rôle along the paper. The main result of this paper (see Theorem 3.5), is stated
as follows:

Main Theorem. Under the assumptions (H1) and (Hk) (for some k ≥ 2) it follows that the
polynomial vector field X (or its corresponding foliation) is not rationally integrable.

In Section 4, assumption (Hk) is related to the Risch differential equation. Variational
equations around the line at infinity are considered in Section 5. We provide examples of
quite general families and perform an explicit ad-hoc version of the Risch-Kaltofen algorithm
in Section 6. A conjecture extending the class of first integrals considered in this paper is
presented in Section 7. For the completeness of the work, Appendices on some Maple com-
putations, Galois correspondence and third order variational equations have been included.

2. Proof of Theorems A and B

In this Section we prove Theorem A. The proof of Theorem B follows in a similar way
but in a rational context. The proof is mainly based on two well-known results: (i) Morales-
Ramis-Simó Theorem and (ii) Ayoul-Zung Theorem. Indeed,

Theorem 2.1 ([18, 17]). Assume that a complex analytic Hamiltonian system is meromor-
phically integrable in a neighbourhood of an integral curve Γ. Then the identity components
G0
k, k ≥ 1, of the Galois groups of the linear variational equations, LVEk, along Γ are abelian.

Here integrability of a Hamiltonian system means that it is integrable in the Liouville’s
sense: existence of a maximal number of functionally independent meromorphic first integrals
in involution.

We stress that Theorem 2.1 has sense for Hamiltonian systems with more than one degrees
of freedom. One degree of freedom Hamiltonian systems are trivially integrable.

There are several variants of Theorem 2.1, depending on the nature of the singularities
of the first integrals. If the variational equations have irregular singular points at infinity
in the phase space then one can compactify it. So, the obstructions for the existence of
(meromorphic) first integrals appear only at the infinity. That is,

Theorem 2.2 ([18]). Consider a complex analytic Hamiltonian vector field. Assume that the
first variational equation VE1 has an irregular singular point at infinity and that for some k,
G0
k is non abelian. Then the Hamiltonian system is not integrable by means of rational first

integrals.

Although the polynomial context is the most common, there are examples in Celestial
Mechanics (see also [18]) where Theorem 2.2 has been applied to Hamiltonian non-polynomial
vector fields. Recall that in the Hamiltonian framework, the necessary number of first integrals
is equal to the half of the dimension of the phase space.

The problem is that, in general, equation (2) does not define a Hamiltonian system, so the
associated vector field

Y =
∂

∂x
+ f(x, y)

∂

∂y
(6)

is not Hamiltonian on the phase space (x, y). It is worth noticing that the first integrals
of the rational vector field (6) are the same as the first integrals of the initial polynomial
vector field (1), since for any H(x, y) one has that X(H) = PY (H). Thus, although the
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vector field Y is not Hamiltonian, it is possible to construct a Hamiltonian system over the
cotangent fiber bundle T ∗P2 (called the cotangent lift of Y )2 and apply the previous argument
on this new Hamiltonian system. Ayoul and Zung considered this case in [2] and obtained
the following more general result:

Theorem 2.3 ([2]). Assume that a complex meromorphic vector field Y is meromorphically
integrable in a neighbourhood of an integral curve Γ. Then, for any k ≥ 1, the identity
component G0

k of the Galois group of the linear variational equation LVEk along Γ is abelian.

The proof of this theorem is based essentially on the following two facts:

• The Galois group of the variational equation of the system Y is the same as the Galois
group of the variational equations of the lifted system.
• The application of Theorem 2.1, which ensures that integrability of Y implies inte-

grability of the lifted system (in the Liouville sense).

Hence, Theorem 2.3 undergoes the same variants as Theorem 2.1. In particular, for variational
equations with irregular singular point at the infinity we have obstructions to the existence of
rational first integrals, i.e. mutatis mutandis, Theorem 2.2 is also valid here. This concludes
the proof of Theorems A and B.

We point out that although Theorems A and B are an almost obvious consequence of
Theorems 2.1, 2.2 and 2.3, we state them as independent theorems, because the variant of
Theorem 2.2 (ie, the existence of an irregular singular points at infinity) was not explicit
considered in the reference [2].

Remark 2.4. An alternative proof of these theorems can certainly be done using some relevant
results by Casale, which connect Theorems A and B with Malgrange’s approach to Galois
Theory of nonlinear differential equations [3].

3. The Galois group of the variational equation

Let us focus our attention in the rational context. Indeed, assume that our vector field is
given in the form

X = P
∂

∂x
+Q

∂

∂y
,

with P,Q polynomials or, in other words, having a foliation y′ = Q/P = f(x, y) with rational
f(x, y). Let us also suppose that our invariant curve Γ : y − ϕ(x) = 0 is rational. Then the
variational equation (4) reads

χ′1 = 2β1(x)χ1

χ′2 = β1(x)χ2 + β2(x)χ1,
(7)

where β1(x) = fy(x, ϕ(x)) and β2(x) = fyy(x, ϕ(x)) are rational functions. This linear equa-
tion (7) can be explicitly solved. Indeed, its solutions are given by

χ1(x) = c1e
2
∫
β1(x) dx = c1ω

2 (8)

χ2(x) = e
∫
β1(x) dx

(
c1

∫
β2(x)e

∫
β1(x) dx dx+ c2

)
= ω(c1θ1 + c2), (9)

2Since we are assuming that the variational equation has an irregular singular point at infinity, we have to
compactify C2 and, consequently, this must be done in the projective complex plane.
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with c1, c2 ∈ C arbitrary constants and provided we define

ω = e
∫
β1 , θ1 =

∫
β2ω. (10)

Assume now that equation (2) on the integral curve Γ satisfy the following hypotheses:

(H1) Either the rational function β1(x) = R(x)/S(x) has a pole (at the finite complex
plane) of order greater than 1 or deg(R) ≤ deg(S). Moreover, the residues of β1(x)
at its poles must be all integers.

(H2) The function θ1 is not a rational function in the variables x, ω.

We remark that the first part of hypothesis (H1) is equivalent to the fact that the variational
equation VE1, χ

′
1 = β1(x)χ1, has at least an irregular singularity in the extended complex

plane, that is, a point in which vicinity the solution χ1(x) displays an exponential behaviour
of a rational function. The assumption about the residues is necessary in order that the
integrand in (9), namely,

β2(x)e
∫
β1(x) dx,

could be expressed as a product of a rational function by the exponential of a rational function.
Although this assumption is not necessary for theoretical results, is very convenient and
algorithmically relevant for the applications.

From this point onwards we will take, as the vector field of coefficients of the linear varia-
tional equations LVEk, the rational functions C(x). Remind that Gk denotes the Galois group
of LVEk, that is Gk = Gal(LVEk), and that G0

k is its corresponding identity component. Thus,
the following result holds:

Proposition 3.1. Under assumptions (H1) and (H2) one has that G2 = G0
2 and, moreover,

G2 is not abelian.

Proof. A fundamental matrix of system LVE2 is

Φ2 =

(
ω2 0
ωθ1 ω

)
. (11)

Consider σ ∈ G2. Then by the action of σ on the elements of the matrix Φ2 and by the
definition of G2 it must be σ(Φ2) = Φ2B for some non singular complex matrix B. Now we
are going to obtain the matrix B. As ω is a non trivial solution of the first order variational
solution LVE1, it holds σ(ω) = λω, with λ ∈ C∗ (see [4], Example 6.1.5) and σ(ω2) =
(σ(ω))2 = λ2ω2. Additionally,

(σ(θ1))
′ = σ(θ′1) = σ(β2ω) = β2σ(ω) = λβ2ω,

and therefore σ(θ1) = λθ1 + µ for some µ ∈ C. So, we have, σ(ωθ1) = σ(ω)σ(θ1) = λω(λθ1 +
µ) = λ2ωθ1 + λµω. Thus the Galois group G2 is contained in the connected non abelian
algebraic group

M :=

{(
λ2 0
λµ λ

)
: λ ∈ C∗, µ ∈ C

}
.
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Recall that the dimension of the Galois group is equal to the transcendence degree of the
Picard–Vessiot extension ( see [13], p. 394 or [4], Corollary 6.2.8). Since the Picard–Vessiot
extension corresponding to LVE2 is

C(x) ⊂ C(x, ω) = L1 ⊂ C (x, ω, θ1) = L2,

one has, from assumption (H1), that

dimG1 = tr deg (L1/C(x)) = tr deg (C(x, ω)/C(x)) = 1.

So G1 ' C∗. Now assumption (H2) implies that θ1 6∈ C(x, ω), so the transcendence degree
tr deg(L2/L1) = 1. This means that the transcendence degree of the Picard–Vessiot extension
C(x) ⊂ L2 is 2 and the dimension of the Galois group G2 is also 2, but as G2 is contained in
M , they must coincide, that is G0

2 = G2 = M is connected and not abelian.
2

Remark 3.2. In the proof of Proposition 3.1, M is the semidirect product of the additive and
the multiplicative groups, i.e., M ' C∗ nC. Indeed, note that

(
λ2 0
λµ λ

)
=

(
λ2 0
0 λ

)
.

(
1 0
µ 1

)
.

More information about semidirect products of algebraic groups can be found, for instance, in
[9, Section 61].

Hence, assuming that one of the irregular singular points is at the infinity, by Theorem B
we obtain the following corollary.

Corollary 3.3. Under the assumptions (H1) and (H2) it follows that the polynomial vector
field X (or its corresponding foliation) is not rationally integrable.

Now, using the Galoisian correspondence, it is possible to generalise Proposition 3.1 and
Corollary 3.3 to higher order variational equations. Indeed, we denote by

βk(x) = fy···y(x, ϕ(x)) (k-times derivatives), θk−1(x) =

∫
βk(x)ωk−1(x) dx.

Then, consider the following assumption (which generalises hypothesis (H2)):

(Hk) The function θk−1 is not a rational function in the variables x, ω.

Therefore, generalised versions of Proposition 3.1 and Corollary 3.3 become as follows:

Proposition 3.4. Under assumptions (H1) and (Hk) (for some k ≥ 2) one has that Gk = G0
k

and, moreover, Gk is not abelian.

Theorem 3.5. Under the assumptions (H1) and (Hk) (for some k ≥ 2) it follows that the
polynomial vector field X (or its corresponding foliation) is not rationally integrable.
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The proof of this theorem follows as a consequence of Proposition 3.4 and Theorem B.

Proof of Prop. 3.4. Instead of using the explicit linear representation of the Galois group Gk

it is more convenient to employ the Galoisian correspondence. So, the variational equation
VEk has the following structure

ϕ′1 = β1ϕ1

ϕ′2 = β1ϕ2 + β2ϕ
2
1

ϕ′3 = β1ϕ3 + 3β2ϕ1ϕ2 + β3ϕ
3
1

...
...

...
ϕ′k = β1ϕk + · · ·+ βkϕ

k
1

(12)

and its corresponding LVEk becomes

χ′1 = kβ1χ1
...

...
...

χ′k = β1χk + · · ·+ βkχ1

(13)

with χ1 = ϕk1, . . . , χk = ϕk and where only relevant terms have been explicitly written. From
this structure and as it happens for LVE2, we see that the Picard–Vessiot extension C(x) ⊂ Lk
of LVEk is obtained by means of ω (exponential of a primitive) following some quadratures.
Thus, the Picard-Vessiot extension of (13) is given by

C(x) = K ⊂ C(x, ω) = L1 ⊂ L2 ⊂ L3 ⊂ · · · ⊂ Lk,

being K ⊂ L1 given by adjoining ω, the exponential of an integral. The rest, L1 ⊂ L2, ...,
Lk−1 ⊂ Lk, by adjoining integrals (by means of variation of constants). Now assumption (H1)
implies that the Galois group G1 is (isomorphic to) the multiplicative group C∗, and hence
connected, G1 = G0

1 = C∗ (see [4, Example 6.1.5]). The extension L1 ⊂ Lk by integrals has
a unipotent group U as its Galois group (see [12]). Now by the Galois correspondence (we
refer the reader to Appendix B), the group G1 is isomorphic to the quotient Gk/U . As the
groups U and G1 are connected, the group Gk must be connected too.

Since χ1 = ωk, and χk = c1ω + c2ωθk−1 + · · · , the solution of LVEk must contain ω and
θk−1. Therefore, one has the intermediate extension

C(x) ⊂ C(x, ω, θk−1) ⊂ Lk.

We note that the extension K = C(x) ⊂ C(x, ω, θk−1) = S is a Picard–Vessiot extension of
the 2× 2 linear system

χ̄′1 = kβ1χ̄1

χ̄′k = β1χ̄k + βkχ̄1.
(14)

Let H = Gal(Lk/S) be the Galois group of the extension S ⊂ Lk and G = Gal(S/K) the
Galois group of equation (14). From hypotheses (H1) and (Hk) it is easy to prove that the
group G is not abelian (in fact, as for the second order variational equation, it is a semidirect
product of the additive by the multiplicative group). So, again by the Galois correspondence
of the Picard–Vessiot theory, G ' Gk/H. As G is not abelian it follows that Gk is not abelian
as well.

2
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We point out that an alternative way to prove the connectedness of the group Gk is by
proving that Gk is the semidirect product G1 n U = C∗ n U . But one needs then to use a
more technical construction: the group Gk can be considered as an algebraic subgroup of a
jet group of local analytic diffeomorphisms over the complex plane (see [18]).

Remark 3.6. In Appendix C the representation of the Galois group of the third variational
equation is explicitly given. The reader can easily derive the proof of Proposition 3.4 for the
case k = 3.

Remark 3.7. It is worth to stress that in the proof of Proposition 3.4 it has not been used the
second part of assumption (H1), i.e., that the residues of the primitive of β1 must be integers.
This assumption will become important later.

The results above draw a systematic scheme to check the non-rational integrability of a
given polynomial vector field: first verifying (H1); then ckecking (H2) and if it is not satisfied
go for (H3) and so on. If we find a k ≥ 2 such that (Hk) holds, then our vector field is not
rationally integrable.

As it will be seen later, equation (14) (which appears in a natural way in the previous
proof) will play a crucial rôle. In fact, when facing a concrete family of polynomial systems,
to check hypothesis (H1) will be quite straightforward by direct inspection of the rational
function β1(x). However to check whether hypothesis (H2) (or, more generally, (Hk)) is
satisfied is a much more involved difficulty. Next section is devoted to the relation between
this problem and the existence of a rational solution of the so-called Risch equation.

4. Liouville’s Theorem and Risch differential equation

Let f(x) and g(x) be rational functions with g(x) non constant. We say that the integral∫
f(x)eg(x) dx is elementary if it can be expressed in the form

∫
f(x)eg(x) dx = eg(x)h(x) + c,

where h(x) is a rational function and c is an integration constant. The following assertion is
a particular result from a more general theorem of Liouville.

Theorem 4.1 ([14]). The integral

∫
f(x)eg(x) dx is elementary if and only if the differential

equation
y′ + g′(x)y = f(x) (15)

has a rational solution h(x). More precisely, one has that

∫
f(x)eg(x) dx = eg(x)h(x)+constant

if and only if h(x) satisfies equation (15).

Equation (15) is usually called the Risch differential equation, since he was the first one
who provided an algorithm to decide whether it has or not a rational solution (see [20]). For
a proof of this theorem using differential vector fields we refer the reader to [21, p.46]. In our

setting we have f(x) = β2(x) and g(x) =

∫
β1(x) dx. So, Risch equation (15) becomes

y′ + β1(x)y = β2(x). (16)



DIFFERENTIAL GALOIS THEORY & PLANAR POLYNOMIAL VECTOR FIELDS 11

Hypothesis (H1) implies that ω can be reduced to a transcendental function of the form
h1(x)eg1(x), with h1 and g1 rational functions. Indeed, the function h1 comes from the cancel-
lation of the exponential with the possible logarithms defined by the poles of β1 with integer
residues. Thus, if this is the case, that is,

β1(x) = β̃1(x) +
∑

i

`i
x− xi

,

with `i ∈ Z, then the primitive

∫
β̃1(x) is rational and

∫
β2(x)e

∫
β1(x) dx =

∫
β̃2(x)e

∫
β̃1(x) dx dx

where β̃2(x) =
∏
i

(x− xi)`iβ2(x). Hence, by theorem 4.1, equation (16) should be changed by

y′ + β̃1(x)y = β̃2(x).

For example, if we took β1(x) = 3/(x − 1) + 1/x2 then e
∫
β1(x)dx = (x − 1)3e

∫
1/x2dx and

we would consider β̃1(x) = 1/x2 and would deal with the corresponding Risch equation
y′ + 1/x2y = (x− 1)3β2.

On the other side, hypothesis (H2) is equivalent to say that the Risch equation (16) admits
no rational solution. It is worth to mention that if (H1) applies and (H2) fails then there
exists a unique rational solution h(x) of the Risch equation. Indeed, the general solution
of equation (15) is y(x) = c e−g(x) + e−g(x)

∫
f(x)eg(x) dx, c ∈ C a general constant. Since

(H2) fails then
∫
f(x)eg(x) dx is elementary and so

∫
f(x)eg(x) dx = eg(x)h(x) and the general

solution becomes y(x) = ce−
∫
β1 + h(x), which is rational only for c = 0.

Hence, by Theorem 4.1, assuming that hypothesis (H1) is satisfied, condition (H2) to be
fulfilled is equivalent to the fact that the Risch equation (16) has no rational solution. The
extension to (Hk) is straightforward since its associated Risch equation is given by

y′ + (k − 1)β1(x)y = βk(x). (17)

For algorithms dealing with this problem we refer the reader to the references [6, 22, 11]. We
stress that there are usually two ways to approach this kind of issues:

a) Analytic approach, which tries to prove by analytic methods whether the equation (16)
(or more general (17)) has or not any rational solution.

b) Algebraic approach, seeking to prove or disprove in a direct way the existence (or not)
of a rational solution to equation (16) (or more general, for (17)). This is the way
employed, essentially, in this work.

5. Variational equations along the line at infinity

In this section we consider polynomial systems and study their variational equations along
the line at infinity. We follow the ideas introduced in [8]. Let consider the polynomial vector
field:

X̃ = P̃ (z1, z2)
∂

∂z1
+ Q̃(z1, z2)

∂

∂z2
, (18)
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with

P̃ (z1, z2) =

N1∑

i=0

Pi(z1, z2), Q̃(z1, z2) =

N2∑

i=0

Qi(z1, z2), (19)

Pi(z1, z2), Qi(z1, z2) being homogeneous polynomials of degree i. Let defineN := max {N1, N2},
the degree of X. The foliation defined by the vector field X̃ is given by the first order differ-
ential equation

dz2
dz1

=
Q̃(z1, z2)

P̃ (z1, z2)
. (20)

In case that P̃ ≡ 0 one should interchange the rôles of z1, z2 and P̃ ,Q̃. Two vector fields are
said to be equivalent if they define the same foliation. Thus, in a dynamical language, we are
more concerned with their orbits than with the time parametrisation of the integral curves
of the vector field.

Proposition 5.1. For z1 6= 0, the birational change of coordinates y = 1/z1 and x = yz2 =

z2/z1 leads the polynomial vector field X̃ to the rational system

ẋ =
N∑

i=0

y1−i (Qi(1, x)− xPi(1, x))

ẏ = −
N∑

i=0

y2−iPi(1, x).

This change of variables sends the line at infinity z1 =∞ to the line y = 0. Its corresponding
foliation is defined by the rational ordinary differential equation

dy

dx
=

y
N∑

i=0

yN−iPi(1, x)

N∑

i=0

yN−i (xPi(1, x)−Qi(1, x))

(21)

and the associated polynomial vector field is given by

X = P (x, y)
∂

∂x
+Q(x, y)

∂

∂y
, (22)

where

P (x, y) :=
N∑

i=0

yN−i (xPi(1, x)−Qi(1, x)) , Q(x, y) := y
N∑

i=0

yN−iPi(1, x). (23)

Moreover, the following relations between P̃ , Q̃ and P,Q hold:

P (x, y) =
1

zN+1
1

P̃ (z1, z2), Q(x, y) =
1

zN+1
1 z2

(
P̃ (z1, z2) + z1Q̃(z1, z2)

)
,

and

P̃ (z1, z2) =
1

yN+1
P (x, y), Q̃(z1, z2) =

1

yN+1
(−yP (x, y) + xQ(x, y)) .
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Proof. From the change of variables it is clear that

ẋ =
1

z1
ż2 −

z2
z1

ż1
z1

=
1

z1

(
N∑

i=0

zi1Qi(1, z2/z1)

)
− z2
z21

(
N∑

i=0

zi1Pi(1, z2/z1)

)

=
N∑

i=0

y1−i (Qi(1, x)− xPi(1, x)) .

Analogously,

ẏ = − ż1
z21

= −y2
N∑

i=0

y−iPi(1, x) = −
N∑

i=0

y2−iPi(1, x).

Notice that, however the polynomials P (z1, z2) and Q(z1, z2) were homogeneous in z1, z2
Pi(1, x) and Qi(1, x), polynomials of degree at most i, are in general nonhomogeneous. The
corresponding foliation of the system above is given by

dy

dx
=
ẏ

ẋ
=

y
N∑

i=0

yN−iPi(1, x)

N∑

i=0

yN−i (xPi(1, x)−Qi(1, x))

=:
Q(x, y)

P (x, y)
,

where we have multiplied ẏ and ẋ by yN−1. Concerning the relations between P̃ , Q̃ and P,Q,
one has

P̃ (z1, z2) =
N∑

i=0

zi1Pi(1, z2/z1) =
1

yN+1
P (x, y)

or, equivalently,

P (x, y) =
1

zN+1
1

P̃ (z1, z2).

In a similar way one gets

Q̃(z1, z2) =
N∑

i=0

zi1Qi(1, z2/z1) =
1

yN+1
(−yP (x, y) + xQ(x, y))

and, taking into account the relation between P̃ and P ,

Q(x, y) =
1

zN+1
1 z2

(
P̃ (z1, z2) + z1Q̃(z1, z2)

)
.

So, in the end,

dz2
dz1

=
Q̃(z1, z2)

P̃ (z1, z2)
=
z2Q(z2/z1, 1/z1)− P (z2/z1, 1/z1)

z1Q(z2/z1, 1/z1)
. (24)

2
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From now on, we restrict ourselves to polynomial vector fields X of the form (22) with P (x, y),
Q(x, y) as in (23) and having y = 0 as an invariant curve. It is straightforward to check in
this case that the corresponding second order linear variational equation LVE2 becomes

χ′1 = 2β1(x)χ1

χ′2 = β1(x)χ2 + β2(x)χ1,
(25)

with

β1(x) =
PN(1, x)

xPN(1, x)−QN(1, x)
,

β2(x) = 2
PN(1, x)QN−1(1, x)− PN−1(1, x)QN(1, x)

(xPN(1, x)−QN(1, x))2
.

(26)

6. Examples and algorithmic considerations

To illustrate the use of the method, we will focus our attention on those families of poly-
nomial vector fields X of the form

dy

dx
=
y(P1(x)yN−1 + · · ·+ PN−1(x)y + PN(x))

xk − y , (27)

or those families X̃, as in (18), that can be led into this form by means of the birational
change of variables y = 1/z1, x = z2/z1. To avoid a cumbersome notation, hereafter we will
also denote Pj(x) = Pj(1, x).

Proposition 6.1. Let consider integers N ≥ 2, 2 ≤ k ≤ N and a polynomial P̃ of degree N ,

P̃ (z1, z2) =
N∑

i=0

Pi(z1, z2),

with Pi(z1, z2) homogeneous polynomial of degree i, satisfying that P0 = 0 and Pi(0, z2) = 0,
for i = 1, . . . , N . Let us define a polynomial of degree N ,

Q̃(z1, z2) =
N∑

i=0

Qi(z1, z2),

where Qi(z1, z2), also homogeneous polynomials of degree i, are given by the following rela-
tions:

Q0(z1, z2) ≡ 0,

Q`(z1, z2) =
z2
z1
P`(z1, z2), ` = 1, . . . , N − 2

QN−1(z1, z2) =
z2
z1
PN−1(z1, z2) + zN−11 (28)

QN(z1, z2) =
z2
z1
PN(z1, z2)− zN−k1 zk2 .
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Under the transformation y = 1/z1, x = z2/z1, the new polynomial vector field X becomes

X =
(
xk − y

) ∂

∂x
+ y

(
P1(x)yN−1 + · · ·+ PN−1(x)y + PN(x)

) ∂
∂y

(29)

and its foliation takes the form (27).

Proof. From Proposition 5.1 we know that under the transformation y = 1/z1, x = z2/z1,

any polynomial vector field X̃ given by (18) and (19) takes the form

dy

dx
=

y
N∑

i=0

yN−iPi(1, x)

N∑

i=0

yN−i (xPi(1, x)−Qi(1, x))

.

So, in our case we should determine Q̃(z1, z2) such that

N∑

i=0

yN−i (Qi(1, x)− xPi(1, x)) = xk − y.

Equating powers in y, one gets Q0 = P0 = 0 and

Q`(1, x) = xP`(1, x), ` = 1, . . . N − 2,

QN−1(1, x) = xPN−1(1, x) + 1, QN(1, x) = xPN(1, x)− xk.
Expressed in (z1, z2)-variables, they are led into the expression (28). Notice that the terms
(z2/z1)Pj(z1, z2) are well-defined polynomials since, by hypothesis, Pj(0, z2) = 0, for j =
1, . . . , N .

2

From now on, we restrict ourselves to polynomial vector fields X of degree N whose foliation
is given by an ordinary differential equation of the form (27),

dy

dx
=
y(P1(x)yN−1 + · · ·+ PN−1(x)y + PN(x))

xk − y := f(x, y)

and with 2 ≤ k ≤ N , an integer. As it was already pointed out at the end of Section 5,
its corresponding second order linear variational equation is given by (25). In our case the
invariant curve is Γ : y = 0, that is y = ϕ(x) = 0, so

β1(x) = fy(x, ϕ(x)) = fy(x, 0) =
PN(1, x)

xk

β2(x) = fyy(x, ϕ(x)) = fyy(x, 0) = 2

(
PN(1, x)

x2k
+
PN−1(1, x)

xk

)
,

as it was already stated in (26).

Example 1. Consider the planar vector field

X = (x3 − y)
∂

∂x
+ y(x2 − cx− b− ay)

∂

∂y
(30)
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and its associated foliation defined by

dy

dx
=
y(x2 − cx− b− ay)

x3 − y . (31)

Note that the vector field X leaves invariant the straight line y = 0. Now we consider the
variational equations LVE2 of (31) on the line y = 0 and we obtain

χ′1 = 2
x2 − cx− b

x3
χ1

χ′2 =
x2 − cx− b

x3
χ2 − 2

(
a

x3
− x2 − cx− b

x6

)
χ1.

(32)

Condition b 6= 0 implies hypothesis (H1). In order to check hypothesis (H2) we reduce our
problem to study if its associated Risch equation

y′ +
x2 − cx− b

x3
y = −2

(
a

x3
− x2 − cx− b

x6

)
(33)

has or not a rational solution.

Remark 6.2. For b = 0 and c 6= 0, condition (H1) holds but (H2) fails. We have not find
any k that (Hk) is verified.

Example 2 (an infinite family). Assume that in (27) PN = a ∈ C and PN−1 = b ∈ C. We
assume a 6= 0 and k ≥ 2. The vector field is

X = (xk − y)
∂

∂x
+ y(P1(x)yN−1 + · · ·PN−2(x)y2 + by + a)

∂

∂y
(34)

with foliation
dy

dx
=
y(P1(x)yN−1 + · · ·PN−2(x)y2 + by + a)

xk − y , (35)

b ∈ C, a ∈ C∗. Along the straight line y = 0 its LVE2 becomes

χ′1 = 2
a

xk
χ1

χ′2 =
a

xk
χ2 + 2

(
a

x2k
+

b

xk

)
χ1.

As before, hypothesis (H2) and, therefore its rational integrability, can be reduced to study
the existence of a rational solution of the corresponding Risch equation

y′ +
a

xk
y =

2a

x2k
+

2b

xk
. (36)

We will prove later that this is not the case for k > 2.

Example 3. Let X be the following quadratic polynomial vector field:

X = y(a1x+ a0)
∂

∂y
+ (x2 − y)

∂

∂x
. (37)

Then
dy

dx
=
y(a1x+ a0)

x2 − y . (38)
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Despite its simple appearance we will prove that generically the above vector field is not
rationally integrable. Along the straight line y = 0 the LVE2 becomes

χ′1 = 2
a1x+ a0

x2
χ1

χ′2 =
a1x+ a0

x2
χ2 +

2a1x+ 2a0
x4

χ1.

As before, we study the existence of rational solutions for its corresponding Risch equation:

y′ +
a1x+ a0

x2
y = 2

a1x+ a0
x4

.

6.1. Application of the Risch-Kaltofen algorithm. In this section the solution of the
Risch equation (16) is analysed by means of the so–called Risch algorithm. It follows the
ideas of the work by Kaltofen in [11] (from now on refered as Risch-Kaltofen algorithm). We
restrict ourselves here to the particular case where β1 and β2 are given by the expressions

β1(x) =
A(x)

xk
, β2(x) =

2A(x) + 2xkB(x)

x2k
,

A(x) =
n∑

i=0

aix
i, B(x) =

m∑

i=0

bix
i, k ∈ Z+,

(39)

with an 6= 0, bm 6= 0, k > 1 and n < k. From now on we will always consider a0 6= 0 (if not,
this would imply that k becomes, at least, k − 1 in β1(x)). It is clear that β1(x) has a pole
of order greater than 1 at x0 = 0 (hypothesis (H1)).

Remark 6.3. Relevant special cases of the family (29) can be expressed in the latter form.
For instance,

β1(x) =
PN(x)

xk
, β2(x) = 2

(
PN(x)

x2k
+
PN−1(x)

xk

)
,

with n = degPN(x), m = degPN−1(x), n < k. In particular, for k = N + 1, we have
n = degPN(x) ≤ N < k. However, as we will see later, there are polynomial systems not
included in the family (29) with β1 and β2 as in (39).

Observe that a0 6= 0 implies that deg(GCD(A(x), xk)) = 0 and also that deg(GCD(2A(x)+
2kB(x), x2k)) = 0 (since they are irreducible fractions). In the same way, b0 6= 0, unless B(x)
be identically zero, i.e., B ≡ 0. According to the notation of Kaltofen [11],

q1 = x, k1 = k, l1 = 2k, F = A(x), G = 2A(x) + 2xkB(x).

Due to k > 1, then

j̃1 = min{2k + 1, k} = k, y(x) =
Y (x)

xk

and we arrive to the following differential equation uY ′ + vY = w, i.e.,

xkY ′ + (A− kxk−1)Y = 2A+ 2xkB, (40)

where

u = upx
p + . . .+ u0 = xk, v = varx

r + . . .+ v0 = A− kxk−1,
w = wsx

s + . . .+ w0 = 2A+ 2xkB, Y = yhx
h + . . .+ y0.

(41)
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Replacing x = 0 in equation (40) and having in mind that a0 6= 0, it follows that y0 = 2.
Since n < k, s < 2k it follows m < k and n ≤ k − 1, and thus we arrive to

p = k, up = 1, r = k − 1, s =

{
m+ k, m ≥ 0
n, B ≡ 0.

Let us define

vr =

{
−k, n < k − 1
an − k, n = k − 1,

and the function ρ = −vr/up as

ρ =

{
−vr vr ∈ Z−

0 vr /∈ Z−.
Therefore, equation (40) can be rewritten as

h̃∑

i=1

[
(i− k)xi+k−1 + Ayix

i
]

=
m∑

i=0

(
2bix

k+i
)

+ 2kxk−1, (42)

where h̃ ≥ h is given by

h̃ =

{
max{min{m,m+ 1}, ρ} if m ≥ 0,
max{min{n− k − 1, n− k + 1}, ρ} = max{n− k − 1, ρ} if B ≡ 0.

In our case, this h̃ reads

h̃ =

{
max{m, ρ} if m ≥ 0,
ρ if B ≡ 0.

(43)

One should obtain the rest of coefficients of Y (x), that is yh̃, yh̃−1, . . . , y1, whenever the
algebraic equation (40) has solution. Applying Rouché-Frobenius theorem over the system

obtained after specialisation of the curve with h̃ points x1, . . . xh̃ (where xi 6= 0 for all 1 ≤ i ≤
h̃) the polynomial Y (x) exists if and only if the rank of the matrix of the system is exactly
the rank of the augmented matrix. Recall that if

deg(xkY ′ + (A− kxk−1)Y ) 6= deg(2A+ 2xkB), (44)

then there is no solution for Y (x).

According to possibilities for h̃ in equation (43) we have the following two cases:

(1) Case 1: n < k− 1. This is the trivial case because vr = −k ∈ Z− and since to m < k,

it derives, by equation (43), that h̃ = k. By (42) we have

k∑

i=1

[
(i− k)xi+k−1 + Axi

]
yi =

m∑

i=0

(
2bix

k+i
)

+ 2kxk−1,

which, after cancellation of the term of degree 2k − 1, lead us to{
−yk−1x2k−2 + . . .+ (1− k)y1x

k + anykx
n+k + . . .+ a0y1x ≡ 0, B ≡ 0,

−yk−1x2k−2 + . . .+ (1− k)y1x
k + anykx

n+k + . . .+ a0y1x = 2bmx
m+k + . . . 2b0x

k, m ≥ 0

Observe that for B ≡ 0, all the coefficients in the left-hand side must vanish in
order to provide solution for Y (x). On the other hand, for m ≥ 0, the degree of the
polynomial in the left-hand side is at most 2k − 2 and the degree of the polynomial
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in the right-hand side is at most m+ k < 2k. So, we can obtain rational solutions of
Risch differential equation when equation (42) has solution for Y (x). In particular,
by condition (44), if the degree of the left-hand side is 2k− 2, the degree of the right-
hand side is m+k and since m 6= k− 2 the Risch differential equation has no rational
solution.

(2) Case 2: n = k − 1

(a) If m < 1 and k − an /∈ Z+, then ρ = 0 and by equation (43) we obtain h̃ = 0.
From (41) we get Y (x) = y0 = 2. Replacing Y (x) = 2 into equation (42) we
obtain xB = −k, which is a contradiction because it does not exist m ∈ N such
that xB = −k (although B ≡ 0, because k 6= 0). Thus, we conclude that in this
case there are no rational solutions for the Risch differential equation.

(b) If k − an /∈ Z+ and m ≥ 1, then ρ = 0 and by equation (43) we obtain h̃ = m.
Using (41) we see that Y (x) = ymx

m + . . .+ 2 and replacing it into equation (42)
we get rational solutions of Risch differential equation provided the rest of inde-
terminate coefficients y1, . . . , ym satisfy the algebraic equation (40).

(c) If k− an ∈ Z+ and m ≥ k− an, then ρ = an − k and by equation (43) we obtain

h̃ = m. Similarly, from (41) we see that Y (x) = ymx
m + . . .+ 2, and replacing it

into equation (42), we obtain rational solutions of the Risch differential equation
provided the rest of indeterminate coefficients y1, . . . , ym satisfy the algebraic
equation (40).

(d) If k − an ∈ Z+ and m < k − an, then ρ = an − k and by equation (43) we obtain

h̃ = k − an. Taking into account (41) one sees that Y (x) = yk−anx
k−an + . . .+ 2

and by replacing it into equation (42) one gets rational solutions for the Risch
differential equation whenever the rest of indeterminate coefficients y1, . . . , yk−an
satisfy the algebraic equation (40).

Now we go back to our families of examples.

Example 1 (continuation). Let us take k = 3, n = 2, m = 0, a2 = 1, a1 = −c, a0 = −b,
b0 = −a in equation (30). Therefore:

• In the case a1 6= a0b0/3 (equivalently, c 6= −ab/3), it follows that n = k−1 and m = 0
so we fall in case 2. Precisely, since vr = a2 − k = −2 ∈ Z−, we fall in subcase 2.d,

which lead us to h̃ = 2. Hence, Y (x) = y2x
2 + y1x + 2. Now, substituting Y (x) into

equation (42) we see that condition (44) holds and Risch differential equation has no
rational solution. In consequence, equation (30) is not rationally integrable. Coming

back to the vector field X̃(z1, z2), by means of equation (24), we obtain that the vector
field

X̃ = (abz21 + cz1z2 − z22 + z1)
∂

∂z1
− (cz22 + abz1z2 + z2 − z1)

∂

∂z2
(45)

is not rationally integrable. In fact, the vector field (45) is one of the equivalent vector
fields defining the same foliation.
• In the case a1 = a0b0/3 (equivalently, c = −ab/3), the rational solution of the Risch

equation is given by y(x) =
−6
b
x2 + 2

x3
. Thus, hypothesis (H2) is not fulfilled and the

method does not decide.
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Example 2 (continuation). Take n = m = 0, A = a and B = b in equation (34). Due to

n < k − 1, we fall in case 1. Thus, h̃ = k and Y (x) = ykx
k + . . .+ y1x+ 2. If condition (44)

is satisfied, then 2k − 2 6= k, which implies that we have not rational solution for all k > 2.
Now, since k = 2 does not satisfy condition (44), we seek for Y (x) using equations (40)

or (42). We see that h̃ = 2 and Y (x) = y2x
2 + y1x+ 2. Now, by equation (42), we obtain

y1 =
4

a
, y2 =

2ab+ 4

a2
.

The solution is given by

y(x) =
2

x2
+

4

ax
+

2b

a
+

4

a2
+ e

a
x c1.

Thus, for this infinite family, the Risch equation has a rational solution for k = 2 and no
rational solution for k > 2. Therefore, it follows that the vector field

X̃ = P̃ (z1, z2)
∂

∂z1
+ Q̃(z1, z2)

∂

∂z2
,

with

P̃ (z1, z2) =

N1∑

i=0

Pi(z1, z2), Q̃(z1, z2) =

N2∑

i=0

Qi(z1, z2),

where Pi(z1, z2), Qi(z1, z2) are homogeneous polynomials of degree i, and satisfying condi-
tions (28) is not rationally integrable if PN(z1, z2) = azN1 and PN−1(z1, z2) = bzN−11 z2− zN−11 .

Example 3 (continuation). Take k = 2, A = a1x+ a0 (with a1 6= 0), B ≡ 0, n = 1, and

β1 =
a1x+ a0

x2
, β2 =

2a1x+ 2a0
x4

,

in equation (38). Since n = k − 1 (case 2 of the algorithm) and m < 1 we should consider
two options. The first one is when a1− 2 is not a negative integer, that is a1 ∈ [2,∞), we fall
in subcase 2.a and therefore the Risch differential equation has no rational solutions.

Now, the second option is when a1 − 2 is a negative integer, that is a1 ∈ (−∞, 1] ∩ Z and

we fall in subcase 2.d. Thus, h̃ = 2 − 1 > 0 and then the Risch differential equation has
always one rational solution because ym, . . . , y1 satisfy the algebraic equation (42) and we can

obtain explicitly the polynomial Y (x), which lead us to the rational solution y(x) = Y (x)
x2

. For

instance, setting a1 = 1 and a0 = a, we obtain h̃ = 1 and Y (x) = 4
a
x + 2 and the rational

solution of the Risch differential equation is

y(x) =
4

ax
+

2

x2
.

Coming back to the variables (z1, z2) = (1/y, x/y) the vector field (37) is (equivalent to)

X̃ = (a0z
2
1 + a1z1z2)

∂

∂z1
− (a1z

2
2 + a0z1z2 − z22 + z1)

∂

∂z2
. (46)

Thus we proved that for a1 /∈ (−∞, 1] ∩ Z the vector field (46) is not rationally integrable.
We observe that for a1 = 1 it reduces to a vector field equivalent to the following linear one

X̃ = (a0z1 + z2)
∂

∂z1
− (a0z2 + 1)

∂

∂z2
. (47)
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7. Conjecture: Extensions to other type of first integrals

We believe that our results provide obstructions for a more general kind of first integrals.
More precisely, it seems natural to think assumptions (H1) and (mainly) (Hk) (k ≥ 2) are
not compatible with the existence of an elementary first integral (for a precise definition of
it, see for instance [19]). Indeed, the integral θk is too “transcendent” to allow an elementary
first integral. Then we state the following:

Conjecture. Under assumptions (H1) and (Hk) (for some k ≥ 2) the polynomial vector field
has not an elementary first integral.

We illustrate this conjecture with the vector field (37) with a1 = 1. Since equation (47) is
linear in the variables z1, z2, it must be integrable in some reasonable sense.

Example. The function

H(x, y) =
ax+ y

y
e−

a(x+a)
ax+y

is a first integral of the vector field

X = (x2 − y)
∂

∂x
+ y(x+ a)

∂

∂y
.

Notice that H is elementary, in fact of Darboux type (see [5, 7]).
From the previous section we know that assumption (H1) is satisfied but not (H2), i.e,

θ1 is elementary. We compute θk−1 up to k = 10 and all them are elementary (we skip the
details), i.e, no assumption (Hk) is satisfied for k ≤ 10 and hence until k = 10 no obstruction
to rational integrability is obtained, despite of the fact that the first integral is not rational
but elementary.

Appendix A: Some Maple computations

We will give some flavour of the analytical approach using Maple on two of the examples
of Section 6: Example 1 and Example 3. The results are in agreement with the algebraic
results of Section 6.1.

Example 1. There are two possible cases: (i) c 6= −ab/3 and (ii) c = −ab/3.

(i) If b 6= 0 and c 6= −ab/3 the solution of LVE2 is

χ1(x) = c1e
2cx+b

x2 x2,

χ2(x) = c2e
2cx+b

2x2 x+ c1
√

2π
erf
(√

2(cx+b)

2
√−bx

)
(ab+3c)e

−c2x2+2bcx+b2

2bx2 x+
√
2
√
−be

2cx+b
x2 (3x2−b)

(−b)3/2x ,

and notice that for b 6= 0 the error function erf
(√

2(cx+b)

2x
√
−b

)
is not an elementary

function (see, for instance, [21, page 48]). We remark that it is also possible to
express the error function by means of the Whittaker function ([26]) W−1/4,1/4 (and
some elementary functions). Then by proving that this Whittaker function is not
elementary, we obtain an alternative proof of the non-elementary character of the
error function. Notice that G2 = Gal(LVE2) is connected and non abelian. Therefore,
the vector field X is no rationally integrable.
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(ii) In the case c = −ab/3, the solution of LVE2 is

χ1(x) = c1 x
2e−

b(2 ax−3)

3x2 ,

χ2(x) =
1

bx

(
2c1e

− b(2ax−3)

6x2 (−3x2 + b) + c2bx
2
)

e−
b(2ax−3)

6x2 .

Solutions are elementary and its associated Risch equation has a rational solution.

Example 3. In this family the LVE2 becomes

χ′1 = 2
a1x+ a0

x2
χ1

χ′2 =
a1x+ a0

x2
χ2 + 2

a1x+ a0
x4

χ1.

Maple gives the following solution of LVE2

χ1(x) = c1x
2a1e−2

a0
x

χ2(x) = c2x
a1e−

a0
x + c1

2a20 e
−2a0

x x2a1−2 + 4a0 e
−2a0

x x2a1−1 − 4
(
a0
x

)a1
2 M e−

3a0
2x x2a1

a20
,

where we have denoted by

M := Mκ,µ(z), with κ = −a1
2
, µ =

1− a1
2

, z =
a0
x
,

the M Whittaker function solution of the Whittaker equation

y′′ −
(

1

4
− κ

z
+

4µ2 − 1

4z2

)
y = 0.

In all the checked values for a1 ∈ [−∞, 1] ∩ Z the M function is elementary and it is not
elementary for the rest of values, in agreement with our previous results.

Appendix B: The Galoisian Correspondence

One of the key theorems of the Galois Theory of linear differential equations, the Picard–
Vessiot Theory, is the existence of a Galoisian correspondence between intermediate differen-
tial field in the Picard–Vessiot extension of a linear differential system and algebraic subgroups
of the Galois group. It means that the structure of the solutions of the differential equation
(i.e., how to solve the differential equation) is a reflection of the structure of Galois group.
An analogous theorem is valid for the classical Galois Theory of polynomials and as there,
this theorem plays an essential rôle not only in the theory but also in applications. For this
reason this theorem is also called the Fundamental Theorem of Picard–Vessiot Theory (some
references are [15, 4, 24]).

We need some terminology and notations. Let K ⊂ L be an extension of differential fields.
Then:

• Gal(L/K) is the group of differential automorphisms of L which are the identity over
K.
• If H is a subgroup of Gal(L/K), the intermediate field K ⊂ LH ⊂ L fixed by H is
LH := {a ∈ L : σ(a) = a, ∀σ ∈ H} .
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• Given a linear differential system

dy

dx
= Ay, (48)

with coefficients in a differential field K (that is A ∈ Mat(n,K)), a Picard–Vessiot
extension K ⊂ L of equation (48) is the extension generated by the elements of a
fundamental matrix Φ(x) = (φij(x)), L = K(φ11, ..., φnn). From equation (48), the
field L is a differential field.

Theorem (Correspondence in Picard-Vessiot theory)
Let K ⊂ L be a Picard–Vessiot extension of (48) and G = Gal(L/K). Then there exists

a one-to-one correspondence between the intermediary differential fields K ⊂ S ⊂ L and the
algebraic subgroups H ⊂ G such that:

1) Given S, H = Gal(L/S).
2) Given H, LH = S.
3) Picard–Vessiot extensions K ⊂ S correspond to normal subgroups H ⊂ G and then

G/H ≈ Gal(S/K).
4) If M is a subgroup of G, then to the differential field LM it corresponds the Zariski

adherence of H, i.e., Gal(L/LM) = H̄.

Appendix C: the Galois grup of the third order variational equation

Linearising the variational equations. Variational equations and their linearised expres-
sion play a key rôle in the theory of integrability of differential equations and, in particular,
they have been also crucial in the results of this work. However they are very well known
and commonly used in many textbooks on differential equations, higher order variational
equations and (a possible, there can be several) their linearisation are not so frequent. The
aim of this annex is to remind them in order to do this paper a bit more self-contained. We
illustrate the method with the third order variational equation.

To start, let us assume that y = ϕ(x) is a solution of y′ = f(x, y), y(x0) = ϕ(x0) = y0. One
possible way to derive the variational equations related to the y-variable (that is, freezing x0
as a initial x-value and moving transversally in the y-direction, that is, y(x0) = y0 + ε) is to
look for solutions of such equation in the perturbative form, more suitable for computations
that the way we deduced the VE2 in the introduction,

y(x) = ϕ(x) + εϕ1(x) +
ε2

2!
ϕ2(x) + · · ·+ εj

j!
ϕj(x) + · · ·
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Substituting it into y′ = f(x, y) and expanding in Taylor series we get

ϕ′(x) + εϕ′1(x) +
ε2

2!
ϕ′2(x) +

ε3

3!
ϕ′3(x) + · · · =

f(x, ϕ) + fy(x, ϕ)

(
εϕ1 +

ε2

2!
ϕ2 +

ε3

3!
ϕ3 + · · ·

)
+

1

2!
fyy(x, ϕ)

(
εϕ1 +

ε2

2!
ϕ2 +

ε3

3!
ϕ3 + · · ·

)2

+

1

3!
fyyy(x, ϕ)

(
εϕ1 +

ε2

2!
ϕ2 +

ε3

3!
ϕ3 + · · ·

)3

+ · · ·

where fy(x, y) = ∂f/∂y, fyy = ∂2f/∂y2, etc. Equating terms of power εk one obtains the
variational equations of any order k ≥ 1. Indeed, for k = 0 one get the known solution
ϕ′(x) = f(x, ϕ(x)). Concernng the rest of orders one has:

ϕ′1 = fy(x, ϕ)ϕ1

ϕ1(x0) = 1,

ϕ′2 = fy(x, ϕ)ϕ2 + fyy(x, ϕ)ϕ2
1

ϕ2(x0) = 0,

ϕ′3 = fy(x, ϕ)ϕ3 + 3fyy(x, ϕ)ϕ1ϕ2 + fyyy(x, ϕ)ϕ3
1

ϕ3(x0) = 0,

and so on. The initial values come from the condition y(x0) = y0+ε. Observe that its solution
exhibits a triangular scheme: we substitute the functions ϕj, j = 1, . . . , k − 1 previously
obtained in the equation for ϕk and solve for it. Thus, all of them are non-homogeneous
linear differential equations except the first one, VE1, which is homogeneous. They can be
solved recurrently using the exponential of a primitive (for the first variational equation) and
primitives.

Nevertheless they can be computed (specially, numerically) in this form, their expression
is not the most suitable when regarding them in terms of differential Galois Theory. In that
framework, the common approach is to introduce intermediate variables which lead equations
VEk, k ≥ 2, into linear homogeneous systems. Namely, for the VE3 let us define the following
variables

χ1 = ϕ3
1, χ2 = ϕ1ϕ2, χ3 = ϕ3.

Thus, the third order variational equation VE3 becomes the LVE3

χ′1 = 3ϕ2
1ϕ
′
1 = 3fy(x, ϕ)ϕ3

1 = 3fy(x, ϕ)χ1

χ′2 = ϕ′1ϕ2 + ϕ1ϕ
′
2 = fy(x, ϕ)ϕ1ϕ2 + ϕ1

(
fy(x, ϕ)ϕ2 + fyy(x, ϕ)ϕ2

1

)

= 2fy(x, ϕ)χ2 + fyy(x, ϕ)χ1

χ′3 = fy(x, ϕ)χ3 + 3fyy(x, ϕ)χ2 + fyyy(x, ϕ)χ1,
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which gives rise to the following triangular system



χ′1
χ′2
χ′3


 =




3fy(x, ϕ) 0 0
fyy(x, ϕ) 2fy(x, ϕ) 0
fyyy(x, ϕ) 3fyy(x, ϕ) fy(x, ϕ)






χ1

χ2

χ3


 .

For variational equations of higher order a similar procedure can be performed.

Galois group of the third order linearised variational equation LVE3. We recall
that

β1(x) = fy(x, ϕ(x)), β2(x) = fyy(x, ϕ(x)), β3(x) = fyyy(x, ϕ(x)), (49)

and

ω = e
∫
β1 dx, θ1 =

∫
β2e

∫
β1 dx dx, θ2 =

∫
β3e

2
∫
β1 dx dx.

Observe that

ω = e
∫
β1 dx, θ1 =

∫
β2ω, θ2 =

∫
β3ω

2. (50)

To solve the linear differential equations LVE3 (homogeneous the first one and nonhomoge-
neous the others) we use that the general solution of a linear ordinary differential equation y′ =

a(x)y+b(x) is given, using the formula of variation of parameters, by y = ce
∫
a + e

∫
a

∫
be−

∫
a.

Indeed, we have

χ1 = c1ω
3,

χ2 = c2ω
2 + c1ω

2θ1,

χ3 = c3ω + 3c2ωθ1 + c1ωθ2 +
3

2
c1ωθ

2
1,

where in the last equation it has been used that
∫
β2ωθ1 =

∫
β2e

∫
β1

∫
β2e

∫
β1 =

∫
θ1θ
′
1 =

1

2
θ21 =

1

2

(∫
β2e

∫
β1

)2

and with c1, c2, c3 complex constants. That is, a possible fundamental matrix of system LVE3

is given by

Φ3 =




ω3 0 0
ω2θ1 ω2 0

3
2
ωθ21 + ωθ2 3ωθ1 ω


 .

In what follows we work by a similar way to the case of second order variational equation,
see Proposition 3.1. Consider σ ∈ G3 (the Galois group of LVE3). It must be σ(Φ3) = Φ3B,
being B a non singular complex matrix. Following similar arguments to the computation of
G2 in the proof of Proposition 3.1 we obtain σ(ω) = λω, σ(θ1) = λθ1 + µ, σ(θ2) = λ2θ2 + ν,
with λ 6= 0 and µ, ν suitable complex constants. It follows that the corresponding Galois
group G3 is represented by an algebraic subgroup of the non abelian connected algebraic
group

M =








λ3 0 0
λ2µ λ2 0

λν + 3
2
λµ2 3λµ λ


 : λ ∈ C∗, µ ∈ C, ν ∈ C



 .
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Now assumption (H1) implies that the dimension of G1 is 1 (see again the proof of Proposition
3.1). Since the dimension of the group G3 must be equal to the transcendence degree of the
extension C(x) ⊂ L3, it is easy to see that assumptions (H2), (H3) are not verified if and only
if µ = 0 and ν = 0, respectively. Then the structure of the Galois group G3 will be as follows

G3 =








λ3 0 0
0 λ2 0
λν 0 λ


 : λ ∈ C∗, ν ∈ C



 , (51)

assuming (H3) but not (H2), and

G3 =








λ3 0 0
λ2µ λ2 0
3
2
λµ2 3λµ λ


 : λ ∈ C∗, µ ∈ C



 ,

assuming (H2) but not (H3). In any of these two cases, the group G3 is connected and not
abelian. For the applications, when (H1) is satisfied and (H2) is not satisfied then we check
(H3). If (H3) is satisfied and since the group G0

3 = G3 in (51) is not abelian, we conclude to
the non rational integrability.
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28 P. ACOSTA-HUMÁNEZ, J. T. LÁZARO, J.J. MORALES-RUIZ, AND CH. PANTAZI
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Barranquilla - Colombia

E-mail address: primitivo.acosta@unisimonbolivar.edu.co -- primi@intelectual.co
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